e_jn.c revision 97409
1/* @(#)e_jn.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13#ifndef lint
14static char rcsid[] = "$FreeBSD: head/lib/msun/src/e_jn.c 97409 2002-05-28 17:51:46Z alfred $";
15#endif
16
17/*
18 * __ieee754_jn(n, x), __ieee754_yn(n, x)
19 * floating point Bessel's function of the 1st and 2nd kind
20 * of order n
21 *
22 * Special cases:
23 *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24 *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25 * Note 2. About jn(n,x), yn(n,x)
26 *	For n=0, j0(x) is called,
27 *	for n=1, j1(x) is called,
28 *	for n<x, forward recursion us used starting
29 *	from values of j0(x) and j1(x).
30 *	for n>x, a continued fraction approximation to
31 *	j(n,x)/j(n-1,x) is evaluated and then backward
32 *	recursion is used starting from a supposed value
33 *	for j(n,x). The resulting value of j(0,x) is
34 *	compared with the actual value to correct the
35 *	supposed value of j(n,x).
36 *
37 *	yn(n,x) is similar in all respects, except
38 *	that forward recursion is used for all
39 *	values of n>1.
40 *
41 */
42
43#include "math.h"
44#include "math_private.h"
45
46static const double
47invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50
51static const double zero  =  0.00000000000000000000e+00;
52
53	double __ieee754_jn(int n, double x)
54{
55	int32_t i,hx,ix,lx, sgn;
56	double a, b, temp, di;
57	double z, w;
58
59    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
60     * Thus, J(-n,x) = J(n,-x)
61     */
62	EXTRACT_WORDS(hx,lx,x);
63	ix = 0x7fffffff&hx;
64    /* if J(n,NaN) is NaN */
65	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
66	if(n<0){
67		n = -n;
68		x = -x;
69		hx ^= 0x80000000;
70	}
71	if(n==0) return(__ieee754_j0(x));
72	if(n==1) return(__ieee754_j1(x));
73	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
74	x = fabs(x);
75	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
76	    b = zero;
77	else if((double)n<=x) {
78		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
79	    if(ix>=0x52D00000) { /* x > 2**302 */
80    /* (x >> n**2)
81     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
82     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
83     *	    Let s=sin(x), c=cos(x),
84     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
85     *
86     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
87     *		----------------------------------
88     *		   0	 s-c		 c+s
89     *		   1	-s-c 		-c+s
90     *		   2	-s+c		-c-s
91     *		   3	 s+c		 c-s
92     */
93		switch(n&3) {
94		    case 0: temp =  cos(x)+sin(x); break;
95		    case 1: temp = -cos(x)+sin(x); break;
96		    case 2: temp = -cos(x)-sin(x); break;
97		    case 3: temp =  cos(x)-sin(x); break;
98		}
99		b = invsqrtpi*temp/sqrt(x);
100	    } else {
101	        a = __ieee754_j0(x);
102	        b = __ieee754_j1(x);
103	        for(i=1;i<n;i++){
104		    temp = b;
105		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
106		    a = temp;
107	        }
108	    }
109	} else {
110	    if(ix<0x3e100000) {	/* x < 2**-29 */
111    /* x is tiny, return the first Taylor expansion of J(n,x)
112     * J(n,x) = 1/n!*(x/2)^n  - ...
113     */
114		if(n>33)	/* underflow */
115		    b = zero;
116		else {
117		    temp = x*0.5; b = temp;
118		    for (a=one,i=2;i<=n;i++) {
119			a *= (double)i;		/* a = n! */
120			b *= temp;		/* b = (x/2)^n */
121		    }
122		    b = b/a;
123		}
124	    } else {
125		/* use backward recurrence */
126		/* 			x      x^2      x^2
127		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
128		 *			2n  - 2(n+1) - 2(n+2)
129		 *
130		 * 			1      1        1
131		 *  (for large x)   =  ----  ------   ------   .....
132		 *			2n   2(n+1)   2(n+2)
133		 *			-- - ------ - ------ -
134		 *			 x     x         x
135		 *
136		 * Let w = 2n/x and h=2/x, then the above quotient
137		 * is equal to the continued fraction:
138		 *		    1
139		 *	= -----------------------
140		 *		       1
141		 *	   w - -----------------
142		 *			  1
143		 * 	        w+h - ---------
144		 *		       w+2h - ...
145		 *
146		 * To determine how many terms needed, let
147		 * Q(0) = w, Q(1) = w(w+h) - 1,
148		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
149		 * When Q(k) > 1e4	good for single
150		 * When Q(k) > 1e9	good for double
151		 * When Q(k) > 1e17	good for quadruple
152		 */
153	    /* determine k */
154		double t,v;
155		double q0,q1,h,tmp; int32_t k,m;
156		w  = (n+n)/(double)x; h = 2.0/(double)x;
157		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
158		while(q1<1.0e9) {
159			k += 1; z += h;
160			tmp = z*q1 - q0;
161			q0 = q1;
162			q1 = tmp;
163		}
164		m = n+n;
165		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
166		a = t;
167		b = one;
168		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
169		 *  Hence, if n*(log(2n/x)) > ...
170		 *  single 8.8722839355e+01
171		 *  double 7.09782712893383973096e+02
172		 *  long double 1.1356523406294143949491931077970765006170e+04
173		 *  then recurrent value may overflow and the result is
174		 *  likely underflow to zero
175		 */
176		tmp = n;
177		v = two/x;
178		tmp = tmp*__ieee754_log(fabs(v*tmp));
179		if(tmp<7.09782712893383973096e+02) {
180	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
181		        temp = b;
182			b *= di;
183			b  = b/x - a;
184		        a = temp;
185			di -= two;
186	     	    }
187		} else {
188	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
189		        temp = b;
190			b *= di;
191			b  = b/x - a;
192		        a = temp;
193			di -= two;
194		    /* scale b to avoid spurious overflow */
195			if(b>1e100) {
196			    a /= b;
197			    t /= b;
198			    b  = one;
199			}
200	     	    }
201		}
202	    	b = (t*__ieee754_j0(x)/b);
203	    }
204	}
205	if(sgn==1) return -b; else return b;
206}
207
208	double __ieee754_yn(int n, double x)
209{
210	int32_t i,hx,ix,lx;
211	int32_t sign;
212	double a, b, temp;
213
214	EXTRACT_WORDS(hx,lx,x);
215	ix = 0x7fffffff&hx;
216    /* if Y(n,NaN) is NaN */
217	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
218	if((ix|lx)==0) return -one/zero;
219	if(hx<0) return zero/zero;
220	sign = 1;
221	if(n<0){
222		n = -n;
223		sign = 1 - ((n&1)<<1);
224	}
225	if(n==0) return(__ieee754_y0(x));
226	if(n==1) return(sign*__ieee754_y1(x));
227	if(ix==0x7ff00000) return zero;
228	if(ix>=0x52D00000) { /* x > 2**302 */
229    /* (x >> n**2)
230     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
231     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
232     *	    Let s=sin(x), c=cos(x),
233     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
234     *
235     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
236     *		----------------------------------
237     *		   0	 s-c		 c+s
238     *		   1	-s-c 		-c+s
239     *		   2	-s+c		-c-s
240     *		   3	 s+c		 c-s
241     */
242		switch(n&3) {
243		    case 0: temp =  sin(x)-cos(x); break;
244		    case 1: temp = -sin(x)-cos(x); break;
245		    case 2: temp = -sin(x)+cos(x); break;
246		    case 3: temp =  sin(x)+cos(x); break;
247		}
248		b = invsqrtpi*temp/sqrt(x);
249	} else {
250	    u_int32_t high;
251	    a = __ieee754_y0(x);
252	    b = __ieee754_y1(x);
253	/* quit if b is -inf */
254	    GET_HIGH_WORD(high,b);
255	    for(i=1;i<n&&high!=0xfff00000;i++){
256		temp = b;
257		b = ((double)(i+i)/x)*b - a;
258		GET_HIGH_WORD(high,b);
259		a = temp;
260	    }
261	}
262	if(sign>0) return b; else return -b;
263}
264