cexp_test.c revision 219362
1/*-
2 * Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Tests for corner cases in cexp*().
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/tools/regression/lib/msun/test-cexp.c 219362 2011-03-07 03:15:49Z das $");
33
34#include <assert.h>
35#include <complex.h>
36#include <fenv.h>
37#include <float.h>
38#include <math.h>
39#include <stdio.h>
40
41#define	ALL_STD_EXCEPT	(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
42			 FE_OVERFLOW | FE_UNDERFLOW)
43#define	FLT_ULP()	ldexpl(1.0, 1 - FLT_MANT_DIG)
44#define	DBL_ULP()	ldexpl(1.0, 1 - DBL_MANT_DIG)
45#define	LDBL_ULP()	ldexpl(1.0, 1 - LDBL_MANT_DIG)
46
47#define	N(i)	(sizeof(i) / sizeof((i)[0]))
48
49#pragma STDC FENV_ACCESS	ON
50#pragma	STDC CX_LIMITED_RANGE	OFF
51
52/*
53 * XXX gcc implements complex multiplication incorrectly. In
54 * particular, it implements it as if the CX_LIMITED_RANGE pragma
55 * were ON. Consequently, we need this function to form numbers
56 * such as x + INFINITY * I, since gcc evalutes INFINITY * I as
57 * NaN + INFINITY * I.
58 */
59static inline long double complex
60cpackl(long double x, long double y)
61{
62	long double complex z;
63
64	__real__ z = x;
65	__imag__ z = y;
66	return (z);
67}
68
69/*
70 * Test that a function returns the correct value and sets the
71 * exception flags correctly. The exceptmask specifies which
72 * exceptions we should check. We need to be lenient for several
73 * reasons, but mainly because on some architectures it's impossible
74 * to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
75 * whether cexp() raises an invalid exception is unspecified.
76 *
77 * These are macros instead of functions so that assert provides more
78 * meaningful error messages.
79 *
80 * XXX The volatile here is to avoid gcc's bogus constant folding and work
81 *     around the lack of support for the FENV_ACCESS pragma.
82 */
83#define	test(func, z, result, exceptmask, excepts, checksign)	do {	\
84	volatile long double complex _d = z;				\
85	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
86	assert(cfpequal((func)(_d), (result), (checksign)));		\
87	assert(((func), fetestexcept(exceptmask) == (excepts)));	\
88} while (0)
89
90/* Test within a given tolerance. */
91#define	test_tol(func, z, result, tol)				do {	\
92	volatile long double complex _d = z;				\
93	assert(cfpequal_tol((func)(_d), (result), (tol)));		\
94} while (0)
95
96/* Test all the functions that compute cexp(x). */
97#define	testall(x, result, exceptmask, excepts, checksign)	do {	\
98	test(cexp, x, result, exceptmask, excepts, checksign);		\
99	test(cexpf, x, result, exceptmask, excepts, checksign);		\
100} while (0)
101
102/*
103 * Test all the functions that compute cexp(x), within a given tolerance.
104 * The tolerance is specified in ulps.
105 */
106#define	testall_tol(x, result, tol)				do {	\
107	test_tol(cexp, x, result, tol * DBL_ULP());			\
108	test_tol(cexpf, x, result, tol * FLT_ULP());			\
109} while (0)
110
111/* Various finite non-zero numbers to test. */
112static const float finites[] =
113{ -42.0e20, -1.0 -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
114
115/*
116 * Determine whether x and y are equal, with two special rules:
117 *	+0.0 != -0.0
118 *	 NaN == NaN
119 * If checksign is 0, we compare the absolute values instead.
120 */
121static int
122fpequal(long double x, long double y, int checksign)
123{
124	if (isnan(x) || isnan(y))
125		return (1);
126	if (checksign)
127		return (x == y && !signbit(x) == !signbit(y));
128	else
129		return (fabsl(x) == fabsl(y));
130}
131
132static int
133fpequal_tol(long double x, long double y, long double tol)
134{
135	fenv_t env;
136	int ret;
137
138	if (isnan(x) && isnan(y))
139		return (1);
140	if (!signbit(x) != !signbit(y))
141		return (0);
142	if (x == y)
143		return (1);
144	if (tol == 0)
145		return (0);
146
147	/* Hard case: need to check the tolerance. */
148	feholdexcept(&env);
149	/*
150	 * For our purposes here, if y=0, we interpret tol as an absolute
151	 * tolerance. This is to account for roundoff in the input, e.g.,
152	 * cos(Pi/2) ~= 0.
153	 */
154	if (y == 0.0)
155		ret = fabsl(x - y) <= fabsl(tol);
156	else
157		ret = fabsl(x - y) <= fabsl(y * tol);
158	fesetenv(&env);
159	return (ret);
160}
161
162static int
163cfpequal(long double complex x, long double complex y, int checksign)
164{
165	return (fpequal(creal(x), creal(y), checksign)
166		&& fpequal(cimag(x), cimag(y), checksign));
167}
168
169static int
170cfpequal_tol(long double complex x, long double complex y, long double tol)
171{
172	return (fpequal_tol(creal(x), creal(y), tol)
173		&& fpequal_tol(cimag(x), cimag(y), tol));
174}
175
176
177/* Tests for 0 */
178void
179test_zero(void)
180{
181
182	/* cexp(0) = 1, no exceptions raised */
183	testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
184	testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
185	testall(cpackl(0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
186	testall(cpackl(-0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
187}
188
189/*
190 * Tests for NaN.  The signs of the results are indeterminate unless the
191 * imaginary part is 0.
192 */
193void
194test_nan()
195{
196	int i;
197
198	/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
199	/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
200	for (i = 0; i < N(finites); i++) {
201		testall(cpackl(finites[i], NAN), cpackl(NAN, NAN),
202			ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
203		if (finites[i] == 0.0)
204			continue;
205		/* XXX FE_INEXACT shouldn't be raised here */
206		testall(cpackl(NAN, finites[i]), cpackl(NAN, NAN),
207			ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
208	}
209
210	/* cexp(NaN +- 0i) = NaN +- 0i */
211	testall(cpackl(NAN, 0.0), cpackl(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
212	testall(cpackl(NAN, -0.0), cpackl(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
213
214	/* cexp(inf + NaN i) = inf + nan i */
215	testall(cpackl(INFINITY, NAN), cpackl(INFINITY, NAN),
216		ALL_STD_EXCEPT, 0, 0);
217	/* cexp(-inf + NaN i) = 0 */
218	testall(cpackl(-INFINITY, NAN), cpackl(0.0, 0.0),
219		ALL_STD_EXCEPT, 0, 0);
220	/* cexp(NaN + NaN i) = NaN + NaN i */
221	testall(cpackl(NAN, NAN), cpackl(NAN, NAN),
222		ALL_STD_EXCEPT, 0, 0);
223}
224
225void
226test_inf(void)
227{
228	int i;
229
230	/* cexp(x + inf i) = NaN + NaNi and raises invalid */
231	/* cexp(inf + yi) = 0 + 0yi */
232	/* cexp(-inf + yi) = inf + inf yi (except y=0) */
233	for (i = 0; i < N(finites); i++) {
234		testall(cpackl(finites[i], INFINITY), cpackl(NAN, NAN),
235			ALL_STD_EXCEPT, FE_INVALID, 1);
236		/* XXX shouldn't raise an inexact exception */
237		testall(cpackl(-INFINITY, finites[i]),
238			cpackl(0.0, 0.0 * finites[i]),
239			ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
240		if (finites[i] == 0)
241			continue;
242		testall(cpackl(INFINITY, finites[i]),
243			cpackl(INFINITY, INFINITY * finites[i]),
244			ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
245	}
246	testall(cpackl(INFINITY, 0.0), cpackl(INFINITY, 0.0),
247		ALL_STD_EXCEPT, 0, 1);
248	testall(cpackl(INFINITY, -0.0), cpackl(INFINITY, -0.0),
249		ALL_STD_EXCEPT, 0, 1);
250}
251
252void
253test_reals(void)
254{
255	int i;
256
257	for (i = 0; i < N(finites); i++) {
258		/* XXX could check exceptions more meticulously */
259		test(cexp, cpackl(finites[i], 0.0),
260		     cpackl(exp(finites[i]), 0.0),
261		     FE_INVALID | FE_DIVBYZERO, 0, 1);
262		test(cexp, cpackl(finites[i], -0.0),
263		     cpackl(exp(finites[i]), -0.0),
264		     FE_INVALID | FE_DIVBYZERO, 0, 1);
265		test(cexpf, cpackl(finites[i], 0.0),
266		     cpackl(expf(finites[i]), 0.0),
267		     FE_INVALID | FE_DIVBYZERO, 0, 1);
268		test(cexpf, cpackl(finites[i], -0.0),
269		     cpackl(expf(finites[i]), -0.0),
270		     FE_INVALID | FE_DIVBYZERO, 0, 1);
271	}
272}
273
274void
275test_imaginaries(void)
276{
277	int i;
278
279	for (i = 0; i < N(finites); i++) {
280		test(cexp, cpackl(0.0, finites[i]),
281		     cpackl(cos(finites[i]), sin(finites[i])),
282		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
283		test(cexp, cpackl(-0.0, finites[i]),
284		     cpackl(cos(finites[i]), sin(finites[i])),
285		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
286		test(cexpf, cpackl(0.0, finites[i]),
287		     cpackl(cosf(finites[i]), sinf(finites[i])),
288		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
289		test(cexpf, cpackl(-0.0, finites[i]),
290		     cpackl(cosf(finites[i]), sinf(finites[i])),
291		     ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
292	}
293}
294
295void
296test_small(void)
297{
298	static const double tests[] = {
299	     /* csqrt(a + bI) = x + yI */
300	     /* a	b	x			y */
301		 1.0,	M_PI_4,	M_SQRT2 * 0.5 * M_E,	M_SQRT2 * 0.5 * M_E,
302		-1.0,	M_PI_4,	M_SQRT2 * 0.5 / M_E,	M_SQRT2 * 0.5 / M_E,
303		 2.0,	M_PI_2,	0.0,			M_E * M_E,
304		 M_LN2,	M_PI,	-2.0,			0.0,
305	};
306	double a, b;
307	double x, y;
308	int i;
309
310	for (i = 0; i < N(tests); i += 4) {
311		a = tests[i];
312		b = tests[i + 1];
313		x = tests[i + 2];
314		y = tests[i + 3];
315		test_tol(cexp, cpackl(a, b), cpackl(x, y), 3 * DBL_ULP());
316
317		/* float doesn't have enough precision to pass these tests */
318		if (x == 0 || y == 0)
319			continue;
320		test_tol(cexpf, cpackl(a, b), cpackl(x, y), 1 * FLT_ULP());
321        }
322}
323
324/* Test inputs with a real part r that would overflow exp(r). */
325void
326test_large(void)
327{
328
329	test_tol(cexp, cpackl(709.79, 0x1p-1074),
330		 cpackl(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
331	test_tol(cexp, cpackl(1000, 0x1p-1074),
332		 cpackl(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
333	test_tol(cexp, cpackl(1400, 0x1p-1074),
334		 cpackl(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
335	test_tol(cexp, cpackl(900, 0x1.23456789abcdep-1020),
336		 cpackl(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
337	test_tol(cexp, cpackl(1300, 0x1.23456789abcdep-1020),
338		 cpackl(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
339
340	test_tol(cexpf, cpackl(88.73, 0x1p-149),
341		 cpackl(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
342	test_tol(cexpf, cpackl(90, 0x1p-149),
343		 cpackl(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
344	test_tol(cexpf, cpackl(192, 0x1p-149),
345		 cpackl(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
346	test_tol(cexpf, cpackl(120, 0x1.234568p-120),
347		 cpackl(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
348	test_tol(cexpf, cpackl(170, 0x1.234568p-120),
349		 cpackl(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
350}
351
352int
353main(int argc, char *argv[])
354{
355
356	printf("1..7\n");
357
358	test_zero();
359	printf("ok 1 - cexp zero\n");
360
361	test_nan();
362	printf("ok 2 - cexp nan\n");
363
364	test_inf();
365	printf("ok 3 - cexp inf\n");
366
367	test_reals();
368	printf("ok 4 - cexp reals\n");
369
370	test_imaginaries();
371	printf("ok 5 - cexp imaginaries\n");
372
373	test_small();
374	printf("ok 6 - cexp small\n");
375
376	test_large();
377	printf("ok 7 - cexp large\n");
378
379	return (0);
380}
381