kvm_proc.c revision 83366
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: head/lib/libkvm/kvm_proc.c 83366 2001-09-12 08:38:13Z julian $
38 */
39
40#if defined(LIBC_SCCS) && !defined(lint)
41static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42#endif /* LIBC_SCCS and not lint */
43
44/*
45 * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46 * users of this code, so we've factored it out into a separate module.
47 * Thus, we keep this grunge out of the other kvm applications (i.e.,
48 * most other applications are interested only in open/close/read/nlist).
49 */
50
51#include <sys/param.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/user.h>
55#include <sys/proc.h>
56#include <sys/exec.h>
57#include <sys/stat.h>
58#include <sys/ioctl.h>
59#include <sys/tty.h>
60#include <sys/file.h>
61#include <stdio.h>
62#include <stdlib.h>
63#include <unistd.h>
64#include <nlist.h>
65#include <kvm.h>
66
67#include <vm/vm.h>
68#include <vm/vm_param.h>
69#include <vm/swap_pager.h>
70
71#include <sys/sysctl.h>
72
73#include <limits.h>
74#include <memory.h>
75#include <paths.h>
76
77#include "kvm_private.h"
78
79#if used
80static char *
81kvm_readswap(kd, p, va, cnt)
82	kvm_t *kd;
83	const struct proc *p;
84	u_long va;
85	u_long *cnt;
86{
87#ifdef __FreeBSD__
88	/* XXX Stubbed out, our vm system is differnet */
89	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
90	return(0);
91#endif	/* __FreeBSD__ */
92}
93#endif
94
95#define KREAD(kd, addr, obj) \
96	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
97
98/*
99 * Read proc's from memory file into buffer bp, which has space to hold
100 * at most maxcnt procs.
101 */
102static int
103kvm_proclist(kd, what, arg, p, bp, maxcnt)
104	kvm_t *kd;
105	int what, arg;
106	struct proc *p;
107	struct kinfo_proc *bp;
108	int maxcnt;
109{
110	register int cnt = 0;
111	struct kinfo_proc kinfo_proc, *kp;
112	struct pgrp pgrp;
113	struct session sess;
114	struct tty tty;
115	struct vmspace vmspace;
116	struct procsig procsig;
117	struct pstats pstats;
118	struct ucred ucred;
119	struct proc proc;
120	struct proc pproc;
121
122	kp = &kinfo_proc;
123	kp->ki_structsize = sizeof(kinfo_proc);
124	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
125		memset(kp, 0, sizeof *kp);
126		if (KREAD(kd, (u_long)p, &proc)) {
127			_kvm_err(kd, kd->program, "can't read proc at %x", p);
128			return (-1);
129		}
130		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
131			kp->ki_ruid = ucred.cr_ruid;
132			kp->ki_svuid = ucred.cr_svuid;
133			kp->ki_rgid = ucred.cr_rgid;
134			kp->ki_svgid = ucred.cr_svgid;
135			kp->ki_ngroups = ucred.cr_ngroups;
136			bcopy(ucred.cr_groups, kp->ki_groups,
137			    NGROUPS * sizeof(gid_t));
138			kp->ki_uid = ucred.cr_uid;
139		}
140
141		switch(what) {
142
143		case KERN_PROC_PID:
144			if (proc.p_pid != (pid_t)arg)
145				continue;
146			break;
147
148		case KERN_PROC_UID:
149			if (kp->ki_uid != (uid_t)arg)
150				continue;
151			break;
152
153		case KERN_PROC_RUID:
154			if (kp->ki_ruid != (uid_t)arg)
155				continue;
156			break;
157		}
158		/*
159		 * We're going to add another proc to the set.  If this
160		 * will overflow the buffer, assume the reason is because
161		 * nprocs (or the proc list) is corrupt and declare an error.
162		 */
163		if (cnt >= maxcnt) {
164			_kvm_err(kd, kd->program, "nprocs corrupt");
165			return (-1);
166		}
167		/*
168		 * gather kinfo_proc
169		 */
170		kp->ki_paddr = p;
171		kp->ki_addr = proc.p_uarea;
172		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
173		kp->ki_args = proc.p_args;
174		kp->ki_tracep = proc.p_tracep;
175		kp->ki_textvp = proc.p_textvp;
176		kp->ki_fd = proc.p_fd;
177		kp->ki_vmspace = proc.p_vmspace;
178		if (proc.p_procsig != NULL) {
179			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
180				_kvm_err(kd, kd->program,
181				    "can't read procsig at %x", proc.p_procsig);
182				return (-1);
183			}
184			kp->ki_sigignore = procsig.ps_sigignore;
185			kp->ki_sigcatch = procsig.ps_sigcatch;
186		}
187		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
188			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
189				_kvm_err(kd, kd->program,
190				    "can't read stats at %x", proc.p_stats);
191				return (-1);
192			}
193			kp->ki_start = pstats.p_start;
194			kp->ki_rusage = pstats.p_ru;
195			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
196			    pstats.p_cru.ru_stime.tv_sec;
197			kp->ki_childtime.tv_usec =
198			    pstats.p_cru.ru_utime.tv_usec +
199			    pstats.p_cru.ru_stime.tv_usec;
200		}
201		if (proc.p_oppid)
202			kp->ki_ppid = proc.p_oppid;
203		else if (proc.p_pptr) {
204			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
205				_kvm_err(kd, kd->program,
206				    "can't read pproc at %x", proc.p_pptr);
207				return (-1);
208			}
209			kp->ki_ppid = pproc.p_pid;
210		} else
211			kp->ki_ppid = 0;
212		if (proc.p_pgrp == NULL)
213			goto nopgrp;
214		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
215			_kvm_err(kd, kd->program, "can't read pgrp at %x",
216				 proc.p_pgrp);
217			return (-1);
218		}
219		kp->ki_pgid = pgrp.pg_id;
220		kp->ki_jobc = pgrp.pg_jobc;
221		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
222			_kvm_err(kd, kd->program, "can't read session at %x",
223				pgrp.pg_session);
224			return (-1);
225		}
226		kp->ki_sid = sess.s_sid;
227		(void)memcpy(kp->ki_login, sess.s_login,
228						sizeof(kp->ki_login));
229		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
230		if (sess.s_leader == p)
231			kp->ki_kiflag |= KI_SLEADER;
232		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
233			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
234				_kvm_err(kd, kd->program,
235					 "can't read tty at %x", sess.s_ttyp);
236				return (-1);
237			}
238			kp->ki_tdev = tty.t_dev;
239			if (tty.t_pgrp != NULL) {
240				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
241					_kvm_err(kd, kd->program,
242						 "can't read tpgrp at &x",
243						tty.t_pgrp);
244					return (-1);
245				}
246				kp->ki_tpgid = pgrp.pg_id;
247			} else
248				kp->ki_tpgid = -1;
249			if (tty.t_session != NULL) {
250				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
251					_kvm_err(kd, kd->program,
252					    "can't read session at %x",
253					    tty.t_session);
254					return (-1);
255				}
256				kp->ki_tsid = sess.s_sid;
257			}
258		} else {
259nopgrp:
260			kp->ki_tdev = NODEV;
261		}
262		if (proc.p_thread.td_wmesg)	/* XXXKSE */
263			(void)kvm_read(kd, (u_long)proc.p_thread.td_wmesg,
264			    kp->ki_wmesg, WMESGLEN);
265
266#ifdef sparc
267		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
268		    (char *)&kp->ki_rssize,
269		    sizeof(kp->ki_rssize));
270		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
271		    (char *)&kp->ki_tsize,
272		    3 * sizeof(kp->ki_rssize));	/* XXX */
273#else
274		(void)kvm_read(kd, (u_long)proc.p_vmspace,
275		    (char *)&vmspace, sizeof(vmspace));
276		kp->ki_size = vmspace.vm_map.size;
277		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
278		kp->ki_swrss = vmspace.vm_swrss;
279		kp->ki_tsize = vmspace.vm_tsize;
280		kp->ki_dsize = vmspace.vm_dsize;
281		kp->ki_ssize = vmspace.vm_ssize;
282#endif
283
284		switch (what) {
285
286		case KERN_PROC_PGRP:
287			if (kp->ki_pgid != (pid_t)arg)
288				continue;
289			break;
290
291		case KERN_PROC_TTY:
292			if ((proc.p_flag & P_CONTROLT) == 0 ||
293			     kp->ki_tdev != (dev_t)arg)
294				continue;
295			break;
296		}
297		if (proc.p_comm[0] != 0) {
298			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
299			kp->ki_comm[MAXCOMLEN] = 0;
300		}
301		if (proc.p_thread.td_blocked != 0) {	/* XXXKSE */
302			kp->ki_kiflag |= KI_MTXBLOCK;
303			if (proc.p_thread.td_mtxname)	/* XXXKSE */
304				(void)kvm_read(kd, (u_long)proc.p_thread.td_mtxname,
305				    kp->ki_mtxname, MTXNAMELEN);
306			kp->ki_mtxname[MTXNAMELEN] = 0;
307		}
308		kp->ki_runtime = proc.p_runtime;
309		kp->ki_pid = proc.p_pid;
310		kp->ki_siglist = proc.p_siglist;
311		kp->ki_sigmask = proc.p_sigmask;
312		kp->ki_xstat = proc.p_xstat;
313		kp->ki_acflag = proc.p_acflag;
314		kp->ki_pctcpu = proc.p_kse.ke_pctcpu;		/* XXXKSE */
315		kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;	/* XXXKSE */
316		kp->ki_slptime = proc.p_kse.ke_slptime;		/* XXXKSE */
317		kp->ki_swtime = proc.p_swtime;
318		kp->ki_flag = proc.p_flag;
319		kp->ki_sflag = proc.p_sflag;
320		kp->ki_wchan = proc.p_thread.td_wchan;		/* XXXKSE */
321		kp->ki_traceflag = proc.p_traceflag;
322		kp->ki_stat = proc.p_stat;
323		kp->ki_pri = proc.p_ksegrp.kg_pri;		/* XXXKSE */
324		kp->ki_nice = proc.p_ksegrp.kg_nice;		/* XXXKSE */
325		kp->ki_lock = proc.p_lock;
326		kp->ki_rqindex = proc.p_kse.ke_rqindex;		/* XXXKSE */
327		kp->ki_oncpu = proc.p_kse.ke_oncpu;		/* XXXKSE */
328		kp->ki_lastcpu = proc.p_thread.td_lastcpu;	/* XXXKSE */
329		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
330		++bp;
331		++cnt;
332	}
333	return (cnt);
334}
335
336/*
337 * Build proc info array by reading in proc list from a crash dump.
338 * Return number of procs read.  maxcnt is the max we will read.
339 */
340static int
341kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
342	kvm_t *kd;
343	int what, arg;
344	u_long a_allproc;
345	u_long a_zombproc;
346	int maxcnt;
347{
348	register struct kinfo_proc *bp = kd->procbase;
349	register int acnt, zcnt;
350	struct proc *p;
351
352	if (KREAD(kd, a_allproc, &p)) {
353		_kvm_err(kd, kd->program, "cannot read allproc");
354		return (-1);
355	}
356	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
357	if (acnt < 0)
358		return (acnt);
359
360	if (KREAD(kd, a_zombproc, &p)) {
361		_kvm_err(kd, kd->program, "cannot read zombproc");
362		return (-1);
363	}
364	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
365	if (zcnt < 0)
366		zcnt = 0;
367
368	return (acnt + zcnt);
369}
370
371struct kinfo_proc *
372kvm_getprocs(kd, op, arg, cnt)
373	kvm_t *kd;
374	int op, arg;
375	int *cnt;
376{
377	int mib[4], st, nprocs;
378	size_t size;
379
380	if (kd->procbase != 0) {
381		free((void *)kd->procbase);
382		/*
383		 * Clear this pointer in case this call fails.  Otherwise,
384		 * kvm_close() will free it again.
385		 */
386		kd->procbase = 0;
387	}
388	if (ISALIVE(kd)) {
389		size = 0;
390		mib[0] = CTL_KERN;
391		mib[1] = KERN_PROC;
392		mib[2] = op;
393		mib[3] = arg;
394		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
395		if (st == -1) {
396			_kvm_syserr(kd, kd->program, "kvm_getprocs");
397			return (0);
398		}
399		do {
400			size += size / 10;
401			kd->procbase = (struct kinfo_proc *)
402			    _kvm_realloc(kd, kd->procbase, size);
403			if (kd->procbase == 0)
404				return (0);
405			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
406			    kd->procbase, &size, NULL, 0);
407		} while (st == -1 && errno == ENOMEM);
408		if (st == -1) {
409			_kvm_syserr(kd, kd->program, "kvm_getprocs");
410			return (0);
411		}
412		if (size > 0 &&
413		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
414			_kvm_err(kd, kd->program,
415			    "kinfo_proc size mismatch (expected %d, got %d)",
416			    sizeof(struct kinfo_proc),
417			    kd->procbase->ki_structsize);
418			return (0);
419		}
420		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
421	} else {
422		struct nlist nl[4], *p;
423
424		nl[0].n_name = "_nprocs";
425		nl[1].n_name = "_allproc";
426		nl[2].n_name = "_zombproc";
427		nl[3].n_name = 0;
428
429		if (kvm_nlist(kd, nl) != 0) {
430			for (p = nl; p->n_type != 0; ++p)
431				;
432			_kvm_err(kd, kd->program,
433				 "%s: no such symbol", p->n_name);
434			return (0);
435		}
436		if (KREAD(kd, nl[0].n_value, &nprocs)) {
437			_kvm_err(kd, kd->program, "can't read nprocs");
438			return (0);
439		}
440		size = nprocs * sizeof(struct kinfo_proc);
441		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
442		if (kd->procbase == 0)
443			return (0);
444
445		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
446				      nl[2].n_value, nprocs);
447#ifdef notdef
448		size = nprocs * sizeof(struct kinfo_proc);
449		(void)realloc(kd->procbase, size);
450#endif
451	}
452	*cnt = nprocs;
453	return (kd->procbase);
454}
455
456void
457_kvm_freeprocs(kd)
458	kvm_t *kd;
459{
460	if (kd->procbase) {
461		free(kd->procbase);
462		kd->procbase = 0;
463	}
464}
465
466void *
467_kvm_realloc(kd, p, n)
468	kvm_t *kd;
469	void *p;
470	size_t n;
471{
472	void *np = (void *)realloc(p, n);
473
474	if (np == 0) {
475		free(p);
476		_kvm_err(kd, kd->program, "out of memory");
477	}
478	return (np);
479}
480
481#ifndef MAX
482#define MAX(a, b) ((a) > (b) ? (a) : (b))
483#endif
484
485/*
486 * Read in an argument vector from the user address space of process kp.
487 * addr if the user-space base address of narg null-terminated contiguous
488 * strings.  This is used to read in both the command arguments and
489 * environment strings.  Read at most maxcnt characters of strings.
490 */
491static char **
492kvm_argv(kd, kp, addr, narg, maxcnt)
493	kvm_t *kd;
494	struct kinfo_proc *kp;
495	register u_long addr;
496	register int narg;
497	register int maxcnt;
498{
499	register char *np, *cp, *ep, *ap;
500	register u_long oaddr = -1;
501	register int len, cc;
502	register char **argv;
503
504	/*
505	 * Check that there aren't an unreasonable number of agruments,
506	 * and that the address is in user space.
507	 */
508	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
509		return (0);
510
511	/*
512	 * kd->argv : work space for fetching the strings from the target
513	 *            process's space, and is converted for returning to caller
514	 */
515	if (kd->argv == 0) {
516		/*
517		 * Try to avoid reallocs.
518		 */
519		kd->argc = MAX(narg + 1, 32);
520		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
521						sizeof(*kd->argv));
522		if (kd->argv == 0)
523			return (0);
524	} else if (narg + 1 > kd->argc) {
525		kd->argc = MAX(2 * kd->argc, narg + 1);
526		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
527						sizeof(*kd->argv));
528		if (kd->argv == 0)
529			return (0);
530	}
531	/*
532	 * kd->argspc : returned to user, this is where the kd->argv
533	 *              arrays are left pointing to the collected strings.
534	 */
535	if (kd->argspc == 0) {
536		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
537		if (kd->argspc == 0)
538			return (0);
539		kd->arglen = PAGE_SIZE;
540	}
541	/*
542	 * kd->argbuf : used to pull in pages from the target process.
543	 *              the strings are copied out of here.
544	 */
545	if (kd->argbuf == 0) {
546		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
547		if (kd->argbuf == 0)
548			return (0);
549	}
550
551	/* Pull in the target process'es argv vector */
552	cc = sizeof(char *) * narg;
553	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
554		return (0);
555	/*
556	 * ap : saved start address of string we're working on in kd->argspc
557	 * np : pointer to next place to write in kd->argspc
558	 * len: length of data in kd->argspc
559	 * argv: pointer to the argv vector that we are hunting around the
560	 *       target process space for, and converting to addresses in
561	 *       our address space (kd->argspc).
562	 */
563	ap = np = kd->argspc;
564	argv = kd->argv;
565	len = 0;
566	/*
567	 * Loop over pages, filling in the argument vector.
568	 * Note that the argv strings could be pointing *anywhere* in
569	 * the user address space and are no longer contiguous.
570	 * Note that *argv is modified when we are going to fetch a string
571	 * that crosses a page boundary.  We copy the next part of the string
572	 * into to "np" and eventually convert the pointer.
573	 */
574	while (argv < kd->argv + narg && *argv != 0) {
575
576		/* get the address that the current argv string is on */
577		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
578
579		/* is it the same page as the last one? */
580		if (addr != oaddr) {
581			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
582			    PAGE_SIZE)
583				return (0);
584			oaddr = addr;
585		}
586
587		/* offset within the page... kd->argbuf */
588		addr = (u_long)*argv & (PAGE_SIZE - 1);
589
590		/* cp = start of string, cc = count of chars in this chunk */
591		cp = kd->argbuf + addr;
592		cc = PAGE_SIZE - addr;
593
594		/* dont get more than asked for by user process */
595		if (maxcnt > 0 && cc > maxcnt - len)
596			cc = maxcnt - len;
597
598		/* pointer to end of string if we found it in this page */
599		ep = memchr(cp, '\0', cc);
600		if (ep != 0)
601			cc = ep - cp + 1;
602		/*
603		 * at this point, cc is the count of the chars that we are
604		 * going to retrieve this time. we may or may not have found
605		 * the end of it.  (ep points to the null if the end is known)
606		 */
607
608		/* will we exceed the malloc/realloced buffer? */
609		if (len + cc > kd->arglen) {
610			register int off;
611			register char **pp;
612			register char *op = kd->argspc;
613
614			kd->arglen *= 2;
615			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
616							  kd->arglen);
617			if (kd->argspc == 0)
618				return (0);
619			/*
620			 * Adjust argv pointers in case realloc moved
621			 * the string space.
622			 */
623			off = kd->argspc - op;
624			for (pp = kd->argv; pp < argv; pp++)
625				*pp += off;
626			ap += off;
627			np += off;
628		}
629		/* np = where to put the next part of the string in kd->argspc*/
630		/* np is kinda redundant.. could use "kd->argspc + len" */
631		memcpy(np, cp, cc);
632		np += cc;	/* inc counters */
633		len += cc;
634
635		/*
636		 * if end of string found, set the *argv pointer to the
637		 * saved beginning of string, and advance. argv points to
638		 * somewhere in kd->argv..  This is initially relative
639		 * to the target process, but when we close it off, we set
640		 * it to point in our address space.
641		 */
642		if (ep != 0) {
643			*argv++ = ap;
644			ap = np;
645		} else {
646			/* update the address relative to the target process */
647			*argv += cc;
648		}
649
650		if (maxcnt > 0 && len >= maxcnt) {
651			/*
652			 * We're stopping prematurely.  Terminate the
653			 * current string.
654			 */
655			if (ep == 0) {
656				*np = '\0';
657				*argv++ = ap;
658			}
659			break;
660		}
661	}
662	/* Make sure argv is terminated. */
663	*argv = 0;
664	return (kd->argv);
665}
666
667static void
668ps_str_a(p, addr, n)
669	struct ps_strings *p;
670	u_long *addr;
671	int *n;
672{
673	*addr = (u_long)p->ps_argvstr;
674	*n = p->ps_nargvstr;
675}
676
677static void
678ps_str_e(p, addr, n)
679	struct ps_strings *p;
680	u_long *addr;
681	int *n;
682{
683	*addr = (u_long)p->ps_envstr;
684	*n = p->ps_nenvstr;
685}
686
687/*
688 * Determine if the proc indicated by p is still active.
689 * This test is not 100% foolproof in theory, but chances of
690 * being wrong are very low.
691 */
692static int
693proc_verify(curkp)
694	struct kinfo_proc *curkp;
695{
696	struct kinfo_proc newkp;
697	int mib[4];
698	size_t len;
699
700	mib[0] = CTL_KERN;
701	mib[1] = KERN_PROC;
702	mib[2] = KERN_PROC_PID;
703	mib[3] = curkp->ki_pid;
704	len = sizeof(newkp);
705	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
706		return (0);
707	return (curkp->ki_pid == newkp.ki_pid &&
708	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
709}
710
711static char **
712kvm_doargv(kd, kp, nchr, info)
713	kvm_t *kd;
714	struct kinfo_proc *kp;
715	int nchr;
716	void (*info)(struct ps_strings *, u_long *, int *);
717{
718	char **ap;
719	u_long addr;
720	int cnt;
721	static struct ps_strings arginfo;
722	static u_long ps_strings;
723	size_t len;
724
725	if (ps_strings == NULL) {
726		len = sizeof(ps_strings);
727		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
728		    0) == -1)
729			ps_strings = PS_STRINGS;
730	}
731
732	/*
733	 * Pointers are stored at the top of the user stack.
734	 */
735	if (kp->ki_stat == SZOMB ||
736	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
737		      sizeof(arginfo)) != sizeof(arginfo))
738		return (0);
739
740	(*info)(&arginfo, &addr, &cnt);
741	if (cnt == 0)
742		return (0);
743	ap = kvm_argv(kd, kp, addr, cnt, nchr);
744	/*
745	 * For live kernels, make sure this process didn't go away.
746	 */
747	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
748		ap = 0;
749	return (ap);
750}
751
752/*
753 * Get the command args.  This code is now machine independent.
754 */
755char **
756kvm_getargv(kd, kp, nchr)
757	kvm_t *kd;
758	const struct kinfo_proc *kp;
759	int nchr;
760{
761	int oid[4];
762	int i;
763	size_t bufsz;
764	static int buflen;
765	static char *buf, *p;
766	static char **bufp;
767	static int argc;
768
769	if (!ISALIVE(kd)) {
770		_kvm_err(kd, kd->program,
771		    "cannot read user space from dead kernel");
772		return (0);
773	}
774
775	if (!buflen) {
776		bufsz = sizeof(buflen);
777		i = sysctlbyname("kern.ps_arg_cache_limit",
778		    &buflen, &bufsz, NULL, 0);
779		if (i == -1) {
780			buflen = 0;
781		} else {
782			buf = malloc(buflen);
783			if (buf == NULL)
784				buflen = 0;
785			argc = 32;
786			bufp = malloc(sizeof(char *) * argc);
787		}
788	}
789	if (buf != NULL) {
790		oid[0] = CTL_KERN;
791		oid[1] = KERN_PROC;
792		oid[2] = KERN_PROC_ARGS;
793		oid[3] = kp->ki_pid;
794		bufsz = buflen;
795		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
796		if (i == 0 && bufsz > 0) {
797			i = 0;
798			p = buf;
799			do {
800				bufp[i++] = p;
801				p += strlen(p) + 1;
802				if (i >= argc) {
803					argc += argc;
804					bufp = realloc(bufp,
805					    sizeof(char *) * argc);
806				}
807			} while (p < buf + bufsz);
808			bufp[i++] = 0;
809			return (bufp);
810		}
811	}
812	if (kp->ki_flag & P_SYSTEM)
813		return (NULL);
814	return (kvm_doargv(kd, kp, nchr, ps_str_a));
815}
816
817char **
818kvm_getenvv(kd, kp, nchr)
819	kvm_t *kd;
820	const struct kinfo_proc *kp;
821	int nchr;
822{
823	return (kvm_doargv(kd, kp, nchr, ps_str_e));
824}
825
826/*
827 * Read from user space.  The user context is given by p.
828 */
829ssize_t
830kvm_uread(kd, kp, uva, buf, len)
831	kvm_t *kd;
832	struct kinfo_proc *kp;
833	register u_long uva;
834	register char *buf;
835	register size_t len;
836{
837	register char *cp;
838	char procfile[MAXPATHLEN];
839	ssize_t amount;
840	int fd;
841
842	if (!ISALIVE(kd)) {
843		_kvm_err(kd, kd->program,
844		    "cannot read user space from dead kernel");
845		return (0);
846	}
847
848	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
849	fd = open(procfile, O_RDONLY, 0);
850	if (fd < 0) {
851		_kvm_err(kd, kd->program, "cannot open %s", procfile);
852		close(fd);
853		return (0);
854	}
855
856	cp = buf;
857	while (len > 0) {
858		errno = 0;
859		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
860			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
861			    uva, procfile);
862			break;
863		}
864		amount = read(fd, cp, len);
865		if (amount < 0) {
866			_kvm_syserr(kd, kd->program, "error reading %s",
867			    procfile);
868			break;
869		}
870		if (amount == 0) {
871			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
872			break;
873		}
874		cp += amount;
875		uva += amount;
876		len -= amount;
877	}
878
879	close(fd);
880	return ((ssize_t)(cp - buf));
881}
882