s_log1p.c revision 175494
1250003Sadrian/* @(#)s_log1p.c 5.1 93/09/24 */
2250003Sadrian/*
3250003Sadrian * ====================================================
4250003Sadrian * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5250003Sadrian *
6250003Sadrian * Developed at SunPro, a Sun Microsystems, Inc. business.
7250003Sadrian * Permission to use, copy, modify, and distribute this
8250003Sadrian * software is freely granted, provided that this notice
9250003Sadrian * is preserved.
10250003Sadrian * ====================================================
11250003Sadrian */
12250003Sadrian
13250003Sadrian#include <sys/cdefs.h>
14250003Sadrian__FBSDID("$FreeBSD: head/lib/msun/src/s_log1p.c 175494 2008-01-19 18:13:21Z bde $");
15250003Sadrian
16250003Sadrian/* double log1p(double x)
17250003Sadrian *
18250003Sadrian * Method :
19250003Sadrian *   1. Argument Reduction: find k and f such that
20250003Sadrian *			1+x = 2^k * (1+f),
21250003Sadrian *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
22250003Sadrian *
23250003Sadrian *      Note. If k=0, then f=x is exact. However, if k!=0, then f
24250003Sadrian *	may not be representable exactly. In that case, a correction
25250003Sadrian *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
26250003Sadrian *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
27250003Sadrian *	and add back the correction term c/u.
28250003Sadrian *	(Note: when x > 2**53, one can simply return log(x))
29250003Sadrian *
30250003Sadrian *   2. Approximation of log1p(f).
31250003Sadrian *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
32250003Sadrian *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
33250003Sadrian *	     	 = 2s + s*R
34250003Sadrian *      We use a special Reme algorithm on [0,0.1716] to generate
35250003Sadrian * 	a polynomial of degree 14 to approximate R The maximum error
36250003Sadrian *	of this polynomial approximation is bounded by 2**-58.45. In
37250003Sadrian *	other words,
38250003Sadrian *		        2      4      6      8      10      12      14
39250003Sadrian *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
40250003Sadrian *  	(the values of Lp1 to Lp7 are listed in the program)
41250003Sadrian *	and
42250003Sadrian *	    |      2          14          |     -58.45
43250003Sadrian *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
44250003Sadrian *	    |                             |
45250003Sadrian *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46250003Sadrian *	In order to guarantee error in log below 1ulp, we compute log
47250003Sadrian *	by
48250003Sadrian *		log1p(f) = f - (hfsq - s*(hfsq+R)).
49250003Sadrian *
50250003Sadrian *	3. Finally, log1p(x) = k*ln2 + log1p(f).
51250003Sadrian *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
52250003Sadrian *	   Here ln2 is split into two floating point number:
53250003Sadrian *			ln2_hi + ln2_lo,
54250003Sadrian *	   where n*ln2_hi is always exact for |n| < 2000.
55250003Sadrian *
56250003Sadrian * Special cases:
57250003Sadrian *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
58250003Sadrian *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
59250003Sadrian *	log1p(NaN) is that NaN with no signal.
60250003Sadrian *
61250003Sadrian * Accuracy:
62250003Sadrian *	according to an error analysis, the error is always less than
63250003Sadrian *	1 ulp (unit in the last place).
64250003Sadrian *
65250003Sadrian * Constants:
66250003Sadrian * The hexadecimal values are the intended ones for the following
67250003Sadrian * constants. The decimal values may be used, provided that the
68250003Sadrian * compiler will convert from decimal to binary accurately enough
69250003Sadrian * to produce the hexadecimal values shown.
70250003Sadrian *
71250003Sadrian * Note: Assuming log() return accurate answer, the following
72250003Sadrian * 	 algorithm can be used to compute log1p(x) to within a few ULP:
73250003Sadrian *
74250003Sadrian *		u = 1+x;
75250003Sadrian *		if(u==1.0) return x ; else
76250003Sadrian *			   return log(u)*(x/(u-1.0));
77250003Sadrian *
78250003Sadrian *	 See HP-15C Advanced Functions Handbook, p.193.
79250003Sadrian */
80250003Sadrian
81250003Sadrian#include <float.h>
82250003Sadrian
83250003Sadrian#include "math.h"
84250003Sadrian#include "math_private.h"
85250003Sadrian
86250003Sadrianstatic const double
87250003Sadrianln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
88250003Sadrianln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
89250003Sadriantwo54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
90250003SadrianLp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
91250003SadrianLp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
92250003SadrianLp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
93250003SadrianLp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
94250003SadrianLp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
95250003SadrianLp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
96250003SadrianLp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
97250003Sadrian
98250003Sadrianstatic const double zero = 0.0;
99250003Sadrian
100250003Sadriandouble
101250003Sadrianlog1p(double x)
102250003Sadrian{
103250003Sadrian	double hfsq,f,c,s,z,R,u;
104250003Sadrian	int32_t k,hx,hu,ax;
105250003Sadrian
106250003Sadrian	GET_HIGH_WORD(hx,x);
107250003Sadrian	ax = hx&0x7fffffff;
108250003Sadrian
109250003Sadrian	k = 1;
110250003Sadrian	if (hx < 0x3FDA827A) {			/* 1+x < sqrt(2)+ */
111250003Sadrian	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
112250003Sadrian		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
113250003Sadrian		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
114250003Sadrian	    }
115250003Sadrian	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
116250003Sadrian		if(two54+x>zero			/* raise inexact */
117250003Sadrian	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
118250003Sadrian		    return x;
119250003Sadrian		else
120250003Sadrian		    return x - x*x*0.5;
121250003Sadrian	    }
122250003Sadrian	    if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
123250003Sadrian		k=0;f=x;hu=1;}		/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
124250003Sadrian	}
125250003Sadrian	if (hx >= 0x7ff00000) return x+x;
126250003Sadrian	if(k!=0) {
127250003Sadrian	    if(hx<0x43400000) {
128250003Sadrian		STRICT_ASSIGN(double,u,1.0+x);
129250003Sadrian		GET_HIGH_WORD(hu,u);
130250003Sadrian	        k  = (hu>>20)-1023;
131250003Sadrian	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
132250003Sadrian		c /= u;
133250003Sadrian	    } else {
134250003Sadrian		u  = x;
135250003Sadrian		GET_HIGH_WORD(hu,u);
136250003Sadrian	        k  = (hu>>20)-1023;
137250003Sadrian		c  = 0;
138250003Sadrian	    }
139250003Sadrian	    hu &= 0x000fffff;
140250003Sadrian	    /*
141250003Sadrian	     * The approximation to sqrt(2) used in thresholds is not
142250003Sadrian	     * critical.  However, the ones used above must give less
143250003Sadrian	     * strict bounds than the one here so that the k==0 case is
144250003Sadrian	     * never reached from here, since here we have committed to
145250003Sadrian	     * using the correction term but don't use it if k==0.
146250003Sadrian	     */
147250003Sadrian	    if(hu<0x6a09e) {			/* u ~< sqrt(2) */
148250003Sadrian	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
149250003Sadrian	    } else {
150250003Sadrian	        k += 1;
151250003Sadrian		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
152250003Sadrian	        hu = (0x00100000-hu)>>2;
153250003Sadrian	    }
154250003Sadrian	    f = u-1.0;
155250003Sadrian	}
156250003Sadrian	hfsq=0.5*f*f;
157250003Sadrian	if(hu==0) {	/* |f| < 2**-20 */
158250003Sadrian	    if(f==zero) if(k==0) return zero;
159250003Sadrian			else {c += k*ln2_lo; return k*ln2_hi+c;}
160250003Sadrian	    R = hfsq*(1.0-0.66666666666666666*f);
161250003Sadrian	    if(k==0) return f-R; else
162250003Sadrian	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
163250003Sadrian	}
164250003Sadrian 	s = f/(2.0+f);
165250003Sadrian	z = s*s;
166250003Sadrian	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
167250003Sadrian	if(k==0) return f-(hfsq-s*(hfsq+R)); else
168250003Sadrian		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
169250003Sadrian}
170250003Sadrian