machdep.c revision 190619
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 190619 2009-04-01 12:53:01Z kib $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_sched.h"
57
58#include <sys/param.h>
59#include <sys/proc.h>
60#include <sys/systm.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/bus.h>
64#include <sys/callout.h>
65#include <sys/cons.h>
66#include <sys/cpu.h>
67#include <sys/eventhandler.h>
68#include <sys/exec.h>
69#include <sys/imgact.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/linker.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/memrange.h>
77#include <sys/msgbuf.h>
78#include <sys/mutex.h>
79#include <sys/pcpu.h>
80#include <sys/ptrace.h>
81#include <sys/reboot.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#include <sys/sysctl.h>
85#include <sys/sysent.h>
86#include <sys/sysproto.h>
87#include <sys/ucontext.h>
88#include <sys/vmmeter.h>
89
90#include <vm/vm.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_page.h>
94#include <vm/vm_map.h>
95#include <vm/vm_object.h>
96#include <vm/vm_pager.h>
97#include <vm/vm_param.h>
98
99#ifdef DDB
100#ifndef KDB
101#error KDB must be enabled in order for DDB to work!
102#endif
103#endif
104#include <ddb/ddb.h>
105
106#include <net/netisr.h>
107
108#include <machine/clock.h>
109#include <machine/cpu.h>
110#include <machine/cputypes.h>
111#include <machine/intr_machdep.h>
112#include <machine/md_var.h>
113#include <machine/metadata.h>
114#include <machine/pc/bios.h>
115#include <machine/pcb.h>
116#include <machine/proc.h>
117#include <machine/reg.h>
118#include <machine/sigframe.h>
119#include <machine/specialreg.h>
120#ifdef PERFMON
121#include <machine/perfmon.h>
122#endif
123#include <machine/tss.h>
124#ifdef SMP
125#include <machine/smp.h>
126#endif
127
128#ifdef DEV_ATPIC
129#include <amd64/isa/icu.h>
130#else
131#include <machine/apicvar.h>
132#endif
133
134#include <isa/isareg.h>
135#include <isa/rtc.h>
136
137/* Sanity check for __curthread() */
138CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
139
140extern u_int64_t hammer_time(u_int64_t, u_int64_t);
141
142extern void printcpuinfo(void);	/* XXX header file */
143extern void identify_cpu(void);
144extern void panicifcpuunsupported(void);
145
146#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
147#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
148
149static void cpu_startup(void *);
150static void get_fpcontext(struct thread *td, mcontext_t *mcp);
151static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
152SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
153
154#ifdef DDB
155extern vm_offset_t ksym_start, ksym_end;
156#endif
157
158/* Intel ICH registers */
159#define ICH_PMBASE	0x400
160#define ICH_SMI_EN	ICH_PMBASE + 0x30
161
162int	_udatasel, _ucodesel, _ucode32sel;
163
164int cold = 1;
165
166long Maxmem = 0;
167long realmem = 0;
168
169/*
170 * The number of PHYSMAP entries must be one less than the number of
171 * PHYSSEG entries because the PHYSMAP entry that spans the largest
172 * physical address that is accessible by ISA DMA is split into two
173 * PHYSSEG entries.
174 */
175#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
176
177vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
178vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
179
180/* must be 2 less so 0 0 can signal end of chunks */
181#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
182#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
183
184struct kva_md_info kmi;
185
186static struct trapframe proc0_tf;
187struct region_descriptor r_gdt, r_idt;
188
189struct pcpu __pcpu[MAXCPU];
190
191struct mtx icu_lock;
192
193struct mem_range_softc mem_range_softc;
194
195static void
196cpu_startup(dummy)
197	void *dummy;
198{
199	uintmax_t memsize;
200	char *sysenv;
201
202	/*
203	 * On MacBooks, we need to disallow the legacy USB circuit to
204	 * generate an SMI# because this can cause several problems,
205	 * namely: incorrect CPU frequency detection and failure to
206	 * start the APs.
207	 * We do this by disabling a bit in the SMI_EN (SMI Control and
208	 * Enable register) of the Intel ICH LPC Interface Bridge.
209	 */
210	sysenv = getenv("smbios.system.product");
211	if (sysenv != NULL) {
212		if (strncmp(sysenv, "MacBook", 7) == 0) {
213			if (bootverbose)
214				printf("Disabling LEGACY_USB_EN bit on "
215				    "Intel ICH.\n");
216			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
217		}
218		freeenv(sysenv);
219	}
220
221	/*
222	 * Good {morning,afternoon,evening,night}.
223	 */
224	startrtclock();
225	printcpuinfo();
226	panicifcpuunsupported();
227#ifdef PERFMON
228	perfmon_init();
229#endif
230	sysenv = getenv("smbios.memory.enabled");
231	if (sysenv != NULL) {
232		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10);
233		freeenv(sysenv);
234	} else
235		memsize = 0;
236	if (memsize > 0)
237		printf("real memory  = %ju (%ju MB)\n", memsize << 10,
238		    memsize >> 10);
239	else
240		printf("real memory  = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
241		    ptoa((uintmax_t)Maxmem) / 1048576);
242	realmem = Maxmem;
243	/*
244	 * Display any holes after the first chunk of extended memory.
245	 */
246	if (bootverbose) {
247		int indx;
248
249		printf("Physical memory chunk(s):\n");
250		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
251			vm_paddr_t size;
252
253			size = phys_avail[indx + 1] - phys_avail[indx];
254			printf(
255			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
256			    (uintmax_t)phys_avail[indx],
257			    (uintmax_t)phys_avail[indx + 1] - 1,
258			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
259		}
260	}
261
262	vm_ksubmap_init(&kmi);
263
264	printf("avail memory = %ju (%ju MB)\n",
265	    ptoa((uintmax_t)cnt.v_free_count),
266	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
267
268	/*
269	 * Set up buffers, so they can be used to read disk labels.
270	 */
271	bufinit();
272	vm_pager_bufferinit();
273
274	cpu_setregs();
275}
276
277/*
278 * Send an interrupt to process.
279 *
280 * Stack is set up to allow sigcode stored
281 * at top to call routine, followed by kcall
282 * to sigreturn routine below.  After sigreturn
283 * resets the signal mask, the stack, and the
284 * frame pointer, it returns to the user
285 * specified pc, psl.
286 */
287void
288sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
289{
290	struct sigframe sf, *sfp;
291	struct proc *p;
292	struct thread *td;
293	struct sigacts *psp;
294	char *sp;
295	struct trapframe *regs;
296	int sig;
297	int oonstack;
298
299	td = curthread;
300	p = td->td_proc;
301	PROC_LOCK_ASSERT(p, MA_OWNED);
302	sig = ksi->ksi_signo;
303	psp = p->p_sigacts;
304	mtx_assert(&psp->ps_mtx, MA_OWNED);
305	regs = td->td_frame;
306	oonstack = sigonstack(regs->tf_rsp);
307
308	/* Save user context. */
309	bzero(&sf, sizeof(sf));
310	sf.sf_uc.uc_sigmask = *mask;
311	sf.sf_uc.uc_stack = td->td_sigstk;
312	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
313	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
314	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
315	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
316	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
317	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
318	fpstate_drop(td);
319
320	/* Allocate space for the signal handler context. */
321	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
322	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
323		sp = td->td_sigstk.ss_sp +
324		    td->td_sigstk.ss_size - sizeof(struct sigframe);
325#if defined(COMPAT_43)
326		td->td_sigstk.ss_flags |= SS_ONSTACK;
327#endif
328	} else
329		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
330	/* Align to 16 bytes. */
331	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
332
333	/* Translate the signal if appropriate. */
334	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
335		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
336
337	/* Build the argument list for the signal handler. */
338	regs->tf_rdi = sig;			/* arg 1 in %rdi */
339	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
340	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
341		/* Signal handler installed with SA_SIGINFO. */
342		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
343		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
344
345		/* Fill in POSIX parts */
346		sf.sf_si = ksi->ksi_info;
347		sf.sf_si.si_signo = sig; /* maybe a translated signal */
348		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
349	} else {
350		/* Old FreeBSD-style arguments. */
351		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
352		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
353		sf.sf_ahu.sf_handler = catcher;
354	}
355	mtx_unlock(&psp->ps_mtx);
356	PROC_UNLOCK(p);
357
358	/*
359	 * Copy the sigframe out to the user's stack.
360	 */
361	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
362#ifdef DEBUG
363		printf("process %ld has trashed its stack\n", (long)p->p_pid);
364#endif
365		PROC_LOCK(p);
366		sigexit(td, SIGILL);
367	}
368
369	regs->tf_rsp = (long)sfp;
370	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
371	regs->tf_rflags &= ~(PSL_T | PSL_D);
372	regs->tf_cs = _ucodesel;
373	PROC_LOCK(p);
374	mtx_lock(&psp->ps_mtx);
375}
376
377/*
378 * System call to cleanup state after a signal
379 * has been taken.  Reset signal mask and
380 * stack state from context left by sendsig (above).
381 * Return to previous pc and psl as specified by
382 * context left by sendsig. Check carefully to
383 * make sure that the user has not modified the
384 * state to gain improper privileges.
385 *
386 * MPSAFE
387 */
388int
389sigreturn(td, uap)
390	struct thread *td;
391	struct sigreturn_args /* {
392		const struct __ucontext *sigcntxp;
393	} */ *uap;
394{
395	ucontext_t uc;
396	struct proc *p = td->td_proc;
397	struct trapframe *regs;
398	const ucontext_t *ucp;
399	long rflags;
400	int cs, error, ret;
401	ksiginfo_t ksi;
402
403	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
404	if (error != 0)
405		return (error);
406	ucp = &uc;
407	regs = td->td_frame;
408	rflags = ucp->uc_mcontext.mc_rflags;
409	/*
410	 * Don't allow users to change privileged or reserved flags.
411	 */
412	/*
413	 * XXX do allow users to change the privileged flag PSL_RF.
414	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
415	 * should sometimes set it there too.  tf_rflags is kept in
416	 * the signal context during signal handling and there is no
417	 * other place to remember it, so the PSL_RF bit may be
418	 * corrupted by the signal handler without us knowing.
419	 * Corruption of the PSL_RF bit at worst causes one more or
420	 * one less debugger trap, so allowing it is fairly harmless.
421	 */
422	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
423		printf("sigreturn: rflags = 0x%lx\n", rflags);
424		return (EINVAL);
425	}
426
427	/*
428	 * Don't allow users to load a valid privileged %cs.  Let the
429	 * hardware check for invalid selectors, excess privilege in
430	 * other selectors, invalid %eip's and invalid %esp's.
431	 */
432	cs = ucp->uc_mcontext.mc_cs;
433	if (!CS_SECURE(cs)) {
434		printf("sigreturn: cs = 0x%x\n", cs);
435		ksiginfo_init_trap(&ksi);
436		ksi.ksi_signo = SIGBUS;
437		ksi.ksi_code = BUS_OBJERR;
438		ksi.ksi_trapno = T_PROTFLT;
439		ksi.ksi_addr = (void *)regs->tf_rip;
440		trapsignal(td, &ksi);
441		return (EINVAL);
442	}
443
444	ret = set_fpcontext(td, &ucp->uc_mcontext);
445	if (ret != 0)
446		return (ret);
447	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
448
449	PROC_LOCK(p);
450#if defined(COMPAT_43)
451	if (ucp->uc_mcontext.mc_onstack & 1)
452		td->td_sigstk.ss_flags |= SS_ONSTACK;
453	else
454		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
455#endif
456
457	td->td_sigmask = ucp->uc_sigmask;
458	SIG_CANTMASK(td->td_sigmask);
459	signotify(td);
460	PROC_UNLOCK(p);
461	td->td_pcb->pcb_flags |= PCB_FULLCTX;
462	return (EJUSTRETURN);
463}
464
465#ifdef COMPAT_FREEBSD4
466int
467freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
468{
469
470	return sigreturn(td, (struct sigreturn_args *)uap);
471}
472#endif
473
474
475/*
476 * Machine dependent boot() routine
477 *
478 * I haven't seen anything to put here yet
479 * Possibly some stuff might be grafted back here from boot()
480 */
481void
482cpu_boot(int howto)
483{
484}
485
486/* Get current clock frequency for the given cpu id. */
487int
488cpu_est_clockrate(int cpu_id, uint64_t *rate)
489{
490	register_t reg;
491	uint64_t tsc1, tsc2;
492
493	if (pcpu_find(cpu_id) == NULL || rate == NULL)
494		return (EINVAL);
495
496	/* If we're booting, trust the rate calibrated moments ago. */
497	if (cold) {
498		*rate = tsc_freq;
499		return (0);
500	}
501
502#ifdef SMP
503	/* Schedule ourselves on the indicated cpu. */
504	thread_lock(curthread);
505	sched_bind(curthread, cpu_id);
506	thread_unlock(curthread);
507#endif
508
509	/* Calibrate by measuring a short delay. */
510	reg = intr_disable();
511	tsc1 = rdtsc();
512	DELAY(1000);
513	tsc2 = rdtsc();
514	intr_restore(reg);
515
516#ifdef SMP
517	thread_lock(curthread);
518	sched_unbind(curthread);
519	thread_unlock(curthread);
520#endif
521
522	/*
523	 * Calculate the difference in readings, convert to Mhz, and
524	 * subtract 0.5% of the total.  Empirical testing has shown that
525	 * overhead in DELAY() works out to approximately this value.
526	 */
527	tsc2 -= tsc1;
528	*rate = tsc2 * 1000 - tsc2 * 5;
529	return (0);
530}
531
532/*
533 * Shutdown the CPU as much as possible
534 */
535void
536cpu_halt(void)
537{
538	for (;;)
539		__asm__ ("hlt");
540}
541
542void (*cpu_idle_hook)(void) = NULL;	/* ACPI idle hook. */
543
544static void
545cpu_idle_hlt(int busy)
546{
547	/*
548	 * we must absolutely guarentee that hlt is the next instruction
549	 * after sti or we introduce a timing window.
550	 */
551	disable_intr();
552  	if (sched_runnable())
553		enable_intr();
554	else
555		__asm __volatile("sti; hlt");
556}
557
558static void
559cpu_idle_acpi(int busy)
560{
561	disable_intr();
562  	if (sched_runnable())
563		enable_intr();
564	else if (cpu_idle_hook)
565		cpu_idle_hook();
566	else
567		__asm __volatile("sti; hlt");
568}
569
570static void
571cpu_idle_spin(int busy)
572{
573	return;
574}
575
576void (*cpu_idle_fn)(int) = cpu_idle_acpi;
577
578void
579cpu_idle(int busy)
580{
581#ifdef SMP
582	if (mp_grab_cpu_hlt())
583		return;
584#endif
585	cpu_idle_fn(busy);
586}
587
588/*
589 * mwait cpu power states.  Lower 4 bits are sub-states.
590 */
591#define	MWAIT_C0	0xf0
592#define	MWAIT_C1	0x00
593#define	MWAIT_C2	0x10
594#define	MWAIT_C3	0x20
595#define	MWAIT_C4	0x30
596
597#define	MWAIT_DISABLED	0x0
598#define	MWAIT_WOKEN	0x1
599#define	MWAIT_WAITING	0x2
600
601static void
602cpu_idle_mwait(int busy)
603{
604	int *mwait;
605
606	mwait = (int *)PCPU_PTR(monitorbuf);
607	*mwait = MWAIT_WAITING;
608	if (sched_runnable())
609		return;
610	cpu_monitor(mwait, 0, 0);
611	if (*mwait == MWAIT_WAITING)
612		cpu_mwait(0, MWAIT_C1);
613}
614
615static void
616cpu_idle_mwait_hlt(int busy)
617{
618	int *mwait;
619
620	mwait = (int *)PCPU_PTR(monitorbuf);
621	if (busy == 0) {
622		*mwait = MWAIT_DISABLED;
623		cpu_idle_hlt(busy);
624		return;
625	}
626	*mwait = MWAIT_WAITING;
627	if (sched_runnable())
628		return;
629	cpu_monitor(mwait, 0, 0);
630	if (*mwait == MWAIT_WAITING)
631		cpu_mwait(0, MWAIT_C1);
632}
633
634int
635cpu_idle_wakeup(int cpu)
636{
637	struct pcpu *pcpu;
638	int *mwait;
639
640	if (cpu_idle_fn == cpu_idle_spin)
641		return (1);
642	if (cpu_idle_fn != cpu_idle_mwait && cpu_idle_fn != cpu_idle_mwait_hlt)
643		return (0);
644	pcpu = pcpu_find(cpu);
645	mwait = (int *)pcpu->pc_monitorbuf;
646	/*
647	 * This doesn't need to be atomic since missing the race will
648	 * simply result in unnecessary IPIs.
649	 */
650	if (cpu_idle_fn == cpu_idle_mwait_hlt && *mwait == MWAIT_DISABLED)
651		return (0);
652	*mwait = MWAIT_WOKEN;
653
654	return (1);
655}
656
657/*
658 * Ordered by speed/power consumption.
659 */
660struct {
661	void	*id_fn;
662	char	*id_name;
663} idle_tbl[] = {
664	{ cpu_idle_spin, "spin" },
665	{ cpu_idle_mwait, "mwait" },
666	{ cpu_idle_mwait_hlt, "mwait_hlt" },
667	{ cpu_idle_hlt, "hlt" },
668	{ cpu_idle_acpi, "acpi" },
669	{ NULL, NULL }
670};
671
672static int
673idle_sysctl_available(SYSCTL_HANDLER_ARGS)
674{
675	char *avail, *p;
676	int error;
677	int i;
678
679	avail = malloc(256, M_TEMP, M_WAITOK);
680	p = avail;
681	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
682		if (strstr(idle_tbl[i].id_name, "mwait") &&
683		    (cpu_feature2 & CPUID2_MON) == 0)
684			continue;
685		p += sprintf(p, "%s, ", idle_tbl[i].id_name);
686	}
687	error = sysctl_handle_string(oidp, avail, 0, req);
688	free(avail, M_TEMP);
689	return (error);
690}
691
692static int
693idle_sysctl(SYSCTL_HANDLER_ARGS)
694{
695	char buf[16];
696	int error;
697	char *p;
698	int i;
699
700	p = "unknown";
701	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
702		if (idle_tbl[i].id_fn == cpu_idle_fn) {
703			p = idle_tbl[i].id_name;
704			break;
705		}
706	}
707	strncpy(buf, p, sizeof(buf));
708	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
709	if (error != 0 || req->newptr == NULL)
710		return (error);
711	for (i = 0; idle_tbl[i].id_name != NULL; i++) {
712		if (strstr(idle_tbl[i].id_name, "mwait") &&
713		    (cpu_feature2 & CPUID2_MON) == 0)
714			continue;
715		if (strcmp(idle_tbl[i].id_name, buf))
716			continue;
717		cpu_idle_fn = idle_tbl[i].id_fn;
718		return (0);
719	}
720	return (EINVAL);
721}
722
723SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
724    0, 0, idle_sysctl_available, "A", "list of available idle functions");
725
726SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
727    idle_sysctl, "A", "currently selected idle function");
728
729/*
730 * Reset registers to default values on exec.
731 */
732void
733exec_setregs(td, entry, stack, ps_strings)
734	struct thread *td;
735	u_long entry;
736	u_long stack;
737	u_long ps_strings;
738{
739	struct trapframe *regs = td->td_frame;
740	struct pcb *pcb = td->td_pcb;
741
742	critical_enter();
743	wrmsr(MSR_FSBASE, 0);
744	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
745	pcb->pcb_fsbase = 0;
746	pcb->pcb_gsbase = 0;
747	critical_exit();
748	pcb->pcb_flags &= ~(PCB_32BIT | PCB_GS32BIT);
749	load_ds(_udatasel);
750	load_es(_udatasel);
751	load_fs(_udatasel);
752	load_gs(_udatasel);
753	pcb->pcb_ds = _udatasel;
754	pcb->pcb_es = _udatasel;
755	pcb->pcb_fs = _udatasel;
756	pcb->pcb_gs = _udatasel;
757	pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
758
759	bzero((char *)regs, sizeof(struct trapframe));
760	regs->tf_rip = entry;
761	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
762	regs->tf_rdi = stack;		/* argv */
763	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
764	regs->tf_ss = _udatasel;
765	regs->tf_cs = _ucodesel;
766
767	/*
768	 * Reset the hardware debug registers if they were in use.
769	 * They won't have any meaning for the newly exec'd process.
770	 */
771	if (pcb->pcb_flags & PCB_DBREGS) {
772		pcb->pcb_dr0 = 0;
773		pcb->pcb_dr1 = 0;
774		pcb->pcb_dr2 = 0;
775		pcb->pcb_dr3 = 0;
776		pcb->pcb_dr6 = 0;
777		pcb->pcb_dr7 = 0;
778		if (pcb == PCPU_GET(curpcb)) {
779			/*
780			 * Clear the debug registers on the running
781			 * CPU, otherwise they will end up affecting
782			 * the next process we switch to.
783			 */
784			reset_dbregs();
785		}
786		pcb->pcb_flags &= ~PCB_DBREGS;
787	}
788
789	/*
790	 * Drop the FP state if we hold it, so that the process gets a
791	 * clean FP state if it uses the FPU again.
792	 */
793	fpstate_drop(td);
794}
795
796void
797cpu_setregs(void)
798{
799	register_t cr0;
800
801	cr0 = rcr0();
802	/*
803	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
804	 * BSP.  See the comments there about why we set them.
805	 */
806	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
807	load_cr0(cr0);
808}
809
810/*
811 * Initialize amd64 and configure to run kernel
812 */
813
814/*
815 * Initialize segments & interrupt table
816 */
817
818struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
819static struct gate_descriptor idt0[NIDT];
820struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
821
822static char dblfault_stack[PAGE_SIZE] __aligned(16);
823
824static char nmi0_stack[PAGE_SIZE] __aligned(16);
825CTASSERT(sizeof(struct nmi_pcpu) == 16);
826
827struct amd64tss common_tss[MAXCPU];
828
829/*
830 * Software prototypes -- in more palatable form.
831 *
832 * Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
833 * slots as corresponding segments for i386 kernel.
834 */
835struct soft_segment_descriptor gdt_segs[] = {
836/* GNULL_SEL	0 Null Descriptor */
837{	.ssd_base = 0x0,
838	.ssd_limit = 0x0,
839	.ssd_type = 0,
840	.ssd_dpl = 0,
841	.ssd_p = 0,
842	.ssd_long = 0,
843	.ssd_def32 = 0,
844	.ssd_gran = 0		},
845/* GNULL2_SEL	1 Null Descriptor */
846{	.ssd_base = 0x0,
847	.ssd_limit = 0x0,
848	.ssd_type = 0,
849	.ssd_dpl = 0,
850	.ssd_p = 0,
851	.ssd_long = 0,
852	.ssd_def32 = 0,
853	.ssd_gran = 0		},
854/* GUFS32_SEL	2 32 bit %gs Descriptor for user */
855{	.ssd_base = 0x0,
856	.ssd_limit = 0xfffff,
857	.ssd_type = SDT_MEMRWA,
858	.ssd_dpl = SEL_UPL,
859	.ssd_p = 1,
860	.ssd_long = 0,
861	.ssd_def32 = 1,
862	.ssd_gran = 1		},
863/* GUGS32_SEL	3 32 bit %fs Descriptor for user */
864{	.ssd_base = 0x0,
865	.ssd_limit = 0xfffff,
866	.ssd_type = SDT_MEMRWA,
867	.ssd_dpl = SEL_UPL,
868	.ssd_p = 1,
869	.ssd_long = 0,
870	.ssd_def32 = 1,
871	.ssd_gran = 1		},
872/* GCODE_SEL	4 Code Descriptor for kernel */
873{	.ssd_base = 0x0,
874	.ssd_limit = 0xfffff,
875	.ssd_type = SDT_MEMERA,
876	.ssd_dpl = SEL_KPL,
877	.ssd_p = 1,
878	.ssd_long = 1,
879	.ssd_def32 = 0,
880	.ssd_gran = 1		},
881/* GDATA_SEL	5 Data Descriptor for kernel */
882{	.ssd_base = 0x0,
883	.ssd_limit = 0xfffff,
884	.ssd_type = SDT_MEMRWA,
885	.ssd_dpl = SEL_KPL,
886	.ssd_p = 1,
887	.ssd_long = 1,
888	.ssd_def32 = 0,
889	.ssd_gran = 1		},
890/* GUCODE32_SEL	6 32 bit Code Descriptor for user */
891{	.ssd_base = 0x0,
892	.ssd_limit = 0xfffff,
893	.ssd_type = SDT_MEMERA,
894	.ssd_dpl = SEL_UPL,
895	.ssd_p = 1,
896	.ssd_long = 0,
897	.ssd_def32 = 1,
898	.ssd_gran = 1		},
899/* GUDATA_SEL	7 32/64 bit Data Descriptor for user */
900{	.ssd_base = 0x0,
901	.ssd_limit = 0xfffff,
902	.ssd_type = SDT_MEMRWA,
903	.ssd_dpl = SEL_UPL,
904	.ssd_p = 1,
905	.ssd_long = 0,
906	.ssd_def32 = 1,
907	.ssd_gran = 1		},
908/* GUCODE_SEL	8 64 bit Code Descriptor for user */
909{	.ssd_base = 0x0,
910	.ssd_limit = 0xfffff,
911	.ssd_type = SDT_MEMERA,
912	.ssd_dpl = SEL_UPL,
913	.ssd_p = 1,
914	.ssd_long = 1,
915	.ssd_def32 = 0,
916	.ssd_gran = 1		},
917/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
918{	.ssd_base = 0x0,
919	.ssd_limit = sizeof(struct amd64tss) + IOPAGES * PAGE_SIZE - 1,
920	.ssd_type = SDT_SYSTSS,
921	.ssd_dpl = SEL_KPL,
922	.ssd_p = 1,
923	.ssd_long = 0,
924	.ssd_def32 = 0,
925	.ssd_gran = 0		},
926/* Actually, the TSS is a system descriptor which is double size */
927{	.ssd_base = 0x0,
928	.ssd_limit = 0x0,
929	.ssd_type = 0,
930	.ssd_dpl = 0,
931	.ssd_p = 0,
932	.ssd_long = 0,
933	.ssd_def32 = 0,
934	.ssd_gran = 0		},
935/* GUSERLDT_SEL	11 LDT Descriptor */
936{	.ssd_base = 0x0,
937	.ssd_limit = 0x0,
938	.ssd_type = 0,
939	.ssd_dpl = 0,
940	.ssd_p = 0,
941	.ssd_long = 0,
942	.ssd_def32 = 0,
943	.ssd_gran = 0		},
944/* GUSERLDT_SEL	12 LDT Descriptor, double size */
945{	.ssd_base = 0x0,
946	.ssd_limit = 0x0,
947	.ssd_type = 0,
948	.ssd_dpl = 0,
949	.ssd_p = 0,
950	.ssd_long = 0,
951	.ssd_def32 = 0,
952	.ssd_gran = 0		},
953};
954
955void
956setidt(idx, func, typ, dpl, ist)
957	int idx;
958	inthand_t *func;
959	int typ;
960	int dpl;
961	int ist;
962{
963	struct gate_descriptor *ip;
964
965	ip = idt + idx;
966	ip->gd_looffset = (uintptr_t)func;
967	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
968	ip->gd_ist = ist;
969	ip->gd_xx = 0;
970	ip->gd_type = typ;
971	ip->gd_dpl = dpl;
972	ip->gd_p = 1;
973	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
974}
975
976extern inthand_t
977	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
978	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
979	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
980	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
981	IDTVEC(xmm), IDTVEC(dblfault),
982	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
983
984void
985sdtossd(sd, ssd)
986	struct user_segment_descriptor *sd;
987	struct soft_segment_descriptor *ssd;
988{
989
990	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
991	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
992	ssd->ssd_type  = sd->sd_type;
993	ssd->ssd_dpl   = sd->sd_dpl;
994	ssd->ssd_p     = sd->sd_p;
995	ssd->ssd_long  = sd->sd_long;
996	ssd->ssd_def32 = sd->sd_def32;
997	ssd->ssd_gran  = sd->sd_gran;
998}
999
1000void
1001ssdtosd(ssd, sd)
1002	struct soft_segment_descriptor *ssd;
1003	struct user_segment_descriptor *sd;
1004{
1005
1006	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1007	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1008	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1009	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1010	sd->sd_type  = ssd->ssd_type;
1011	sd->sd_dpl   = ssd->ssd_dpl;
1012	sd->sd_p     = ssd->ssd_p;
1013	sd->sd_long  = ssd->ssd_long;
1014	sd->sd_def32 = ssd->ssd_def32;
1015	sd->sd_gran  = ssd->ssd_gran;
1016}
1017
1018void
1019ssdtosyssd(ssd, sd)
1020	struct soft_segment_descriptor *ssd;
1021	struct system_segment_descriptor *sd;
1022{
1023
1024	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1025	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1026	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1027	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1028	sd->sd_type  = ssd->ssd_type;
1029	sd->sd_dpl   = ssd->ssd_dpl;
1030	sd->sd_p     = ssd->ssd_p;
1031	sd->sd_gran  = ssd->ssd_gran;
1032}
1033
1034#if !defined(DEV_ATPIC) && defined(DEV_ISA)
1035#include <isa/isavar.h>
1036#include <isa/isareg.h>
1037/*
1038 * Return a bitmap of the current interrupt requests.  This is 8259-specific
1039 * and is only suitable for use at probe time.
1040 * This is only here to pacify sio.  It is NOT FATAL if this doesn't work.
1041 * It shouldn't be here.  There should probably be an APIC centric
1042 * implementation in the apic driver code, if at all.
1043 */
1044intrmask_t
1045isa_irq_pending(void)
1046{
1047	u_char irr1;
1048	u_char irr2;
1049
1050	irr1 = inb(IO_ICU1);
1051	irr2 = inb(IO_ICU2);
1052	return ((irr2 << 8) | irr1);
1053}
1054#endif
1055
1056u_int basemem;
1057
1058/*
1059 * Populate the (physmap) array with base/bound pairs describing the
1060 * available physical memory in the system, then test this memory and
1061 * build the phys_avail array describing the actually-available memory.
1062 *
1063 * If we cannot accurately determine the physical memory map, then use
1064 * value from the 0xE801 call, and failing that, the RTC.
1065 *
1066 * Total memory size may be set by the kernel environment variable
1067 * hw.physmem or the compile-time define MAXMEM.
1068 *
1069 * XXX first should be vm_paddr_t.
1070 */
1071static void
1072getmemsize(caddr_t kmdp, u_int64_t first)
1073{
1074	int i, off, physmap_idx, pa_indx, da_indx;
1075	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1076	u_long physmem_tunable;
1077	pt_entry_t *pte;
1078	struct bios_smap *smapbase, *smap, *smapend;
1079	u_int32_t smapsize;
1080	quad_t dcons_addr, dcons_size;
1081
1082	bzero(physmap, sizeof(physmap));
1083	basemem = 0;
1084	physmap_idx = 0;
1085
1086	/*
1087	 * get memory map from INT 15:E820, kindly supplied by the loader.
1088	 *
1089	 * subr_module.c says:
1090	 * "Consumer may safely assume that size value precedes data."
1091	 * ie: an int32_t immediately precedes smap.
1092	 */
1093	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1094	    MODINFO_METADATA | MODINFOMD_SMAP);
1095	if (smapbase == NULL)
1096		panic("No BIOS smap info from loader!");
1097
1098	smapsize = *((u_int32_t *)smapbase - 1);
1099	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1100
1101	for (smap = smapbase; smap < smapend; smap++) {
1102		if (boothowto & RB_VERBOSE)
1103			printf("SMAP type=%02x base=%016lx len=%016lx\n",
1104			    smap->type, smap->base, smap->length);
1105
1106		if (smap->type != SMAP_TYPE_MEMORY)
1107			continue;
1108
1109		if (smap->length == 0)
1110			continue;
1111
1112		for (i = 0; i <= physmap_idx; i += 2) {
1113			if (smap->base < physmap[i + 1]) {
1114				if (boothowto & RB_VERBOSE)
1115					printf(
1116	"Overlapping or non-monotonic memory region, ignoring second region\n");
1117				continue;
1118			}
1119		}
1120
1121		if (smap->base == physmap[physmap_idx + 1]) {
1122			physmap[physmap_idx + 1] += smap->length;
1123			continue;
1124		}
1125
1126		physmap_idx += 2;
1127		if (physmap_idx == PHYSMAP_SIZE) {
1128			printf(
1129		"Too many segments in the physical address map, giving up\n");
1130			break;
1131		}
1132		physmap[physmap_idx] = smap->base;
1133		physmap[physmap_idx + 1] = smap->base + smap->length;
1134	}
1135
1136	/*
1137	 * Find the 'base memory' segment for SMP
1138	 */
1139	basemem = 0;
1140	for (i = 0; i <= physmap_idx; i += 2) {
1141		if (physmap[i] == 0x00000000) {
1142			basemem = physmap[i + 1] / 1024;
1143			break;
1144		}
1145	}
1146	if (basemem == 0)
1147		panic("BIOS smap did not include a basemem segment!");
1148
1149#ifdef SMP
1150	/* make hole for AP bootstrap code */
1151	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1152#endif
1153
1154	/*
1155	 * Maxmem isn't the "maximum memory", it's one larger than the
1156	 * highest page of the physical address space.  It should be
1157	 * called something like "Maxphyspage".  We may adjust this
1158	 * based on ``hw.physmem'' and the results of the memory test.
1159	 */
1160	Maxmem = atop(physmap[physmap_idx + 1]);
1161
1162#ifdef MAXMEM
1163	Maxmem = MAXMEM / 4;
1164#endif
1165
1166	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1167		Maxmem = atop(physmem_tunable);
1168
1169	/*
1170	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1171	 * in the system.
1172	 */
1173	if (Maxmem > atop(physmap[physmap_idx + 1]))
1174		Maxmem = atop(physmap[physmap_idx + 1]);
1175
1176	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1177	    (boothowto & RB_VERBOSE))
1178		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1179
1180	/* call pmap initialization to make new kernel address space */
1181	pmap_bootstrap(&first);
1182
1183	/*
1184	 * Size up each available chunk of physical memory.
1185	 */
1186	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1187	pa_indx = 0;
1188	da_indx = 1;
1189	phys_avail[pa_indx++] = physmap[0];
1190	phys_avail[pa_indx] = physmap[0];
1191	dump_avail[da_indx] = physmap[0];
1192	pte = CMAP1;
1193
1194	/*
1195	 * Get dcons buffer address
1196	 */
1197	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1198	    getenv_quad("dcons.size", &dcons_size) == 0)
1199		dcons_addr = 0;
1200
1201	/*
1202	 * physmap is in bytes, so when converting to page boundaries,
1203	 * round up the start address and round down the end address.
1204	 */
1205	for (i = 0; i <= physmap_idx; i += 2) {
1206		vm_paddr_t end;
1207
1208		end = ptoa((vm_paddr_t)Maxmem);
1209		if (physmap[i + 1] < end)
1210			end = trunc_page(physmap[i + 1]);
1211		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1212			int tmp, page_bad, full;
1213			int *ptr = (int *)CADDR1;
1214
1215			full = FALSE;
1216			/*
1217			 * block out kernel memory as not available.
1218			 */
1219			if (pa >= 0x100000 && pa < first)
1220				goto do_dump_avail;
1221
1222			/*
1223			 * block out dcons buffer
1224			 */
1225			if (dcons_addr > 0
1226			    && pa >= trunc_page(dcons_addr)
1227			    && pa < dcons_addr + dcons_size)
1228				goto do_dump_avail;
1229
1230			page_bad = FALSE;
1231
1232			/*
1233			 * map page into kernel: valid, read/write,non-cacheable
1234			 */
1235			*pte = pa | PG_V | PG_RW | PG_N;
1236			invltlb();
1237
1238			tmp = *(int *)ptr;
1239			/*
1240			 * Test for alternating 1's and 0's
1241			 */
1242			*(volatile int *)ptr = 0xaaaaaaaa;
1243			if (*(volatile int *)ptr != 0xaaaaaaaa)
1244				page_bad = TRUE;
1245			/*
1246			 * Test for alternating 0's and 1's
1247			 */
1248			*(volatile int *)ptr = 0x55555555;
1249			if (*(volatile int *)ptr != 0x55555555)
1250				page_bad = TRUE;
1251			/*
1252			 * Test for all 1's
1253			 */
1254			*(volatile int *)ptr = 0xffffffff;
1255			if (*(volatile int *)ptr != 0xffffffff)
1256				page_bad = TRUE;
1257			/*
1258			 * Test for all 0's
1259			 */
1260			*(volatile int *)ptr = 0x0;
1261			if (*(volatile int *)ptr != 0x0)
1262				page_bad = TRUE;
1263			/*
1264			 * Restore original value.
1265			 */
1266			*(int *)ptr = tmp;
1267
1268			/*
1269			 * Adjust array of valid/good pages.
1270			 */
1271			if (page_bad == TRUE)
1272				continue;
1273			/*
1274			 * If this good page is a continuation of the
1275			 * previous set of good pages, then just increase
1276			 * the end pointer. Otherwise start a new chunk.
1277			 * Note that "end" points one higher than end,
1278			 * making the range >= start and < end.
1279			 * If we're also doing a speculative memory
1280			 * test and we at or past the end, bump up Maxmem
1281			 * so that we keep going. The first bad page
1282			 * will terminate the loop.
1283			 */
1284			if (phys_avail[pa_indx] == pa) {
1285				phys_avail[pa_indx] += PAGE_SIZE;
1286			} else {
1287				pa_indx++;
1288				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1289					printf(
1290		"Too many holes in the physical address space, giving up\n");
1291					pa_indx--;
1292					full = TRUE;
1293					goto do_dump_avail;
1294				}
1295				phys_avail[pa_indx++] = pa;	/* start */
1296				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1297			}
1298			physmem++;
1299do_dump_avail:
1300			if (dump_avail[da_indx] == pa) {
1301				dump_avail[da_indx] += PAGE_SIZE;
1302			} else {
1303				da_indx++;
1304				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1305					da_indx--;
1306					goto do_next;
1307				}
1308				dump_avail[da_indx++] = pa; /* start */
1309				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1310			}
1311do_next:
1312			if (full)
1313				break;
1314		}
1315	}
1316	*pte = 0;
1317	invltlb();
1318
1319	/*
1320	 * XXX
1321	 * The last chunk must contain at least one page plus the message
1322	 * buffer to avoid complicating other code (message buffer address
1323	 * calculation, etc.).
1324	 */
1325	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1326	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1327		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1328		phys_avail[pa_indx--] = 0;
1329		phys_avail[pa_indx--] = 0;
1330	}
1331
1332	Maxmem = atop(phys_avail[pa_indx]);
1333
1334	/* Trim off space for the message buffer. */
1335	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1336
1337	/* Map the message buffer. */
1338	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1339		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1340		    off);
1341}
1342
1343u_int64_t
1344hammer_time(u_int64_t modulep, u_int64_t physfree)
1345{
1346	caddr_t kmdp;
1347	int gsel_tss, x;
1348	struct pcpu *pc;
1349	struct nmi_pcpu *np;
1350	u_int64_t msr;
1351	char *env;
1352
1353	thread0.td_kstack = physfree + KERNBASE;
1354	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1355	physfree += KSTACK_PAGES * PAGE_SIZE;
1356	thread0.td_pcb = (struct pcb *)
1357	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1358
1359	/*
1360 	 * This may be done better later if it gets more high level
1361 	 * components in it. If so just link td->td_proc here.
1362	 */
1363	proc_linkup0(&proc0, &thread0);
1364
1365	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1366	preload_bootstrap_relocate(KERNBASE);
1367	kmdp = preload_search_by_type("elf kernel");
1368	if (kmdp == NULL)
1369		kmdp = preload_search_by_type("elf64 kernel");
1370	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1371	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1372#ifdef DDB
1373	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1374	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1375#endif
1376
1377	/* Init basic tunables, hz etc */
1378	init_param1();
1379
1380	/*
1381	 * make gdt memory segments
1382	 */
1383	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1384
1385	for (x = 0; x < NGDT; x++) {
1386		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1387			ssdtosd(&gdt_segs[x], &gdt[x]);
1388	}
1389	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1390	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1391
1392	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1393	r_gdt.rd_base =  (long) gdt;
1394	lgdt(&r_gdt);
1395	pc = &__pcpu[0];
1396
1397	wrmsr(MSR_FSBASE, 0);		/* User value */
1398	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1399	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1400
1401	pcpu_init(pc, 0, sizeof(struct pcpu));
1402	PCPU_SET(prvspace, pc);
1403	PCPU_SET(curthread, &thread0);
1404	PCPU_SET(curpcb, thread0.td_pcb);
1405	PCPU_SET(tssp, &common_tss[0]);
1406	PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
1407
1408	/*
1409	 * Initialize mutexes.
1410	 *
1411	 * icu_lock: in order to allow an interrupt to occur in a critical
1412	 * 	     section, to set pcpu->ipending (etc...) properly, we
1413	 *	     must be able to get the icu lock, so it can't be
1414	 *	     under witness.
1415	 */
1416	mutex_init();
1417	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1418
1419	/* exceptions */
1420	for (x = 0; x < NIDT; x++)
1421		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1422	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1423	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1424	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 2);
1425 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1426	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1427	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1428	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1429	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1430	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1431	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1432	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1433	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1434	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1435	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1436	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1437	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1438	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1439	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1440	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1441
1442	r_idt.rd_limit = sizeof(idt0) - 1;
1443	r_idt.rd_base = (long) idt;
1444	lidt(&r_idt);
1445
1446	/*
1447	 * Initialize the i8254 before the console so that console
1448	 * initialization can use DELAY().
1449	 */
1450	i8254_init();
1451
1452	/*
1453	 * Initialize the console before we print anything out.
1454	 */
1455	cninit();
1456
1457#ifdef DEV_ISA
1458#ifdef DEV_ATPIC
1459	elcr_probe();
1460	atpic_startup();
1461#else
1462	/* Reset and mask the atpics and leave them shut down. */
1463	atpic_reset();
1464
1465	/*
1466	 * Point the ICU spurious interrupt vectors at the APIC spurious
1467	 * interrupt handler.
1468	 */
1469	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1470	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
1471#endif
1472#else
1473#error "have you forgotten the isa device?";
1474#endif
1475
1476	kdb_init();
1477
1478#ifdef KDB
1479	if (boothowto & RB_KDB)
1480		kdb_enter(KDB_WHY_BOOTFLAGS,
1481		    "Boot flags requested debugger");
1482#endif
1483
1484	identify_cpu();		/* Final stage of CPU initialization */
1485	initializecpu();	/* Initialize CPU registers */
1486
1487	/* make an initial tss so cpu can get interrupt stack on syscall! */
1488	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1489	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1490	/* Ensure the stack is aligned to 16 bytes */
1491	common_tss[0].tss_rsp0 &= ~0xFul;
1492	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1493
1494	/* doublefault stack space, runs on ist1 */
1495	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1496
1497	/*
1498	 * NMI stack, runs on ist2.  The pcpu pointer is stored just
1499	 * above the start of the ist2 stack.
1500	 */
1501	np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
1502	np->np_pcpu = (register_t) pc;
1503	common_tss[0].tss_ist2 = (long) np;
1504
1505	/* Set the IO permission bitmap (empty due to tss seg limit) */
1506	common_tss[0].tss_iobase = sizeof(struct amd64tss);
1507
1508	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1509	ltr(gsel_tss);
1510
1511	/* Set up the fast syscall stuff */
1512	msr = rdmsr(MSR_EFER) | EFER_SCE;
1513	wrmsr(MSR_EFER, msr);
1514	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1515	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1516	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1517	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1518	wrmsr(MSR_STAR, msr);
1519	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1520
1521	getmemsize(kmdp, physfree);
1522	init_param2(physmem);
1523
1524	/* now running on new page tables, configured,and u/iom is accessible */
1525
1526	msgbufinit(msgbufp, MSGBUF_SIZE);
1527	fpuinit();
1528
1529	/* transfer to user mode */
1530
1531	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1532	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1533	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1534
1535	load_ds(_udatasel);
1536	load_es(_udatasel);
1537	load_fs(_udatasel);
1538
1539	/* setup proc 0's pcb */
1540	thread0.td_pcb->pcb_flags = 0;
1541	thread0.td_pcb->pcb_cr3 = KPML4phys;
1542	thread0.td_frame = &proc0_tf;
1543
1544        env = getenv("kernelname");
1545	if (env != NULL)
1546		strlcpy(kernelname, env, sizeof(kernelname));
1547
1548#ifdef XENHVM
1549	if (inw(0x10) == 0x49d2) {
1550		if (bootverbose)
1551			printf("Xen detected: disabling emulated block and network devices\n");
1552		outw(0x10, 3);
1553	}
1554#endif
1555
1556	/* Location of kernel stack for locore */
1557	return ((u_int64_t)thread0.td_pcb);
1558}
1559
1560void
1561cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1562{
1563
1564	pcpu->pc_acpi_id = 0xffffffff;
1565}
1566
1567void
1568spinlock_enter(void)
1569{
1570	struct thread *td;
1571
1572	td = curthread;
1573	if (td->td_md.md_spinlock_count == 0)
1574		td->td_md.md_saved_flags = intr_disable();
1575	td->td_md.md_spinlock_count++;
1576	critical_enter();
1577}
1578
1579void
1580spinlock_exit(void)
1581{
1582	struct thread *td;
1583
1584	td = curthread;
1585	critical_exit();
1586	td->td_md.md_spinlock_count--;
1587	if (td->td_md.md_spinlock_count == 0)
1588		intr_restore(td->td_md.md_saved_flags);
1589}
1590
1591/*
1592 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1593 * we want to start a backtrace from the function that caused us to enter
1594 * the debugger. We have the context in the trapframe, but base the trace
1595 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1596 * enough for a backtrace.
1597 */
1598void
1599makectx(struct trapframe *tf, struct pcb *pcb)
1600{
1601
1602	pcb->pcb_r12 = tf->tf_r12;
1603	pcb->pcb_r13 = tf->tf_r13;
1604	pcb->pcb_r14 = tf->tf_r14;
1605	pcb->pcb_r15 = tf->tf_r15;
1606	pcb->pcb_rbp = tf->tf_rbp;
1607	pcb->pcb_rbx = tf->tf_rbx;
1608	pcb->pcb_rip = tf->tf_rip;
1609	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1610}
1611
1612int
1613ptrace_set_pc(struct thread *td, unsigned long addr)
1614{
1615	td->td_frame->tf_rip = addr;
1616	return (0);
1617}
1618
1619int
1620ptrace_single_step(struct thread *td)
1621{
1622	td->td_frame->tf_rflags |= PSL_T;
1623	return (0);
1624}
1625
1626int
1627ptrace_clear_single_step(struct thread *td)
1628{
1629	td->td_frame->tf_rflags &= ~PSL_T;
1630	return (0);
1631}
1632
1633int
1634fill_regs(struct thread *td, struct reg *regs)
1635{
1636	struct trapframe *tp;
1637
1638	tp = td->td_frame;
1639	regs->r_r15 = tp->tf_r15;
1640	regs->r_r14 = tp->tf_r14;
1641	regs->r_r13 = tp->tf_r13;
1642	regs->r_r12 = tp->tf_r12;
1643	regs->r_r11 = tp->tf_r11;
1644	regs->r_r10 = tp->tf_r10;
1645	regs->r_r9  = tp->tf_r9;
1646	regs->r_r8  = tp->tf_r8;
1647	regs->r_rdi = tp->tf_rdi;
1648	regs->r_rsi = tp->tf_rsi;
1649	regs->r_rbp = tp->tf_rbp;
1650	regs->r_rbx = tp->tf_rbx;
1651	regs->r_rdx = tp->tf_rdx;
1652	regs->r_rcx = tp->tf_rcx;
1653	regs->r_rax = tp->tf_rax;
1654	regs->r_rip = tp->tf_rip;
1655	regs->r_cs = tp->tf_cs;
1656	regs->r_rflags = tp->tf_rflags;
1657	regs->r_rsp = tp->tf_rsp;
1658	regs->r_ss = tp->tf_ss;
1659	return (0);
1660}
1661
1662int
1663set_regs(struct thread *td, struct reg *regs)
1664{
1665	struct trapframe *tp;
1666	register_t rflags;
1667
1668	tp = td->td_frame;
1669	rflags = regs->r_rflags & 0xffffffff;
1670	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1671		return (EINVAL);
1672	tp->tf_r15 = regs->r_r15;
1673	tp->tf_r14 = regs->r_r14;
1674	tp->tf_r13 = regs->r_r13;
1675	tp->tf_r12 = regs->r_r12;
1676	tp->tf_r11 = regs->r_r11;
1677	tp->tf_r10 = regs->r_r10;
1678	tp->tf_r9  = regs->r_r9;
1679	tp->tf_r8  = regs->r_r8;
1680	tp->tf_rdi = regs->r_rdi;
1681	tp->tf_rsi = regs->r_rsi;
1682	tp->tf_rbp = regs->r_rbp;
1683	tp->tf_rbx = regs->r_rbx;
1684	tp->tf_rdx = regs->r_rdx;
1685	tp->tf_rcx = regs->r_rcx;
1686	tp->tf_rax = regs->r_rax;
1687	tp->tf_rip = regs->r_rip;
1688	tp->tf_cs = regs->r_cs;
1689	tp->tf_rflags = rflags;
1690	tp->tf_rsp = regs->r_rsp;
1691	tp->tf_ss = regs->r_ss;
1692	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1693	return (0);
1694}
1695
1696/* XXX check all this stuff! */
1697/* externalize from sv_xmm */
1698static void
1699fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1700{
1701	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1702	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1703	int i;
1704
1705	/* pcb -> fpregs */
1706	bzero(fpregs, sizeof(*fpregs));
1707
1708	/* FPU control/status */
1709	penv_fpreg->en_cw = penv_xmm->en_cw;
1710	penv_fpreg->en_sw = penv_xmm->en_sw;
1711	penv_fpreg->en_tw = penv_xmm->en_tw;
1712	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1713	penv_fpreg->en_rip = penv_xmm->en_rip;
1714	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1715	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1716	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1717
1718	/* FPU registers */
1719	for (i = 0; i < 8; ++i)
1720		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1721
1722	/* SSE registers */
1723	for (i = 0; i < 16; ++i)
1724		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1725}
1726
1727/* internalize from fpregs into sv_xmm */
1728static void
1729set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1730{
1731	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1732	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1733	int i;
1734
1735	/* fpregs -> pcb */
1736	/* FPU control/status */
1737	penv_xmm->en_cw = penv_fpreg->en_cw;
1738	penv_xmm->en_sw = penv_fpreg->en_sw;
1739	penv_xmm->en_tw = penv_fpreg->en_tw;
1740	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1741	penv_xmm->en_rip = penv_fpreg->en_rip;
1742	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1743	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1744	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
1745
1746	/* FPU registers */
1747	for (i = 0; i < 8; ++i)
1748		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1749
1750	/* SSE registers */
1751	for (i = 0; i < 16; ++i)
1752		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1753}
1754
1755/* externalize from td->pcb */
1756int
1757fill_fpregs(struct thread *td, struct fpreg *fpregs)
1758{
1759
1760	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1761	return (0);
1762}
1763
1764/* internalize to td->pcb */
1765int
1766set_fpregs(struct thread *td, struct fpreg *fpregs)
1767{
1768
1769	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1770	return (0);
1771}
1772
1773/*
1774 * Get machine context.
1775 */
1776int
1777get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1778{
1779	struct trapframe *tp;
1780
1781	tp = td->td_frame;
1782	PROC_LOCK(curthread->td_proc);
1783	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1784	PROC_UNLOCK(curthread->td_proc);
1785	mcp->mc_r15 = tp->tf_r15;
1786	mcp->mc_r14 = tp->tf_r14;
1787	mcp->mc_r13 = tp->tf_r13;
1788	mcp->mc_r12 = tp->tf_r12;
1789	mcp->mc_r11 = tp->tf_r11;
1790	mcp->mc_r10 = tp->tf_r10;
1791	mcp->mc_r9  = tp->tf_r9;
1792	mcp->mc_r8  = tp->tf_r8;
1793	mcp->mc_rdi = tp->tf_rdi;
1794	mcp->mc_rsi = tp->tf_rsi;
1795	mcp->mc_rbp = tp->tf_rbp;
1796	mcp->mc_rbx = tp->tf_rbx;
1797	mcp->mc_rcx = tp->tf_rcx;
1798	mcp->mc_rflags = tp->tf_rflags;
1799	if (flags & GET_MC_CLEAR_RET) {
1800		mcp->mc_rax = 0;
1801		mcp->mc_rdx = 0;
1802		mcp->mc_rflags &= ~PSL_C;
1803	} else {
1804		mcp->mc_rax = tp->tf_rax;
1805		mcp->mc_rdx = tp->tf_rdx;
1806	}
1807	mcp->mc_rip = tp->tf_rip;
1808	mcp->mc_cs = tp->tf_cs;
1809	mcp->mc_rsp = tp->tf_rsp;
1810	mcp->mc_ss = tp->tf_ss;
1811	mcp->mc_len = sizeof(*mcp);
1812	get_fpcontext(td, mcp);
1813	return (0);
1814}
1815
1816/*
1817 * Set machine context.
1818 *
1819 * However, we don't set any but the user modifiable flags, and we won't
1820 * touch the cs selector.
1821 */
1822int
1823set_mcontext(struct thread *td, const mcontext_t *mcp)
1824{
1825	struct trapframe *tp;
1826	long rflags;
1827	int ret;
1828
1829	tp = td->td_frame;
1830	if (mcp->mc_len != sizeof(*mcp))
1831		return (EINVAL);
1832	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1833	    (tp->tf_rflags & ~PSL_USERCHANGE);
1834	ret = set_fpcontext(td, mcp);
1835	if (ret != 0)
1836		return (ret);
1837	tp->tf_r15 = mcp->mc_r15;
1838	tp->tf_r14 = mcp->mc_r14;
1839	tp->tf_r13 = mcp->mc_r13;
1840	tp->tf_r12 = mcp->mc_r12;
1841	tp->tf_r11 = mcp->mc_r11;
1842	tp->tf_r10 = mcp->mc_r10;
1843	tp->tf_r9  = mcp->mc_r9;
1844	tp->tf_r8  = mcp->mc_r8;
1845	tp->tf_rdi = mcp->mc_rdi;
1846	tp->tf_rsi = mcp->mc_rsi;
1847	tp->tf_rbp = mcp->mc_rbp;
1848	tp->tf_rbx = mcp->mc_rbx;
1849	tp->tf_rdx = mcp->mc_rdx;
1850	tp->tf_rcx = mcp->mc_rcx;
1851	tp->tf_rax = mcp->mc_rax;
1852	tp->tf_rip = mcp->mc_rip;
1853	tp->tf_rflags = rflags;
1854	tp->tf_rsp = mcp->mc_rsp;
1855	tp->tf_ss = mcp->mc_ss;
1856	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1857	return (0);
1858}
1859
1860static void
1861get_fpcontext(struct thread *td, mcontext_t *mcp)
1862{
1863
1864	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1865	mcp->mc_fpformat = fpuformat();
1866}
1867
1868static int
1869set_fpcontext(struct thread *td, const mcontext_t *mcp)
1870{
1871	struct savefpu *fpstate;
1872
1873	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1874		return (0);
1875	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1876		return (EINVAL);
1877	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1878		/* We don't care what state is left in the FPU or PCB. */
1879		fpstate_drop(td);
1880	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1881	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1882		/*
1883		 * XXX we violate the dubious requirement that fpusetregs()
1884		 * be called with interrupts disabled.
1885		 * XXX obsolete on trap-16 systems?
1886		 */
1887		fpstate = (struct savefpu *)&mcp->mc_fpstate;
1888		fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
1889		fpusetregs(td, fpstate);
1890	} else
1891		return (EINVAL);
1892	return (0);
1893}
1894
1895void
1896fpstate_drop(struct thread *td)
1897{
1898	register_t s;
1899
1900	s = intr_disable();
1901	if (PCPU_GET(fpcurthread) == td)
1902		fpudrop();
1903	/*
1904	 * XXX force a full drop of the fpu.  The above only drops it if we
1905	 * owned it.
1906	 *
1907	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1908	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1909	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1910	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1911	 * have too many layers.
1912	 */
1913	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1914	intr_restore(s);
1915}
1916
1917int
1918fill_dbregs(struct thread *td, struct dbreg *dbregs)
1919{
1920	struct pcb *pcb;
1921
1922	if (td == NULL) {
1923		dbregs->dr[0] = rdr0();
1924		dbregs->dr[1] = rdr1();
1925		dbregs->dr[2] = rdr2();
1926		dbregs->dr[3] = rdr3();
1927		dbregs->dr[6] = rdr6();
1928		dbregs->dr[7] = rdr7();
1929	} else {
1930		pcb = td->td_pcb;
1931		dbregs->dr[0] = pcb->pcb_dr0;
1932		dbregs->dr[1] = pcb->pcb_dr1;
1933		dbregs->dr[2] = pcb->pcb_dr2;
1934		dbregs->dr[3] = pcb->pcb_dr3;
1935		dbregs->dr[6] = pcb->pcb_dr6;
1936		dbregs->dr[7] = pcb->pcb_dr7;
1937	}
1938	dbregs->dr[4] = 0;
1939	dbregs->dr[5] = 0;
1940	dbregs->dr[8] = 0;
1941	dbregs->dr[9] = 0;
1942	dbregs->dr[10] = 0;
1943	dbregs->dr[11] = 0;
1944	dbregs->dr[12] = 0;
1945	dbregs->dr[13] = 0;
1946	dbregs->dr[14] = 0;
1947	dbregs->dr[15] = 0;
1948	return (0);
1949}
1950
1951int
1952set_dbregs(struct thread *td, struct dbreg *dbregs)
1953{
1954	struct pcb *pcb;
1955	int i;
1956
1957	if (td == NULL) {
1958		load_dr0(dbregs->dr[0]);
1959		load_dr1(dbregs->dr[1]);
1960		load_dr2(dbregs->dr[2]);
1961		load_dr3(dbregs->dr[3]);
1962		load_dr6(dbregs->dr[6]);
1963		load_dr7(dbregs->dr[7]);
1964	} else {
1965		/*
1966		 * Don't let an illegal value for dr7 get set.  Specifically,
1967		 * check for undefined settings.  Setting these bit patterns
1968		 * result in undefined behaviour and can lead to an unexpected
1969		 * TRCTRAP or a general protection fault right here.
1970		 * Upper bits of dr6 and dr7 must not be set
1971		 */
1972		for (i = 0; i < 4; i++) {
1973			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
1974				return (EINVAL);
1975			if (td->td_frame->tf_cs == _ucode32sel &&
1976			    DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
1977				return (EINVAL);
1978		}
1979		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
1980		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
1981			return (EINVAL);
1982
1983		pcb = td->td_pcb;
1984
1985		/*
1986		 * Don't let a process set a breakpoint that is not within the
1987		 * process's address space.  If a process could do this, it
1988		 * could halt the system by setting a breakpoint in the kernel
1989		 * (if ddb was enabled).  Thus, we need to check to make sure
1990		 * that no breakpoints are being enabled for addresses outside
1991		 * process's address space.
1992		 *
1993		 * XXX - what about when the watched area of the user's
1994		 * address space is written into from within the kernel
1995		 * ... wouldn't that still cause a breakpoint to be generated
1996		 * from within kernel mode?
1997		 */
1998
1999		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
2000			/* dr0 is enabled */
2001			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
2002				return (EINVAL);
2003		}
2004		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
2005			/* dr1 is enabled */
2006			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
2007				return (EINVAL);
2008		}
2009		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
2010			/* dr2 is enabled */
2011			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
2012				return (EINVAL);
2013		}
2014		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
2015			/* dr3 is enabled */
2016			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
2017				return (EINVAL);
2018		}
2019
2020		pcb->pcb_dr0 = dbregs->dr[0];
2021		pcb->pcb_dr1 = dbregs->dr[1];
2022		pcb->pcb_dr2 = dbregs->dr[2];
2023		pcb->pcb_dr3 = dbregs->dr[3];
2024		pcb->pcb_dr6 = dbregs->dr[6];
2025		pcb->pcb_dr7 = dbregs->dr[7];
2026
2027		pcb->pcb_flags |= PCB_DBREGS;
2028	}
2029
2030	return (0);
2031}
2032
2033void
2034reset_dbregs(void)
2035{
2036
2037	load_dr7(0);	/* Turn off the control bits first */
2038	load_dr0(0);
2039	load_dr1(0);
2040	load_dr2(0);
2041	load_dr3(0);
2042	load_dr6(0);
2043}
2044
2045/*
2046 * Return > 0 if a hardware breakpoint has been hit, and the
2047 * breakpoint was in user space.  Return 0, otherwise.
2048 */
2049int
2050user_dbreg_trap(void)
2051{
2052        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2053        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2054        int nbp;            /* number of breakpoints that triggered */
2055        caddr_t addr[4];    /* breakpoint addresses */
2056        int i;
2057
2058        dr7 = rdr7();
2059        if ((dr7 & 0x000000ff) == 0) {
2060                /*
2061                 * all GE and LE bits in the dr7 register are zero,
2062                 * thus the trap couldn't have been caused by the
2063                 * hardware debug registers
2064                 */
2065                return 0;
2066        }
2067
2068        nbp = 0;
2069        dr6 = rdr6();
2070        bp = dr6 & 0x0000000f;
2071
2072        if (!bp) {
2073                /*
2074                 * None of the breakpoint bits are set meaning this
2075                 * trap was not caused by any of the debug registers
2076                 */
2077                return 0;
2078        }
2079
2080        /*
2081         * at least one of the breakpoints were hit, check to see
2082         * which ones and if any of them are user space addresses
2083         */
2084
2085        if (bp & 0x01) {
2086                addr[nbp++] = (caddr_t)rdr0();
2087        }
2088        if (bp & 0x02) {
2089                addr[nbp++] = (caddr_t)rdr1();
2090        }
2091        if (bp & 0x04) {
2092                addr[nbp++] = (caddr_t)rdr2();
2093        }
2094        if (bp & 0x08) {
2095                addr[nbp++] = (caddr_t)rdr3();
2096        }
2097
2098        for (i = 0; i < nbp; i++) {
2099                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
2100                        /*
2101                         * addr[i] is in user space
2102                         */
2103                        return nbp;
2104                }
2105        }
2106
2107        /*
2108         * None of the breakpoints are in user space.
2109         */
2110        return 0;
2111}
2112
2113#ifdef KDB
2114
2115/*
2116 * Provide inb() and outb() as functions.  They are normally only
2117 * available as macros calling inlined functions, thus cannot be
2118 * called from the debugger.
2119 *
2120 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2121 */
2122
2123#undef inb
2124#undef outb
2125
2126/* silence compiler warnings */
2127u_char inb(u_int);
2128void outb(u_int, u_char);
2129
2130u_char
2131inb(u_int port)
2132{
2133	u_char	data;
2134	/*
2135	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2136	 * %edx, while gcc generates inferior code (movw instead of movl)
2137	 * if we tell it to load (u_short) port.
2138	 */
2139	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2140	return (data);
2141}
2142
2143void
2144outb(u_int port, u_char data)
2145{
2146	u_char	al;
2147	/*
2148	 * Use an unnecessary assignment to help gcc's register allocator.
2149	 * This make a large difference for gcc-1.40 and a tiny difference
2150	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2151	 * best results.  gcc-2.6.0 can't handle this.
2152	 */
2153	al = data;
2154	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2155}
2156
2157#endif /* KDB */
2158