machdep.c revision 13226
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 *	$Id: machdep.c,v 1.166 1995/12/30 23:13:32 davidg Exp $
39 */
40
41#include "npx.h"
42#include "isa.h"
43#include "opt_sysvipc.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/signalvar.h>
49#include <sys/kernel.h>
50#include <sys/proc.h>
51#include <sys/buf.h>
52#include <sys/reboot.h>
53#include <sys/conf.h>
54#include <sys/file.h>
55#include <sys/callout.h>
56#include <sys/malloc.h>
57#include <sys/mbuf.h>
58#include <sys/mount.h>
59#include <sys/msgbuf.h>
60#include <sys/ioctl.h>
61#include <sys/sysent.h>
62#include <sys/tty.h>
63#include <sys/sysctl.h>
64#include <sys/devconf.h>
65#include <sys/vmmeter.h>
66
67#ifdef SYSVSHM
68#include <sys/shm.h>
69#endif
70
71#ifdef SYSVMSG
72#include <sys/msg.h>
73#endif
74
75#ifdef SYSVSEM
76#include <sys/sem.h>
77#endif
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_prot.h>
82#include <vm/lock.h>
83#include <vm/vm_kern.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_map.h>
87#include <vm/vm_pager.h>
88#include <vm/vm_extern.h>
89
90#include <sys/user.h>
91#include <sys/exec.h>
92#include <sys/vnode.h>
93
94#include <ddb/ddb.h>
95
96#include <net/netisr.h>
97
98#include <machine/cpu.h>
99#include <machine/npx.h>
100#include <machine/reg.h>
101#include <machine/psl.h>
102#include <machine/clock.h>
103#include <machine/specialreg.h>
104#include <machine/sysarch.h>
105#include <machine/cons.h>
106#include <machine/devconf.h>
107#include <machine/bootinfo.h>
108#include <machine/md_var.h>
109
110#include <i386/isa/isa.h>
111#include <i386/isa/isa_device.h>
112#include <i386/isa/rtc.h>
113#include <machine/random.h>
114
115extern void init386 __P((int first));
116extern int ptrace_set_pc __P((struct proc *p, unsigned int addr));
117extern int ptrace_single_step __P((struct proc *p));
118extern int ptrace_write_u __P((struct proc *p, vm_offset_t off, int data));
119extern void dblfault_handler __P((void));
120
121extern void i486_bzero	__P((void *, size_t));
122extern void i586_bzero	__P((void *, size_t));
123extern void i686_bzero	__P((void *, size_t));
124
125static void cpu_startup __P((void *));
126SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
127
128static void identifycpu(void);
129
130char machine[] = "i386";
131SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
132
133static char cpu_model[128];
134SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0, "");
135
136struct kern_devconf kdc_cpu0 = {
137	0, 0, 0,		/* filled in by dev_attach */
138	"cpu", 0, { MDDT_CPU },
139	0, 0, 0, CPU_EXTERNALLEN,
140	0,			/* CPU has no parent */
141	0,			/* no parentdata */
142	DC_BUSY,		/* the CPU is always busy */
143	cpu_model,		/* no sense in duplication */
144	DC_CLS_CPU		/* class */
145};
146
147#ifndef PANIC_REBOOT_WAIT_TIME
148#define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
149#endif
150
151#ifdef BOUNCE_BUFFERS
152extern char *bouncememory;
153extern int maxbkva;
154#ifdef BOUNCEPAGES
155int	bouncepages = BOUNCEPAGES;
156#else
157int	bouncepages = 0;
158#endif
159#endif	/* BOUNCE_BUFFERS */
160
161extern int freebufspace;
162int	msgbufmapped = 0;		/* set when safe to use msgbuf */
163int _udatasel, _ucodesel;
164
165
166int physmem = 0;
167
168static int
169sysctl_hw_physmem SYSCTL_HANDLER_ARGS
170{
171	int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
172	return (error);
173}
174
175SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
176	0, 0, sysctl_hw_physmem, "I", "");
177
178static int
179sysctl_hw_usermem SYSCTL_HANDLER_ARGS
180{
181	int error = sysctl_handle_int(oidp, 0,
182		ctob(physmem - cnt.v_wire_count), req);
183	return (error);
184}
185
186SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
187	0, 0, sysctl_hw_usermem, "I", "");
188
189int boothowto = 0, bootverbose = 0, Maxmem = 0;
190static int	badpages = 0;
191long dumplo;
192extern int bootdev;
193
194vm_offset_t phys_avail[10];
195
196/* must be 2 less so 0 0 can signal end of chunks */
197#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
198
199int cpu_class;
200
201static void dumpsys __P((void));
202static void setup_netisrs __P((struct linker_set *)); /* XXX declare elsewhere */
203
204static vm_offset_t buffer_sva, buffer_eva;
205vm_offset_t clean_sva, clean_eva;
206static vm_offset_t pager_sva, pager_eva;
207extern struct linker_set netisr_set;
208
209#define offsetof(type, member)	((size_t)(&((type *)0)->member))
210
211static void
212cpu_startup(dummy)
213	void *dummy;
214{
215	register unsigned i;
216	register caddr_t v;
217	vm_offset_t maxaddr;
218	vm_size_t size = 0;
219	int firstaddr;
220	vm_offset_t minaddr;
221
222	if (boothowto & RB_VERBOSE)
223		bootverbose++;
224
225	/*
226	 * Initialize error message buffer (at end of core).
227	 */
228
229	/* avail_end was pre-decremented in init_386() to compensate */
230	for (i = 0; i < btoc(sizeof (struct msgbuf)); i++)
231		pmap_enter(pmap_kernel(), (vm_offset_t)msgbufp,
232			   avail_end + i * NBPG,
233			   VM_PROT_ALL, TRUE);
234	msgbufmapped = 1;
235
236	/*
237	 * Good {morning,afternoon,evening,night}.
238	 */
239	printf(version);
240	startrtclock();
241	identifycpu();
242	printf("real memory  = %d (%dK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
243	/*
244	 * Display any holes after the first chunk of extended memory.
245	 */
246	if (badpages != 0) {
247		int indx = 1;
248
249		/*
250		 * XXX skip reporting ISA hole & unmanaged kernel memory
251		 */
252		if (phys_avail[0] == PAGE_SIZE)
253			indx += 2;
254
255		printf("Physical memory hole(s):\n");
256		for (; phys_avail[indx + 1] != 0; indx += 2) {
257			int size = phys_avail[indx + 1] - phys_avail[indx];
258
259			printf("0x%08lx - 0x%08lx, %d bytes (%d pages)\n", phys_avail[indx],
260			    phys_avail[indx + 1] - 1, size, size / PAGE_SIZE);
261		}
262	}
263
264	/*
265	 * Quickly wire in netisrs.
266	 */
267	setup_netisrs(&netisr_set);
268
269/*
270#ifdef ISDN
271	DONET(isdnintr, NETISR_ISDN);
272#endif
273*/
274
275	/*
276	 * Allocate space for system data structures.
277	 * The first available kernel virtual address is in "v".
278	 * As pages of kernel virtual memory are allocated, "v" is incremented.
279	 * As pages of memory are allocated and cleared,
280	 * "firstaddr" is incremented.
281	 * An index into the kernel page table corresponding to the
282	 * virtual memory address maintained in "v" is kept in "mapaddr".
283	 */
284
285	/*
286	 * Make two passes.  The first pass calculates how much memory is
287	 * needed and allocates it.  The second pass assigns virtual
288	 * addresses to the various data structures.
289	 */
290	firstaddr = 0;
291again:
292	v = (caddr_t)firstaddr;
293
294#define	valloc(name, type, num) \
295	    (name) = (type *)v; v = (caddr_t)((name)+(num))
296#define	valloclim(name, type, num, lim) \
297	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
298	valloc(callout, struct callout, ncallout);
299#ifdef SYSVSHM
300	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
301#endif
302#ifdef SYSVSEM
303	valloc(sema, struct semid_ds, seminfo.semmni);
304	valloc(sem, struct sem, seminfo.semmns);
305	/* This is pretty disgusting! */
306	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
307#endif
308#ifdef SYSVMSG
309	valloc(msgpool, char, msginfo.msgmax);
310	valloc(msgmaps, struct msgmap, msginfo.msgseg);
311	valloc(msghdrs, struct msg, msginfo.msgtql);
312	valloc(msqids, struct msqid_ds, msginfo.msgmni);
313#endif
314
315	if (nbuf == 0) {
316		nbuf = 30;
317		if( physmem > 1024)
318			nbuf += min((physmem - 1024) / 12, 1024);
319	}
320	nswbuf = min(nbuf, 128);
321
322	valloc(swbuf, struct buf, nswbuf);
323	valloc(buf, struct buf, nbuf);
324
325#ifdef BOUNCE_BUFFERS
326	/*
327	 * If there is more than 16MB of memory, allocate some bounce buffers
328	 */
329	if (Maxmem > 4096) {
330		if (bouncepages == 0) {
331			bouncepages = 64;
332			bouncepages += ((Maxmem - 4096) / 2048) * 32;
333		}
334		v = (caddr_t)((vm_offset_t)((vm_offset_t)v + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1));
335		valloc(bouncememory, char, bouncepages * PAGE_SIZE);
336	}
337#endif
338
339	/*
340	 * End of first pass, size has been calculated so allocate memory
341	 */
342	if (firstaddr == 0) {
343		size = (vm_size_t)(v - firstaddr);
344		firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
345		if (firstaddr == 0)
346			panic("startup: no room for tables");
347		goto again;
348	}
349
350	/*
351	 * End of second pass, addresses have been assigned
352	 */
353	if ((vm_size_t)(v - firstaddr) != size)
354		panic("startup: table size inconsistency");
355
356#ifdef BOUNCE_BUFFERS
357	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
358			(nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) +
359				maxbkva + pager_map_size, TRUE);
360	io_map = kmem_suballoc(clean_map, &minaddr, &maxaddr, maxbkva, FALSE);
361#else
362	clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
363			(nbuf*MAXBSIZE) + (nswbuf*MAXPHYS) + pager_map_size, TRUE);
364#endif
365	buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
366				(nbuf*MAXBSIZE), TRUE);
367	pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
368				(nswbuf*MAXPHYS) + pager_map_size, TRUE);
369	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
370				(16*ARG_MAX), TRUE);
371	u_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
372				(maxproc*UPAGES*PAGE_SIZE), FALSE);
373
374	/*
375	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
376	 * we use the more space efficient malloc in place of kmem_alloc.
377	 */
378	mclrefcnt = (char *)malloc(nmbclusters+CLBYTES/MCLBYTES,
379				   M_MBUF, M_NOWAIT);
380	bzero(mclrefcnt, nmbclusters+CLBYTES/MCLBYTES);
381	mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr,
382			       nmbclusters * MCLBYTES, FALSE);
383	/*
384	 * Initialize callouts
385	 */
386	callfree = callout;
387	for (i = 1; i < ncallout; i++)
388		callout[i-1].c_next = &callout[i];
389
390        if (boothowto & RB_CONFIG) {
391		userconfig();
392		cninit();	/* the preferred console may have changed */
393	}
394
395#ifdef BOUNCE_BUFFERS
396	/*
397	 * init bounce buffers
398	 */
399	vm_bounce_init();
400#endif
401	/*
402	 * XXX allocate a contiguous area for ISA (non busmaster) DMA
403	 * operations. This _should_ only be done if the DMA channels
404	 * will actually be used, but for now we do it always.
405	 */
406#define DMAPAGES 8
407	isaphysmem =
408	    vm_page_alloc_contig(DMAPAGES * PAGE_SIZE, 0, 0xfffffful, 64*1024);
409
410	printf("avail memory = %d (%dK bytes)\n", ptoa(cnt.v_free_count),
411	    ptoa(cnt.v_free_count) / 1024);
412
413	/*
414	 * Set up buffers, so they can be used to read disk labels.
415	 */
416	bufinit();
417	vm_pager_bufferinit();
418
419	/*
420	 * In verbose mode, print out the BIOS's idea of the disk geometries.
421	 */
422	if (bootverbose) {
423		printf("BIOS Geometries:\n");
424		for (i = 0; i < N_BIOS_GEOM; i++) {
425			unsigned long bios_geom;
426			int max_cylinder, max_head, max_sector;
427
428			bios_geom = bootinfo.bi_bios_geom[i];
429
430			/*
431			 * XXX the bootstrap punts a 1200K floppy geometry
432			 * when the get-disk-geometry interrupt fails.  Skip
433			 * drives that have this geometry.
434			 */
435			if (bios_geom == 0x4f010f)
436				continue;
437
438			printf(" %x:%08lx ", i, bios_geom);
439			max_cylinder = bios_geom >> 16;
440			max_head = (bios_geom >> 8) & 0xff;
441			max_sector = bios_geom & 0xff;
442			printf(
443		"0..%d=%d cylinders, 0..%d=%d heads, 1..%d=%d sectors\n",
444			       max_cylinder, max_cylinder + 1,
445			       max_head, max_head + 1,
446			       max_sector, max_sector);
447		}
448		printf(" %d accounted for\n", bootinfo.bi_n_bios_used);
449	}
450}
451
452int
453register_netisr(num, handler)
454	int num;
455	netisr_t *handler;
456{
457
458	if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) {
459		printf("register_netisr: bad isr number: %d\n", num);
460		return (EINVAL);
461	}
462	netisrs[num] = handler;
463	return (0);
464}
465
466static void
467setup_netisrs(ls)
468	struct linker_set *ls;
469{
470	int i;
471	const struct netisrtab *nit;
472
473	for(i = 0; ls->ls_items[i]; i++) {
474		nit = (const struct netisrtab *)ls->ls_items[i];
475		register_netisr(nit->nit_num, nit->nit_isr);
476	}
477}
478
479static struct cpu_nameclass i386_cpus[] = {
480	{ "Intel 80286",	CPUCLASS_286 },		/* CPU_286   */
481	{ "i386SX",		CPUCLASS_386 },		/* CPU_386SX */
482	{ "i386DX",		CPUCLASS_386 },		/* CPU_386   */
483	{ "i486SX",		CPUCLASS_486 },		/* CPU_486SX */
484	{ "i486DX",		CPUCLASS_486 },		/* CPU_486   */
485	{ "Pentium",		CPUCLASS_586 },		/* CPU_586   */
486	{ "Cy486DLC",		CPUCLASS_486 },		/* CPU_486DLC */
487	{ "Pentium Pro",	CPUCLASS_686 },		/* CPU_686 */
488};
489
490static void
491identifycpu()
492{
493	printf("CPU: ");
494	if (cpu >= 0
495	    && cpu < (sizeof i386_cpus/sizeof(struct cpu_nameclass))) {
496		cpu_class = i386_cpus[cpu].cpu_class;
497		strncpy(cpu_model, i386_cpus[cpu].cpu_name, sizeof cpu_model);
498	} else {
499		printf("unknown cpu type %d\n", cpu);
500		panic("startup: bad cpu id");
501	}
502
503#if defined(I586_CPU) || defined(I686_CPU)
504	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
505		calibrate_cyclecounter();
506	}
507#endif
508#if defined(I486_CPU) || defined(I586_CPU) || defined(I686_CPU)
509	if (!strcmp(cpu_vendor,"GenuineIntel")) {
510		if ((cpu_id & 0xf00) > 3) {
511			cpu_model[0] = '\0';
512
513			switch (cpu_id & 0x3000) {
514			case 0x1000:
515				strcpy(cpu_model, "Overdrive ");
516				break;
517			case 0x2000:
518				strcpy(cpu_model, "Dual ");
519				break;
520			}
521
522			switch (cpu_id & 0xf00) {
523			case 0x400:
524				strcat(cpu_model, "i486 ");
525				break;
526			case 0x500:
527				strcat(cpu_model, "Pentium"); /* nb no space */
528				break;
529			case 0x600:
530				strcat(cpu_model, "Pentium Pro");
531				break;
532			default:
533				strcat(cpu_model, "unknown");
534				break;
535			}
536
537			switch (cpu_id & 0xff0) {
538			case 0x400:
539				strcat(cpu_model, "DX"); break;
540			case 0x410:
541				strcat(cpu_model, "DX"); break;
542			case 0x420:
543				strcat(cpu_model, "SX"); break;
544			case 0x430:
545				strcat(cpu_model, "DX2"); break;
546			case 0x440:
547				strcat(cpu_model, "SL"); break;
548			case 0x450:
549				strcat(cpu_model, "SX2"); break;
550			case 0x470:
551				strcat(cpu_model, "DX2 Write-Back Enhanced");
552				break;
553			case 0x480:
554				strcat(cpu_model, "DX4"); break;
555				break;
556			}
557		}
558	}
559#endif
560	printf("%s (", cpu_model);
561	switch(cpu_class) {
562	case CPUCLASS_286:
563		printf("286");
564		break;
565#if defined(I386_CPU)
566	case CPUCLASS_386:
567		printf("386");
568		break;
569#endif
570#if defined(I486_CPU)
571	case CPUCLASS_486:
572		printf("486");
573		bzero = i486_bzero;
574		break;
575#endif
576#if defined(I586_CPU)
577	case CPUCLASS_586:
578		printf("%d.%02d-MHz ",
579		       ((100 * i586_ctr_rate) >> I586_CTR_RATE_SHIFT) / 100,
580		       ((100 * i586_ctr_rate) >> I586_CTR_RATE_SHIFT) % 100);
581		printf("586");
582		bzero = i586_bzero;
583		break;
584#endif
585#if defined(I686_CPU)
586	case CPUCLASS_686:
587		printf("%d.%02d-MHz ",
588		       ((100 * i586_ctr_rate) >> I586_CTR_RATE_SHIFT) / 100,
589		       ((100 * i586_ctr_rate) >> I586_CTR_RATE_SHIFT) % 100);
590		printf("686");
591		bzero = i686_bzero;
592		break;
593#endif
594	default:
595		printf("unknown");	/* will panic below... */
596	}
597	printf("-class CPU)\n");
598#if defined(I486_CPU) || defined(I586_CPU) || defined(I686_CPU)
599	if(*cpu_vendor)
600		printf("  Origin = \"%s\"",cpu_vendor);
601	if(cpu_id)
602		printf("  Id = 0x%lx",cpu_id);
603
604	if (!strcmp(cpu_vendor, "GenuineIntel")) {
605		printf("  Stepping=%ld", cpu_id & 0xf);
606		if (cpu_high > 0) {
607#define FEATUREFMT "\020\001FPU\002VME\003PSE\004MCE\005CX8\006APIC"
608			printf("\n  Features=0x%b", cpu_feature, FEATUREFMT);
609		}
610	}
611	/* Avoid ugly blank lines: only print newline when we have to. */
612	if (*cpu_vendor || cpu_id)
613		printf("\n");
614#endif
615	/*
616	 * Now that we have told the user what they have,
617	 * let them know if that machine type isn't configured.
618	 */
619	switch (cpu_class) {
620	case CPUCLASS_286:	/* a 286 should not make it this far, anyway */
621#if !defined(I386_CPU) && !defined(I486_CPU) && !defined(I586_CPU) && !defined(I686_CPU)
622#error This kernel is not configured for one of the supported CPUs
623#endif
624#if !defined(I386_CPU)
625	case CPUCLASS_386:
626#endif
627#if !defined(I486_CPU)
628	case CPUCLASS_486:
629#endif
630#if !defined(I586_CPU)
631	case CPUCLASS_586:
632#endif
633#if !defined(I686_CPU)
634	case CPUCLASS_686:
635#endif
636		panic("CPU class not configured");
637	default:
638		break;
639	}
640	dev_attach(&kdc_cpu0);
641}
642
643/*
644 * Send an interrupt to process.
645 *
646 * Stack is set up to allow sigcode stored
647 * in u. to call routine, followed by kcall
648 * to sigreturn routine below.  After sigreturn
649 * resets the signal mask, the stack, and the
650 * frame pointer, it returns to the user
651 * specified pc, psl.
652 */
653void
654sendsig(catcher, sig, mask, code)
655	sig_t catcher;
656	int sig, mask;
657	unsigned code;
658{
659	register struct proc *p = curproc;
660	register int *regs;
661	register struct sigframe *fp;
662	struct sigframe sf;
663	struct sigacts *psp = p->p_sigacts;
664	int oonstack;
665
666	regs = p->p_md.md_regs;
667        oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
668	/*
669	 * Allocate and validate space for the signal handler
670	 * context. Note that if the stack is in P0 space, the
671	 * call to grow() is a nop, and the useracc() check
672	 * will fail if the process has not already allocated
673	 * the space with a `brk'.
674	 */
675        if ((psp->ps_flags & SAS_ALTSTACK) &&
676	    (psp->ps_sigstk.ss_flags & SA_ONSTACK) == 0 &&
677	    (psp->ps_sigonstack & sigmask(sig))) {
678		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
679		    psp->ps_sigstk.ss_size - sizeof(struct sigframe));
680		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
681	} else {
682		fp = (struct sigframe *)(regs[tESP]
683			- sizeof(struct sigframe));
684	}
685
686	/*
687	 * grow() will return FALSE if the fp will not fit inside the stack
688	 *	and the stack can not be grown. useracc will return FALSE
689	 *	if access is denied.
690	 */
691	if ((grow(p, (int)fp) == FALSE) ||
692	    (useracc((caddr_t)fp, sizeof (struct sigframe), B_WRITE) == FALSE)) {
693		/*
694		 * Process has trashed its stack; give it an illegal
695		 * instruction to halt it in its tracks.
696		 */
697		SIGACTION(p, SIGILL) = SIG_DFL;
698		sig = sigmask(SIGILL);
699		p->p_sigignore &= ~sig;
700		p->p_sigcatch &= ~sig;
701		p->p_sigmask &= ~sig;
702		psignal(p, SIGILL);
703		return;
704	}
705
706	/*
707	 * Build the argument list for the signal handler.
708	 */
709	if (p->p_sysent->sv_sigtbl) {
710		if (sig < p->p_sysent->sv_sigsize)
711			sig = p->p_sysent->sv_sigtbl[sig];
712		else
713			sig = p->p_sysent->sv_sigsize + 1;
714	}
715	sf.sf_signum = sig;
716	sf.sf_code = code;
717	sf.sf_scp = &fp->sf_sc;
718	sf.sf_addr = (char *) regs[tERR];
719	sf.sf_handler = catcher;
720
721	/* save scratch registers */
722	sf.sf_sc.sc_eax = regs[tEAX];
723	sf.sf_sc.sc_ebx = regs[tEBX];
724	sf.sf_sc.sc_ecx = regs[tECX];
725	sf.sf_sc.sc_edx = regs[tEDX];
726	sf.sf_sc.sc_esi = regs[tESI];
727	sf.sf_sc.sc_edi = regs[tEDI];
728	sf.sf_sc.sc_cs = regs[tCS];
729	sf.sf_sc.sc_ds = regs[tDS];
730	sf.sf_sc.sc_ss = regs[tSS];
731	sf.sf_sc.sc_es = regs[tES];
732	sf.sf_sc.sc_isp = regs[tISP];
733
734	/*
735	 * Build the signal context to be used by sigreturn.
736	 */
737	sf.sf_sc.sc_onstack = oonstack;
738	sf.sf_sc.sc_mask = mask;
739	sf.sf_sc.sc_sp = regs[tESP];
740	sf.sf_sc.sc_fp = regs[tEBP];
741	sf.sf_sc.sc_pc = regs[tEIP];
742	sf.sf_sc.sc_ps = regs[tEFLAGS];
743
744	/*
745	 * Copy the sigframe out to the user's stack.
746	 */
747	if (copyout(&sf, fp, sizeof(struct sigframe)) != 0) {
748		/*
749		 * Something is wrong with the stack pointer.
750		 * ...Kill the process.
751		 */
752		sigexit(p, SIGILL);
753	};
754
755	regs[tESP] = (int)fp;
756	regs[tEIP] = (int)((struct pcb *)kstack)->pcb_sigc;
757	regs[tEFLAGS] &= ~PSL_VM;
758	regs[tCS] = _ucodesel;
759	regs[tDS] = _udatasel;
760	regs[tES] = _udatasel;
761	regs[tSS] = _udatasel;
762}
763
764/*
765 * System call to cleanup state after a signal
766 * has been taken.  Reset signal mask and
767 * stack state from context left by sendsig (above).
768 * Return to previous pc and psl as specified by
769 * context left by sendsig. Check carefully to
770 * make sure that the user has not modified the
771 * state to gain improper privileges.
772 */
773int
774sigreturn(p, uap, retval)
775	struct proc *p;
776	struct sigreturn_args /* {
777		struct sigcontext *sigcntxp;
778	} */ *uap;
779	int *retval;
780{
781	register struct sigcontext *scp;
782	register struct sigframe *fp;
783	register int *regs = p->p_md.md_regs;
784	int eflags;
785
786	/*
787	 * (XXX old comment) regs[tESP] points to the return address.
788	 * The user scp pointer is above that.
789	 * The return address is faked in the signal trampoline code
790	 * for consistency.
791	 */
792	scp = uap->sigcntxp;
793	fp = (struct sigframe *)
794	     ((caddr_t)scp - offsetof(struct sigframe, sf_sc));
795
796	if (useracc((caddr_t)fp, sizeof (*fp), 0) == 0)
797		return(EINVAL);
798
799	/*
800	 * Don't allow users to change privileged or reserved flags.
801	 */
802#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
803	eflags = scp->sc_ps;
804	/*
805	 * XXX do allow users to change the privileged flag PSL_RF.  The
806	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
807	 * sometimes set it there too.  tf_eflags is kept in the signal
808	 * context during signal handling and there is no other place
809	 * to remember it, so the PSL_RF bit may be corrupted by the
810	 * signal handler without us knowing.  Corruption of the PSL_RF
811	 * bit at worst causes one more or one less debugger trap, so
812	 * allowing it is fairly harmless.
813	 */
814	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs[tEFLAGS] & ~PSL_RF)) {
815#ifdef DEBUG
816    		printf("sigreturn: eflags = 0x%x\n", eflags);
817#endif
818    		return(EINVAL);
819	}
820
821	/*
822	 * Don't allow users to load a valid privileged %cs.  Let the
823	 * hardware check for invalid selectors, excess privilege in
824	 * other selectors, invalid %eip's and invalid %esp's.
825	 */
826#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
827	if (!CS_SECURE(scp->sc_cs)) {
828#ifdef DEBUG
829    		printf("sigreturn: cs = 0x%x\n", scp->sc_cs);
830#endif
831		trapsignal(p, SIGBUS, T_PROTFLT);
832		return(EINVAL);
833	}
834
835	/* restore scratch registers */
836	regs[tEAX] = scp->sc_eax;
837	regs[tEBX] = scp->sc_ebx;
838	regs[tECX] = scp->sc_ecx;
839	regs[tEDX] = scp->sc_edx;
840	regs[tESI] = scp->sc_esi;
841	regs[tEDI] = scp->sc_edi;
842	regs[tCS] = scp->sc_cs;
843	regs[tDS] = scp->sc_ds;
844	regs[tES] = scp->sc_es;
845	regs[tSS] = scp->sc_ss;
846	regs[tISP] = scp->sc_isp;
847
848	if (useracc((caddr_t)scp, sizeof (*scp), 0) == 0)
849		return(EINVAL);
850
851	if (scp->sc_onstack & 01)
852		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
853	else
854		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
855	p->p_sigmask = scp->sc_mask &~
856	    (sigmask(SIGKILL)|sigmask(SIGCONT)|sigmask(SIGSTOP));
857	regs[tEBP] = scp->sc_fp;
858	regs[tESP] = scp->sc_sp;
859	regs[tEIP] = scp->sc_pc;
860	regs[tEFLAGS] = eflags;
861	return(EJUSTRETURN);
862}
863
864static int	waittime = -1;
865static struct pcb dumppcb;
866
867__dead void
868boot(howto)
869	int howto;
870{
871	if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) {
872		register struct buf *bp;
873		int iter, nbusy;
874
875		waittime = 0;
876		printf("\nsyncing disks... ");
877
878		sync(&proc0, NULL, NULL);
879
880		for (iter = 0; iter < 20; iter++) {
881			nbusy = 0;
882			for (bp = &buf[nbuf]; --bp >= buf; ) {
883				if ((bp->b_flags & (B_BUSY | B_INVAL)) == B_BUSY) {
884					nbusy++;
885				}
886			}
887			if (nbusy == 0)
888				break;
889			printf("%d ", nbusy);
890			DELAY(40000 * iter);
891		}
892		if (nbusy) {
893			/*
894			 * Failed to sync all blocks. Indicate this and don't
895			 * unmount filesystems (thus forcing an fsck on reboot).
896			 */
897			printf("giving up\n");
898#ifdef SHOW_BUSYBUFS
899			nbusy = 0;
900			for (bp = &buf[nbuf]; --bp >= buf; ) {
901				if ((bp->b_flags & (B_BUSY | B_INVAL)) == B_BUSY) {
902					nbusy++;
903					printf("%d: dev:%08x, flags:%08x, blkno:%d, lblkno:%d\n", nbusy, bp->b_dev, bp->b_flags, bp->b_blkno, bp->b_lblkno);
904				}
905			}
906			DELAY(5000000);	/* 5 seconds */
907#endif
908		} else {
909			printf("done\n");
910			/*
911			 * Unmount filesystems
912			 */
913			if (panicstr == 0)
914				vfs_unmountall();
915		}
916		DELAY(100000);			/* wait for console output to finish */
917		dev_shutdownall(FALSE);
918	}
919	splhigh();
920	if (howto & RB_HALT) {
921		printf("\n");
922		printf("The operating system has halted.\n");
923		printf("Please press any key to reboot.\n\n");
924		cngetc();
925	} else {
926		if (howto & RB_DUMP) {
927			if (!cold) {
928				savectx(&dumppcb, 0);
929				dumppcb.pcb_ptd = rcr3();
930				dumpsys();
931			}
932
933			if (PANIC_REBOOT_WAIT_TIME != 0) {
934				if (PANIC_REBOOT_WAIT_TIME != -1) {
935					int loop;
936					printf("Automatic reboot in %d seconds - press a key on the console to abort\n",
937						PANIC_REBOOT_WAIT_TIME);
938					for (loop = PANIC_REBOOT_WAIT_TIME * 10; loop > 0; --loop) {
939						DELAY(1000 * 100); /* 1/10th second */
940						if (cncheckc()) /* Did user type a key? */
941							break;
942					}
943					if (!loop)
944						goto die;
945				}
946			} else { /* zero time specified - reboot NOW */
947				goto die;
948			}
949			printf("--> Press a key on the console to reboot <--\n");
950			cngetc();
951		}
952	}
953die:
954	printf("Rebooting...\n");
955	DELAY(1000000);	/* wait 1 sec for printf's to complete and be read */
956	cpu_reset();
957	for(;;) ;
958	/* NOTREACHED */
959}
960
961/*
962 * Magic number for savecore
963 *
964 * exported (symorder) and used at least by savecore(8)
965 *
966 */
967u_long		dumpmag = 0x8fca0101UL;
968
969static int	dumpsize = 0;		/* also for savecore */
970
971static int	dodump = 1;
972SYSCTL_INT(_machdep, OID_AUTO, do_dump, CTLFLAG_RW, &dodump, 0, "");
973
974/*
975 * Doadump comes here after turning off memory management and
976 * getting on the dump stack, either when called above, or by
977 * the auto-restart code.
978 */
979static void
980dumpsys()
981{
982
983	if (!dodump)
984		return;
985	if (dumpdev == NODEV)
986		return;
987	if ((minor(dumpdev)&07) != 1)
988		return;
989	if (!(bdevsw[major(dumpdev)]))
990		return;
991	if (!(bdevsw[major(dumpdev)]->d_dump))
992		return;
993	dumpsize = Maxmem;
994	printf("\ndumping to dev %lx, offset %ld\n", dumpdev, dumplo);
995	printf("dump ");
996	switch ((*bdevsw[major(dumpdev)]->d_dump)(dumpdev)) {
997
998	case ENXIO:
999		printf("device bad\n");
1000		break;
1001
1002	case EFAULT:
1003		printf("device not ready\n");
1004		break;
1005
1006	case EINVAL:
1007		printf("area improper\n");
1008		break;
1009
1010	case EIO:
1011		printf("i/o error\n");
1012		break;
1013
1014	case EINTR:
1015		printf("aborted from console\n");
1016		break;
1017
1018	default:
1019		printf("succeeded\n");
1020		break;
1021	}
1022}
1023
1024/*
1025 * Clear registers on exec
1026 */
1027void
1028setregs(p, entry, stack)
1029	struct proc *p;
1030	u_long entry;
1031	u_long stack;
1032{
1033	int *regs = p->p_md.md_regs;
1034
1035	bzero(regs, sizeof(struct trapframe));
1036	regs[tEIP] = entry;
1037	regs[tESP] = stack;
1038	regs[tEFLAGS] = PSL_USER | (regs[tEFLAGS] & PSL_T);
1039	regs[tSS] = _udatasel;
1040	regs[tDS] = _udatasel;
1041	regs[tES] = _udatasel;
1042	regs[tCS] = _ucodesel;
1043
1044	p->p_addr->u_pcb.pcb_flags = 0;	/* no fp at all */
1045	load_cr0(rcr0() | CR0_TS);	/* start emulating */
1046#if	NNPX > 0
1047	npxinit(__INITIAL_NPXCW__);
1048#endif	/* NNPX > 0 */
1049}
1050
1051static int
1052sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS
1053{
1054	int error;
1055	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1056		req);
1057	if (!error && req->newptr)
1058		resettodr();
1059	return (error);
1060}
1061
1062SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1063	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1064
1065SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1066	CTLFLAG_RW, &disable_rtc_set, 0, "");
1067
1068SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1069	CTLFLAG_RD, &bootinfo, bootinfo, "");
1070
1071/*
1072 * Initialize 386 and configure to run kernel
1073 */
1074
1075/*
1076 * Initialize segments & interrupt table
1077 */
1078
1079int currentldt;
1080int _default_ldt;
1081union descriptor gdt[NGDT];		/* global descriptor table */
1082struct gate_descriptor idt[NIDT];	/* interrupt descriptor table */
1083union descriptor ldt[NLDT];		/* local descriptor table */
1084
1085static struct i386tss dblfault_tss;
1086static char dblfault_stack[PAGE_SIZE];
1087
1088extern  struct user *proc0paddr;
1089
1090/* software prototypes -- in more palatable form */
1091struct soft_segment_descriptor gdt_segs[] = {
1092/* GNULL_SEL	0 Null Descriptor */
1093{	0x0,			/* segment base address  */
1094	0x0,			/* length */
1095	0,			/* segment type */
1096	0,			/* segment descriptor priority level */
1097	0,			/* segment descriptor present */
1098	0, 0,
1099	0,			/* default 32 vs 16 bit size */
1100	0  			/* limit granularity (byte/page units)*/ },
1101/* GCODE_SEL	1 Code Descriptor for kernel */
1102{	0x0,			/* segment base address  */
1103	0xfffff,		/* length - all address space */
1104	SDT_MEMERA,		/* segment type */
1105	0,			/* segment descriptor priority level */
1106	1,			/* segment descriptor present */
1107	0, 0,
1108	1,			/* default 32 vs 16 bit size */
1109	1  			/* limit granularity (byte/page units)*/ },
1110/* GDATA_SEL	2 Data Descriptor for kernel */
1111{	0x0,			/* segment base address  */
1112	0xfffff,		/* length - all address space */
1113	SDT_MEMRWA,		/* segment type */
1114	0,			/* segment descriptor priority level */
1115	1,			/* segment descriptor present */
1116	0, 0,
1117	1,			/* default 32 vs 16 bit size */
1118	1  			/* limit granularity (byte/page units)*/ },
1119/* GLDT_SEL	3 LDT Descriptor */
1120{	(int) ldt,		/* segment base address  */
1121	sizeof(ldt)-1,		/* length - all address space */
1122	SDT_SYSLDT,		/* segment type */
1123	0,			/* segment descriptor priority level */
1124	1,			/* segment descriptor present */
1125	0, 0,
1126	0,			/* unused - default 32 vs 16 bit size */
1127	0  			/* limit granularity (byte/page units)*/ },
1128/* GTGATE_SEL	4 Null Descriptor - Placeholder */
1129{	0x0,			/* segment base address  */
1130	0x0,			/* length - all address space */
1131	0,			/* segment type */
1132	0,			/* segment descriptor priority level */
1133	0,			/* segment descriptor present */
1134	0, 0,
1135	0,			/* default 32 vs 16 bit size */
1136	0  			/* limit granularity (byte/page units)*/ },
1137/* GPANIC_SEL	5 Panic Tss Descriptor */
1138{	(int) &dblfault_tss,	/* segment base address  */
1139	sizeof(struct i386tss)-1,/* length - all address space */
1140	SDT_SYS386TSS,		/* segment type */
1141	0,			/* segment descriptor priority level */
1142	1,			/* segment descriptor present */
1143	0, 0,
1144	0,			/* unused - default 32 vs 16 bit size */
1145	0  			/* limit granularity (byte/page units)*/ },
1146/* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1147{	(int) kstack,		/* segment base address  */
1148	sizeof(struct i386tss)-1,/* length - all address space */
1149	SDT_SYS386TSS,		/* segment type */
1150	0,			/* segment descriptor priority level */
1151	1,			/* segment descriptor present */
1152	0, 0,
1153	0,			/* unused - default 32 vs 16 bit size */
1154	0  			/* limit granularity (byte/page units)*/ },
1155/* GUSERLDT_SEL	7 User LDT Descriptor per process */
1156{	(int) ldt,		/* segment base address  */
1157	(512 * sizeof(union descriptor)-1),		/* length */
1158	SDT_SYSLDT,		/* segment type */
1159	0,			/* segment descriptor priority level */
1160	1,			/* segment descriptor present */
1161	0, 0,
1162	0,			/* unused - default 32 vs 16 bit size */
1163	0  			/* limit granularity (byte/page units)*/ },
1164/* GAPMCODE32_SEL 8 APM BIOS 32-bit interface (32bit Code) */
1165{	0,			/* segment base address (overwritten by APM)  */
1166	0xfffff,		/* length */
1167	SDT_MEMERA,		/* segment type */
1168	0,			/* segment descriptor priority level */
1169	1,			/* segment descriptor present */
1170	0, 0,
1171	1,			/* default 32 vs 16 bit size */
1172	1  			/* limit granularity (byte/page units)*/ },
1173/* GAPMCODE16_SEL 9 APM BIOS 32-bit interface (16bit Code) */
1174{	0,			/* segment base address (overwritten by APM)  */
1175	0xfffff,		/* length */
1176	SDT_MEMERA,		/* segment type */
1177	0,			/* segment descriptor priority level */
1178	1,			/* segment descriptor present */
1179	0, 0,
1180	0,			/* default 32 vs 16 bit size */
1181	1  			/* limit granularity (byte/page units)*/ },
1182/* GAPMDATA_SEL	10 APM BIOS 32-bit interface (Data) */
1183{	0,			/* segment base address (overwritten by APM) */
1184	0xfffff,		/* length */
1185	SDT_MEMRWA,		/* segment type */
1186	0,			/* segment descriptor priority level */
1187	1,			/* segment descriptor present */
1188	0, 0,
1189	1,			/* default 32 vs 16 bit size */
1190	1  			/* limit granularity (byte/page units)*/ },
1191};
1192
1193static struct soft_segment_descriptor ldt_segs[] = {
1194	/* Null Descriptor - overwritten by call gate */
1195{	0x0,			/* segment base address  */
1196	0x0,			/* length - all address space */
1197	0,			/* segment type */
1198	0,			/* segment descriptor priority level */
1199	0,			/* segment descriptor present */
1200	0, 0,
1201	0,			/* default 32 vs 16 bit size */
1202	0  			/* limit granularity (byte/page units)*/ },
1203	/* Null Descriptor - overwritten by call gate */
1204{	0x0,			/* segment base address  */
1205	0x0,			/* length - all address space */
1206	0,			/* segment type */
1207	0,			/* segment descriptor priority level */
1208	0,			/* segment descriptor present */
1209	0, 0,
1210	0,			/* default 32 vs 16 bit size */
1211	0  			/* limit granularity (byte/page units)*/ },
1212	/* Null Descriptor - overwritten by call gate */
1213{	0x0,			/* segment base address  */
1214	0x0,			/* length - all address space */
1215	0,			/* segment type */
1216	0,			/* segment descriptor priority level */
1217	0,			/* segment descriptor present */
1218	0, 0,
1219	0,			/* default 32 vs 16 bit size */
1220	0  			/* limit granularity (byte/page units)*/ },
1221	/* Code Descriptor for user */
1222{	0x0,			/* segment base address  */
1223	0xfffff,		/* length - all address space */
1224	SDT_MEMERA,		/* segment type */
1225	SEL_UPL,		/* segment descriptor priority level */
1226	1,			/* segment descriptor present */
1227	0, 0,
1228	1,			/* default 32 vs 16 bit size */
1229	1  			/* limit granularity (byte/page units)*/ },
1230	/* Data Descriptor for user */
1231{	0x0,			/* segment base address  */
1232	0xfffff,		/* length - all address space */
1233	SDT_MEMRWA,		/* segment type */
1234	SEL_UPL,		/* segment descriptor priority level */
1235	1,			/* segment descriptor present */
1236	0, 0,
1237	1,			/* default 32 vs 16 bit size */
1238	1  			/* limit granularity (byte/page units)*/ },
1239};
1240
1241void
1242setidt(idx, func, typ, dpl, selec)
1243	int idx;
1244	inthand_t *func;
1245	int typ;
1246	int dpl;
1247	int selec;
1248{
1249	struct gate_descriptor *ip = idt + idx;
1250
1251	ip->gd_looffset = (int)func;
1252	ip->gd_selector = selec;
1253	ip->gd_stkcpy = 0;
1254	ip->gd_xx = 0;
1255	ip->gd_type = typ;
1256	ip->gd_dpl = dpl;
1257	ip->gd_p = 1;
1258	ip->gd_hioffset = ((int)func)>>16 ;
1259}
1260
1261#define	IDTVEC(name)	__CONCAT(X,name)
1262
1263extern inthand_t
1264	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1265	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1266	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1267	IDTVEC(page), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1268	IDTVEC(syscall);
1269
1270#if defined(COMPAT_LINUX) || defined(LINUX)
1271extern inthand_t
1272	IDTVEC(linux_syscall);
1273#endif
1274
1275void
1276sdtossd(sd, ssd)
1277	struct segment_descriptor *sd;
1278	struct soft_segment_descriptor *ssd;
1279{
1280	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1281	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1282	ssd->ssd_type  = sd->sd_type;
1283	ssd->ssd_dpl   = sd->sd_dpl;
1284	ssd->ssd_p     = sd->sd_p;
1285	ssd->ssd_def32 = sd->sd_def32;
1286	ssd->ssd_gran  = sd->sd_gran;
1287}
1288
1289void
1290init386(first)
1291	int first;
1292{
1293	int x;
1294	unsigned biosbasemem, biosextmem;
1295	struct gate_descriptor *gdp;
1296	int gsel_tss;
1297	/* table descriptors - used to load tables by microp */
1298	struct region_descriptor r_gdt, r_idt;
1299	int	pagesinbase, pagesinext;
1300	int	target_page, pa_indx;
1301
1302	proc0.p_addr = proc0paddr;
1303
1304	/*
1305	 * Initialize the console before we print anything out.
1306	 */
1307	cninit();
1308
1309	/*
1310	 * make gdt memory segments, the code segment goes up to end of the
1311	 * page with etext in it, the data segment goes to the end of
1312	 * the address space
1313	 */
1314	/*
1315	 * XXX text protection is temporarily (?) disabled.  The limit was
1316	 * i386_btop(i386_round_page(etext)) - 1.
1317	 */
1318	gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1;
1319	gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1;
1320	for (x = 0; x < NGDT; x++)
1321		ssdtosd(&gdt_segs[x], &gdt[x].sd);
1322
1323	/* make ldt memory segments */
1324	/*
1325	 * The data segment limit must not cover the user area because we
1326	 * don't want the user area to be writable in copyout() etc. (page
1327	 * level protection is lost in kernel mode on 386's).  Also, we
1328	 * don't want the user area to be writable directly (page level
1329	 * protection of the user area is not available on 486's with
1330	 * CR0_WP set, because there is no user-read/kernel-write mode).
1331	 *
1332	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  And it
1333	 * should be spelled ...MAX_USER...
1334	 */
1335#define VM_END_USER_RW_ADDRESS	VM_MAXUSER_ADDRESS
1336	/*
1337	 * The code segment limit has to cover the user area until we move
1338	 * the signal trampoline out of the user area.  This is safe because
1339	 * the code segment cannot be written to directly.
1340	 */
1341#define VM_END_USER_R_ADDRESS	(VM_END_USER_RW_ADDRESS + UPAGES * NBPG)
1342	ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1;
1343	ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1;
1344	/* Note. eventually want private ldts per process */
1345	for (x = 0; x < NLDT; x++)
1346		ssdtosd(&ldt_segs[x], &ldt[x].sd);
1347
1348	/* exceptions */
1349	for (x = 0; x < NIDT; x++)
1350		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1351	setidt(0, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1352	setidt(1, &IDTVEC(dbg),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1353	setidt(2, &IDTVEC(nmi),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1354 	setidt(3, &IDTVEC(bpt),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1355	setidt(4, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1356	setidt(5, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1357	setidt(6, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1358	setidt(7, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1359	setidt(8, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1360	setidt(9, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1361	setidt(10, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1362	setidt(11, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1363	setidt(12, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1364	setidt(13, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1365	setidt(14, &IDTVEC(page),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1366	setidt(15, &IDTVEC(rsvd),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1367	setidt(16, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1368	setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1369#if defined(COMPAT_LINUX) || defined(LINUX)
1370 	setidt(0x80, &IDTVEC(linux_syscall),  SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1371#endif
1372
1373#include	"isa.h"
1374#if	NISA >0
1375	isa_defaultirq();
1376#endif
1377	rand_initialize();
1378
1379	r_gdt.rd_limit = sizeof(gdt) - 1;
1380	r_gdt.rd_base =  (int) gdt;
1381	lgdt(&r_gdt);
1382
1383	r_idt.rd_limit = sizeof(idt) - 1;
1384	r_idt.rd_base = (int) idt;
1385	lidt(&r_idt);
1386
1387	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1388	lldt(_default_ldt);
1389	currentldt = _default_ldt;
1390
1391#ifdef DDB
1392	kdb_init();
1393	if (boothowto & RB_KDB)
1394		Debugger("Boot flags requested debugger");
1395#endif
1396
1397	/* Use BIOS values stored in RTC CMOS RAM, since probing
1398	 * breaks certain 386 AT relics.
1399	 */
1400	biosbasemem = rtcin(RTC_BASELO)+ (rtcin(RTC_BASEHI)<<8);
1401	biosextmem = rtcin(RTC_EXTLO)+ (rtcin(RTC_EXTHI)<<8);
1402
1403	/*
1404	 * Print a warning if the official BIOS interface disagrees
1405	 * with the hackish interface used above.  Eventually only
1406	 * the official interface should be used.
1407	 */
1408	if (bootinfo.bi_memsizes_valid) {
1409		if (bootinfo.bi_basemem != biosbasemem)
1410			printf("BIOS basemem (%ldK) != RTC basemem (%dK)\n",
1411			       bootinfo.bi_basemem, biosbasemem);
1412		if (bootinfo.bi_extmem != biosextmem)
1413			printf("BIOS extmem (%ldK) != RTC extmem (%dK)\n",
1414			       bootinfo.bi_extmem, biosextmem);
1415	}
1416
1417	/*
1418	 * If BIOS tells us that it has more than 640k in the basemem,
1419	 *	don't believe it - set it to 640k.
1420	 */
1421	if (biosbasemem > 640)
1422		biosbasemem = 640;
1423
1424	/*
1425	 * Some 386 machines might give us a bogus number for extended
1426	 *	mem. If this happens, stop now.
1427	 */
1428#ifndef LARGEMEM
1429	if (biosextmem > 65536) {
1430		panic("extended memory beyond limit of 64MB");
1431		/* NOTREACHED */
1432	}
1433#endif
1434
1435	pagesinbase = biosbasemem * 1024 / NBPG;
1436	pagesinext = biosextmem * 1024 / NBPG;
1437
1438	/*
1439	 * Special hack for chipsets that still remap the 384k hole when
1440	 *	there's 16MB of memory - this really confuses people that
1441	 *	are trying to use bus mastering ISA controllers with the
1442	 *	"16MB limit"; they only have 16MB, but the remapping puts
1443	 *	them beyond the limit.
1444	 */
1445	/*
1446	 * If extended memory is between 15-16MB (16-17MB phys address range),
1447	 *	chop it to 15MB.
1448	 */
1449	if ((pagesinext > 3840) && (pagesinext < 4096))
1450		pagesinext = 3840;
1451
1452	/*
1453	 * Maxmem isn't the "maximum memory", it's one larger than the
1454	 * highest page of of the physical address space. It
1455	 */
1456	Maxmem = pagesinext + 0x100000/PAGE_SIZE;
1457
1458#ifdef MAXMEM
1459	Maxmem = MAXMEM/4;
1460#endif
1461
1462	/* call pmap initialization to make new kernel address space */
1463	pmap_bootstrap (first, 0);
1464
1465	/*
1466	 * Size up each available chunk of physical memory.
1467	 */
1468
1469	/*
1470	 * We currently don't bother testing base memory.
1471	 * XXX  ...but we probably should.
1472	 */
1473	pa_indx = 0;
1474	badpages = 0;
1475	if (pagesinbase > 1) {
1476		phys_avail[pa_indx++] = PAGE_SIZE;	/* skip first page of memory */
1477		phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */
1478		physmem = pagesinbase - 1;
1479	} else {
1480		/* point at first chunk end */
1481		pa_indx++;
1482	}
1483
1484	for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) {
1485		int tmp, page_bad = FALSE;
1486
1487		/*
1488		 * map page into kernel: valid, read/write, non-cacheable
1489		 */
1490		*(int *)CMAP1 = PG_V | PG_KW | PG_N | target_page;
1491		pmap_update();
1492
1493		tmp = *(int *)CADDR1;
1494		/*
1495		 * Test for alternating 1's and 0's
1496		 */
1497		*(volatile int *)CADDR1 = 0xaaaaaaaa;
1498		if (*(volatile int *)CADDR1 != 0xaaaaaaaa) {
1499			page_bad = TRUE;
1500		}
1501		/*
1502		 * Test for alternating 0's and 1's
1503		 */
1504		*(volatile int *)CADDR1 = 0x55555555;
1505		if (*(volatile int *)CADDR1 != 0x55555555) {
1506			page_bad = TRUE;
1507		}
1508		/*
1509		 * Test for all 1's
1510		 */
1511		*(volatile int *)CADDR1 = 0xffffffff;
1512		if (*(volatile int *)CADDR1 != 0xffffffff) {
1513			page_bad = TRUE;
1514		}
1515		/*
1516		 * Test for all 0's
1517		 */
1518		*(volatile int *)CADDR1 = 0x0;
1519		if (*(volatile int *)CADDR1 != 0x0) {
1520			/*
1521			 * test of page failed
1522			 */
1523			page_bad = TRUE;
1524		}
1525		/*
1526		 * Restore original value.
1527		 */
1528		*(int *)CADDR1 = tmp;
1529
1530		/*
1531		 * Adjust array of valid/good pages.
1532		 */
1533		if (page_bad == FALSE) {
1534			/*
1535			 * If this good page is a continuation of the
1536			 * previous set of good pages, then just increase
1537			 * the end pointer. Otherwise start a new chunk.
1538			 * Note that "end" points one higher than end,
1539			 * making the range >= start and < end.
1540			 */
1541			if (phys_avail[pa_indx] == target_page) {
1542				phys_avail[pa_indx] += PAGE_SIZE;
1543			} else {
1544				pa_indx++;
1545				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1546					printf("Too many holes in the physical address space, giving up\n");
1547					pa_indx--;
1548					break;
1549				}
1550				phys_avail[pa_indx++] = target_page;	/* start */
1551				phys_avail[pa_indx] = target_page + PAGE_SIZE;	/* end */
1552			}
1553			physmem++;
1554		} else {
1555			badpages++;
1556			page_bad = FALSE;
1557		}
1558	}
1559
1560	*(int *)CMAP1 = 0;
1561	pmap_update();
1562
1563	/*
1564	 * XXX
1565	 * The last chunk must contain at least one page plus the message
1566	 * buffer to avoid complicating other code (message buffer address
1567	 * calculation, etc.).
1568	 */
1569	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1570	    round_page(sizeof(struct msgbuf)) >= phys_avail[pa_indx]) {
1571		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1572		phys_avail[pa_indx--] = 0;
1573		phys_avail[pa_indx--] = 0;
1574	}
1575
1576	Maxmem = atop(phys_avail[pa_indx]);
1577
1578	/* Trim off space for the message buffer. */
1579	phys_avail[pa_indx] -= round_page(sizeof(struct msgbuf));
1580
1581	avail_end = phys_avail[pa_indx];
1582
1583	/* now running on new page tables, configured,and u/iom is accessible */
1584
1585	/* make a initial tss so microp can get interrupt stack on syscall! */
1586	proc0.p_addr->u_pcb.pcb_tss.tss_esp0 = (int) kstack + UPAGES*NBPG;
1587	proc0.p_addr->u_pcb.pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1588	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1589
1590	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1591	    dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1592	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1593	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1594	dblfault_tss.tss_cr3 = IdlePTD;
1595	dblfault_tss.tss_eip = (int) dblfault_handler;
1596	dblfault_tss.tss_eflags = PSL_KERNEL;
1597	dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_fs = dblfault_tss.tss_gs =
1598		GSEL(GDATA_SEL, SEL_KPL);
1599	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1600	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1601
1602	((struct i386tss *)gdt_segs[GPROC0_SEL].ssd_base)->tss_ioopt =
1603		(sizeof(struct i386tss))<<16;
1604
1605	ltr(gsel_tss);
1606
1607	/* make a call gate to reenter kernel with */
1608	gdp = &ldt[LSYS5CALLS_SEL].gd;
1609
1610	x = (int) &IDTVEC(syscall);
1611	gdp->gd_looffset = x++;
1612	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
1613	gdp->gd_stkcpy = 1;
1614	gdp->gd_type = SDT_SYS386CGT;
1615	gdp->gd_dpl = SEL_UPL;
1616	gdp->gd_p = 1;
1617	gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
1618
1619	/* transfer to user mode */
1620
1621	_ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
1622	_udatasel = LSEL(LUDATA_SEL, SEL_UPL);
1623
1624	/* setup proc 0's pcb */
1625	bcopy(&sigcode, proc0.p_addr->u_pcb.pcb_sigc, szsigcode);
1626	proc0.p_addr->u_pcb.pcb_flags = 0;
1627	proc0.p_addr->u_pcb.pcb_ptd = IdlePTD;
1628}
1629
1630/*
1631 * The registers are in the frame; the frame is in the user area of
1632 * the process in question; when the process is active, the registers
1633 * are in "the kernel stack"; when it's not, they're still there, but
1634 * things get flipped around.  So, since p->p_md.md_regs is the whole address
1635 * of the register set, take its offset from the kernel stack, and
1636 * index into the user block.  Don't you just *love* virtual memory?
1637 * (I'm starting to think seymour is right...)
1638 */
1639#define	TF_REGP(p)	((struct trapframe *) \
1640			 ((char *)(p)->p_addr \
1641			  + ((char *)(p)->p_md.md_regs - kstack)))
1642
1643int
1644ptrace_set_pc(p, addr)
1645	struct proc *p;
1646	unsigned int addr;
1647{
1648	TF_REGP(p)->tf_eip = addr;
1649	return (0);
1650}
1651
1652int
1653ptrace_single_step(p)
1654	struct proc *p;
1655{
1656	TF_REGP(p)->tf_eflags |= PSL_T;
1657	return (0);
1658}
1659
1660int ptrace_write_u(p, off, data)
1661	struct proc *p;
1662	vm_offset_t off;
1663	int data;
1664{
1665	struct trapframe frame_copy;
1666	vm_offset_t min;
1667	struct trapframe *tp;
1668
1669	/*
1670	 * Privileged kernel state is scattered all over the user area.
1671	 * Only allow write access to parts of regs and to fpregs.
1672	 */
1673	min = (char *)p->p_md.md_regs - kstack;
1674	if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
1675		tp = TF_REGP(p);
1676		frame_copy = *tp;
1677		*(int *)((char *)&frame_copy + (off - min)) = data;
1678		if (!EFLAGS_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
1679		    !CS_SECURE(frame_copy.tf_cs))
1680			return (EINVAL);
1681		*(int*)((char *)p->p_addr + off) = data;
1682		return (0);
1683	}
1684	min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu);
1685	if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) {
1686		*(int*)((char *)p->p_addr + off) = data;
1687		return (0);
1688	}
1689	return (EFAULT);
1690}
1691
1692int
1693fill_regs(p, regs)
1694	struct proc *p;
1695	struct reg *regs;
1696{
1697	struct trapframe *tp;
1698
1699	tp = TF_REGP(p);
1700	regs->r_es = tp->tf_es;
1701	regs->r_ds = tp->tf_ds;
1702	regs->r_edi = tp->tf_edi;
1703	regs->r_esi = tp->tf_esi;
1704	regs->r_ebp = tp->tf_ebp;
1705	regs->r_ebx = tp->tf_ebx;
1706	regs->r_edx = tp->tf_edx;
1707	regs->r_ecx = tp->tf_ecx;
1708	regs->r_eax = tp->tf_eax;
1709	regs->r_eip = tp->tf_eip;
1710	regs->r_cs = tp->tf_cs;
1711	regs->r_eflags = tp->tf_eflags;
1712	regs->r_esp = tp->tf_esp;
1713	regs->r_ss = tp->tf_ss;
1714	return (0);
1715}
1716
1717int
1718set_regs(p, regs)
1719	struct proc *p;
1720	struct reg *regs;
1721{
1722	struct trapframe *tp;
1723
1724	tp = TF_REGP(p);
1725	if (!EFLAGS_SECURE(regs->r_eflags, tp->tf_eflags) ||
1726	    !CS_SECURE(regs->r_cs))
1727		return (EINVAL);
1728	tp->tf_es = regs->r_es;
1729	tp->tf_ds = regs->r_ds;
1730	tp->tf_edi = regs->r_edi;
1731	tp->tf_esi = regs->r_esi;
1732	tp->tf_ebp = regs->r_ebp;
1733	tp->tf_ebx = regs->r_ebx;
1734	tp->tf_edx = regs->r_edx;
1735	tp->tf_ecx = regs->r_ecx;
1736	tp->tf_eax = regs->r_eax;
1737	tp->tf_eip = regs->r_eip;
1738	tp->tf_cs = regs->r_cs;
1739	tp->tf_eflags = regs->r_eflags;
1740	tp->tf_esp = regs->r_esp;
1741	tp->tf_ss = regs->r_ss;
1742	return (0);
1743}
1744
1745#ifndef DDB
1746void
1747Debugger(const char *msg)
1748{
1749	printf("Debugger(\"%s\") called.\n", msg);
1750}
1751#endif /* no DDB */
1752
1753#include <sys/disklabel.h>
1754#define b_cylin	b_resid
1755/*
1756 * Determine the size of the transfer, and make sure it is
1757 * within the boundaries of the partition. Adjust transfer
1758 * if needed, and signal errors or early completion.
1759 */
1760int
1761bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel)
1762{
1763        struct partition *p = lp->d_partitions + dkpart(bp->b_dev);
1764        int labelsect = lp->d_partitions[0].p_offset;
1765        int maxsz = p->p_size,
1766                sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
1767
1768        /* overwriting disk label ? */
1769        /* XXX should also protect bootstrap in first 8K */
1770        if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect &&
1771#if LABELSECTOR != 0
1772            bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
1773#endif
1774            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1775                bp->b_error = EROFS;
1776                goto bad;
1777        }
1778
1779#if     defined(DOSBBSECTOR) && defined(notyet)
1780        /* overwriting master boot record? */
1781        if (bp->b_blkno + p->p_offset <= DOSBBSECTOR &&
1782            (bp->b_flags & B_READ) == 0 && wlabel == 0) {
1783                bp->b_error = EROFS;
1784                goto bad;
1785        }
1786#endif
1787
1788        /* beyond partition? */
1789        if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) {
1790                /* if exactly at end of disk, return an EOF */
1791                if (bp->b_blkno == maxsz) {
1792                        bp->b_resid = bp->b_bcount;
1793                        return(0);
1794                }
1795                /* or truncate if part of it fits */
1796                sz = maxsz - bp->b_blkno;
1797                if (sz <= 0) {
1798                        bp->b_error = EINVAL;
1799                        goto bad;
1800                }
1801                bp->b_bcount = sz << DEV_BSHIFT;
1802        }
1803
1804        /* calculate cylinder for disksort to order transfers with */
1805        bp->b_pblkno = bp->b_blkno + p->p_offset;
1806        bp->b_cylin = bp->b_pblkno / lp->d_secpercyl;
1807        return(1);
1808
1809bad:
1810        bp->b_flags |= B_ERROR;
1811        return(-1);
1812}
1813
1814int
1815disk_externalize(int drive, struct sysctl_req *req)
1816{
1817	return SYSCTL_OUT(req, &drive, sizeof drive);
1818}
1819