moduli.c revision 146998
1/* $OpenBSD: moduli.c,v 1.10 2005/01/17 03:25:46 dtucker Exp $ */
2/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 *  Sieve candidates for "safe" primes,
33 *  suitable for use as Diffie-Hellman moduli;
34 *  that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
41#include "xmalloc.h"
42#include "log.h"
43
44#include <openssl/bn.h>
45
46/*
47 * File output defines
48 */
49
50/* need line long enough for largest moduli plus headers */
51#define QLINESIZE		(100+8192)
52
53/* Type: decimal.
54 * Specifies the internal structure of the prime modulus.
55 */
56#define QTYPE_UNKNOWN		(0)
57#define QTYPE_UNSTRUCTURED	(1)
58#define QTYPE_SAFE		(2)
59#define QTYPE_SCHNORR		(3)
60#define QTYPE_SOPHIE_GERMAIN	(4)
61#define QTYPE_STRONG		(5)
62
63/* Tests: decimal (bit field).
64 * Specifies the methods used in checking for primality.
65 * Usually, more than one test is used.
66 */
67#define QTEST_UNTESTED		(0x00)
68#define QTEST_COMPOSITE		(0x01)
69#define QTEST_SIEVE		(0x02)
70#define QTEST_MILLER_RABIN	(0x04)
71#define QTEST_JACOBI		(0x08)
72#define QTEST_ELLIPTIC		(0x10)
73
74/*
75 * Size: decimal.
76 * Specifies the number of the most significant bit (0 to M).
77 * WARNING: internally, usually 1 to N.
78 */
79#define QSIZE_MINIMUM		(511)
80
81/*
82 * Prime sieving defines
83 */
84
85/* Constant: assuming 8 bit bytes and 32 bit words */
86#define SHIFT_BIT	(3)
87#define SHIFT_BYTE	(2)
88#define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
89#define SHIFT_MEGABYTE	(20)
90#define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
91
92/*
93 * Using virtual memory can cause thrashing.  This should be the largest
94 * number that is supported without a large amount of disk activity --
95 * that would increase the run time from hours to days or weeks!
96 */
97#define LARGE_MINIMUM	(8UL)	/* megabytes */
98
99/*
100 * Do not increase this number beyond the unsigned integer bit size.
101 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
102 */
103#define LARGE_MAXIMUM	(127UL)	/* megabytes */
104
105/*
106 * Constant: when used with 32-bit integers, the largest sieve prime
107 * has to be less than 2**32.
108 */
109#define SMALL_MAXIMUM	(0xffffffffUL)
110
111/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
112#define TINY_NUMBER	(1UL<<16)
113
114/* Ensure enough bit space for testing 2*q. */
115#define TEST_MAXIMUM    (1UL<<16)
116#define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
117/* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
118#define TEST_POWER      (3)	/* 2**n, n < SHIFT_WORD */
119
120/* bit operations on 32-bit words */
121#define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
122#define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
123#define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
124
125/*
126 * Prime testing defines
127 */
128
129/* Minimum number of primality tests to perform */
130#define TRIAL_MINIMUM           (4)
131
132/*
133 * Sieving data (XXX - move to struct)
134 */
135
136/* sieve 2**16 */
137static u_int32_t *TinySieve, tinybits;
138
139/* sieve 2**30 in 2**16 parts */
140static u_int32_t *SmallSieve, smallbits, smallbase;
141
142/* sieve relative to the initial value */
143static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
144static u_int32_t largebits, largememory;	/* megabytes */
145static BIGNUM *largebase;
146
147int gen_candidates(FILE *, int, int, BIGNUM *);
148int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
149
150/*
151 * print moduli out in consistent form,
152 */
153static int
154qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
155    u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
156{
157	struct tm *gtm;
158	time_t time_now;
159	int res;
160
161	time(&time_now);
162	gtm = gmtime(&time_now);
163
164	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
165	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
166	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
167	    otype, otests, otries, osize, ogenerator);
168
169	if (res < 0)
170		return (-1);
171
172	if (BN_print_fp(ofile, omodulus) < 1)
173		return (-1);
174
175	res = fprintf(ofile, "\n");
176	fflush(ofile);
177
178	return (res > 0 ? 0 : -1);
179}
180
181
182/*
183 ** Sieve p's and q's with small factors
184 */
185static void
186sieve_large(u_int32_t s)
187{
188	u_int32_t r, u;
189
190	debug3("sieve_large %u", s);
191	largetries++;
192	/* r = largebase mod s */
193	r = BN_mod_word(largebase, s);
194	if (r == 0)
195		u = 0; /* s divides into largebase exactly */
196	else
197		u = s - r; /* largebase+u is first entry divisible by s */
198
199	if (u < largebits * 2) {
200		/*
201		 * The sieve omits p's and q's divisible by 2, so ensure that
202		 * largebase+u is odd. Then, step through the sieve in
203		 * increments of 2*s
204		 */
205		if (u & 0x1)
206			u += s; /* Make largebase+u odd, and u even */
207
208		/* Mark all multiples of 2*s */
209		for (u /= 2; u < largebits; u += s)
210			BIT_SET(LargeSieve, u);
211	}
212
213	/* r = p mod s */
214	r = (2 * r + 1) % s;
215	if (r == 0)
216		u = 0; /* s divides p exactly */
217	else
218		u = s - r; /* p+u is first entry divisible by s */
219
220	if (u < largebits * 4) {
221		/*
222		 * The sieve omits p's divisible by 4, so ensure that
223		 * largebase+u is not. Then, step through the sieve in
224		 * increments of 4*s
225		 */
226		while (u & 0x3) {
227			if (SMALL_MAXIMUM - u < s)
228				return;
229			u += s;
230		}
231
232		/* Mark all multiples of 4*s */
233		for (u /= 4; u < largebits; u += s)
234			BIT_SET(LargeSieve, u);
235	}
236}
237
238/*
239 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
240 * to standard output.
241 * The list is checked against small known primes (less than 2**30).
242 */
243int
244gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
245{
246	BIGNUM *q;
247	u_int32_t j, r, s, t;
248	u_int32_t smallwords = TINY_NUMBER >> 6;
249	u_int32_t tinywords = TINY_NUMBER >> 6;
250	time_t time_start, time_stop;
251	int i, ret = 0;
252
253	largememory = memory;
254
255	if (memory != 0 &&
256	   (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
257		error("Invalid memory amount (min %ld, max %ld)",
258		    LARGE_MINIMUM, LARGE_MAXIMUM);
259		return (-1);
260	}
261
262	/*
263	 * Set power to the length in bits of the prime to be generated.
264	 * This is changed to 1 less than the desired safe prime moduli p.
265	 */
266	if (power > TEST_MAXIMUM) {
267		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
268		return (-1);
269	} else if (power < TEST_MINIMUM) {
270		error("Too few bits: %u < %u", power, TEST_MINIMUM);
271		return (-1);
272	}
273	power--; /* decrement before squaring */
274
275	/*
276	 * The density of ordinary primes is on the order of 1/bits, so the
277	 * density of safe primes should be about (1/bits)**2. Set test range
278	 * to something well above bits**2 to be reasonably sure (but not
279	 * guaranteed) of catching at least one safe prime.
280	 */
281	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
282
283	/*
284	 * Need idea of how much memory is available. We don't have to use all
285	 * of it.
286	 */
287	if (largememory > LARGE_MAXIMUM) {
288		logit("Limited memory: %u MB; limit %lu MB",
289		    largememory, LARGE_MAXIMUM);
290		largememory = LARGE_MAXIMUM;
291	}
292
293	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
294		logit("Increased memory: %u MB; need %u bytes",
295		    largememory, (largewords << SHIFT_BYTE));
296		largewords = (largememory << SHIFT_MEGAWORD);
297	} else if (largememory > 0) {
298		logit("Decreased memory: %u MB; want %u bytes",
299		    largememory, (largewords << SHIFT_BYTE));
300		largewords = (largememory << SHIFT_MEGAWORD);
301	}
302
303	TinySieve = calloc(tinywords, sizeof(u_int32_t));
304	if (TinySieve == NULL) {
305		error("Insufficient memory for tiny sieve: need %u bytes",
306		    tinywords << SHIFT_BYTE);
307		exit(1);
308	}
309	tinybits = tinywords << SHIFT_WORD;
310
311	SmallSieve = calloc(smallwords, sizeof(u_int32_t));
312	if (SmallSieve == NULL) {
313		error("Insufficient memory for small sieve: need %u bytes",
314		    smallwords << SHIFT_BYTE);
315		xfree(TinySieve);
316		exit(1);
317	}
318	smallbits = smallwords << SHIFT_WORD;
319
320	/*
321	 * dynamically determine available memory
322	 */
323	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
324		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
325
326	largebits = largewords << SHIFT_WORD;
327	largenumbers = largebits * 2;	/* even numbers excluded */
328
329	/* validation check: count the number of primes tried */
330	largetries = 0;
331	q = BN_new();
332
333	/*
334	 * Generate random starting point for subprime search, or use
335	 * specified parameter.
336	 */
337	largebase = BN_new();
338	if (start == NULL)
339		BN_rand(largebase, power, 1, 1);
340	else
341		BN_copy(largebase, start);
342
343	/* ensure odd */
344	BN_set_bit(largebase, 0);
345
346	time(&time_start);
347
348	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
349	    largenumbers, power);
350	debug2("start point: 0x%s", BN_bn2hex(largebase));
351
352	/*
353	 * TinySieve
354	 */
355	for (i = 0; i < tinybits; i++) {
356		if (BIT_TEST(TinySieve, i))
357			continue; /* 2*i+3 is composite */
358
359		/* The next tiny prime */
360		t = 2 * i + 3;
361
362		/* Mark all multiples of t */
363		for (j = i + t; j < tinybits; j += t)
364			BIT_SET(TinySieve, j);
365
366		sieve_large(t);
367	}
368
369	/*
370	 * Start the small block search at the next possible prime. To avoid
371	 * fencepost errors, the last pass is skipped.
372	 */
373	for (smallbase = TINY_NUMBER + 3;
374	     smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
375	     smallbase += TINY_NUMBER) {
376		for (i = 0; i < tinybits; i++) {
377			if (BIT_TEST(TinySieve, i))
378				continue; /* 2*i+3 is composite */
379
380			/* The next tiny prime */
381			t = 2 * i + 3;
382			r = smallbase % t;
383
384			if (r == 0) {
385				s = 0; /* t divides into smallbase exactly */
386			} else {
387				/* smallbase+s is first entry divisible by t */
388				s = t - r;
389			}
390
391			/*
392			 * The sieve omits even numbers, so ensure that
393			 * smallbase+s is odd. Then, step through the sieve
394			 * in increments of 2*t
395			 */
396			if (s & 1)
397				s += t; /* Make smallbase+s odd, and s even */
398
399			/* Mark all multiples of 2*t */
400			for (s /= 2; s < smallbits; s += t)
401				BIT_SET(SmallSieve, s);
402		}
403
404		/*
405		 * SmallSieve
406		 */
407		for (i = 0; i < smallbits; i++) {
408			if (BIT_TEST(SmallSieve, i))
409				continue; /* 2*i+smallbase is composite */
410
411			/* The next small prime */
412			sieve_large((2 * i) + smallbase);
413		}
414
415		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
416	}
417
418	time(&time_stop);
419
420	logit("%.24s Sieved with %u small primes in %ld seconds",
421	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
422
423	for (j = r = 0; j < largebits; j++) {
424		if (BIT_TEST(LargeSieve, j))
425			continue; /* Definitely composite, skip */
426
427		debug2("test q = largebase+%u", 2 * j);
428		BN_set_word(q, 2 * j);
429		BN_add(q, q, largebase);
430		if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
431		    largetries, (power - 1) /* MSB */, (0), q) == -1) {
432			ret = -1;
433			break;
434		}
435
436		r++; /* count q */
437	}
438
439	time(&time_stop);
440
441	xfree(LargeSieve);
442	xfree(SmallSieve);
443	xfree(TinySieve);
444
445	logit("%.24s Found %u candidates", ctime(&time_stop), r);
446
447	return (ret);
448}
449
450/*
451 * perform a Miller-Rabin primality test
452 * on the list of candidates
453 * (checking both q and p)
454 * The result is a list of so-call "safe" primes
455 */
456int
457prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
458{
459	BIGNUM *q, *p, *a;
460	BN_CTX *ctx;
461	char *cp, *lp;
462	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
463	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
464	time_t time_start, time_stop;
465	int res;
466
467	if (trials < TRIAL_MINIMUM) {
468		error("Minimum primality trials is %d", TRIAL_MINIMUM);
469		return (-1);
470	}
471
472	time(&time_start);
473
474	p = BN_new();
475	q = BN_new();
476	ctx = BN_CTX_new();
477
478	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
479	    ctime(&time_start), trials, generator_wanted);
480
481	res = 0;
482	lp = xmalloc(QLINESIZE + 1);
483	while (fgets(lp, QLINESIZE, in) != NULL) {
484		int ll = strlen(lp);
485
486		count_in++;
487		if (ll < 14 || *lp == '!' || *lp == '#') {
488			debug2("%10u: comment or short line", count_in);
489			continue;
490		}
491
492		/* XXX - fragile parser */
493		/* time */
494		cp = &lp[14];	/* (skip) */
495
496		/* type */
497		in_type = strtoul(cp, &cp, 10);
498
499		/* tests */
500		in_tests = strtoul(cp, &cp, 10);
501
502		if (in_tests & QTEST_COMPOSITE) {
503			debug2("%10u: known composite", count_in);
504			continue;
505		}
506
507		/* tries */
508		in_tries = strtoul(cp, &cp, 10);
509
510		/* size (most significant bit) */
511		in_size = strtoul(cp, &cp, 10);
512
513		/* generator (hex) */
514		generator_known = strtoul(cp, &cp, 16);
515
516		/* Skip white space */
517		cp += strspn(cp, " ");
518
519		/* modulus (hex) */
520		switch (in_type) {
521		case QTYPE_SOPHIE_GERMAIN:
522			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
523			a = q;
524			BN_hex2bn(&a, cp);
525			/* p = 2*q + 1 */
526			BN_lshift(p, q, 1);
527			BN_add_word(p, 1);
528			in_size += 1;
529			generator_known = 0;
530			break;
531		case QTYPE_UNSTRUCTURED:
532		case QTYPE_SAFE:
533		case QTYPE_SCHNORR:
534		case QTYPE_STRONG:
535		case QTYPE_UNKNOWN:
536			debug2("%10u: (%u)", count_in, in_type);
537			a = p;
538			BN_hex2bn(&a, cp);
539			/* q = (p-1) / 2 */
540			BN_rshift(q, p, 1);
541			break;
542		default:
543			debug2("Unknown prime type");
544			break;
545		}
546
547		/*
548		 * due to earlier inconsistencies in interpretation, check
549		 * the proposed bit size.
550		 */
551		if (BN_num_bits(p) != (in_size + 1)) {
552			debug2("%10u: bit size %u mismatch", count_in, in_size);
553			continue;
554		}
555		if (in_size < QSIZE_MINIMUM) {
556			debug2("%10u: bit size %u too short", count_in, in_size);
557			continue;
558		}
559
560		if (in_tests & QTEST_MILLER_RABIN)
561			in_tries += trials;
562		else
563			in_tries = trials;
564
565		/*
566		 * guess unknown generator
567		 */
568		if (generator_known == 0) {
569			if (BN_mod_word(p, 24) == 11)
570				generator_known = 2;
571			else if (BN_mod_word(p, 12) == 5)
572				generator_known = 3;
573			else {
574				u_int32_t r = BN_mod_word(p, 10);
575
576				if (r == 3 || r == 7)
577					generator_known = 5;
578			}
579		}
580		/*
581		 * skip tests when desired generator doesn't match
582		 */
583		if (generator_wanted > 0 &&
584		    generator_wanted != generator_known) {
585			debug2("%10u: generator %d != %d",
586			    count_in, generator_known, generator_wanted);
587			continue;
588		}
589
590		/*
591		 * Primes with no known generator are useless for DH, so
592		 * skip those.
593		 */
594		if (generator_known == 0) {
595			debug2("%10u: no known generator", count_in);
596			continue;
597		}
598
599		count_possible++;
600
601		/*
602		 * The (1/4)^N performance bound on Miller-Rabin is
603		 * extremely pessimistic, so don't spend a lot of time
604		 * really verifying that q is prime until after we know
605		 * that p is also prime. A single pass will weed out the
606		 * vast majority of composite q's.
607		 */
608		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
609			debug("%10u: q failed first possible prime test",
610			    count_in);
611			continue;
612		}
613
614		/*
615		 * q is possibly prime, so go ahead and really make sure
616		 * that p is prime. If it is, then we can go back and do
617		 * the same for q. If p is composite, chances are that
618		 * will show up on the first Rabin-Miller iteration so it
619		 * doesn't hurt to specify a high iteration count.
620		 */
621		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
622			debug("%10u: p is not prime", count_in);
623			continue;
624		}
625		debug("%10u: p is almost certainly prime", count_in);
626
627		/* recheck q more rigorously */
628		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
629			debug("%10u: q is not prime", count_in);
630			continue;
631		}
632		debug("%10u: q is almost certainly prime", count_in);
633
634		if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
635		    in_tries, in_size, generator_known, p)) {
636			res = -1;
637			break;
638		}
639
640		count_out++;
641	}
642
643	time(&time_stop);
644	xfree(lp);
645	BN_free(p);
646	BN_free(q);
647	BN_CTX_free(ctx);
648
649	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
650	    ctime(&time_stop), count_out, count_possible,
651	    (long) (time_stop - time_start));
652
653	return (res);
654}
655