s_log1p.c revision 22993
1230557Sjimharris/* @(#)s_log1p.c 5.1 93/09/24 */
2230557Sjimharris/*
3230557Sjimharris * ====================================================
4230557Sjimharris * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5230557Sjimharris *
6230557Sjimharris * Developed at SunPro, a Sun Microsystems, Inc. business.
7230557Sjimharris * Permission to use, copy, modify, and distribute this
8230557Sjimharris * software is freely granted, provided that this notice
9230557Sjimharris * is preserved.
10230557Sjimharris * ====================================================
11230557Sjimharris */
12230557Sjimharris
13230557Sjimharris#ifndef lint
14230557Sjimharrisstatic char rcsid[] = "$Id$";
15230557Sjimharris#endif
16230557Sjimharris
17230557Sjimharris/* double log1p(double x)
18230557Sjimharris *
19230557Sjimharris * Method :
20230557Sjimharris *   1. Argument Reduction: find k and f such that
21230557Sjimharris *			1+x = 2^k * (1+f),
22230557Sjimharris *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
23230557Sjimharris *
24230557Sjimharris *      Note. If k=0, then f=x is exact. However, if k!=0, then f
25230557Sjimharris *	may not be representable exactly. In that case, a correction
26230557Sjimharris *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
27230557Sjimharris *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
28230557Sjimharris *	and add back the correction term c/u.
29230557Sjimharris *	(Note: when x > 2**53, one can simply return log(x))
30230557Sjimharris *
31230557Sjimharris *   2. Approximation of log1p(f).
32230557Sjimharris *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
33230557Sjimharris *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
34230557Sjimharris *	     	 = 2s + s*R
35230557Sjimharris *      We use a special Reme algorithm on [0,0.1716] to generate
36230557Sjimharris * 	a polynomial of degree 14 to approximate R The maximum error
37230557Sjimharris *	of this polynomial approximation is bounded by 2**-58.45. In
38230557Sjimharris *	other words,
39230557Sjimharris *		        2      4      6      8      10      12      14
40230557Sjimharris *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
41230557Sjimharris *  	(the values of Lp1 to Lp7 are listed in the program)
42230557Sjimharris *	and
43230557Sjimharris *	    |      2          14          |     -58.45
44230557Sjimharris *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
45230557Sjimharris *	    |                             |
46230557Sjimharris *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
47230557Sjimharris *	In order to guarantee error in log below 1ulp, we compute log
48230557Sjimharris *	by
49230557Sjimharris *		log1p(f) = f - (hfsq - s*(hfsq+R)).
50230557Sjimharris *
51230557Sjimharris *	3. Finally, log1p(x) = k*ln2 + log1p(f).
52230557Sjimharris *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
53230557Sjimharris *	   Here ln2 is split into two floating point number:
54230557Sjimharris *			ln2_hi + ln2_lo,
55230557Sjimharris *	   where n*ln2_hi is always exact for |n| < 2000.
56230557Sjimharris *
57230557Sjimharris * Special cases:
58230557Sjimharris *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
59230557Sjimharris *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
60230557Sjimharris *	log1p(NaN) is that NaN with no signal.
61230557Sjimharris *
62230557Sjimharris * Accuracy:
63230557Sjimharris *	according to an error analysis, the error is always less than
64230557Sjimharris *	1 ulp (unit in the last place).
65230557Sjimharris *
66230557Sjimharris * Constants:
67230557Sjimharris * The hexadecimal values are the intended ones for the following
68230557Sjimharris * constants. The decimal values may be used, provided that the
69230557Sjimharris * compiler will convert from decimal to binary accurately enough
70230557Sjimharris * to produce the hexadecimal values shown.
71230557Sjimharris *
72230557Sjimharris * Note: Assuming log() return accurate answer, the following
73230557Sjimharris * 	 algorithm can be used to compute log1p(x) to within a few ULP:
74230557Sjimharris *
75230557Sjimharris *		u = 1+x;
76230557Sjimharris *		if(u==1.0) return x ; else
77230557Sjimharris *			   return log(u)*(x/(u-1.0));
78230557Sjimharris *
79230557Sjimharris *	 See HP-15C Advanced Functions Handbook, p.193.
80230557Sjimharris */
81230557Sjimharris
82230557Sjimharris#include "math.h"
83230557Sjimharris#include "math_private.h"
84230557Sjimharris
85230557Sjimharris#ifdef __STDC__
86230557Sjimharrisstatic const double
87230557Sjimharris#else
88230557Sjimharrisstatic double
89230557Sjimharris#endif
90230557Sjimharrisln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
91230557Sjimharrisln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
92230557Sjimharristwo54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
93230557SjimharrisLp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
94230557SjimharrisLp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
95230557SjimharrisLp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
96230557SjimharrisLp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
97230557SjimharrisLp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
98230557SjimharrisLp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
99230557SjimharrisLp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
100230557Sjimharris
101230557Sjimharris#ifdef __STDC__
102230557Sjimharrisstatic const double zero = 0.0;
103230557Sjimharris#else
104230557Sjimharrisstatic double zero = 0.0;
105230557Sjimharris#endif
106230557Sjimharris
107230557Sjimharris#ifdef __STDC__
108230557Sjimharris	double log1p(double x)
109230557Sjimharris#else
110230557Sjimharris	double log1p(x)
111230557Sjimharris	double x;
112230557Sjimharris#endif
113230557Sjimharris{
114230557Sjimharris	double hfsq,f,c,s,z,R,u;
115230557Sjimharris	int32_t k,hx,hu,ax;
116230557Sjimharris
117230557Sjimharris	GET_HIGH_WORD(hx,x);
118230557Sjimharris	ax = hx&0x7fffffff;
119230557Sjimharris
120230557Sjimharris	k = 1;
121230557Sjimharris	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
122230557Sjimharris	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
123230557Sjimharris		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
124230557Sjimharris		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
125230557Sjimharris	    }
126230557Sjimharris	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
127230557Sjimharris		if(two54+x>zero			/* raise inexact */
128230557Sjimharris	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
129230557Sjimharris		    return x;
130230557Sjimharris		else
131230557Sjimharris		    return x - x*x*0.5;
132230557Sjimharris	    }
133230557Sjimharris	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
134230557Sjimharris		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
135230557Sjimharris	}
136230557Sjimharris	if (hx >= 0x7ff00000) return x+x;
137230557Sjimharris	if(k!=0) {
138230557Sjimharris	    if(hx<0x43400000) {
139230557Sjimharris		u  = 1.0+x;
140230557Sjimharris		GET_HIGH_WORD(hu,u);
141230557Sjimharris	        k  = (hu>>20)-1023;
142230557Sjimharris	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
143230557Sjimharris		c /= u;
144230557Sjimharris	    } else {
145230557Sjimharris		u  = x;
146230557Sjimharris		GET_HIGH_WORD(hu,u);
147230557Sjimharris	        k  = (hu>>20)-1023;
148230557Sjimharris		c  = 0;
149230557Sjimharris	    }
150230557Sjimharris	    hu &= 0x000fffff;
151230557Sjimharris	    if(hu<0x6a09e) {
152230557Sjimharris	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
153230557Sjimharris	    } else {
154230557Sjimharris	        k += 1;
155230557Sjimharris		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
156230557Sjimharris	        hu = (0x00100000-hu)>>2;
157230557Sjimharris	    }
158230557Sjimharris	    f = u-1.0;
159230557Sjimharris	}
160230557Sjimharris	hfsq=0.5*f*f;
161230557Sjimharris	if(hu==0) {	/* |f| < 2**-20 */
162230557Sjimharris	    if(f==zero) if(k==0) return zero;
163230557Sjimharris			else {c += k*ln2_lo; return k*ln2_hi+c;}
164230557Sjimharris	    R = hfsq*(1.0-0.66666666666666666*f);
165230557Sjimharris	    if(k==0) return f-R; else
166230557Sjimharris	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
167230557Sjimharris	}
168230557Sjimharris 	s = f/(2.0+f);
169230557Sjimharris	z = s*s;
170230557Sjimharris	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
171230557Sjimharris	if(k==0) return f-(hfsq-s*(hfsq+R)); else
172230557Sjimharris		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
173230557Sjimharris}
174230557Sjimharris