machdep.c revision 151719
1/*-
2 * Copyright (c) 2003 Peter Wemm.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/amd64/amd64/machdep.c 151719 2005-10-26 22:16:52Z peter $");
43
44#include "opt_atalk.h"
45#include "opt_atpic.h"
46#include "opt_compat.h"
47#include "opt_cpu.h"
48#include "opt_ddb.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_isa.h"
52#include "opt_kstack_pages.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/eventhandler.h>
67#include <sys/exec.h>
68#include <sys/imgact.h>
69#include <sys/kdb.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/linker.h>
73#include <sys/lock.h>
74#include <sys/malloc.h>
75#include <sys/memrange.h>
76#include <sys/msgbuf.h>
77#include <sys/mutex.h>
78#include <sys/pcpu.h>
79#include <sys/ptrace.h>
80#include <sys/reboot.h>
81#include <sys/sched.h>
82#include <sys/signalvar.h>
83#include <sys/sysctl.h>
84#include <sys/sysent.h>
85#include <sys/sysproto.h>
86#include <sys/ucontext.h>
87#include <sys/vmmeter.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_pager.h>
96#include <vm/vm_param.h>
97
98#ifdef DDB
99#ifndef KDB
100#error KDB must be enabled in order for DDB to work!
101#endif
102#endif
103#include <ddb/ddb.h>
104
105#include <net/netisr.h>
106
107#include <machine/clock.h>
108#include <machine/cpu.h>
109#include <machine/cputypes.h>
110#include <machine/intr_machdep.h>
111#include <machine/md_var.h>
112#include <machine/metadata.h>
113#include <machine/pc/bios.h>
114#include <machine/pcb.h>
115#include <machine/proc.h>
116#include <machine/reg.h>
117#include <machine/sigframe.h>
118#include <machine/specialreg.h>
119#ifdef PERFMON
120#include <machine/perfmon.h>
121#endif
122#include <machine/tss.h>
123#ifdef SMP
124#include <machine/smp.h>
125#endif
126
127#include <amd64/isa/icu.h>
128
129#include <isa/isareg.h>
130#include <isa/rtc.h>
131
132/* Sanity check for __curthread() */
133CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
134
135extern u_int64_t hammer_time(u_int64_t, u_int64_t);
136extern void dblfault_handler(void);
137
138extern void printcpuinfo(void);	/* XXX header file */
139extern void identify_cpu(void);
140extern void panicifcpuunsupported(void);
141
142#define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
143#define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
144
145static void cpu_startup(void *);
146static void get_fpcontext(struct thread *td, mcontext_t *mcp);
147static int  set_fpcontext(struct thread *td, const mcontext_t *mcp);
148SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
149
150#ifdef DDB
151extern vm_offset_t ksym_start, ksym_end;
152#endif
153
154int	_udatasel, _ucodesel, _ucode32sel;
155
156int cold = 1;
157
158long Maxmem = 0;
159long realmem = 0;
160
161vm_paddr_t phys_avail[20];
162vm_paddr_t dump_avail[20];
163
164/* must be 2 less so 0 0 can signal end of chunks */
165#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
166#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
167
168struct kva_md_info kmi;
169
170static struct trapframe proc0_tf;
171struct region_descriptor r_gdt, r_idt;
172
173struct pcpu __pcpu[MAXCPU];
174
175struct mtx icu_lock;
176
177struct mem_range_softc mem_range_softc;
178
179static void
180cpu_startup(dummy)
181	void *dummy;
182{
183	/*
184	 * Good {morning,afternoon,evening,night}.
185	 */
186	startrtclock();
187	printcpuinfo();
188	panicifcpuunsupported();
189#ifdef PERFMON
190	perfmon_init();
191#endif
192	printf("usable memory  = %ju (%ju MB)\n", ptoa((uintmax_t)physmem),
193	    ptoa((uintmax_t)physmem) / 1048576);
194	realmem = Maxmem;
195	/*
196	 * Display any holes after the first chunk of extended memory.
197	 */
198	if (bootverbose) {
199		int indx;
200
201		printf("Physical memory chunk(s):\n");
202		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
203			vm_paddr_t size;
204
205			size = phys_avail[indx + 1] - phys_avail[indx];
206			printf(
207			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
208			    (uintmax_t)phys_avail[indx],
209			    (uintmax_t)phys_avail[indx + 1] - 1,
210			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
211		}
212	}
213
214	vm_ksubmap_init(&kmi);
215
216	printf("avail memory = %ju (%ju MB)\n",
217	    ptoa((uintmax_t)cnt.v_free_count),
218	    ptoa((uintmax_t)cnt.v_free_count) / 1048576);
219
220	/*
221	 * Set up buffers, so they can be used to read disk labels.
222	 */
223	bufinit();
224	vm_pager_bufferinit();
225
226	cpu_setregs();
227}
228
229/*
230 * Send an interrupt to process.
231 *
232 * Stack is set up to allow sigcode stored
233 * at top to call routine, followed by kcall
234 * to sigreturn routine below.  After sigreturn
235 * resets the signal mask, the stack, and the
236 * frame pointer, it returns to the user
237 * specified pc, psl.
238 */
239void
240sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
241{
242	struct sigframe sf, *sfp;
243	struct proc *p;
244	struct thread *td;
245	struct sigacts *psp;
246	char *sp;
247	struct trapframe *regs;
248	int oonstack;
249	int sig;
250
251	td = curthread;
252	p = td->td_proc;
253	PROC_LOCK_ASSERT(p, MA_OWNED);
254	sig = ksi->ksi_signo;
255	psp = p->p_sigacts;
256	mtx_assert(&psp->ps_mtx, MA_OWNED);
257	regs = td->td_frame;
258	oonstack = sigonstack(regs->tf_rsp);
259
260	/* Save user context. */
261	bzero(&sf, sizeof(sf));
262	sf.sf_uc.uc_sigmask = *mask;
263	sf.sf_uc.uc_stack = td->td_sigstk;
264	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
265	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
266	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
267	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
268	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
269	get_fpcontext(td, &sf.sf_uc.uc_mcontext);
270	fpstate_drop(td);
271
272	/* Allocate space for the signal handler context. */
273	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
274	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
275		sp = td->td_sigstk.ss_sp +
276		    td->td_sigstk.ss_size - sizeof(struct sigframe);
277#if defined(COMPAT_43)
278		td->td_sigstk.ss_flags |= SS_ONSTACK;
279#endif
280	} else
281		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
282	/* Align to 16 bytes. */
283	sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
284
285	/* Translate the signal if appropriate. */
286	if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
287		sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
288
289	/* Build the argument list for the signal handler. */
290	regs->tf_rdi = sig;			/* arg 1 in %rdi */
291	regs->tf_rdx = (register_t)&sfp->sf_uc;	/* arg 3 in %rdx */
292	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
293		/* Signal handler installed with SA_SIGINFO. */
294		regs->tf_rsi = (register_t)&sfp->sf_si;	/* arg 2 in %rsi */
295		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
296
297		/* Fill in POSIX parts */
298		sf.sf_si = ksi->ksi_info;
299		sf.sf_si.si_signo = sig; /* maybe a translated signal */
300		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
301	} else {
302		/* Old FreeBSD-style arguments. */
303		regs->tf_rsi = ksi->ksi_code;	/* arg 2 in %rsi */
304		regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
305		sf.sf_ahu.sf_handler = catcher;
306	}
307	mtx_unlock(&psp->ps_mtx);
308	PROC_UNLOCK(p);
309
310	/*
311	 * Copy the sigframe out to the user's stack.
312	 */
313	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
314#ifdef DEBUG
315		printf("process %ld has trashed its stack\n", (long)p->p_pid);
316#endif
317		PROC_LOCK(p);
318		sigexit(td, SIGILL);
319	}
320
321	regs->tf_rsp = (long)sfp;
322	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
323	regs->tf_rflags &= ~PSL_T;
324	regs->tf_cs = _ucodesel;
325	PROC_LOCK(p);
326	mtx_lock(&psp->ps_mtx);
327}
328
329/*
330 * System call to cleanup state after a signal
331 * has been taken.  Reset signal mask and
332 * stack state from context left by sendsig (above).
333 * Return to previous pc and psl as specified by
334 * context left by sendsig. Check carefully to
335 * make sure that the user has not modified the
336 * state to gain improper privileges.
337 *
338 * MPSAFE
339 */
340int
341sigreturn(td, uap)
342	struct thread *td;
343	struct sigreturn_args /* {
344		const __ucontext *sigcntxp;
345	} */ *uap;
346{
347	ucontext_t uc;
348	struct proc *p = td->td_proc;
349	struct trapframe *regs;
350	const ucontext_t *ucp;
351	long rflags;
352	int cs, error, ret;
353	ksiginfo_t ksi;
354
355	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
356	if (error != 0)
357		return (error);
358	ucp = &uc;
359	regs = td->td_frame;
360	rflags = ucp->uc_mcontext.mc_rflags;
361	/*
362	 * Don't allow users to change privileged or reserved flags.
363	 */
364	/*
365	 * XXX do allow users to change the privileged flag PSL_RF.
366	 * The cpu sets PSL_RF in tf_rflags for faults.  Debuggers
367	 * should sometimes set it there too.  tf_rflags is kept in
368	 * the signal context during signal handling and there is no
369	 * other place to remember it, so the PSL_RF bit may be
370	 * corrupted by the signal handler without us knowing.
371	 * Corruption of the PSL_RF bit at worst causes one more or
372	 * one less debugger trap, so allowing it is fairly harmless.
373	 */
374	if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
375		printf("sigreturn: rflags = 0x%lx\n", rflags);
376		return (EINVAL);
377	}
378
379	/*
380	 * Don't allow users to load a valid privileged %cs.  Let the
381	 * hardware check for invalid selectors, excess privilege in
382	 * other selectors, invalid %eip's and invalid %esp's.
383	 */
384	cs = ucp->uc_mcontext.mc_cs;
385	if (!CS_SECURE(cs)) {
386		printf("sigreturn: cs = 0x%x\n", cs);
387		ksiginfo_init_trap(&ksi);
388		ksi.ksi_signo = SIGBUS;
389		ksi.ksi_code = BUS_OBJERR;
390		ksi.ksi_trapno = T_PROTFLT;
391		ksi.ksi_addr = (void *)regs->tf_rip;
392		trapsignal(td, &ksi);
393		return (EINVAL);
394	}
395
396	ret = set_fpcontext(td, &ucp->uc_mcontext);
397	if (ret != 0)
398		return (ret);
399	bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
400
401	PROC_LOCK(p);
402#if defined(COMPAT_43)
403	if (ucp->uc_mcontext.mc_onstack & 1)
404		td->td_sigstk.ss_flags |= SS_ONSTACK;
405	else
406		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
407#endif
408
409	td->td_sigmask = ucp->uc_sigmask;
410	SIG_CANTMASK(td->td_sigmask);
411	signotify(td);
412	PROC_UNLOCK(p);
413	td->td_pcb->pcb_flags |= PCB_FULLCTX;
414	return (EJUSTRETURN);
415}
416
417#ifdef COMPAT_FREEBSD4
418int
419freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
420{
421
422	return sigreturn(td, (struct sigreturn_args *)uap);
423}
424#endif
425
426
427/*
428 * Machine dependent boot() routine
429 *
430 * I haven't seen anything to put here yet
431 * Possibly some stuff might be grafted back here from boot()
432 */
433void
434cpu_boot(int howto)
435{
436}
437
438/* Get current clock frequency for the given cpu id. */
439int
440cpu_est_clockrate(int cpu_id, uint64_t *rate)
441{
442	register_t reg;
443	uint64_t tsc1, tsc2;
444
445	if (pcpu_find(cpu_id) == NULL || rate == NULL)
446		return (EINVAL);
447
448	/* If we're booting, trust the rate calibrated moments ago. */
449	if (cold) {
450		*rate = tsc_freq;
451		return (0);
452	}
453
454#ifdef SMP
455	/* Schedule ourselves on the indicated cpu. */
456	mtx_lock_spin(&sched_lock);
457	sched_bind(curthread, cpu_id);
458	mtx_unlock_spin(&sched_lock);
459#endif
460
461	/* Calibrate by measuring a short delay. */
462	reg = intr_disable();
463	tsc1 = rdtsc();
464	DELAY(1000);
465	tsc2 = rdtsc();
466	intr_restore(reg);
467
468#ifdef SMP
469	mtx_lock_spin(&sched_lock);
470	sched_unbind(curthread);
471	mtx_unlock_spin(&sched_lock);
472#endif
473
474	/*
475	 * Calculate the difference in readings, convert to Mhz, and
476	 * subtract 0.5% of the total.  Empirical testing has shown that
477	 * overhead in DELAY() works out to approximately this value.
478	 */
479	tsc2 -= tsc1;
480	*rate = tsc2 * 1000 - tsc2 * 5;
481	return (0);
482}
483
484/*
485 * Shutdown the CPU as much as possible
486 */
487void
488cpu_halt(void)
489{
490	for (;;)
491		__asm__ ("hlt");
492}
493
494/*
495 * Hook to idle the CPU when possible.  In the SMP case we default to
496 * off because a halted cpu will not currently pick up a new thread in the
497 * run queue until the next timer tick.  If turned on this will result in
498 * approximately a 4.2% loss in real time performance in buildworld tests
499 * (but improves user and sys times oddly enough), and saves approximately
500 * 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
501 *
502 * XXX we need to have a cpu mask of idle cpus and generate an IPI or
503 * otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
504 * Then we can have our cake and eat it too.
505 *
506 * XXX I'm turning it on for SMP as well by default for now.  It seems to
507 * help lock contention somewhat, and this is critical for HTT. -Peter
508 */
509static int	cpu_idle_hlt = 1;
510SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
511    &cpu_idle_hlt, 0, "Idle loop HLT enable");
512
513static void
514cpu_idle_default(void)
515{
516	/*
517	 * we must absolutely guarentee that hlt is the
518	 * absolute next instruction after sti or we
519	 * introduce a timing window.
520	 */
521	__asm __volatile("sti; hlt");
522}
523
524/*
525 * Note that we have to be careful here to avoid a race between checking
526 * sched_runnable() and actually halting.  If we don't do this, we may waste
527 * the time between calling hlt and the next interrupt even though there
528 * is a runnable process.
529 */
530void
531cpu_idle(void)
532{
533
534#ifdef SMP
535	if (mp_grab_cpu_hlt())
536		return;
537#endif
538	if (cpu_idle_hlt) {
539		disable_intr();
540  		if (sched_runnable())
541			enable_intr();
542		else
543			(*cpu_idle_hook)();
544	}
545}
546
547/* Other subsystems (e.g., ACPI) can hook this later. */
548void (*cpu_idle_hook)(void) = cpu_idle_default;
549
550/*
551 * Clear registers on exec
552 */
553void
554exec_setregs(td, entry, stack, ps_strings)
555	struct thread *td;
556	u_long entry;
557	u_long stack;
558	u_long ps_strings;
559{
560	struct trapframe *regs = td->td_frame;
561	struct pcb *pcb = td->td_pcb;
562
563	critical_enter();
564	wrmsr(MSR_FSBASE, 0);
565	wrmsr(MSR_KGSBASE, 0);	/* User value while we're in the kernel */
566	pcb->pcb_fsbase = 0;
567	pcb->pcb_gsbase = 0;
568	critical_exit();
569	load_ds(_udatasel);
570	load_es(_udatasel);
571	load_fs(_udatasel);
572	load_gs(_udatasel);
573	pcb->pcb_ds = _udatasel;
574	pcb->pcb_es = _udatasel;
575	pcb->pcb_fs = _udatasel;
576	pcb->pcb_gs = _udatasel;
577
578	bzero((char *)regs, sizeof(struct trapframe));
579	regs->tf_rip = entry;
580	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
581	regs->tf_rdi = stack;		/* argv */
582	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
583	regs->tf_ss = _udatasel;
584	regs->tf_cs = _ucodesel;
585
586	/*
587	 * Reset the hardware debug registers if they were in use.
588	 * They won't have any meaning for the newly exec'd process.
589	 */
590	if (pcb->pcb_flags & PCB_DBREGS) {
591		pcb->pcb_dr0 = 0;
592		pcb->pcb_dr1 = 0;
593		pcb->pcb_dr2 = 0;
594		pcb->pcb_dr3 = 0;
595		pcb->pcb_dr6 = 0;
596		pcb->pcb_dr7 = 0;
597		if (pcb == PCPU_GET(curpcb)) {
598			/*
599			 * Clear the debug registers on the running
600			 * CPU, otherwise they will end up affecting
601			 * the next process we switch to.
602			 */
603			reset_dbregs();
604		}
605		pcb->pcb_flags &= ~PCB_DBREGS;
606	}
607
608	/*
609	 * Drop the FP state if we hold it, so that the process gets a
610	 * clean FP state if it uses the FPU again.
611	 */
612	fpstate_drop(td);
613}
614
615void
616cpu_setregs(void)
617{
618	register_t cr0;
619
620	cr0 = rcr0();
621	/*
622	 * CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
623	 * BSP.  See the comments there about why we set them.
624	 */
625	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
626	load_cr0(cr0);
627}
628
629static int
630sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
631{
632	int error;
633	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
634		req);
635	if (!error && req->newptr)
636		resettodr();
637	return (error);
638}
639
640SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
641	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
642
643SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
644	CTLFLAG_RW, &disable_rtc_set, 0, "");
645
646SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
647	CTLFLAG_RW, &wall_cmos_clock, 0, "");
648
649/*
650 * Initialize amd64 and configure to run kernel
651 */
652
653/*
654 * Initialize segments & interrupt table
655 */
656
657struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
658static struct gate_descriptor idt0[NIDT];
659struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
660
661static char dblfault_stack[PAGE_SIZE] __aligned(16);
662
663struct amd64tss common_tss[MAXCPU];
664
665/* software prototypes -- in more palatable form */
666struct soft_segment_descriptor gdt_segs[] = {
667/* GNULL_SEL	0 Null Descriptor */
668{	0x0,			/* segment base address  */
669	0x0,			/* length */
670	0,			/* segment type */
671	0,			/* segment descriptor priority level */
672	0,			/* segment descriptor present */
673	0,			/* long */
674	0,			/* default 32 vs 16 bit size */
675	0  			/* limit granularity (byte/page units)*/ },
676/* GCODE_SEL	1 Code Descriptor for kernel */
677{	0x0,			/* segment base address  */
678	0xfffff,		/* length - all address space */
679	SDT_MEMERA,		/* segment type */
680	SEL_KPL,		/* segment descriptor priority level */
681	1,			/* segment descriptor present */
682	1,			/* long */
683	0,			/* default 32 vs 16 bit size */
684	1  			/* limit granularity (byte/page units)*/ },
685/* GDATA_SEL	2 Data Descriptor for kernel */
686{	0x0,			/* segment base address  */
687	0xfffff,		/* length - all address space */
688	SDT_MEMRWA,		/* segment type */
689	SEL_KPL,		/* segment descriptor priority level */
690	1,			/* segment descriptor present */
691	1,			/* long */
692	0,			/* default 32 vs 16 bit size */
693	1  			/* limit granularity (byte/page units)*/ },
694/* GUCODE32_SEL	3 32 bit Code Descriptor for user */
695{	0x0,			/* segment base address  */
696	0xfffff,		/* length - all address space */
697	SDT_MEMERA,		/* segment type */
698	SEL_UPL,		/* segment descriptor priority level */
699	1,			/* segment descriptor present */
700	0,			/* long */
701	1,			/* default 32 vs 16 bit size */
702	1  			/* limit granularity (byte/page units)*/ },
703/* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
704{	0x0,			/* segment base address  */
705	0xfffff,		/* length - all address space */
706	SDT_MEMRWA,		/* segment type */
707	SEL_UPL,		/* segment descriptor priority level */
708	1,			/* segment descriptor present */
709	0,			/* long */
710	1,			/* default 32 vs 16 bit size */
711	1  			/* limit granularity (byte/page units)*/ },
712/* GUCODE_SEL	5 64 bit Code Descriptor for user */
713{	0x0,			/* segment base address  */
714	0xfffff,		/* length - all address space */
715	SDT_MEMERA,		/* segment type */
716	SEL_UPL,		/* segment descriptor priority level */
717	1,			/* segment descriptor present */
718	1,			/* long */
719	0,			/* default 32 vs 16 bit size */
720	1  			/* limit granularity (byte/page units)*/ },
721/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
722{
723	0x0,			/* segment base address */
724	sizeof(struct amd64tss)-1,/* length - all address space */
725	SDT_SYSTSS,		/* segment type */
726	SEL_KPL,		/* segment descriptor priority level */
727	1,			/* segment descriptor present */
728	0,			/* long */
729	0,			/* unused - default 32 vs 16 bit size */
730	0  			/* limit granularity (byte/page units)*/ },
731/* Actually, the TSS is a system descriptor which is double size */
732{	0x0,			/* segment base address  */
733	0x0,			/* length */
734	0,			/* segment type */
735	0,			/* segment descriptor priority level */
736	0,			/* segment descriptor present */
737	0,			/* long */
738	0,			/* default 32 vs 16 bit size */
739	0  			/* limit granularity (byte/page units)*/ },
740};
741
742void
743setidt(idx, func, typ, dpl, ist)
744	int idx;
745	inthand_t *func;
746	int typ;
747	int dpl;
748	int ist;
749{
750	struct gate_descriptor *ip;
751
752	ip = idt + idx;
753	ip->gd_looffset = (uintptr_t)func;
754	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
755	ip->gd_ist = ist;
756	ip->gd_xx = 0;
757	ip->gd_type = typ;
758	ip->gd_dpl = dpl;
759	ip->gd_p = 1;
760	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
761}
762
763#define	IDTVEC(name)	__CONCAT(X,name)
764
765extern inthand_t
766	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
767	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
768	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
769	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
770	IDTVEC(xmm), IDTVEC(dblfault),
771	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
772
773void
774sdtossd(sd, ssd)
775	struct user_segment_descriptor *sd;
776	struct soft_segment_descriptor *ssd;
777{
778
779	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
780	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
781	ssd->ssd_type  = sd->sd_type;
782	ssd->ssd_dpl   = sd->sd_dpl;
783	ssd->ssd_p     = sd->sd_p;
784	ssd->ssd_long  = sd->sd_long;
785	ssd->ssd_def32 = sd->sd_def32;
786	ssd->ssd_gran  = sd->sd_gran;
787}
788
789void
790ssdtosd(ssd, sd)
791	struct soft_segment_descriptor *ssd;
792	struct user_segment_descriptor *sd;
793{
794
795	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
796	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
797	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
798	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
799	sd->sd_type  = ssd->ssd_type;
800	sd->sd_dpl   = ssd->ssd_dpl;
801	sd->sd_p     = ssd->ssd_p;
802	sd->sd_long  = ssd->ssd_long;
803	sd->sd_def32 = ssd->ssd_def32;
804	sd->sd_gran  = ssd->ssd_gran;
805}
806
807void
808ssdtosyssd(ssd, sd)
809	struct soft_segment_descriptor *ssd;
810	struct system_segment_descriptor *sd;
811{
812
813	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
814	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
815	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
816	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
817	sd->sd_type  = ssd->ssd_type;
818	sd->sd_dpl   = ssd->ssd_dpl;
819	sd->sd_p     = ssd->ssd_p;
820	sd->sd_gran  = ssd->ssd_gran;
821}
822
823#if !defined(DEV_ATPIC) && defined(DEV_ISA)
824#include <isa/isavar.h>
825u_int
826isa_irq_pending(void)
827{
828
829	return (0);
830}
831#endif
832
833#define PHYSMAP_SIZE	(2 * 20)
834
835u_int basemem;
836
837/*
838 * Populate the (physmap) array with base/bound pairs describing the
839 * available physical memory in the system, then test this memory and
840 * build the phys_avail array describing the actually-available memory.
841 *
842 * If we cannot accurately determine the physical memory map, then use
843 * value from the 0xE801 call, and failing that, the RTC.
844 *
845 * Total memory size may be set by the kernel environment variable
846 * hw.physmem or the compile-time define MAXMEM.
847 *
848 * XXX first should be vm_paddr_t.
849 */
850static void
851getmemsize(caddr_t kmdp, u_int64_t first)
852{
853	int i, physmap_idx, pa_indx, da_indx;
854	vm_paddr_t pa, physmap[PHYSMAP_SIZE];
855	u_long physmem_tunable;
856	pt_entry_t *pte;
857	struct bios_smap *smapbase, *smap, *smapend;
858	u_int32_t smapsize;
859	quad_t dcons_addr, dcons_size;
860
861	bzero(physmap, sizeof(physmap));
862	basemem = 0;
863	physmap_idx = 0;
864
865	/*
866	 * get memory map from INT 15:E820, kindly supplied by the loader.
867	 *
868	 * subr_module.c says:
869	 * "Consumer may safely assume that size value precedes data."
870	 * ie: an int32_t immediately precedes smap.
871	 */
872	smapbase = (struct bios_smap *)preload_search_info(kmdp,
873	    MODINFO_METADATA | MODINFOMD_SMAP);
874	if (smapbase == NULL)
875		panic("No BIOS smap info from loader!");
876
877	smapsize = *((u_int32_t *)smapbase - 1);
878	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
879
880	for (smap = smapbase; smap < smapend; smap++) {
881		if (boothowto & RB_VERBOSE)
882			printf("SMAP type=%02x base=%016lx len=%016lx\n",
883			    smap->type, smap->base, smap->length);
884
885		if (smap->type != 0x01)
886			continue;
887
888		if (smap->length == 0)
889			continue;
890
891		for (i = 0; i <= physmap_idx; i += 2) {
892			if (smap->base < physmap[i + 1]) {
893				if (boothowto & RB_VERBOSE)
894					printf(
895	"Overlapping or non-montonic memory region, ignoring second region\n");
896				continue;
897			}
898		}
899
900		if (smap->base == physmap[physmap_idx + 1]) {
901			physmap[physmap_idx + 1] += smap->length;
902			continue;
903		}
904
905		physmap_idx += 2;
906		if (physmap_idx == PHYSMAP_SIZE) {
907			printf(
908		"Too many segments in the physical address map, giving up\n");
909			break;
910		}
911		physmap[physmap_idx] = smap->base;
912		physmap[physmap_idx + 1] = smap->base + smap->length;
913	}
914
915	/*
916	 * Find the 'base memory' segment for SMP
917	 */
918	basemem = 0;
919	for (i = 0; i <= physmap_idx; i += 2) {
920		if (physmap[i] == 0x00000000) {
921			basemem = physmap[i + 1] / 1024;
922			break;
923		}
924	}
925	if (basemem == 0)
926		panic("BIOS smap did not include a basemem segment!");
927
928#ifdef SMP
929	/* make hole for AP bootstrap code */
930	physmap[1] = mp_bootaddress(physmap[1] / 1024);
931#endif
932
933	/*
934	 * Maxmem isn't the "maximum memory", it's one larger than the
935	 * highest page of the physical address space.  It should be
936	 * called something like "Maxphyspage".  We may adjust this
937	 * based on ``hw.physmem'' and the results of the memory test.
938	 */
939	Maxmem = atop(physmap[physmap_idx + 1]);
940
941#ifdef MAXMEM
942	Maxmem = MAXMEM / 4;
943#endif
944
945	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
946		Maxmem = atop(physmem_tunable);
947
948	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
949	    (boothowto & RB_VERBOSE))
950		printf("Physical memory use set to %ldK\n", Maxmem * 4);
951
952	/*
953	 * If Maxmem has been increased beyond what the system has detected,
954	 * extend the last memory segment to the new limit.
955	 */
956	if (atop(physmap[physmap_idx + 1]) < Maxmem)
957		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
958
959	/* call pmap initialization to make new kernel address space */
960	pmap_bootstrap(&first);
961
962	/*
963	 * Size up each available chunk of physical memory.
964	 */
965	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
966	pa_indx = 0;
967	da_indx = 1;
968	phys_avail[pa_indx++] = physmap[0];
969	phys_avail[pa_indx] = physmap[0];
970	dump_avail[da_indx] = physmap[0];
971	pte = CMAP1;
972
973	/*
974	 * Get dcons buffer address
975	 */
976	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
977	    getenv_quad("dcons.size", &dcons_size) == 0)
978		dcons_addr = 0;
979
980	/*
981	 * physmap is in bytes, so when converting to page boundaries,
982	 * round up the start address and round down the end address.
983	 */
984	for (i = 0; i <= physmap_idx; i += 2) {
985		vm_paddr_t end;
986
987		end = ptoa((vm_paddr_t)Maxmem);
988		if (physmap[i + 1] < end)
989			end = trunc_page(physmap[i + 1]);
990		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
991			int tmp, page_bad, full;
992			int *ptr = (int *)CADDR1;
993
994			full = FALSE;
995			/*
996			 * block out kernel memory as not available.
997			 */
998			if (pa >= 0x100000 && pa < first)
999				goto do_dump_avail;
1000
1001			/*
1002			 * block out dcons buffer
1003			 */
1004			if (dcons_addr > 0
1005			    && pa >= trunc_page(dcons_addr)
1006			    && pa < dcons_addr + dcons_size)
1007				goto do_dump_avail;
1008
1009			page_bad = FALSE;
1010
1011			/*
1012			 * map page into kernel: valid, read/write,non-cacheable
1013			 */
1014			*pte = pa | PG_V | PG_RW | PG_N;
1015			invltlb();
1016
1017			tmp = *(int *)ptr;
1018			/*
1019			 * Test for alternating 1's and 0's
1020			 */
1021			*(volatile int *)ptr = 0xaaaaaaaa;
1022			if (*(volatile int *)ptr != 0xaaaaaaaa)
1023				page_bad = TRUE;
1024			/*
1025			 * Test for alternating 0's and 1's
1026			 */
1027			*(volatile int *)ptr = 0x55555555;
1028			if (*(volatile int *)ptr != 0x55555555)
1029				page_bad = TRUE;
1030			/*
1031			 * Test for all 1's
1032			 */
1033			*(volatile int *)ptr = 0xffffffff;
1034			if (*(volatile int *)ptr != 0xffffffff)
1035				page_bad = TRUE;
1036			/*
1037			 * Test for all 0's
1038			 */
1039			*(volatile int *)ptr = 0x0;
1040			if (*(volatile int *)ptr != 0x0)
1041				page_bad = TRUE;
1042			/*
1043			 * Restore original value.
1044			 */
1045			*(int *)ptr = tmp;
1046
1047			/*
1048			 * Adjust array of valid/good pages.
1049			 */
1050			if (page_bad == TRUE)
1051				continue;
1052			/*
1053			 * If this good page is a continuation of the
1054			 * previous set of good pages, then just increase
1055			 * the end pointer. Otherwise start a new chunk.
1056			 * Note that "end" points one higher than end,
1057			 * making the range >= start and < end.
1058			 * If we're also doing a speculative memory
1059			 * test and we at or past the end, bump up Maxmem
1060			 * so that we keep going. The first bad page
1061			 * will terminate the loop.
1062			 */
1063			if (phys_avail[pa_indx] == pa) {
1064				phys_avail[pa_indx] += PAGE_SIZE;
1065			} else {
1066				pa_indx++;
1067				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1068					printf(
1069		"Too many holes in the physical address space, giving up\n");
1070					pa_indx--;
1071					full = TRUE;
1072					goto do_dump_avail;
1073				}
1074				phys_avail[pa_indx++] = pa;	/* start */
1075				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1076			}
1077			physmem++;
1078do_dump_avail:
1079			if (dump_avail[da_indx] == pa) {
1080				dump_avail[da_indx] += PAGE_SIZE;
1081			} else {
1082				da_indx++;
1083				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1084					da_indx--;
1085					goto do_next;
1086				}
1087				dump_avail[da_indx++] = pa; /* start */
1088				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1089			}
1090do_next:
1091			if (full)
1092				break;
1093		}
1094	}
1095	*pte = 0;
1096	invltlb();
1097
1098	/*
1099	 * XXX
1100	 * The last chunk must contain at least one page plus the message
1101	 * buffer to avoid complicating other code (message buffer address
1102	 * calculation, etc.).
1103	 */
1104	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1105	    round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1106		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1107		phys_avail[pa_indx--] = 0;
1108		phys_avail[pa_indx--] = 0;
1109	}
1110
1111	Maxmem = atop(phys_avail[pa_indx]);
1112
1113	/* Trim off space for the message buffer. */
1114	phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1115
1116	avail_end = phys_avail[pa_indx];
1117}
1118
1119u_int64_t
1120hammer_time(u_int64_t modulep, u_int64_t physfree)
1121{
1122	caddr_t kmdp;
1123	int gsel_tss, off, x;
1124	struct pcpu *pc;
1125	u_int64_t msr;
1126	char *env;
1127
1128#ifdef DEV_ISA
1129	/* Preemptively mask the atpics and leave them shut down */
1130	outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
1131	outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
1132#else
1133#error "have you forgotten the isa device?";
1134#endif
1135
1136	thread0.td_kstack = physfree + KERNBASE;
1137	bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
1138	physfree += KSTACK_PAGES * PAGE_SIZE;
1139	thread0.td_pcb = (struct pcb *)
1140	   (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
1141
1142	/*
1143 	 * This may be done better later if it gets more high level
1144 	 * components in it. If so just link td->td_proc here.
1145	 */
1146	proc_linkup(&proc0, &ksegrp0, &thread0);
1147
1148	preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
1149	preload_bootstrap_relocate(KERNBASE);
1150	kmdp = preload_search_by_type("elf kernel");
1151	if (kmdp == NULL)
1152		kmdp = preload_search_by_type("elf64 kernel");
1153	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1154	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
1155#ifdef DDB
1156	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1157	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1158#endif
1159
1160	/* Init basic tunables, hz etc */
1161	init_param1();
1162
1163	/*
1164	 * make gdt memory segments
1165	 */
1166	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
1167
1168	for (x = 0; x < NGDT; x++) {
1169		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1170			ssdtosd(&gdt_segs[x], &gdt[x]);
1171	}
1172	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1173	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1174
1175	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1176	r_gdt.rd_base =  (long) gdt;
1177	lgdt(&r_gdt);
1178	pc = &__pcpu[0];
1179
1180	wrmsr(MSR_FSBASE, 0);		/* User value */
1181	wrmsr(MSR_GSBASE, (u_int64_t)pc);
1182	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1183
1184	pcpu_init(pc, 0, sizeof(struct pcpu));
1185	PCPU_SET(prvspace, pc);
1186	PCPU_SET(curthread, &thread0);
1187	PCPU_SET(curpcb, thread0.td_pcb);
1188	PCPU_SET(tssp, &common_tss[0]);
1189
1190	/*
1191	 * Initialize mutexes.
1192	 *
1193	 * icu_lock: in order to allow an interrupt to occur in a critical
1194	 * 	     section, to set pcpu->ipending (etc...) properly, we
1195	 *	     must be able to get the icu lock, so it can't be
1196	 *	     under witness.
1197	 */
1198	mutex_init();
1199	mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
1200	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
1201
1202	/* exceptions */
1203	for (x = 0; x < NIDT; x++)
1204		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1205	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1206	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1207	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 0);
1208 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1209	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1210	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1211	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1212	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1213	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1214	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1215	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1216	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1217	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1218	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1219	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1220	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1221	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1222	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1223	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1224
1225	r_idt.rd_limit = sizeof(idt0) - 1;
1226	r_idt.rd_base = (long) idt;
1227	lidt(&r_idt);
1228
1229	/*
1230	 * Initialize the console before we print anything out.
1231	 */
1232	cninit();
1233
1234#ifdef DEV_ATPIC
1235	elcr_probe();
1236	atpic_startup();
1237#endif
1238
1239	kdb_init();
1240
1241#ifdef KDB
1242	if (boothowto & RB_KDB)
1243		kdb_enter("Boot flags requested debugger");
1244#endif
1245
1246	identify_cpu();		/* Final stage of CPU initialization */
1247	initializecpu();	/* Initialize CPU registers */
1248
1249	/* make an initial tss so cpu can get interrupt stack on syscall! */
1250	common_tss[0].tss_rsp0 = thread0.td_kstack + \
1251	    KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
1252	/* Ensure the stack is aligned to 16 bytes */
1253	common_tss[0].tss_rsp0 &= ~0xFul;
1254	PCPU_SET(rsp0, common_tss[0].tss_rsp0);
1255
1256	/* doublefault stack space, runs on ist1 */
1257	common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1258
1259	/* Set the IO permission bitmap (empty due to tss seg limit) */
1260	common_tss[0].tss_iobase = sizeof(struct amd64tss);
1261
1262	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1263	ltr(gsel_tss);
1264
1265	/* Set up the fast syscall stuff */
1266	msr = rdmsr(MSR_EFER) | EFER_SCE;
1267	wrmsr(MSR_EFER, msr);
1268	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1269	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1270	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1271	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1272	wrmsr(MSR_STAR, msr);
1273	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1274
1275	getmemsize(kmdp, physfree);
1276	init_param2(physmem);
1277
1278	/* now running on new page tables, configured,and u/iom is accessible */
1279
1280	/* Map the message buffer. */
1281	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1282		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1283
1284	msgbufinit(msgbufp, MSGBUF_SIZE);
1285	fpuinit();
1286
1287	/* transfer to user mode */
1288
1289	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1290	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1291	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1292
1293	/* setup proc 0's pcb */
1294	thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
1295	thread0.td_pcb->pcb_cr3 = KPML4phys;
1296	thread0.td_frame = &proc0_tf;
1297
1298        env = getenv("kernelname");
1299	if (env != NULL)
1300		strlcpy(kernelname, env, sizeof(kernelname));
1301
1302	/* Location of kernel stack for locore */
1303	return ((u_int64_t)thread0.td_pcb);
1304}
1305
1306void
1307cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
1308{
1309
1310	pcpu->pc_acpi_id = 0xffffffff;
1311}
1312
1313void
1314spinlock_enter(void)
1315{
1316	struct thread *td;
1317
1318	td = curthread;
1319	if (td->td_md.md_spinlock_count == 0)
1320		td->td_md.md_saved_flags = intr_disable();
1321	td->td_md.md_spinlock_count++;
1322	critical_enter();
1323}
1324
1325void
1326spinlock_exit(void)
1327{
1328	struct thread *td;
1329
1330	td = curthread;
1331	critical_exit();
1332	td->td_md.md_spinlock_count--;
1333	if (td->td_md.md_spinlock_count == 0)
1334		intr_restore(td->td_md.md_saved_flags);
1335}
1336
1337/*
1338 * Construct a PCB from a trapframe. This is called from kdb_trap() where
1339 * we want to start a backtrace from the function that caused us to enter
1340 * the debugger. We have the context in the trapframe, but base the trace
1341 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
1342 * enough for a backtrace.
1343 */
1344void
1345makectx(struct trapframe *tf, struct pcb *pcb)
1346{
1347
1348	pcb->pcb_r12 = tf->tf_r12;
1349	pcb->pcb_r13 = tf->tf_r13;
1350	pcb->pcb_r14 = tf->tf_r14;
1351	pcb->pcb_r15 = tf->tf_r15;
1352	pcb->pcb_rbp = tf->tf_rbp;
1353	pcb->pcb_rbx = tf->tf_rbx;
1354	pcb->pcb_rip = tf->tf_rip;
1355	pcb->pcb_rsp = (ISPL(tf->tf_cs)) ? tf->tf_rsp : (long)(tf + 1) - 8;
1356}
1357
1358int
1359ptrace_set_pc(struct thread *td, unsigned long addr)
1360{
1361	td->td_frame->tf_rip = addr;
1362	return (0);
1363}
1364
1365int
1366ptrace_single_step(struct thread *td)
1367{
1368	td->td_frame->tf_rflags |= PSL_T;
1369	return (0);
1370}
1371
1372int
1373ptrace_clear_single_step(struct thread *td)
1374{
1375	td->td_frame->tf_rflags &= ~PSL_T;
1376	return (0);
1377}
1378
1379int
1380fill_regs(struct thread *td, struct reg *regs)
1381{
1382	struct trapframe *tp;
1383
1384	tp = td->td_frame;
1385	regs->r_r15 = tp->tf_r15;
1386	regs->r_r14 = tp->tf_r14;
1387	regs->r_r13 = tp->tf_r13;
1388	regs->r_r12 = tp->tf_r12;
1389	regs->r_r11 = tp->tf_r11;
1390	regs->r_r10 = tp->tf_r10;
1391	regs->r_r9  = tp->tf_r9;
1392	regs->r_r8  = tp->tf_r8;
1393	regs->r_rdi = tp->tf_rdi;
1394	regs->r_rsi = tp->tf_rsi;
1395	regs->r_rbp = tp->tf_rbp;
1396	regs->r_rbx = tp->tf_rbx;
1397	regs->r_rdx = tp->tf_rdx;
1398	regs->r_rcx = tp->tf_rcx;
1399	regs->r_rax = tp->tf_rax;
1400	regs->r_rip = tp->tf_rip;
1401	regs->r_cs = tp->tf_cs;
1402	regs->r_rflags = tp->tf_rflags;
1403	regs->r_rsp = tp->tf_rsp;
1404	regs->r_ss = tp->tf_ss;
1405	return (0);
1406}
1407
1408int
1409set_regs(struct thread *td, struct reg *regs)
1410{
1411	struct trapframe *tp;
1412	register_t rflags;
1413
1414	tp = td->td_frame;
1415	rflags = regs->r_rflags & 0xffffffff;
1416	if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
1417		return (EINVAL);
1418	tp->tf_r15 = regs->r_r15;
1419	tp->tf_r14 = regs->r_r14;
1420	tp->tf_r13 = regs->r_r13;
1421	tp->tf_r12 = regs->r_r12;
1422	tp->tf_r11 = regs->r_r11;
1423	tp->tf_r10 = regs->r_r10;
1424	tp->tf_r9  = regs->r_r9;
1425	tp->tf_r8  = regs->r_r8;
1426	tp->tf_rdi = regs->r_rdi;
1427	tp->tf_rsi = regs->r_rsi;
1428	tp->tf_rbp = regs->r_rbp;
1429	tp->tf_rbx = regs->r_rbx;
1430	tp->tf_rdx = regs->r_rdx;
1431	tp->tf_rcx = regs->r_rcx;
1432	tp->tf_rax = regs->r_rax;
1433	tp->tf_rip = regs->r_rip;
1434	tp->tf_cs = regs->r_cs;
1435	tp->tf_rflags = rflags;
1436	tp->tf_rsp = regs->r_rsp;
1437	tp->tf_ss = regs->r_ss;
1438	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1439	return (0);
1440}
1441
1442/* XXX check all this stuff! */
1443/* externalize from sv_xmm */
1444static void
1445fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
1446{
1447	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1448	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1449	int i;
1450
1451	/* pcb -> fpregs */
1452	bzero(fpregs, sizeof(*fpregs));
1453
1454	/* FPU control/status */
1455	penv_fpreg->en_cw = penv_xmm->en_cw;
1456	penv_fpreg->en_sw = penv_xmm->en_sw;
1457	penv_fpreg->en_tw = penv_xmm->en_tw;
1458	penv_fpreg->en_opcode = penv_xmm->en_opcode;
1459	penv_fpreg->en_rip = penv_xmm->en_rip;
1460	penv_fpreg->en_rdp = penv_xmm->en_rdp;
1461	penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
1462	penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
1463
1464	/* FPU registers */
1465	for (i = 0; i < 8; ++i)
1466		bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
1467
1468	/* SSE registers */
1469	for (i = 0; i < 16; ++i)
1470		bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
1471}
1472
1473/* internalize from fpregs into sv_xmm */
1474static void
1475set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
1476{
1477	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1478	struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
1479	int i;
1480
1481	/* fpregs -> pcb */
1482	/* FPU control/status */
1483	penv_xmm->en_cw = penv_fpreg->en_cw;
1484	penv_xmm->en_sw = penv_fpreg->en_sw;
1485	penv_xmm->en_tw = penv_fpreg->en_tw;
1486	penv_xmm->en_opcode = penv_fpreg->en_opcode;
1487	penv_xmm->en_rip = penv_fpreg->en_rip;
1488	penv_xmm->en_rdp = penv_fpreg->en_rdp;
1489	penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
1490	penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
1491
1492	/* FPU registers */
1493	for (i = 0; i < 8; ++i)
1494		bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
1495
1496	/* SSE registers */
1497	for (i = 0; i < 16; ++i)
1498		bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
1499}
1500
1501/* externalize from td->pcb */
1502int
1503fill_fpregs(struct thread *td, struct fpreg *fpregs)
1504{
1505
1506	fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
1507	return (0);
1508}
1509
1510/* internalize to td->pcb */
1511int
1512set_fpregs(struct thread *td, struct fpreg *fpregs)
1513{
1514
1515	set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
1516	return (0);
1517}
1518
1519/*
1520 * Get machine context.
1521 */
1522int
1523get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
1524{
1525	struct trapframe *tp;
1526
1527	tp = td->td_frame;
1528	PROC_LOCK(curthread->td_proc);
1529	mcp->mc_onstack = sigonstack(tp->tf_rsp);
1530	PROC_UNLOCK(curthread->td_proc);
1531	mcp->mc_r15 = tp->tf_r15;
1532	mcp->mc_r14 = tp->tf_r14;
1533	mcp->mc_r13 = tp->tf_r13;
1534	mcp->mc_r12 = tp->tf_r12;
1535	mcp->mc_r11 = tp->tf_r11;
1536	mcp->mc_r10 = tp->tf_r10;
1537	mcp->mc_r9  = tp->tf_r9;
1538	mcp->mc_r8  = tp->tf_r8;
1539	mcp->mc_rdi = tp->tf_rdi;
1540	mcp->mc_rsi = tp->tf_rsi;
1541	mcp->mc_rbp = tp->tf_rbp;
1542	mcp->mc_rbx = tp->tf_rbx;
1543	mcp->mc_rcx = tp->tf_rcx;
1544	if (flags & GET_MC_CLEAR_RET) {
1545		mcp->mc_rax = 0;
1546		mcp->mc_rdx = 0;
1547	} else {
1548		mcp->mc_rax = tp->tf_rax;
1549		mcp->mc_rdx = tp->tf_rdx;
1550	}
1551	mcp->mc_rip = tp->tf_rip;
1552	mcp->mc_cs = tp->tf_cs;
1553	mcp->mc_rflags = tp->tf_rflags;
1554	mcp->mc_rsp = tp->tf_rsp;
1555	mcp->mc_ss = tp->tf_ss;
1556	mcp->mc_len = sizeof(*mcp);
1557	get_fpcontext(td, mcp);
1558	return (0);
1559}
1560
1561/*
1562 * Set machine context.
1563 *
1564 * However, we don't set any but the user modifiable flags, and we won't
1565 * touch the cs selector.
1566 */
1567int
1568set_mcontext(struct thread *td, const mcontext_t *mcp)
1569{
1570	struct trapframe *tp;
1571	long rflags;
1572	int ret;
1573
1574	tp = td->td_frame;
1575	if (mcp->mc_len != sizeof(*mcp))
1576		return (EINVAL);
1577	rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
1578	    (tp->tf_rflags & ~PSL_USERCHANGE);
1579	ret = set_fpcontext(td, mcp);
1580	if (ret != 0)
1581		return (ret);
1582	tp->tf_r15 = mcp->mc_r15;
1583	tp->tf_r14 = mcp->mc_r14;
1584	tp->tf_r13 = mcp->mc_r13;
1585	tp->tf_r12 = mcp->mc_r12;
1586	tp->tf_r11 = mcp->mc_r11;
1587	tp->tf_r10 = mcp->mc_r10;
1588	tp->tf_r9  = mcp->mc_r9;
1589	tp->tf_r8  = mcp->mc_r8;
1590	tp->tf_rdi = mcp->mc_rdi;
1591	tp->tf_rsi = mcp->mc_rsi;
1592	tp->tf_rbp = mcp->mc_rbp;
1593	tp->tf_rbx = mcp->mc_rbx;
1594	tp->tf_rdx = mcp->mc_rdx;
1595	tp->tf_rcx = mcp->mc_rcx;
1596	tp->tf_rax = mcp->mc_rax;
1597	tp->tf_rip = mcp->mc_rip;
1598	tp->tf_rflags = rflags;
1599	tp->tf_rsp = mcp->mc_rsp;
1600	tp->tf_ss = mcp->mc_ss;
1601	td->td_pcb->pcb_flags |= PCB_FULLCTX;
1602	return (0);
1603}
1604
1605static void
1606get_fpcontext(struct thread *td, mcontext_t *mcp)
1607{
1608
1609	mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1610	mcp->mc_fpformat = fpuformat();
1611}
1612
1613static int
1614set_fpcontext(struct thread *td, const mcontext_t *mcp)
1615{
1616
1617	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
1618		return (0);
1619	else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
1620		return (EINVAL);
1621	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
1622		/* We don't care what state is left in the FPU or PCB. */
1623		fpstate_drop(td);
1624	else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
1625	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
1626		/*
1627		 * XXX we violate the dubious requirement that fpusetregs()
1628		 * be called with interrupts disabled.
1629		 * XXX obsolete on trap-16 systems?
1630		 */
1631		fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
1632	} else
1633		return (EINVAL);
1634	return (0);
1635}
1636
1637void
1638fpstate_drop(struct thread *td)
1639{
1640	register_t s;
1641
1642	s = intr_disable();
1643	if (PCPU_GET(fpcurthread) == td)
1644		fpudrop();
1645	/*
1646	 * XXX force a full drop of the fpu.  The above only drops it if we
1647	 * owned it.
1648	 *
1649	 * XXX I don't much like fpugetregs()'s semantics of doing a full
1650	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
1651	 * We only need to drop to !PCB_INITDONE in sendsig().  But
1652	 * sendsig() is the only caller of fpugetregs()... perhaps we just
1653	 * have too many layers.
1654	 */
1655	curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
1656	intr_restore(s);
1657}
1658
1659int
1660fill_dbregs(struct thread *td, struct dbreg *dbregs)
1661{
1662	struct pcb *pcb;
1663
1664	if (td == NULL) {
1665		dbregs->dr[0] = rdr0();
1666		dbregs->dr[1] = rdr1();
1667		dbregs->dr[2] = rdr2();
1668		dbregs->dr[3] = rdr3();
1669		dbregs->dr[6] = rdr6();
1670		dbregs->dr[7] = rdr7();
1671	} else {
1672		pcb = td->td_pcb;
1673		dbregs->dr[0] = pcb->pcb_dr0;
1674		dbregs->dr[1] = pcb->pcb_dr1;
1675		dbregs->dr[2] = pcb->pcb_dr2;
1676		dbregs->dr[3] = pcb->pcb_dr3;
1677		dbregs->dr[6] = pcb->pcb_dr6;
1678		dbregs->dr[7] = pcb->pcb_dr7;
1679	}
1680	dbregs->dr[4] = 0;
1681	dbregs->dr[5] = 0;
1682	dbregs->dr[8] = 0;
1683	dbregs->dr[9] = 0;
1684	dbregs->dr[10] = 0;
1685	dbregs->dr[11] = 0;
1686	dbregs->dr[12] = 0;
1687	dbregs->dr[13] = 0;
1688	dbregs->dr[14] = 0;
1689	dbregs->dr[15] = 0;
1690	return (0);
1691}
1692
1693int
1694set_dbregs(struct thread *td, struct dbreg *dbregs)
1695{
1696	struct pcb *pcb;
1697	int i;
1698	u_int64_t mask1, mask2;
1699
1700	if (td == NULL) {
1701		load_dr0(dbregs->dr[0]);
1702		load_dr1(dbregs->dr[1]);
1703		load_dr2(dbregs->dr[2]);
1704		load_dr3(dbregs->dr[3]);
1705		load_dr6(dbregs->dr[6]);
1706		load_dr7(dbregs->dr[7]);
1707	} else {
1708		/*
1709		 * Don't let an illegal value for dr7 get set.  Specifically,
1710		 * check for undefined settings.  Setting these bit patterns
1711		 * result in undefined behaviour and can lead to an unexpected
1712		 * TRCTRAP or a general protection fault right here.
1713		 * Upper bits of dr6 and dr7 must not be set
1714		 */
1715		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
1716		     i++, mask1 <<= 2, mask2 <<= 2)
1717			if ((dbregs->dr[7] & mask1) == mask2)
1718				return (EINVAL);
1719		if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
1720		    (dbregs->dr[7] & 0xffffffff00000000ul) != 0)
1721			return (EINVAL);
1722
1723		pcb = td->td_pcb;
1724
1725		/*
1726		 * Don't let a process set a breakpoint that is not within the
1727		 * process's address space.  If a process could do this, it
1728		 * could halt the system by setting a breakpoint in the kernel
1729		 * (if ddb was enabled).  Thus, we need to check to make sure
1730		 * that no breakpoints are being enabled for addresses outside
1731		 * process's address space, unless, perhaps, we were called by
1732		 * uid 0.
1733		 *
1734		 * XXX - what about when the watched area of the user's
1735		 * address space is written into from within the kernel
1736		 * ... wouldn't that still cause a breakpoint to be generated
1737		 * from within kernel mode?
1738		 */
1739
1740		if (suser(td) != 0) {
1741			if (dbregs->dr[7] & 0x3) {
1742				/* dr0 is enabled */
1743				if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
1744					return (EINVAL);
1745			}
1746			if (dbregs->dr[7] & 0x3<<2) {
1747				/* dr1 is enabled */
1748				if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
1749					return (EINVAL);
1750			}
1751			if (dbregs->dr[7] & 0x3<<4) {
1752				/* dr2 is enabled */
1753				if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
1754					return (EINVAL);
1755			}
1756			if (dbregs->dr[7] & 0x3<<6) {
1757				/* dr3 is enabled */
1758				if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
1759					return (EINVAL);
1760			}
1761		}
1762
1763		pcb->pcb_dr0 = dbregs->dr[0];
1764		pcb->pcb_dr1 = dbregs->dr[1];
1765		pcb->pcb_dr2 = dbregs->dr[2];
1766		pcb->pcb_dr3 = dbregs->dr[3];
1767		pcb->pcb_dr6 = dbregs->dr[6];
1768		pcb->pcb_dr7 = dbregs->dr[7];
1769
1770		pcb->pcb_flags |= PCB_DBREGS;
1771	}
1772
1773	return (0);
1774}
1775
1776void
1777reset_dbregs(void)
1778{
1779
1780	load_dr7(0);	/* Turn off the control bits first */
1781	load_dr0(0);
1782	load_dr1(0);
1783	load_dr2(0);
1784	load_dr3(0);
1785	load_dr6(0);
1786}
1787
1788/*
1789 * Return > 0 if a hardware breakpoint has been hit, and the
1790 * breakpoint was in user space.  Return 0, otherwise.
1791 */
1792int
1793user_dbreg_trap(void)
1794{
1795        u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
1796        u_int64_t bp;       /* breakpoint bits extracted from dr6 */
1797        int nbp;            /* number of breakpoints that triggered */
1798        caddr_t addr[4];    /* breakpoint addresses */
1799        int i;
1800
1801        dr7 = rdr7();
1802        if ((dr7 & 0x000000ff) == 0) {
1803                /*
1804                 * all GE and LE bits in the dr7 register are zero,
1805                 * thus the trap couldn't have been caused by the
1806                 * hardware debug registers
1807                 */
1808                return 0;
1809        }
1810
1811        nbp = 0;
1812        dr6 = rdr6();
1813        bp = dr6 & 0x0000000f;
1814
1815        if (!bp) {
1816                /*
1817                 * None of the breakpoint bits are set meaning this
1818                 * trap was not caused by any of the debug registers
1819                 */
1820                return 0;
1821        }
1822
1823        /*
1824         * at least one of the breakpoints were hit, check to see
1825         * which ones and if any of them are user space addresses
1826         */
1827
1828        if (bp & 0x01) {
1829                addr[nbp++] = (caddr_t)rdr0();
1830        }
1831        if (bp & 0x02) {
1832                addr[nbp++] = (caddr_t)rdr1();
1833        }
1834        if (bp & 0x04) {
1835                addr[nbp++] = (caddr_t)rdr2();
1836        }
1837        if (bp & 0x08) {
1838                addr[nbp++] = (caddr_t)rdr3();
1839        }
1840
1841        for (i=0; i<nbp; i++) {
1842                if (addr[i] <
1843                    (caddr_t)VM_MAXUSER_ADDRESS) {
1844                        /*
1845                         * addr[i] is in user space
1846                         */
1847                        return nbp;
1848                }
1849        }
1850
1851        /*
1852         * None of the breakpoints are in user space.
1853         */
1854        return 0;
1855}
1856
1857#ifdef KDB
1858
1859/*
1860 * Provide inb() and outb() as functions.  They are normally only
1861 * available as macros calling inlined functions, thus cannot be
1862 * called from the debugger.
1863 *
1864 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
1865 */
1866
1867#undef inb
1868#undef outb
1869
1870/* silence compiler warnings */
1871u_char inb(u_int);
1872void outb(u_int, u_char);
1873
1874u_char
1875inb(u_int port)
1876{
1877	u_char	data;
1878	/*
1879	 * We use %%dx and not %1 here because i/o is done at %dx and not at
1880	 * %edx, while gcc generates inferior code (movw instead of movl)
1881	 * if we tell it to load (u_short) port.
1882	 */
1883	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
1884	return (data);
1885}
1886
1887void
1888outb(u_int port, u_char data)
1889{
1890	u_char	al;
1891	/*
1892	 * Use an unnecessary assignment to help gcc's register allocator.
1893	 * This make a large difference for gcc-1.40 and a tiny difference
1894	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
1895	 * best results.  gcc-2.6.0 can't handle this.
1896	 */
1897	al = data;
1898	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
1899}
1900
1901#endif /* KDB */
1902