machdep.c revision 204309
1218887Sdim/*-
2218887Sdim * Copyright (c) 2003 Peter Wemm.
3218887Sdim * Copyright (c) 1992 Terrence R. Lambert.
4218887Sdim * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5218887Sdim * All rights reserved.
6218887Sdim *
7218887Sdim * This code is derived from software contributed to Berkeley by
8218887Sdim * William Jolitz.
9218887Sdim *
10218887Sdim * Redistribution and use in source and binary forms, with or without
11218887Sdim * modification, are permitted provided that the following conditions
12218887Sdim * are met:
13218887Sdim * 1. Redistributions of source code must retain the above copyright
14243830Sdim *    notice, this list of conditions and the following disclaimer.
15276479Sdim * 2. Redistributions in binary form must reproduce the above copyright
16218887Sdim *    notice, this list of conditions and the following disclaimer in the
17243830Sdim *    documentation and/or other materials provided with the distribution.
18218887Sdim * 3. All advertising materials mentioning features or use of this software
19249423Sdim *    must display the following acknowledgement:
20296417Sdim *	This product includes software developed by the University of
21249423Sdim *	California, Berkeley and its contributors.
22218887Sdim * 4. Neither the name of the University nor the names of its contributors
23218887Sdim *    may be used to endorse or promote products derived from this software
24249423Sdim *    without specific prior written permission.
25218887Sdim *
26218887Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27276479Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28218887Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29218887Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30226633Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31218887Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32218887Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33234353Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34218887Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35249423Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36249423Sdim * SUCH DAMAGE.
37249423Sdim *
38239462Sdim *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39218887Sdim */
40288943Sdim
41218887Sdim#include <sys/cdefs.h>
42234353Sdim__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 204309 2010-02-25 14:13:39Z attilio $");
43276479Sdim
44276479Sdim#include "opt_atalk.h"
45280031Sdim#include "opt_atpic.h"
46218887Sdim#include "opt_compat.h"
47218887Sdim#include "opt_cpu.h"
48218887Sdim#include "opt_ddb.h"
49276479Sdim#include "opt_inet.h"
50276479Sdim#include "opt_ipx.h"
51276479Sdim#include "opt_isa.h"
52276479Sdim#include "opt_kstack_pages.h"
53276479Sdim#include "opt_maxmem.h"
54234353Sdim#include "opt_msgbuf.h"
55234353Sdim#include "opt_perfmon.h"
56218887Sdim#include "opt_sched.h"
57218887Sdim
58218887Sdim#include <sys/param.h>
59249423Sdim#include <sys/proc.h>
60249423Sdim#include <sys/systm.h>
61218887Sdim#include <sys/bio.h>
62239462Sdim#include <sys/buf.h>
63249423Sdim#include <sys/bus.h>
64249423Sdim#include <sys/callout.h>
65234353Sdim#include <sys/cons.h>
66218887Sdim#include <sys/cpu.h>
67249423Sdim#include <sys/eventhandler.h>
68249423Sdim#include <sys/exec.h>
69239462Sdim#include <sys/imgact.h>
70239462Sdim#include <sys/kdb.h>
71249423Sdim#include <sys/kernel.h>
72249423Sdim#include <sys/ktr.h>
73218887Sdim#include <sys/linker.h>
74218887Sdim#include <sys/lock.h>
75249423Sdim#include <sys/malloc.h>
76249423Sdim#include <sys/memrange.h>
77239462Sdim#include <sys/msgbuf.h>
78239462Sdim#include <sys/mutex.h>
79249423Sdim#include <sys/pcpu.h>
80249423Sdim#include <sys/ptrace.h>
81234353Sdim#include <sys/reboot.h>
82234353Sdim#include <sys/sched.h>
83226633Sdim#include <sys/signalvar.h>
84218887Sdim#include <sys/sysctl.h>
85218887Sdim#include <sys/sysent.h>
86218887Sdim#include <sys/sysproto.h>
87218887Sdim#include <sys/ucontext.h>
88218887Sdim#include <sys/vmmeter.h>
89218887Sdim
90218887Sdim#include <vm/vm.h>
91218887Sdim#include <vm/vm_extern.h>
92218887Sdim#include <vm/vm_kern.h>
93218887Sdim#include <vm/vm_page.h>
94218887Sdim#include <vm/vm_map.h>
95218887Sdim#include <vm/vm_object.h>
96218887Sdim#include <vm/vm_pager.h>
97218887Sdim#include <vm/vm_param.h>
98218887Sdim
99218887Sdim#ifdef DDB
100218887Sdim#ifndef KDB
101218887Sdim#error KDB must be enabled in order for DDB to work!
102218887Sdim#endif
103218887Sdim#include <ddb/ddb.h>
104239462Sdim#include <ddb/db_sym.h>
105239462Sdim#endif
106239462Sdim
107239462Sdim#include <net/netisr.h>
108218887Sdim
109288943Sdim#include <machine/clock.h>
110288943Sdim#include <machine/cpu.h>
111288943Sdim#include <machine/cputypes.h>
112276479Sdim#include <machine/intr_machdep.h>
113239462Sdim#include <machine/mca.h>
114218887Sdim#include <machine/md_var.h>
115288943Sdim#include <machine/metadata.h>
116288943Sdim#include <machine/pc/bios.h>
117276479Sdim#include <machine/pcb.h>
118239462Sdim#include <machine/proc.h>
119218887Sdim#include <machine/reg.h>
120218887Sdim#include <machine/sigframe.h>
121218887Sdim#include <machine/specialreg.h>
122218887Sdim#ifdef PERFMON
123218887Sdim#include <machine/perfmon.h>
124218887Sdim#endif
125218887Sdim#include <machine/tss.h>
126218887Sdim#ifdef SMP
127309124Sdim#include <machine/smp.h>
128218887Sdim#endif
129218887Sdim
130218887Sdim#ifdef DEV_ATPIC
131218887Sdim#include <x86/isa/icu.h>
132218887Sdim#else
133218887Sdim#include <machine/apicvar.h>
134218887Sdim#endif
135218887Sdim
136218887Sdim#include <isa/isareg.h>
137226633Sdim#include <isa/rtc.h>
138218887Sdim
139218887Sdim/* Sanity check for __curthread() */
140218887SdimCTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
141234353Sdim
142261991Sdimextern u_int64_t hammer_time(u_int64_t, u_int64_t);
143261991Sdim
144218887Sdimextern void printcpuinfo(void);	/* XXX header file */
145218887Sdimextern void identify_cpu(void);
146218887Sdimextern void panicifcpuunsupported(void);
147218887Sdim
148218887Sdim#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
149218887Sdim#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
150261991Sdim
151261991Sdimstatic void cpu_startup(void *);
152261991Sdimstatic void get_fpcontext(struct thread *td, mcontext_t *mcp);
153261991Sdimstatic int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
154218887SdimSYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
155218887Sdim
156218887Sdim#ifdef DDB
157218887Sdimextern vm_offset_t ksym_start, ksym_end;
158288943Sdim#endif
159218887Sdim
160218887Sdimstruct msgbuf *msgbufp;
161239462Sdim
162218887Sdim/* Intel ICH registers */
163239462Sdim#define ICH_PMBASE	0x400
164218887Sdim#define ICH_SMI_EN	ICH_PMBASE + 0x30
165218887Sdim
166218887Sdimint	_udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
167288943Sdim
168288943Sdimint cold = 1;
169288943Sdim
170288943Sdimlong Maxmem = 0;
171218887Sdimlong realmem = 0;
172218887Sdim
173218887Sdim/*
174296417Sdim * The number of PHYSMAP entries must be one less than the number of
175234353Sdim * PHYSSEG entries because the PHYSMAP entry that spans the largest
176276479Sdim * physical address that is accessible by ISA DMA is split into two
177276479Sdim * PHYSSEG entries.
178218887Sdim */
179218887Sdim#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
180218887Sdim
181218887Sdimvm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
182218887Sdimvm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
183218887Sdim
184218887Sdim/* must be 2 less so 0 0 can signal end of chunks */
185218887Sdim#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
186218887Sdim#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
187218887Sdim
188243830Sdimstruct kva_md_info kmi;
189218887Sdim
190296417Sdimstatic struct trapframe proc0_tf;
191218887Sdimstruct region_descriptor r_gdt, r_idt;
192218887Sdim
193218887Sdimstruct pcpu __pcpu[MAXCPU];
194218887Sdim
195218887Sdimstruct mtx icu_lock;
196234353Sdim
197234353Sdimstruct mem_range_softc mem_range_softc;
198234353Sdim
199234353Sdimstruct mtx dt_lock;	/* lock for GDT and LDT */
200234353Sdim
201234353Sdimstatic void
202261991Sdimcpu_startup(dummy)
203261991Sdim	void *dummy;
204234353Sdim{
205234353Sdim	uintmax_t memsize;
206234353Sdim	char *sysenv;
207234353Sdim
208234353Sdim	/*
209234353Sdim	 * On MacBooks, we need to disallow the legacy USB circuit to
210234353Sdim	 * generate an SMI# because this can cause several problems,
211296417Sdim	 * namely: incorrect CPU frequency detection and failure to
212234353Sdim	 * start the APs.
213296417Sdim	 * We do this by disabling a bit in the SMI_EN (SMI Control and
214234353Sdim	 * Enable register) of the Intel ICH LPC Interface Bridge.
215234353Sdim	 */
216261991Sdim	sysenv = getenv("smbios.system.product");
217261991Sdim	if (sysenv != NULL) {
218234353Sdim		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
219234353Sdim		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
220234353Sdim		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
221296417Sdim		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
222234353Sdim		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
223296417Sdim		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
224234353Sdim			if (bootverbose)
225234353Sdim				printf("Disabling LEGACY_USB_EN bit on "
226234353Sdim				    "Intel ICH.\n");
227296417Sdim			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
228234353Sdim		}
229234353Sdim		freeenv(sysenv);
230251662Sdim	}
231251662Sdim
232296417Sdim	/*
233234353Sdim	 * Good {morning,afternoon,evening,night}.
234234353Sdim	 */
235234353Sdim	startrtclock();
236234353Sdim	printcpuinfo();
237234353Sdim	panicifcpuunsupported();
238234353Sdim#ifdef PERFMON
239234353Sdim	perfmon_init();
240226633Sdim#endif
241218887Sdim	realmem = Maxmem;
242218887Sdim
243218887Sdim	/*
244234353Sdim	 * Display physical memory if SMBIOS reports reasonable amount.
245234353Sdim	 */
246218887Sdim	memsize = 0;
247234353Sdim	sysenv = getenv("smbios.memory.enabled");
248218887Sdim	if (sysenv != NULL) {
249234353Sdim		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
250218887Sdim		freeenv(sysenv);
251218887Sdim	}
252218887Sdim	if (memsize < ptoa((uintmax_t)cnt.v_free_count))
253226633Sdim		memsize = ptoa((uintmax_t)Maxmem);
254218887Sdim	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
255218887Sdim
256234353Sdim	/*
257234353Sdim	 * Display any holes after the first chunk of extended memory.
258218887Sdim	 */
259234353Sdim	if (bootverbose) {
260234353Sdim		int indx;
261234353Sdim
262234353Sdim		printf("Physical memory chunk(s):\n");
263234353Sdim		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
264234353Sdim			vm_paddr_t size;
265261991Sdim
266261991Sdim			size = phys_avail[indx + 1] - phys_avail[indx];
267218887Sdim			printf(
268234353Sdim			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
269234353Sdim			    (uintmax_t)phys_avail[indx],
270234353Sdim			    (uintmax_t)phys_avail[indx + 1] - 1,
271234353Sdim			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
272234353Sdim		}
273234353Sdim	}
274234353Sdim
275234353Sdim	vm_ksubmap_init(&kmi);
276234353Sdim
277234353Sdim	printf("avail memory = %ju (%ju MB)\n",
278234353Sdim	    ptoa((uintmax_t)cnt.v_free_count),
279261991Sdim	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
280234353Sdim
281234353Sdim	/*
282234353Sdim	 * Set up buffers, so they can be used to read disk labels.
283234353Sdim	 */
284234353Sdim	bufinit();
285218887Sdim	vm_pager_bufferinit();
286218887Sdim
287218887Sdim	cpu_setregs();
288234353Sdim	mca_init();
289234353Sdim}
290239462Sdim
291218887Sdim/*
292218887Sdim * Send an interrupt to process.
293218887Sdim *
294226633Sdim * Stack is set up to allow sigcode stored
295276479Sdim * at top to call routine, followed by call
296218887Sdim * to sigreturn routine below.  After sigreturn
297234353Sdim * resets the signal mask, the stack, and the
298296417Sdim * frame pointer, it returns to the user
299218887Sdim * specified pc, psl.
300296417Sdim */
301234353Sdimvoid
302234353Sdimsendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
303218887Sdim{
304218887Sdim	struct sigframe sf, *sfp;
305218887Sdim	struct proc *p;
306249423Sdim	struct thread *td;
307234353Sdim	struct sigacts *psp;
308218887Sdim	char *sp;
309234353Sdim	struct trapframe *regs;
310261991Sdim	int sig;
311261991Sdim	int oonstack;
312261991Sdim
313261991Sdim	td = curthread;
314276479Sdim	p = td->td_proc;
315276479Sdim	PROC_LOCK_ASSERT(p, MA_OWNED);
316239462Sdim	sig = ksi->ksi_signo;
317239462Sdim	psp = p->p_sigacts;
318239462Sdim	mtx_assert(&psp->ps_mtx, MA_OWNED);
319276479Sdim	regs = td->td_frame;
320276479Sdim	oonstack = sigonstack(regs->tf_rsp);
321234353Sdim
322234353Sdim	/* Save user context. */
323234353Sdim	bzero(&sf, sizeof(sf));
324234353Sdim	sf.sf_uc.uc_sigmask = *mask;
325239462Sdim	sf.sf_uc.uc_stack = td->td_sigstk;
326239462Sdim	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
327239462Sdim	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
328276479Sdim	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
329239462Sdim	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
330234353Sdim	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
331234353Sdim	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
332234353Sdim	fpstate_drop(td);
333234353Sdim	sf.sf_uc.uc_mcontext.mc_fsbase = td->td_pcb->pcb_fsbase;
334234353Sdim	sf.sf_uc.uc_mcontext.mc_gsbase = td->td_pcb->pcb_gsbase;
335234353Sdim
336218887Sdim	/* Allocate space for the signal handler context. */
337218887Sdim	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
338218887Sdim	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
339218887Sdim		sp = td->td_sigstk.ss_sp +
340218887Sdim		    td->td_sigstk.ss_size - sizeof(struct sigframe);
341280031Sdim#if defined(COMPAT_43)
342280031Sdim		td->td_sigstk.ss_flags |= SS_ONSTACK;
343280031Sdim#endif
344280031Sdim	} else
345218887Sdim		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
346218887Sdim	/* Align to 16 bytes. */
347218887Sdim	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
348276479Sdim
349218887Sdim	/* Translate the signal if appropriate. */
350218887Sdim	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
351243830Sdim		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
352218887Sdim
353218887Sdim	/* Build the argument list for the signal handler. */
354243830Sdim	regs->tf_rdi = sig;			/* arg 1 in %rdi */
355243830Sdim	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
356243830Sdim	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
357243830Sdim		/* Signal handler installed with SA_SIGINFO. */
358218887Sdim		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
359218887Sdim		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
360276479Sdim
361276479Sdim		/* Fill in POSIX parts */
362218887Sdim		sf.sf_si = ksi->ksi_info;
363218887Sdim		sf.sf_si.si_signo = sig; /* maybe a translated signal */
364218887Sdim		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
365218887Sdim	} else {
366218887Sdim		/* Old FreeBSD-style arguments. */
367234353Sdim		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
368234353Sdim		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
369218887Sdim		sf.sf_ahu.sf_handler = catcher;
370218887Sdim	}
371218887Sdim	mtx_unlock(&psp->ps_mtx);
372218887Sdim	PROC_UNLOCK(p);
373218887Sdim
374218887Sdim	/*
375218887Sdim	 * Copy the sigframe out to the user's stack.
376218887Sdim	 */
377296417Sdim	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
378234353Sdim#ifdef DEBUG
379234353Sdim		printf("process %ld has trashed its stack\n", (long)p->p_pid);
380218887Sdim#endif
381218887Sdim		PROC_LOCK(p);
382218887Sdim		sigexit(td, SIGILL);
383218887Sdim	}
384218887Sdim
385243830Sdim	regs->tf_rsp = (long)sfp;
386218887Sdim	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
387218887Sdim	regs->tf_rflags &= ~(PSL_T | PSL_D);
388218887Sdim	regs->tf_cs = _ucodesel;
389218887Sdim	regs->tf_ds = _udatasel;
390288943Sdim	regs->tf_es = _udatasel;
391288943Sdim	regs->tf_fs = _ufssel;
392296417Sdim	regs->tf_gs = _ugssel;
393296417Sdim	regs->tf_flags = TF_HASSEGS;
394296417Sdim	td->td_pcb->pcb_full_iret = 1;
395296417Sdim	PROC_LOCK(p);
396296417Sdim	mtx_lock(&psp->ps_mtx);
397296417Sdim}
398296417Sdim
399296417Sdim/*
400296417Sdim * System call to cleanup state after a signal
401296417Sdim * has been taken.  Reset signal mask and
402296417Sdim * stack state from context left by sendsig (above).
403296417Sdim * Return to previous pc and psl as specified by
404296417Sdim * context left by sendsig. Check carefully to
405234353Sdim * make sure that the user has not modified the
406234353Sdim * state to gain improper privileges.
407234353Sdim *
408234353Sdim * MPSAFE
409234353Sdim */
410234353Sdimint
411234353Sdimsigreturn(td, uap)
412234353Sdim	struct thread *td;
413234353Sdim	struct sigreturn_args /* {
414234353Sdim		const struct __ucontext *sigcntxp;
415234353Sdim	} */ *uap;
416234353Sdim{
417234353Sdim	ucontext_t uc;
418234353Sdim	struct proc *p = td->td_proc;
419234353Sdim	struct trapframe *regs;
420234353Sdim	ucontext_t *ucp;
421234353Sdim	long rflags;
422234353Sdim	int cs, error, ret;
423234353Sdim	ksiginfo_t ksi;
424234353Sdim
425234353Sdim	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
426234353Sdim	if (error != 0) {
427234353Sdim		printf("sigreturn (pid %d): copyin failed\n", p->p_pid);
428234353Sdim		return (error);
429234353Sdim	}
430234353Sdim	ucp = &uc;
431234353Sdim	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
432234353Sdim		printf("sigreturn (pid %d): mc_flags %x\n", p->p_pid,
433234353Sdim		    ucp->uc_mcontext.mc_flags);
434239462Sdim		return (EINVAL);
435239462Sdim	}
436239462Sdim	regs = td->td_frame;
437239462Sdim	rflags = ucp->uc_mcontext.mc_rflags;
438296417Sdim	/*
439249423Sdim	 * Don't allow users to change privileged or reserved flags.
440249423Sdim	 */
441249423Sdim	/*
442249423Sdim	 * XXX do allow users to change the privileged flag PSL_RF.
443249423Sdim	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
444249423Sdim	 * should sometimes set it there too.  tf_rflags is kept in
445249423Sdim	 * the signal context during signal handling and there is no
446249423Sdim	 * other place to remember it, so the PSL_RF bit may be
447296417Sdim	 * corrupted by the signal handler without us knowing.
448296417Sdim	 * Corruption of the PSL_RF bit at worst causes one more or
449249423Sdim	 * one less debugger trap, so allowing it is fairly harmless.
450249423Sdim	 */
451249423Sdim	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
452249423Sdim		printf("sigreturn (pid %d): rflags = 0x%lx\n", p->p_pid,
453249423Sdim		    rflags);
454296417Sdim		return (EINVAL);
455249423Sdim	}
456249423Sdim
457249423Sdim	/*
458249423Sdim	 * Don't allow users to load a valid privileged %cs.  Let the
459239462Sdim	 * hardware check for invalid selectors, excess privilege in
460234353Sdim	 * other selectors, invalid %eip's and invalid %esp's.
461234353Sdim	 */
462218887Sdim	cs = ucp->uc_mcontext.mc_cs;
463218887Sdim	if (!CS_SECURE(cs)) {
464218887Sdim		printf("sigreturn (pid %d): cs = 0x%x\n", p->p_pid, cs);
465288943Sdim		ksiginfo_init_trap(&ksi);
466218887Sdim		ksi.ksi_signo = SIGBUS;
467218887Sdim		ksi.ksi_code = BUS_OBJERR;
468239462Sdim		ksi.ksi_trapno = T_PROTFLT;
469239462Sdim		ksi.ksi_addr = (void *)regs->tf_rip;
470243830Sdim		trapsignal(td, &ksi);
471243830Sdim		return (EINVAL);
472243830Sdim	}
473243830Sdim
474243830Sdim	ret = set_fpcontext(td, &ucp->uc_mcontext);
475243830Sdim	if (ret != 0) {
476243830Sdim		printf("sigreturn (pid %d): set_fpcontext\n", p->p_pid);
477243830Sdim		return (ret);
478243830Sdim	}
479243830Sdim	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
480243830Sdim	td->td_pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
481243830Sdim	td->td_pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
482243830Sdim
483243830Sdim#if defined(COMPAT_43)
484239462Sdim	if (ucp->uc_mcontext.mc_onstack & 1)
485243830Sdim		td->td_sigstk.ss_flags |= SS_ONSTACK;
486218887Sdim	else
487218887Sdim		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
488218887Sdim#endif
489218887Sdim
490218887Sdim	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
491218887Sdim	td->td_pcb->pcb_flags |= PCB_FULLCTX;
492218887Sdim	td->td_pcb->pcb_full_iret = 1;
493218887Sdim	return (EJUSTRETURN);
494218887Sdim}
495218887Sdim
496296417Sdim#ifdef COMPAT_FREEBSD4
497218887Sdimint
498freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
499{
500
501	return sigreturn(td, (struct sigreturn_args *)uap);
502}
503#endif
504
505
506/*
507 * Machine dependent boot() routine
508 *
509 * I haven't seen anything to put here yet
510 * Possibly some stuff might be grafted back here from boot()
511 */
512void
513cpu_boot(int howto)
514{
515}
516
517/*
518 * Flush the D-cache for non-DMA I/O so that the I-cache can
519 * be made coherent later.
520 */
521void
522cpu_flush_dcache(void *ptr, size_t len)
523{
524	/* Not applicable */
525}
526
527/* Get current clock frequency for the given cpu id. */
528int
529cpu_est_clockrate(int cpu_id, uint64_t *rate)
530{
531	register_t reg;
532	uint64_t tsc1, tsc2;
533
534	if (pcpu_find(cpu_id) == NULL || rate == NULL)
535		return (EINVAL);
536
537	/* If we're booting, trust the rate calibrated moments ago. */
538	if (cold) {
539		*rate = tsc_freq;
540		return (0);
541	}
542
543#ifdef SMP
544	/* Schedule ourselves on the indicated cpu. */
545	thread_lock(curthread);
546	sched_bind(curthread, cpu_id);
547	thread_unlock(curthread);
548#endif
549
550	/* Calibrate by measuring a short delay. */
551	reg = intr_disable();
552	tsc1 = rdtsc();
553	DELAY(1000);
554	tsc2 = rdtsc();
555	intr_restore(reg);
556
557#ifdef SMP
558	thread_lock(curthread);
559	sched_unbind(curthread);
560	thread_unlock(curthread);
561#endif
562
563	/*
564	 * Calculate the difference in readings, convert to Mhz, and
565	 * subtract 0.5% of the total.  Empirical testing has shown that
566	 * overhead in DELAY() works out to approximately this value.
567	 */
568	tsc2 -= tsc1;
569	*rate = tsc2 * 1000 - tsc2 * 5;
570	return (0);
571}
572
573/*
574 * Shutdown the CPU as much as possible
575 */
576void
577cpu_halt(void)
578{
579	for (;;)
580		__asm__ ("hlt");
581}
582
583void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
584
585static void
586cpu_idle_hlt(int busy)
587{
588	/*
589	 * we must absolutely guarentee that hlt is the next instruction
590	 * after sti or we introduce a timing window.
591	 */
592	disable_intr();
593  	if (sched_runnable())
594		enable_intr();
595	else
596		__asm __volatile("sti; hlt");
597}
598
599static void
600cpu_idle_acpi(int busy)
601{
602	disable_intr();
603  	if (sched_runnable())
604		enable_intr();
605	else if (cpu_idle_hook)
606		cpu_idle_hook();
607	else
608		__asm __volatile("sti; hlt");
609}
610
611static int cpu_ident_amdc1e = 0;
612
613static int
614cpu_probe_amdc1e(void)
615{
616	int i;
617
618	/*
619	 * Forget it, if we're not using local APIC timer.
620	 */
621	if (resource_disabled("apic", 0) ||
622	    (resource_int_value("apic", 0, "clock", &i) == 0 && i == 0))
623		return (0);
624
625	/*
626	 * Detect the presence of C1E capability mostly on latest
627	 * dual-cores (or future) k8 family.
628	 */
629	if (cpu_vendor_id == CPU_VENDOR_AMD &&
630	    (cpu_id & 0x00000f00) == 0x00000f00 &&
631	    (cpu_id & 0x0fff0000) >=  0x00040000) {
632		cpu_ident_amdc1e = 1;
633		return (1);
634	}
635
636	return (0);
637}
638
639/*
640 * C1E renders the local APIC timer dead, so we disable it by
641 * reading the Interrupt Pending Message register and clearing
642 * both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
643 *
644 * Reference:
645 *   "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
646 *   #32559 revision 3.00+
647 */
648#define	MSR_AMDK8_IPM		0xc0010055
649#define	AMDK8_SMIONCMPHALT	(1ULL << 27)
650#define	AMDK8_C1EONCMPHALT	(1ULL << 28)
651#define	AMDK8_CMPHALT		(AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
652
653static void
654cpu_idle_amdc1e(int busy)
655{
656
657	disable_intr();
658	if (sched_runnable())
659		enable_intr();
660	else {
661		uint64_t msr;
662
663		msr = rdmsr(MSR_AMDK8_IPM);
664		if (msr & AMDK8_CMPHALT)
665			wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
666
667		if (cpu_idle_hook)
668			cpu_idle_hook();
669		else
670			__asm __volatile("sti; hlt");
671	}
672}
673
674static void
675cpu_idle_spin(int busy)
676{
677	return;
678}
679
680void (*cpu_idle_fn)(int) = cpu_idle_acpi;
681
682void
683cpu_idle(int busy)
684{
685#ifdef SMP
686	if (mp_grab_cpu_hlt())
687		return;
688#endif
689	cpu_idle_fn(busy);
690}
691
692/*
693 * mwait cpu power states.  Lower 4 bits are sub-states.
694 */
695#define	MWAIT_C0	0xf0
696#define	MWAIT_C1	0x00
697#define	MWAIT_C2	0x10
698#define	MWAIT_C3	0x20
699#define	MWAIT_C4	0x30
700
701#define	MWAIT_DISABLED	0x0
702#define	MWAIT_WOKEN	0x1
703#define	MWAIT_WAITING	0x2
704
705static void
706cpu_idle_mwait(int busy)
707{
708	int *mwait;
709
710	mwait = (int *)PCPU_PTR(monitorbuf);
711	*mwait = MWAIT_WAITING;
712	if (sched_runnable())
713		return;
714	cpu_monitor(mwait, 0, 0);
715	if (*mwait == MWAIT_WAITING)
716		cpu_mwait(0, MWAIT_C1);
717}
718
719static void
720cpu_idle_mwait_hlt(int busy)
721{
722	int *mwait;
723
724	mwait = (int *)PCPU_PTR(monitorbuf);
725	if (busy == 0) {
726		*mwait = MWAIT_DISABLED;
727		cpu_idle_hlt(busy);
728		return;
729	}
730	*mwait = MWAIT_WAITING;
731	if (sched_runnable())
732		return;
733	cpu_monitor(mwait, 0, 0);
734	if (*mwait == MWAIT_WAITING)
735		cpu_mwait(0, MWAIT_C1);
736}
737
738int
739cpu_idle_wakeup(int cpu)
740{
741	struct pcpu *pcpu;
742	int *mwait;
743
744	if (cpu_idle_fn == cpu_idle_spin)
745		return (1);
746	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
747		return (0);
748	pcpu = pcpu_find(cpu);
749	mwait = (int *)pcpu->pc_monitorbuf;
750	/*
751	 * This doesn't need to be atomic since missing the race will
752	 * simply result in unnecessary IPIs.
753	 */
754	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
755		return (0);
756	*mwait = MWAIT_WOKEN;
757
758	return (1);
759}
760
761/*
762 * Ordered by speed/power consumption.
763 */
764struct {
765	void	*id_fn;
766	char	*id_name;
767} idle_tbl[] = {
768	{ cpu_idle_spin, "spin" },
769	{ cpu_idle_mwait, "mwait" },
770	{ cpu_idle_mwait_hlt, "mwait_hlt" },
771	{ cpu_idle_amdc1e, "amdc1e" },
772	{ cpu_idle_hlt, "hlt" },
773	{ cpu_idle_acpi, "acpi" },
774	{ NULL, NULL }
775};
776
777static int
778idle_sysctl_available(SYSCTL_HANDLER_ARGS)
779{
780	char *avail, *p;
781	int error;
782	int i;
783
784	avail = malloc(256, M_TEMP, M_WAITOK);
785	p = avail;
786	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
787		if (strstr(idle_tbl[i].id_name, "mwait") &&
788		    (cpu_feature2 & CPUID2_MON) == 0)
789			continue;
790		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
791		    cpu_ident_amdc1e == 0)
792			continue;
793		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
794	}
795	error = sysctl_handle_string(oidp, avail, 0, req);
796	free(avail, M_TEMP);
797	return (error);
798}
799
800static int
801idle_sysctl(SYSCTL_HANDLER_ARGS)
802{
803	char buf[16];
804	int error;
805	char *p;
806	int i;
807
808	p = "unknown";
809	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
810		if (idle_tbl[i].id_fn == cpu_idle_fn) {
811			p = idle_tbl[i].id_name;
812			break;
813		}
814	}
815	strncpy(buf, p, sizeof(buf));
816	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
817	if (error != 0 || req->newptr == NULL)
818		return (error);
819	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
820		if (strstr(idle_tbl[i].id_name, "mwait") &&
821		    (cpu_feature2 & CPUID2_MON) == 0)
822			continue;
823		if (strcmp(idle_tbl[i].id_name, "amdc1e") == 0 &&
824		    cpu_ident_amdc1e == 0)
825			continue;
826		if (strcmp(idle_tbl[i].id_name, buf))
827			continue;
828		cpu_idle_fn = idle_tbl[i].id_fn;
829		return (0);
830	}
831	return (EINVAL);
832}
833
834SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
835    0, 0, idle_sysctl_available, "A", "list of available idle functions");
836
837SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
838    idle_sysctl, "A", "currently selected idle function");
839
840/*
841 * Reset registers to default values on exec.
842 */
843void
844exec_setregs(td, entry, stack, ps_strings)
845	struct thread *td;
846	u_long entry;
847	u_long stack;
848	u_long ps_strings;
849{
850	struct trapframe *regs = td->td_frame;
851	struct pcb *pcb = td->td_pcb;
852
853	mtx_lock(&dt_lock);
854	if (td->td_proc->p_md.md_ldt != NULL)
855		user_ldt_free(td);
856	else
857		mtx_unlock(&dt_lock);
858
859	pcb->pcb_fsbase = 0;
860	pcb->pcb_gsbase = 0;
861	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
862	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
863	pcb->pcb_full_iret = 1;
864
865	bzero((char *)regs, sizeof(struct trapframe));
866	regs->tf_rip = entry;
867	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
868	regs->tf_rdi = stack;		/* argv */
869	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
870	regs->tf_ss = _udatasel;
871	regs->tf_cs = _ucodesel;
872	regs->tf_ds = _udatasel;
873	regs->tf_es = _udatasel;
874	regs->tf_fs = _ufssel;
875	regs->tf_gs = _ugssel;
876	regs->tf_flags = TF_HASSEGS;
877
878	/*
879	 * Reset the hardware debug registers if they were in use.
880	 * They won't have any meaning for the newly exec'd process.
881	 */
882	if (pcb->pcb_flags & PCB_DBREGS) {
883		pcb->pcb_dr0 = 0;
884		pcb->pcb_dr1 = 0;
885		pcb->pcb_dr2 = 0;
886		pcb->pcb_dr3 = 0;
887		pcb->pcb_dr6 = 0;
888		pcb->pcb_dr7 = 0;
889		if (pcb == PCPU_GET(curpcb)) {
890			/*
891			 * Clear the debug registers on the running
892			 * CPU, otherwise they will end up affecting
893			 * the next process we switch to.
894			 */
895			reset_dbregs();
896		}
897		pcb->pcb_flags &= ~PCB_DBREGS;
898	}
899
900	/*
901	 * Drop the FP state if we hold it, so that the process gets a
902	 * clean FP state if it uses the FPU again.
903	 */
904	fpstate_drop(td);
905}
906
907void
908cpu_setregs(void)
909{
910	register_t cr0;
911
912	cr0 = rcr0();
913	/*
914	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
915	 * BSP.  See the comments there about why we set them.
916	 */
917	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
918	load_cr0(cr0);
919}
920
921/*
922 * Initialize amd64 and configure to run kernel
923 */
924
925/*
926 * Initialize segments & interrupt table
927 */
928
929struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
930static struct gate_descriptor idt0[NIDT];
931struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
932
933static char dblfault_stack[PAGE_SIZE] __aligned(16);
934
935static char nmi0_stack[PAGE_SIZE] __aligned(16);
936CTASSERT(sizeof(struct nmi_pcpu) == 16);
937
938struct amd64tss common_tss[MAXCPU];
939
940/*
941 * Software prototypes -- in more palatable form.
942 *
943 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
944 * slots as corresponding segments for i386 kernel.
945 */
946struct soft_segment_descriptor gdt_segs[] = {
947/* GNULL_SEL	0 Null Descriptor */
948{	.ssd_base = 0x0,
949	.ssd_limit = 0x0,
950	.ssd_type = 0,
951	.ssd_dpl = 0,
952	.ssd_p = 0,
953	.ssd_long = 0,
954	.ssd_def32 = 0,
955	.ssd_gran = 0		},
956/* GNULL2_SEL	1 Null Descriptor */
957{	.ssd_base = 0x0,
958	.ssd_limit = 0x0,
959	.ssd_type = 0,
960	.ssd_dpl = 0,
961	.ssd_p = 0,
962	.ssd_long = 0,
963	.ssd_def32 = 0,
964	.ssd_gran = 0		},
965/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
966{	.ssd_base = 0x0,
967	.ssd_limit = 0xfffff,
968	.ssd_type = SDT_MEMRWA,
969	.ssd_dpl = SEL_UPL,
970	.ssd_p = 1,
971	.ssd_long = 0,
972	.ssd_def32 = 1,
973	.ssd_gran = 1		},
974/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
975{	.ssd_base = 0x0,
976	.ssd_limit = 0xfffff,
977	.ssd_type = SDT_MEMRWA,
978	.ssd_dpl = SEL_UPL,
979	.ssd_p = 1,
980	.ssd_long = 0,
981	.ssd_def32 = 1,
982	.ssd_gran = 1		},
983/* GCODE_SEL	4 Code Descriptor for kernel */
984{	.ssd_base = 0x0,
985	.ssd_limit = 0xfffff,
986	.ssd_type = SDT_MEMERA,
987	.ssd_dpl = SEL_KPL,
988	.ssd_p = 1,
989	.ssd_long = 1,
990	.ssd_def32 = 0,
991	.ssd_gran = 1		},
992/* GDATA_SEL	5 Data Descriptor for kernel */
993{	.ssd_base = 0x0,
994	.ssd_limit = 0xfffff,
995	.ssd_type = SDT_MEMRWA,
996	.ssd_dpl = SEL_KPL,
997	.ssd_p = 1,
998	.ssd_long = 1,
999	.ssd_def32 = 0,
1000	.ssd_gran = 1		},
1001/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
1002{	.ssd_base = 0x0,
1003	.ssd_limit = 0xfffff,
1004	.ssd_type = SDT_MEMERA,
1005	.ssd_dpl = SEL_UPL,
1006	.ssd_p = 1,
1007	.ssd_long = 0,
1008	.ssd_def32 = 1,
1009	.ssd_gran = 1		},
1010/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
1011{	.ssd_base = 0x0,
1012	.ssd_limit = 0xfffff,
1013	.ssd_type = SDT_MEMRWA,
1014	.ssd_dpl = SEL_UPL,
1015	.ssd_p = 1,
1016	.ssd_long = 0,
1017	.ssd_def32 = 1,
1018	.ssd_gran = 1		},
1019/* GUCODE_SEL	8 64 bit Code Descriptor for user */
1020{	.ssd_base = 0x0,
1021	.ssd_limit = 0xfffff,
1022	.ssd_type = SDT_MEMERA,
1023	.ssd_dpl = SEL_UPL,
1024	.ssd_p = 1,
1025	.ssd_long = 1,
1026	.ssd_def32 = 0,
1027	.ssd_gran = 1		},
1028/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1029{	.ssd_base = 0x0,
1030	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
1031	.ssd_type = SDT_SYSTSS,
1032	.ssd_dpl = SEL_KPL,
1033	.ssd_p = 1,
1034	.ssd_long = 0,
1035	.ssd_def32 = 0,
1036	.ssd_gran = 0		},
1037/* Actually, the TSS is a system descriptor which is double size */
1038{	.ssd_base = 0x0,
1039	.ssd_limit = 0x0,
1040	.ssd_type = 0,
1041	.ssd_dpl = 0,
1042	.ssd_p = 0,
1043	.ssd_long = 0,
1044	.ssd_def32 = 0,
1045	.ssd_gran = 0		},
1046/* GUSERLDT_SEL	11 LDT Descriptor */
1047{	.ssd_base = 0x0,
1048	.ssd_limit = 0x0,
1049	.ssd_type = 0,
1050	.ssd_dpl = 0,
1051	.ssd_p = 0,
1052	.ssd_long = 0,
1053	.ssd_def32 = 0,
1054	.ssd_gran = 0		},
1055/* GUSERLDT_SEL	12 LDT Descriptor, double size */
1056{	.ssd_base = 0x0,
1057	.ssd_limit = 0x0,
1058	.ssd_type = 0,
1059	.ssd_dpl = 0,
1060	.ssd_p = 0,
1061	.ssd_long = 0,
1062	.ssd_def32 = 0,
1063	.ssd_gran = 0		},
1064};
1065
1066void
1067setidt(idx, func, typ, dpl, ist)
1068	int idx;
1069	inthand_t *func;
1070	int typ;
1071	int dpl;
1072	int ist;
1073{
1074	struct gate_descriptor *ip;
1075
1076	ip = idt + idx;
1077	ip->gd_looffset = (uintptr_t)func;
1078	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1079	ip->gd_ist = ist;
1080	ip->gd_xx = 0;
1081	ip->gd_type = typ;
1082	ip->gd_dpl = dpl;
1083	ip->gd_p = 1;
1084	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1085}
1086
1087extern inthand_t
1088	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1089	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1090	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1091	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1092	IDTVEC(xmm), IDTVEC(dblfault),
1093	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1094
1095#ifdef DDB
1096/*
1097 * Display the index and function name of any IDT entries that don't use
1098 * the default 'rsvd' entry point.
1099 */
1100DB_SHOW_COMMAND(idt, db_show_idt)
1101{
1102	struct gate_descriptor *ip;
1103	int idx;
1104	uintptr_t func;
1105
1106	ip = idt;
1107	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1108		func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
1109		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1110			db_printf("%3d\t", idx);
1111			db_printsym(func, DB_STGY_PROC);
1112			db_printf("\n");
1113		}
1114		ip++;
1115	}
1116}
1117#endif
1118
1119void
1120sdtossd(sd, ssd)
1121	struct user_segment_descriptor *sd;
1122	struct soft_segment_descriptor *ssd;
1123{
1124
1125	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1126	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1127	ssd->ssd_type  = sd->sd_type;
1128	ssd->ssd_dpl   = sd->sd_dpl;
1129	ssd->ssd_p     = sd->sd_p;
1130	ssd->ssd_long  = sd->sd_long;
1131	ssd->ssd_def32 = sd->sd_def32;
1132	ssd->ssd_gran  = sd->sd_gran;
1133}
1134
1135void
1136ssdtosd(ssd, sd)
1137	struct soft_segment_descriptor *ssd;
1138	struct user_segment_descriptor *sd;
1139{
1140
1141	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1142	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1143	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1144	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1145	sd->sd_type  = ssd->ssd_type;
1146	sd->sd_dpl   = ssd->ssd_dpl;
1147	sd->sd_p     = ssd->ssd_p;
1148	sd->sd_long  = ssd->ssd_long;
1149	sd->sd_def32 = ssd->ssd_def32;
1150	sd->sd_gran  = ssd->ssd_gran;
1151}
1152
1153void
1154ssdtosyssd(ssd, sd)
1155	struct soft_segment_descriptor *ssd;
1156	struct system_segment_descriptor *sd;
1157{
1158
1159	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1160	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1161	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1162	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1163	sd->sd_type  = ssd->ssd_type;
1164	sd->sd_dpl   = ssd->ssd_dpl;
1165	sd->sd_p     = ssd->ssd_p;
1166	sd->sd_gran  = ssd->ssd_gran;
1167}
1168
1169#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1170#include <isa/isavar.h>
1171#include <isa/isareg.h>
1172/*
1173 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1174 * and is only suitable for use at probe time.
1175 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1176 * It shouldn't be here.  There should probably be an APIC centric
1177 * implementation in the apic driver code, if at all.
1178 */
1179intrmask_t
1180isa_irq_pending(void)
1181{
1182	u_char irr1;
1183	u_char irr2;
1184
1185	irr1 = inb(IO_ICU1);
1186	irr2 = inb(IO_ICU2);
1187	return ((irr2 << 8) | irr1);
1188}
1189#endif
1190
1191u_int basemem;
1192
1193static int
1194add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1195{
1196	int i, insert_idx, physmap_idx;
1197
1198	physmap_idx = *physmap_idxp;
1199
1200	if (boothowto & RB_VERBOSE)
1201		printf("SMAP type=%02x base=%016lx len=%016lx\n",
1202		    smap->type, smap->base, smap->length);
1203
1204	if (smap->type != SMAP_TYPE_MEMORY)
1205		return (1);
1206
1207	if (smap->length == 0)
1208		return (0);
1209
1210	/*
1211	 * Find insertion point while checking for overlap.  Start off by
1212	 * assuming the new entry will be added to the end.
1213	 */
1214	insert_idx = physmap_idx + 2;
1215	for (i = 0; i <= physmap_idx; i += 2) {
1216		if (smap->base < physmap[i + 1]) {
1217			if (smap->base + smap->length <= physmap[i]) {
1218				insert_idx = i;
1219				break;
1220			}
1221			if (boothowto & RB_VERBOSE)
1222				printf(
1223		    "Overlapping memory regions, ignoring second region\n");
1224			return (1);
1225		}
1226	}
1227
1228	/* See if we can prepend to the next entry. */
1229	if (insert_idx <= physmap_idx &&
1230	    smap->base + smap->length == physmap[insert_idx]) {
1231		physmap[insert_idx] = smap->base;
1232		return (1);
1233	}
1234
1235	/* See if we can append to the previous entry. */
1236	if (insert_idx > 0 && smap->base == physmap[insert_idx - 1]) {
1237		physmap[insert_idx - 1] += smap->length;
1238		return (1);
1239	}
1240
1241	physmap_idx += 2;
1242	*physmap_idxp = physmap_idx;
1243	if (physmap_idx == PHYSMAP_SIZE) {
1244		printf(
1245		"Too many segments in the physical address map, giving up\n");
1246		return (0);
1247	}
1248
1249	/*
1250	 * Move the last 'N' entries down to make room for the new
1251	 * entry if needed.
1252	 */
1253	for (i = physmap_idx; i > insert_idx; i -= 2) {
1254		physmap[i] = physmap[i - 2];
1255		physmap[i + 1] = physmap[i - 1];
1256	}
1257
1258	/* Insert the new entry. */
1259	physmap[insert_idx] = smap->base;
1260	physmap[insert_idx + 1] = smap->base + smap->length;
1261	return (1);
1262}
1263
1264/*
1265 * Populate the (physmap) array with base/bound pairs describing the
1266 * available physical memory in the system, then test this memory and
1267 * build the phys_avail array describing the actually-available memory.
1268 *
1269 * If we cannot accurately determine the physical memory map, then use
1270 * value from the 0xE801 call, and failing that, the RTC.
1271 *
1272 * Total memory size may be set by the kernel environment variable
1273 * hw.physmem or the compile-time define MAXMEM.
1274 *
1275 * XXX first should be vm_paddr_t.
1276 */
1277static void
1278getmemsize(caddr_t kmdp, u_int64_t first)
1279{
1280	int i, physmap_idx, pa_indx, da_indx;
1281	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1282	u_long physmem_tunable;
1283	pt_entry_t *pte;
1284	struct bios_smap *smapbase, *smap, *smapend;
1285	u_int32_t smapsize;
1286	quad_t dcons_addr, dcons_size;
1287
1288	bzero(physmap, sizeof(physmap));
1289	basemem = 0;
1290	physmap_idx = 0;
1291
1292	/*
1293	 * get memory map from INT 15:E820, kindly supplied by the loader.
1294	 *
1295	 * subr_module.c says:
1296	 * "Consumer may safely assume that size value precedes data."
1297	 * ie: an int32_t immediately precedes smap.
1298	 */
1299	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1300	    MODINFO_METADATA | MODINFOMD_SMAP);
1301	if (smapbase == NULL)
1302		panic("No BIOS smap info from loader!");
1303
1304	smapsize = *((u_int32_t *)smapbase - 1);
1305	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1306
1307	for (smap = smapbase; smap < smapend; smap++)
1308		if (!add_smap_entry(smap, physmap, &physmap_idx))
1309			break;
1310
1311	/*
1312	 * Find the 'base memory' segment for SMP
1313	 */
1314	basemem = 0;
1315	for (i = 0; i <= physmap_idx; i += 2) {
1316		if (physmap[i] == 0x00000000) {
1317			basemem = physmap[i + 1] / 1024;
1318			break;
1319		}
1320	}
1321	if (basemem == 0)
1322		panic("BIOS smap did not include a basemem segment!");
1323
1324#ifdef SMP
1325	/* make hole for AP bootstrap code */
1326	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1327#endif
1328
1329	/*
1330	 * Maxmem isn't the "maximum memory", it's one larger than the
1331	 * highest page of the physical address space.  It should be
1332	 * called something like "Maxphyspage".  We may adjust this
1333	 * based on ``hw.physmem'' and the results of the memory test.
1334	 */
1335	Maxmem = atop(physmap[physmap_idx + 1]);
1336
1337#ifdef MAXMEM
1338	Maxmem = MAXMEM / 4;
1339#endif
1340
1341	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1342		Maxmem = atop(physmem_tunable);
1343
1344	/*
1345	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1346	 * in the system.
1347	 */
1348	if (Maxmem > atop(physmap[physmap_idx + 1]))
1349		Maxmem = atop(physmap[physmap_idx + 1]);
1350
1351	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1352	    (boothowto & RB_VERBOSE))
1353		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1354
1355	/* call pmap initialization to make new kernel address space */
1356	pmap_bootstrap(&first);
1357
1358	/*
1359	 * Size up each available chunk of physical memory.
1360	 */
1361	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1362	pa_indx = 0;
1363	da_indx = 1;
1364	phys_avail[pa_indx++] = physmap[0];
1365	phys_avail[pa_indx] = physmap[0];
1366	dump_avail[da_indx] = physmap[0];
1367	pte = CMAP1;
1368
1369	/*
1370	 * Get dcons buffer address
1371	 */
1372	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1373	    getenv_quad("dcons.size", &dcons_size) == 0)
1374		dcons_addr = 0;
1375
1376	/*
1377	 * physmap is in bytes, so when converting to page boundaries,
1378	 * round up the start address and round down the end address.
1379	 */
1380	for (i = 0; i <= physmap_idx; i += 2) {
1381		vm_paddr_t end;
1382
1383		end = ptoa((vm_paddr_t)Maxmem);
1384		if (physmap[i + 1] < end)
1385			end = trunc_page(physmap[i + 1]);
1386		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1387			int tmp, page_bad, full;
1388			int *ptr = (int *)CADDR1;
1389
1390			full = FALSE;
1391			/*
1392			 * block out kernel memory as not available.
1393			 */
1394			if (pa >= 0x100000 && pa < first)
1395				goto do_dump_avail;
1396
1397			/*
1398			 * block out dcons buffer
1399			 */
1400			if (dcons_addr > 0
1401			    && pa >= trunc_page(dcons_addr)
1402			    && pa < dcons_addr + dcons_size)
1403				goto do_dump_avail;
1404
1405			page_bad = FALSE;
1406
1407			/*
1408			 * map page into kernel: valid, read/write,non-cacheable
1409			 */
1410			*pte = pa | PG_V | PG_RW | PG_N;
1411			invltlb();
1412
1413			tmp = *(int *)ptr;
1414			/*
1415			 * Test for alternating 1's and 0's
1416			 */
1417			*(volatile int *)ptr = 0xaaaaaaaa;
1418			if (*(volatile int *)ptr != 0xaaaaaaaa)
1419				page_bad = TRUE;
1420			/*
1421			 * Test for alternating 0's and 1's
1422			 */
1423			*(volatile int *)ptr = 0x55555555;
1424			if (*(volatile int *)ptr != 0x55555555)
1425				page_bad = TRUE;
1426			/*
1427			 * Test for all 1's
1428			 */
1429			*(volatile int *)ptr = 0xffffffff;
1430			if (*(volatile int *)ptr != 0xffffffff)
1431				page_bad = TRUE;
1432			/*
1433			 * Test for all 0's
1434			 */
1435			*(volatile int *)ptr = 0x0;
1436			if (*(volatile int *)ptr != 0x0)
1437				page_bad = TRUE;
1438			/*
1439			 * Restore original value.
1440			 */
1441			*(int *)ptr = tmp;
1442
1443			/*
1444			 * Adjust array of valid/good pages.
1445			 */
1446			if (page_bad == TRUE)
1447				continue;
1448			/*
1449			 * If this good page is a continuation of the
1450			 * previous set of good pages, then just increase
1451			 * the end pointer. Otherwise start a new chunk.
1452			 * Note that "end" points one higher than end,
1453			 * making the range >= start and < end.
1454			 * If we're also doing a speculative memory
1455			 * test and we at or past the end, bump up Maxmem
1456			 * so that we keep going. The first bad page
1457			 * will terminate the loop.
1458			 */
1459			if (phys_avail[pa_indx] == pa) {
1460				phys_avail[pa_indx] += PAGE_SIZE;
1461			} else {
1462				pa_indx++;
1463				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1464					printf(
1465		"Too many holes in the physical address space, giving up\n");
1466					pa_indx--;
1467					full = TRUE;
1468					goto do_dump_avail;
1469				}
1470				phys_avail[pa_indx++] = pa;	/* start */
1471				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1472			}
1473			physmem++;
1474do_dump_avail:
1475			if (dump_avail[da_indx] == pa) {
1476				dump_avail[da_indx] += PAGE_SIZE;
1477			} else {
1478				da_indx++;
1479				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1480					da_indx--;
1481					goto do_next;
1482				}
1483				dump_avail[da_indx++] = pa; /* start */
1484				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1485			}
1486do_next:
1487			if (full)
1488				break;
1489		}
1490	}
1491	*pte = 0;
1492	invltlb();
1493
1494	/*
1495	 * XXX
1496	 * The last chunk must contain at least one page plus the message
1497	 * buffer to avoid complicating other code (message buffer address
1498	 * calculation, etc.).
1499	 */
1500	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1501	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1502		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1503		phys_avail[pa_indx--] = 0;
1504		phys_avail[pa_indx--] = 0;
1505	}
1506
1507	Maxmem = atop(phys_avail[pa_indx]);
1508
1509	/* Trim off space for the message buffer. */
1510	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1511
1512	/* Map the message buffer. */
1513	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
1514}
1515
1516u_int64_t
1517hammer_time(u_int64_t modulep, u_int64_t physfree)
1518{
1519	caddr_t kmdp;
1520	int gsel_tss, x;
1521	struct pcpu *pc;
1522	struct nmi_pcpu *np;
1523	u_int64_t msr;
1524	char *env;
1525
1526	thread0.td_kstack = physfree + KERNBASE;
1527	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1528	physfree += KSTACK_PAGES * PAGE_SIZE;
1529	thread0.td_pcb = (struct pcb *)
1530	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1531
1532	/*
1533 	 * This may be done better later if it gets more high level
1534 	 * components in it. If so just link td->td_proc here.
1535	 */
1536	proc_linkup0(&proc0, &thread0);
1537
1538	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1539	preload_bootstrap_relocate(KERNBASE);
1540	kmdp = preload_search_by_type("elf kernel");
1541	if (kmdp == NULL)
1542		kmdp = preload_search_by_type("elf64 kernel");
1543	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1544	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1545#ifdef DDB
1546	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1547	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1548#endif
1549
1550	/* Init basic tunables, hz etc */
1551	init_param1();
1552
1553	/*
1554	 * make gdt memory segments
1555	 */
1556	for (x = 0; x < NGDT; x++) {
1557		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
1558		    x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
1559			ssdtosd(&gdt_segs[x], &gdt[x]);
1560	}
1561	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1562	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1563	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1564
1565	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1566	r_gdt.rd_base =  (long) gdt;
1567	lgdt(&r_gdt);
1568	pc = &__pcpu[0];
1569
1570	wrmsr(MSR_FSBASE, 0);		/* User value */
1571	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1572	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1573
1574	pcpu_init(pc, 0, sizeof(struct pcpu));
1575	dpcpu_init((void *)(physfree + KERNBASE), 0);
1576	physfree += DPCPU_SIZE;
1577	PCPU_SET(prvspace, pc);
1578	PCPU_SET(curthread, &thread0);
1579	PCPU_SET(curpcb, thread0.td_pcb);
1580	PCPU_SET(tssp, &common_tss[0]);
1581	PCPU_SET(commontssp, &common_tss[0]);
1582	PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1583	PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
1584	PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
1585	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1586
1587	/*
1588	 * Initialize mutexes.
1589	 *
1590	 * icu_lock: in order to allow an interrupt to occur in a critical
1591	 * 	     section, to set pcpu->ipending (etc...) properly, we
1592	 *	     must be able to get the icu lock, so it can't be
1593	 *	     under witness.
1594	 */
1595	mutex_init();
1596	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1597	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
1598
1599	/* exceptions */
1600	for (x = 0; x < NIDT; x++)
1601		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1602	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1603	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1604	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1605 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1606	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1607	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1608	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1609	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1610	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1611	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1612	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1613	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1614	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1615	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1616	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1617	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1618	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1619	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1620	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1621
1622	r_idt.rd_limit = sizeof(idt0) - 1;
1623	r_idt.rd_base = (long) idt;
1624	lidt(&r_idt);
1625
1626	/*
1627	 * Initialize the i8254 before the console so that console
1628	 * initialization can use DELAY().
1629	 */
1630	i8254_init();
1631
1632	/*
1633	 * Initialize the console before we print anything out.
1634	 */
1635	cninit();
1636
1637#ifdef DEV_ISA
1638#ifdef DEV_ATPIC
1639	elcr_probe();
1640	atpic_startup();
1641#else
1642	/* Reset and mask the atpics and leave them shut down. */
1643	atpic_reset();
1644
1645	/*
1646	 * Point the ICU spurious interrupt vectors at the APIC spurious
1647	 * interrupt handler.
1648	 */
1649	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1650	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1651#endif
1652#else
1653#error "have you forgotten the isa device?";
1654#endif
1655
1656	kdb_init();
1657
1658#ifdef KDB
1659	if (boothowto & RB_KDB)
1660		kdb_enter(KDB_WHY_BOOTFLAGS,
1661		    "Boot flags requested debugger");
1662#endif
1663
1664	identify_cpu();		/* Final stage of CPU initialization */
1665	initializecpu();	/* Initialize CPU registers */
1666	initializecpucache();
1667
1668	/* make an initial tss so cpu can get interrupt stack on syscall! */
1669	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1670	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1671	/* Ensure the stack is aligned to 16 bytes */
1672	common_tss[0].tss_rsp0 &= ~0xFul;
1673	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1674
1675	/* doublefault stack space, runs on ist1 */
1676	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1677
1678	/*
1679	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1680	 * above the start of the ist2 stack.
1681	 */
1682	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1683	np->np_pcpu = (register_t) pc;
1684	common_tss[0].tss_ist2 = (long) np;
1685
1686	/* Set the IO permission bitmap (empty due to tss seg limit) */
1687	common_tss[0].tss_iobase = sizeof(struct amd64tss) +
1688	    IOPAGES * PAGE_SIZE;
1689
1690	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1691	ltr(gsel_tss);
1692
1693	/* Set up the fast syscall stuff */
1694	msr = rdmsr(MSR_EFER) | EFER_SCE;
1695	wrmsr(MSR_EFER, msr);
1696	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1697	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1698	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1699	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1700	wrmsr(MSR_STAR, msr);
1701	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1702
1703	getmemsize(kmdp, physfree);
1704	init_param2(physmem);
1705
1706	/* now running on new page tables, configured,and u/iom is accessible */
1707
1708	msgbufinit(msgbufp, MSGBUF_SIZE);
1709	fpuinit();
1710
1711	/* transfer to user mode */
1712
1713	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1714	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1715	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1716	_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
1717	_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
1718
1719	load_ds(_udatasel);
1720	load_es(_udatasel);
1721	load_fs(_ufssel);
1722
1723	/* setup proc 0's pcb */
1724	thread0.td_pcb->pcb_flags = 0;
1725	thread0.td_pcb->pcb_cr3 = KPML4phys;
1726	thread0.td_frame = &proc0_tf;
1727
1728        env = getenv("kernelname");
1729	if (env != NULL)
1730		strlcpy(kernelname, env, sizeof(kernelname));
1731
1732#ifdef XENHVM
1733	if (inw(0x10) == 0x49d2) {
1734		if (bootverbose)
1735			printf("Xen detected: disabling emulated block and network devices\n");
1736		outw(0x10, 3);
1737	}
1738#endif
1739
1740	if (cpu_probe_amdc1e())
1741		cpu_idle_fn = cpu_idle_amdc1e;
1742
1743	/* Location of kernel stack for locore */
1744	return ((u_int64_t)thread0.td_pcb);
1745}
1746
1747void
1748cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1749{
1750
1751	pcpu->pc_acpi_id = 0xffffffff;
1752}
1753
1754void
1755spinlock_enter(void)
1756{
1757	struct thread *td;
1758
1759	td = curthread;
1760	if (td->td_md.md_spinlock_count == 0)
1761		td->td_md.md_saved_flags = intr_disable();
1762	td->td_md.md_spinlock_count++;
1763	critical_enter();
1764}
1765
1766void
1767spinlock_exit(void)
1768{
1769	struct thread *td;
1770
1771	td = curthread;
1772	critical_exit();
1773	td->td_md.md_spinlock_count--;
1774	if (td->td_md.md_spinlock_count == 0)
1775		intr_restore(td->td_md.md_saved_flags);
1776}
1777
1778/*
1779 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1780 * we want to start a backtrace from the function that caused us to enter
1781 * the debugger. We have the context in the trapframe, but base the trace
1782 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1783 * enough for a backtrace.
1784 */
1785void
1786makectx(struct trapframe *tf, struct pcb *pcb)
1787{
1788
1789	pcb->pcb_r12 = tf->tf_r12;
1790	pcb->pcb_r13 = tf->tf_r13;
1791	pcb->pcb_r14 = tf->tf_r14;
1792	pcb->pcb_r15 = tf->tf_r15;
1793	pcb->pcb_rbp = tf->tf_rbp;
1794	pcb->pcb_rbx = tf->tf_rbx;
1795	pcb->pcb_rip = tf->tf_rip;
1796	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1797}
1798
1799int
1800ptrace_set_pc(struct thread *td, unsigned long addr)
1801{
1802	td->td_frame->tf_rip = addr;
1803	return (0);
1804}
1805
1806int
1807ptrace_single_step(struct thread *td)
1808{
1809	td->td_frame->tf_rflags |= PSL_T;
1810	return (0);
1811}
1812
1813int
1814ptrace_clear_single_step(struct thread *td)
1815{
1816	td->td_frame->tf_rflags &= ~PSL_T;
1817	return (0);
1818}
1819
1820int
1821fill_regs(struct thread *td, struct reg *regs)
1822{
1823	struct trapframe *tp;
1824
1825	tp = td->td_frame;
1826	regs->r_r15 = tp->tf_r15;
1827	regs->r_r14 = tp->tf_r14;
1828	regs->r_r13 = tp->tf_r13;
1829	regs->r_r12 = tp->tf_r12;
1830	regs->r_r11 = tp->tf_r11;
1831	regs->r_r10 = tp->tf_r10;
1832	regs->r_r9  = tp->tf_r9;
1833	regs->r_r8  = tp->tf_r8;
1834	regs->r_rdi = tp->tf_rdi;
1835	regs->r_rsi = tp->tf_rsi;
1836	regs->r_rbp = tp->tf_rbp;
1837	regs->r_rbx = tp->tf_rbx;
1838	regs->r_rdx = tp->tf_rdx;
1839	regs->r_rcx = tp->tf_rcx;
1840	regs->r_rax = tp->tf_rax;
1841	regs->r_rip = tp->tf_rip;
1842	regs->r_cs = tp->tf_cs;
1843	regs->r_rflags = tp->tf_rflags;
1844	regs->r_rsp = tp->tf_rsp;
1845	regs->r_ss = tp->tf_ss;
1846	if (tp->tf_flags & TF_HASSEGS) {
1847		regs->r_ds = tp->tf_ds;
1848		regs->r_es = tp->tf_es;
1849		regs->r_fs = tp->tf_fs;
1850		regs->r_gs = tp->tf_gs;
1851	} else {
1852		regs->r_ds = 0;
1853		regs->r_es = 0;
1854		regs->r_fs = 0;
1855		regs->r_gs = 0;
1856	}
1857	return (0);
1858}
1859
1860int
1861set_regs(struct thread *td, struct reg *regs)
1862{
1863	struct trapframe *tp;
1864	register_t rflags;
1865
1866	tp = td->td_frame;
1867	rflags = regs->r_rflags & 0xffffffff;
1868	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1869		return (EINVAL);
1870	tp->tf_r15 = regs->r_r15;
1871	tp->tf_r14 = regs->r_r14;
1872	tp->tf_r13 = regs->r_r13;
1873	tp->tf_r12 = regs->r_r12;
1874	tp->tf_r11 = regs->r_r11;
1875	tp->tf_r10 = regs->r_r10;
1876	tp->tf_r9  = regs->r_r9;
1877	tp->tf_r8  = regs->r_r8;
1878	tp->tf_rdi = regs->r_rdi;
1879	tp->tf_rsi = regs->r_rsi;
1880	tp->tf_rbp = regs->r_rbp;
1881	tp->tf_rbx = regs->r_rbx;
1882	tp->tf_rdx = regs->r_rdx;
1883	tp->tf_rcx = regs->r_rcx;
1884	tp->tf_rax = regs->r_rax;
1885	tp->tf_rip = regs->r_rip;
1886	tp->tf_cs = regs->r_cs;
1887	tp->tf_rflags = rflags;
1888	tp->tf_rsp = regs->r_rsp;
1889	tp->tf_ss = regs->r_ss;
1890	if (0) {	/* XXXKIB */
1891		tp->tf_ds = regs->r_ds;
1892		tp->tf_es = regs->r_es;
1893		tp->tf_fs = regs->r_fs;
1894		tp->tf_gs = regs->r_gs;
1895		tp->tf_flags = TF_HASSEGS;
1896	}
1897	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1898	return (0);
1899}
1900
1901/* XXX check all this stuff! */
1902/* externalize from sv_xmm */
1903static void
1904fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1905{
1906	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1907	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1908	int i;
1909
1910	/* pcb -> fpregs */
1911	bzero(fpregs, sizeof(*fpregs));
1912
1913	/* FPU control/status */
1914	penv_fpreg->en_cw = penv_xmm->en_cw;
1915	penv_fpreg->en_sw = penv_xmm->en_sw;
1916	penv_fpreg->en_tw = penv_xmm->en_tw;
1917	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1918	penv_fpreg->en_rip = penv_xmm->en_rip;
1919	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1920	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1921	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1922
1923	/* FPU registers */
1924	for (i = 0; i < 8; ++i)
1925		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1926
1927	/* SSE registers */
1928	for (i = 0; i < 16; ++i)
1929		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1930}
1931
1932/* internalize from fpregs into sv_xmm */
1933static void
1934set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1935{
1936	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1937	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1938	int i;
1939
1940	/* fpregs -> pcb */
1941	/* FPU control/status */
1942	penv_xmm->en_cw = penv_fpreg->en_cw;
1943	penv_xmm->en_sw = penv_fpreg->en_sw;
1944	penv_xmm->en_tw = penv_fpreg->en_tw;
1945	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1946	penv_xmm->en_rip = penv_fpreg->en_rip;
1947	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1948	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1949	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1950
1951	/* FPU registers */
1952	for (i = 0; i < 8; ++i)
1953		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1954
1955	/* SSE registers */
1956	for (i = 0; i < 16; ++i)
1957		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1958}
1959
1960/* externalize from td->pcb */
1961int
1962fill_fpregs(struct thread *td, struct fpreg *fpregs)
1963{
1964
1965	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1966	return (0);
1967}
1968
1969/* internalize to td->pcb */
1970int
1971set_fpregs(struct thread *td, struct fpreg *fpregs)
1972{
1973
1974	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1975	return (0);
1976}
1977
1978/*
1979 * Get machine context.
1980 */
1981int
1982get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1983{
1984	struct trapframe *tp;
1985
1986	tp = td->td_frame;
1987	PROC_LOCK(curthread->td_proc);
1988	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1989	PROC_UNLOCK(curthread->td_proc);
1990	mcp->mc_r15 = tp->tf_r15;
1991	mcp->mc_r14 = tp->tf_r14;
1992	mcp->mc_r13 = tp->tf_r13;
1993	mcp->mc_r12 = tp->tf_r12;
1994	mcp->mc_r11 = tp->tf_r11;
1995	mcp->mc_r10 = tp->tf_r10;
1996	mcp->mc_r9  = tp->tf_r9;
1997	mcp->mc_r8  = tp->tf_r8;
1998	mcp->mc_rdi = tp->tf_rdi;
1999	mcp->mc_rsi = tp->tf_rsi;
2000	mcp->mc_rbp = tp->tf_rbp;
2001	mcp->mc_rbx = tp->tf_rbx;
2002	mcp->mc_rcx = tp->tf_rcx;
2003	mcp->mc_rflags = tp->tf_rflags;
2004	if (flags & GET_MC_CLEAR_RET) {
2005		mcp->mc_rax = 0;
2006		mcp->mc_rdx = 0;
2007		mcp->mc_rflags &= ~PSL_C;
2008	} else {
2009		mcp->mc_rax = tp->tf_rax;
2010		mcp->mc_rdx = tp->tf_rdx;
2011	}
2012	mcp->mc_rip = tp->tf_rip;
2013	mcp->mc_cs = tp->tf_cs;
2014	mcp->mc_rsp = tp->tf_rsp;
2015	mcp->mc_ss = tp->tf_ss;
2016	mcp->mc_ds = tp->tf_ds;
2017	mcp->mc_es = tp->tf_es;
2018	mcp->mc_fs = tp->tf_fs;
2019	mcp->mc_gs = tp->tf_gs;
2020	mcp->mc_flags = tp->tf_flags;
2021	mcp->mc_len = sizeof(*mcp);
2022	get_fpcontext(td, mcp);
2023	mcp->mc_fsbase = td->td_pcb->pcb_fsbase;
2024	mcp->mc_gsbase = td->td_pcb->pcb_gsbase;
2025	return (0);
2026}
2027
2028/*
2029 * Set machine context.
2030 *
2031 * However, we don't set any but the user modifiable flags, and we won't
2032 * touch the cs selector.
2033 */
2034int
2035set_mcontext(struct thread *td, const mcontext_t *mcp)
2036{
2037	struct trapframe *tp;
2038	long rflags;
2039	int ret;
2040
2041	tp = td->td_frame;
2042	if (mcp->mc_len != sizeof(*mcp) ||
2043	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
2044		return (EINVAL);
2045	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
2046	    (tp->tf_rflags & ~PSL_USERCHANGE);
2047	ret = set_fpcontext(td, mcp);
2048	if (ret != 0)
2049		return (ret);
2050	tp->tf_r15 = mcp->mc_r15;
2051	tp->tf_r14 = mcp->mc_r14;
2052	tp->tf_r13 = mcp->mc_r13;
2053	tp->tf_r12 = mcp->mc_r12;
2054	tp->tf_r11 = mcp->mc_r11;
2055	tp->tf_r10 = mcp->mc_r10;
2056	tp->tf_r9  = mcp->mc_r9;
2057	tp->tf_r8  = mcp->mc_r8;
2058	tp->tf_rdi = mcp->mc_rdi;
2059	tp->tf_rsi = mcp->mc_rsi;
2060	tp->tf_rbp = mcp->mc_rbp;
2061	tp->tf_rbx = mcp->mc_rbx;
2062	tp->tf_rdx = mcp->mc_rdx;
2063	tp->tf_rcx = mcp->mc_rcx;
2064	tp->tf_rax = mcp->mc_rax;
2065	tp->tf_rip = mcp->mc_rip;
2066	tp->tf_rflags = rflags;
2067	tp->tf_rsp = mcp->mc_rsp;
2068	tp->tf_ss = mcp->mc_ss;
2069	tp->tf_flags = mcp->mc_flags;
2070	if (tp->tf_flags & TF_HASSEGS) {
2071		tp->tf_ds = mcp->mc_ds;
2072		tp->tf_es = mcp->mc_es;
2073		tp->tf_fs = mcp->mc_fs;
2074		tp->tf_gs = mcp->mc_gs;
2075	}
2076	if (mcp->mc_flags & _MC_HASBASES) {
2077		td->td_pcb->pcb_fsbase = mcp->mc_fsbase;
2078		td->td_pcb->pcb_gsbase = mcp->mc_gsbase;
2079	}
2080	td->td_pcb->pcb_flags |= PCB_FULLCTX;
2081	td->td_pcb->pcb_full_iret = 1;
2082	return (0);
2083}
2084
2085static void
2086get_fpcontext(struct thread *td, mcontext_t *mcp)
2087{
2088
2089	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
2090	mcp->mc_fpformat = fpuformat();
2091}
2092
2093static int
2094set_fpcontext(struct thread *td, const mcontext_t *mcp)
2095{
2096	struct savefpu *fpstate;
2097
2098	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
2099		return (0);
2100	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
2101		return (EINVAL);
2102	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
2103		/* We don't care what state is left in the FPU or PCB. */
2104		fpstate_drop(td);
2105	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
2106	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
2107		/*
2108		 * XXX we violate the dubious requirement that fpusetregs()
2109		 * be called with interrupts disabled.
2110		 * XXX obsolete on trap-16 systems?
2111		 */
2112		fpstate = (struct savefpu *)&mcp->mc_fpstate;
2113		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
2114		fpusetregs(td, fpstate);
2115	} else
2116		return (EINVAL);
2117	return (0);
2118}
2119
2120void
2121fpstate_drop(struct thread *td)
2122{
2123	register_t s;
2124
2125	s = intr_disable();
2126	if (PCPU_GET(fpcurthread) == td)
2127		fpudrop();
2128	/*
2129	 * XXX force a full drop of the fpu.  The above only drops it if we
2130	 * owned it.
2131	 *
2132	 * XXX I don't much like fpugetregs()'s semantics of doing a full
2133	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
2134	 * We only need to drop to !PCB_INITDONE in sendsig().  But
2135	 * sendsig() is the only caller of fpugetregs()... perhaps we just
2136	 * have too many layers.
2137	 */
2138	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
2139	intr_restore(s);
2140}
2141
2142int
2143fill_dbregs(struct thread *td, struct dbreg *dbregs)
2144{
2145	struct pcb *pcb;
2146
2147	if (td == NULL) {
2148		dbregs->dr[0] = rdr0();
2149		dbregs->dr[1] = rdr1();
2150		dbregs->dr[2] = rdr2();
2151		dbregs->dr[3] = rdr3();
2152		dbregs->dr[6] = rdr6();
2153		dbregs->dr[7] = rdr7();
2154	} else {
2155		pcb = td->td_pcb;
2156		dbregs->dr[0] = pcb->pcb_dr0;
2157		dbregs->dr[1] = pcb->pcb_dr1;
2158		dbregs->dr[2] = pcb->pcb_dr2;
2159		dbregs->dr[3] = pcb->pcb_dr3;
2160		dbregs->dr[6] = pcb->pcb_dr6;
2161		dbregs->dr[7] = pcb->pcb_dr7;
2162	}
2163	dbregs->dr[4] = 0;
2164	dbregs->dr[5] = 0;
2165	dbregs->dr[8] = 0;
2166	dbregs->dr[9] = 0;
2167	dbregs->dr[10] = 0;
2168	dbregs->dr[11] = 0;
2169	dbregs->dr[12] = 0;
2170	dbregs->dr[13] = 0;
2171	dbregs->dr[14] = 0;
2172	dbregs->dr[15] = 0;
2173	return (0);
2174}
2175
2176int
2177set_dbregs(struct thread *td, struct dbreg *dbregs)
2178{
2179	struct pcb *pcb;
2180	int i;
2181
2182	if (td == NULL) {
2183		load_dr0(dbregs->dr[0]);
2184		load_dr1(dbregs->dr[1]);
2185		load_dr2(dbregs->dr[2]);
2186		load_dr3(dbregs->dr[3]);
2187		load_dr6(dbregs->dr[6]);
2188		load_dr7(dbregs->dr[7]);
2189	} else {
2190		/*
2191		 * Don't let an illegal value for dr7 get set.  Specifically,
2192		 * check for undefined settings.  Setting these bit patterns
2193		 * result in undefined behaviour and can lead to an unexpected
2194		 * TRCTRAP or a general protection fault right here.
2195		 * Upper bits of dr6 and dr7 must not be set
2196		 */
2197		for (i = 0; i < 4; i++) {
2198			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
2199				return (EINVAL);
2200			if (td->td_frame->tf_cs == _ucode32sel &&
2201			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
2202				return (EINVAL);
2203		}
2204		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
2205		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
2206			return (EINVAL);
2207
2208		pcb = td->td_pcb;
2209
2210		/*
2211		 * Don't let a process set a breakpoint that is not within the
2212		 * process's address space.  If a process could do this, it
2213		 * could halt the system by setting a breakpoint in the kernel
2214		 * (if ddb was enabled).  Thus, we need to check to make sure
2215		 * that no breakpoints are being enabled for addresses outside
2216		 * process's address space.
2217		 *
2218		 * XXX - what about when the watched area of the user's
2219		 * address space is written into from within the kernel
2220		 * ... wouldn't that still cause a breakpoint to be generated
2221		 * from within kernel mode?
2222		 */
2223
2224		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2225			/* dr0 is enabled */
2226			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2227				return (EINVAL);
2228		}
2229		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2230			/* dr1 is enabled */
2231			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2232				return (EINVAL);
2233		}
2234		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2235			/* dr2 is enabled */
2236			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2237				return (EINVAL);
2238		}
2239		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2240			/* dr3 is enabled */
2241			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2242				return (EINVAL);
2243		}
2244
2245		pcb->pcb_dr0 = dbregs->dr[0];
2246		pcb->pcb_dr1 = dbregs->dr[1];
2247		pcb->pcb_dr2 = dbregs->dr[2];
2248		pcb->pcb_dr3 = dbregs->dr[3];
2249		pcb->pcb_dr6 = dbregs->dr[6];
2250		pcb->pcb_dr7 = dbregs->dr[7];
2251
2252		pcb->pcb_flags |= PCB_DBREGS;
2253	}
2254
2255	return (0);
2256}
2257
2258void
2259reset_dbregs(void)
2260{
2261
2262	load_dr7(0);	/* Turn off the control bits first */
2263	load_dr0(0);
2264	load_dr1(0);
2265	load_dr2(0);
2266	load_dr3(0);
2267	load_dr6(0);
2268}
2269
2270/*
2271 * Return > 0 if a hardware breakpoint has been hit, and the
2272 * breakpoint was in user space.  Return 0, otherwise.
2273 */
2274int
2275user_dbreg_trap(void)
2276{
2277        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2278        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2279        int nbp;            /* number of breakpoints that triggered */
2280        caddr_t addr[4];    /* breakpoint addresses */
2281        int i;
2282
2283        dr7 = rdr7();
2284        if ((dr7 & 0x000000ff) == 0) {
2285                /*
2286                 * all GE and LE bits in the dr7 register are zero,
2287                 * thus the trap couldn't have been caused by the
2288                 * hardware debug registers
2289                 */
2290                return 0;
2291        }
2292
2293        nbp = 0;
2294        dr6 = rdr6();
2295        bp = dr6 & 0x0000000f;
2296
2297        if (!bp) {
2298                /*
2299                 * None of the breakpoint bits are set meaning this
2300                 * trap was not caused by any of the debug registers
2301                 */
2302                return 0;
2303        }
2304
2305        /*
2306         * at least one of the breakpoints were hit, check to see
2307         * which ones and if any of them are user space addresses
2308         */
2309
2310        if (bp & 0x01) {
2311                addr[nbp++] = (caddr_t)rdr0();
2312        }
2313        if (bp & 0x02) {
2314                addr[nbp++] = (caddr_t)rdr1();
2315        }
2316        if (bp & 0x04) {
2317                addr[nbp++] = (caddr_t)rdr2();
2318        }
2319        if (bp & 0x08) {
2320                addr[nbp++] = (caddr_t)rdr3();
2321        }
2322
2323        for (i = 0; i < nbp; i++) {
2324                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2325                        /*
2326                         * addr[i] is in user space
2327                         */
2328                        return nbp;
2329                }
2330        }
2331
2332        /*
2333         * None of the breakpoints are in user space.
2334         */
2335        return 0;
2336}
2337
2338#ifdef KDB
2339
2340/*
2341 * Provide inb() and outb() as functions.  They are normally only available as
2342 * inline functions, thus cannot be called from the debugger.
2343 */
2344
2345/* silence compiler warnings */
2346u_char inb_(u_short);
2347void outb_(u_short, u_char);
2348
2349u_char
2350inb_(u_short port)
2351{
2352	return inb(port);
2353}
2354
2355void
2356outb_(u_short port, u_char data)
2357{
2358	outb(port, data);
2359}
2360
2361#endif /* KDB */
2362