InstrInfoEmitter.cpp revision 296417
1//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend is responsible for emitting a description of the target
11// instruction set for the code generator.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "CodeGenSchedule.h"
17#include "CodeGenTarget.h"
18#include "SequenceToOffsetTable.h"
19#include "TableGenBackends.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/TableGen/Error.h"
22#include "llvm/TableGen/Record.h"
23#include "llvm/TableGen/TableGenBackend.h"
24#include <algorithm>
25#include <cstdio>
26#include <map>
27#include <vector>
28
29using namespace llvm;
30
31namespace {
32class InstrInfoEmitter {
33  RecordKeeper &Records;
34  CodeGenDAGPatterns CDP;
35  const CodeGenSchedModels &SchedModels;
36
37public:
38  InstrInfoEmitter(RecordKeeper &R):
39    Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
40
41  // run - Output the instruction set description.
42  void run(raw_ostream &OS);
43
44private:
45  void emitEnums(raw_ostream &OS);
46
47  typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
48
49  /// The keys of this map are maps which have OpName enum values as their keys
50  /// and instruction operand indices as their values.  The values of this map
51  /// are lists of instruction names.
52  typedef std::map<std::map<unsigned, unsigned>,
53                   std::vector<std::string> > OpNameMapTy;
54  typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
55  void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
56                  Record *InstrInfo,
57                  std::map<std::vector<Record*>, unsigned> &EL,
58                  const OperandInfoMapTy &OpInfo,
59                  raw_ostream &OS);
60  void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target);
61  void initOperandMapData(
62            const std::vector<const CodeGenInstruction *> &NumberedInstructions,
63            const std::string &Namespace,
64            std::map<std::string, unsigned> &Operands,
65            OpNameMapTy &OperandMap);
66  void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
67            const std::vector<const CodeGenInstruction*> &NumberedInstructions);
68
69  // Operand information.
70  void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
71  std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
72};
73} // end anonymous namespace
74
75static void PrintDefList(const std::vector<Record*> &Uses,
76                         unsigned Num, raw_ostream &OS) {
77  OS << "static const MCPhysReg ImplicitList" << Num << "[] = { ";
78  for (unsigned i = 0, e = Uses.size(); i != e; ++i)
79    OS << getQualifiedName(Uses[i]) << ", ";
80  OS << "0 };\n";
81}
82
83//===----------------------------------------------------------------------===//
84// Operand Info Emission.
85//===----------------------------------------------------------------------===//
86
87std::vector<std::string>
88InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
89  std::vector<std::string> Result;
90
91  for (auto &Op : Inst.Operands) {
92    // Handle aggregate operands and normal operands the same way by expanding
93    // either case into a list of operands for this op.
94    std::vector<CGIOperandList::OperandInfo> OperandList;
95
96    // This might be a multiple operand thing.  Targets like X86 have
97    // registers in their multi-operand operands.  It may also be an anonymous
98    // operand, which has a single operand, but no declared class for the
99    // operand.
100    DagInit *MIOI = Op.MIOperandInfo;
101
102    if (!MIOI || MIOI->getNumArgs() == 0) {
103      // Single, anonymous, operand.
104      OperandList.push_back(Op);
105    } else {
106      for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
107        OperandList.push_back(Op);
108
109        Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
110        OperandList.back().Rec = OpR;
111      }
112    }
113
114    for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
115      Record *OpR = OperandList[j].Rec;
116      std::string Res;
117
118      if (OpR->isSubClassOf("RegisterOperand"))
119        OpR = OpR->getValueAsDef("RegClass");
120      if (OpR->isSubClassOf("RegisterClass"))
121        Res += getQualifiedName(OpR) + "RegClassID, ";
122      else if (OpR->isSubClassOf("PointerLikeRegClass"))
123        Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
124      else
125        // -1 means the operand does not have a fixed register class.
126        Res += "-1, ";
127
128      // Fill in applicable flags.
129      Res += "0";
130
131      // Ptr value whose register class is resolved via callback.
132      if (OpR->isSubClassOf("PointerLikeRegClass"))
133        Res += "|(1<<MCOI::LookupPtrRegClass)";
134
135      // Predicate operands.  Check to see if the original unexpanded operand
136      // was of type PredicateOp.
137      if (Op.Rec->isSubClassOf("PredicateOp"))
138        Res += "|(1<<MCOI::Predicate)";
139
140      // Optional def operands.  Check to see if the original unexpanded operand
141      // was of type OptionalDefOperand.
142      if (Op.Rec->isSubClassOf("OptionalDefOperand"))
143        Res += "|(1<<MCOI::OptionalDef)";
144
145      // Fill in operand type.
146      Res += ", ";
147      assert(!Op.OperandType.empty() && "Invalid operand type.");
148      Res += Op.OperandType;
149
150      // Fill in constraint info.
151      Res += ", ";
152
153      const CGIOperandList::ConstraintInfo &Constraint =
154        Op.Constraints[j];
155      if (Constraint.isNone())
156        Res += "0";
157      else if (Constraint.isEarlyClobber())
158        Res += "(1 << MCOI::EARLY_CLOBBER)";
159      else {
160        assert(Constraint.isTied());
161        Res += "((" + utostr(Constraint.getTiedOperand()) +
162                    " << 16) | (1 << MCOI::TIED_TO))";
163      }
164
165      Result.push_back(Res);
166    }
167  }
168
169  return Result;
170}
171
172void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
173                                       OperandInfoMapTy &OperandInfoIDs) {
174  // ID #0 is for no operand info.
175  unsigned OperandListNum = 0;
176  OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
177
178  OS << "\n";
179  const CodeGenTarget &Target = CDP.getTargetInfo();
180  for (const CodeGenInstruction *Inst : Target.instructions()) {
181    std::vector<std::string> OperandInfo = GetOperandInfo(*Inst);
182    unsigned &N = OperandInfoIDs[OperandInfo];
183    if (N != 0) continue;
184
185    N = ++OperandListNum;
186    OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
187    for (const std::string &Info : OperandInfo)
188      OS << "{ " << Info << " }, ";
189    OS << "};\n";
190  }
191}
192
193/// Initialize data structures for generating operand name mappings.
194///
195/// \param Operands [out] A map used to generate the OpName enum with operand
196///        names as its keys and operand enum values as its values.
197/// \param OperandMap [out] A map for representing the operand name mappings for
198///        each instructions.  This is used to generate the OperandMap table as
199///        well as the getNamedOperandIdx() function.
200void InstrInfoEmitter::initOperandMapData(
201        const std::vector<const CodeGenInstruction *> &NumberedInstructions,
202        const std::string &Namespace,
203        std::map<std::string, unsigned> &Operands,
204        OpNameMapTy &OperandMap) {
205
206  unsigned NumOperands = 0;
207  for (const CodeGenInstruction *Inst : NumberedInstructions) {
208    if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
209      continue;
210    std::map<unsigned, unsigned> OpList;
211    for (const auto &Info : Inst->Operands) {
212      StrUintMapIter I = Operands.find(Info.Name);
213
214      if (I == Operands.end()) {
215        I = Operands.insert(Operands.begin(),
216                    std::pair<std::string, unsigned>(Info.Name, NumOperands++));
217      }
218      OpList[I->second] = Info.MIOperandNo;
219    }
220    OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName());
221  }
222}
223
224/// Generate a table and function for looking up the indices of operands by
225/// name.
226///
227/// This code generates:
228/// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
229///   for each operand name.
230/// - A 2-dimensional table called OperandMap for mapping OpName enum values to
231///   operand indices.
232/// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
233///   for looking up the operand index for an instruction, given a value from
234///   OpName enum
235void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
236           const CodeGenTarget &Target,
237           const std::vector<const CodeGenInstruction*> &NumberedInstructions) {
238
239  const std::string &Namespace = Target.getInstNamespace();
240  std::string OpNameNS = "OpName";
241  // Map of operand names to their enumeration value.  This will be used to
242  // generate the OpName enum.
243  std::map<std::string, unsigned> Operands;
244  OpNameMapTy OperandMap;
245
246  initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
247
248  OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
249  OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
250  OS << "namespace llvm {\n";
251  OS << "namespace " << Namespace << " {\n";
252  OS << "namespace " << OpNameNS << " { \n";
253  OS << "enum {\n";
254  for (const auto &Op : Operands)
255    OS << "  " << Op.first << " = " << Op.second << ",\n";
256
257  OS << "OPERAND_LAST";
258  OS << "\n};\n";
259  OS << "} // end namespace OpName\n";
260  OS << "} // end namespace " << Namespace << "\n";
261  OS << "} // end namespace llvm\n";
262  OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n";
263
264  OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
265  OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
266  OS << "namespace llvm {\n";
267  OS << "namespace " << Namespace << " {\n";
268  OS << "LLVM_READONLY\n";
269  OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
270  if (!Operands.empty()) {
271    OS << "  static const int16_t OperandMap [][" << Operands.size()
272       << "] = {\n";
273    for (const auto &Entry : OperandMap) {
274      const std::map<unsigned, unsigned> &OpList = Entry.first;
275      OS << "{";
276
277      // Emit a row of the OperandMap table
278      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
279        OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
280
281      OS << "},\n";
282    }
283    OS << "};\n";
284
285    OS << "  switch(Opcode) {\n";
286    unsigned TableIndex = 0;
287    for (const auto &Entry : OperandMap) {
288      for (const std::string &Name : Entry.second)
289        OS << "  case " << Name << ":\n";
290
291      OS << "    return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
292    }
293    OS << "    default: return -1;\n";
294    OS << "  }\n";
295  } else {
296    // There are no operands, so no need to emit anything
297    OS << "  return -1;\n";
298  }
299  OS << "}\n";
300  OS << "} // end namespace " << Namespace << "\n";
301  OS << "} // end namespace llvm\n";
302  OS << "#endif //GET_INSTRINFO_NAMED_OPS\n";
303
304}
305
306/// Generate an enum for all the operand types for this target, under the
307/// llvm::TargetNamespace::OpTypes namespace.
308/// Operand types are all definitions derived of the Operand Target.td class.
309void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS,
310                                            const CodeGenTarget &Target) {
311
312  const std::string &Namespace = Target.getInstNamespace();
313  std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
314
315  OS << "\n#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
316  OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
317  OS << "namespace llvm {\n";
318  OS << "namespace " << Namespace << " {\n";
319  OS << "namespace OpTypes { \n";
320  OS << "enum OperandType {\n";
321
322  unsigned EnumVal = 0;
323  for (const Record *Op : Operands) {
324    if (!Op->isAnonymous())
325      OS << "  " << Op->getName() << " = " << EnumVal << ",\n";
326    ++EnumVal;
327  }
328
329  OS << "  OPERAND_TYPE_LIST_END" << "\n};\n";
330  OS << "} // end namespace OpTypes\n";
331  OS << "} // end namespace " << Namespace << "\n";
332  OS << "} // end namespace llvm\n";
333  OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
334}
335
336//===----------------------------------------------------------------------===//
337// Main Output.
338//===----------------------------------------------------------------------===//
339
340// run - Emit the main instruction description records for the target...
341void InstrInfoEmitter::run(raw_ostream &OS) {
342  emitSourceFileHeader("Target Instruction Enum Values", OS);
343  emitEnums(OS);
344
345  emitSourceFileHeader("Target Instruction Descriptors", OS);
346
347  OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n";
348  OS << "#undef GET_INSTRINFO_MC_DESC\n";
349
350  OS << "namespace llvm {\n\n";
351
352  CodeGenTarget &Target = CDP.getTargetInfo();
353  const std::string &TargetName = Target.getName();
354  Record *InstrInfo = Target.getInstructionSet();
355
356  // Keep track of all of the def lists we have emitted already.
357  std::map<std::vector<Record*>, unsigned> EmittedLists;
358  unsigned ListNumber = 0;
359
360  // Emit all of the instruction's implicit uses and defs.
361  for (const CodeGenInstruction *II : Target.instructions()) {
362    Record *Inst = II->TheDef;
363    std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
364    if (!Uses.empty()) {
365      unsigned &IL = EmittedLists[Uses];
366      if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
367    }
368    std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
369    if (!Defs.empty()) {
370      unsigned &IL = EmittedLists[Defs];
371      if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
372    }
373  }
374
375  OperandInfoMapTy OperandInfoIDs;
376
377  // Emit all of the operand info records.
378  EmitOperandInfo(OS, OperandInfoIDs);
379
380  // Emit all of the MCInstrDesc records in their ENUM ordering.
381  //
382  OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
383  const std::vector<const CodeGenInstruction*> &NumberedInstructions =
384    Target.getInstructionsByEnumValue();
385
386  SequenceToOffsetTable<std::string> InstrNames;
387  unsigned Num = 0;
388  for (const CodeGenInstruction *Inst : NumberedInstructions) {
389    // Keep a list of the instruction names.
390    InstrNames.add(Inst->TheDef->getName());
391    // Emit the record into the table.
392    emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS);
393  }
394  OS << "};\n\n";
395
396  // Emit the array of instruction names.
397  InstrNames.layout();
398  OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
399  InstrNames.emit(OS, printChar);
400  OS << "};\n\n";
401
402  OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
403  Num = 0;
404  for (const CodeGenInstruction *Inst : NumberedInstructions) {
405    // Newline every eight entries.
406    if (Num % 8 == 0)
407      OS << "\n    ";
408    OS << InstrNames.get(Inst->TheDef->getName()) << "U, ";
409    ++Num;
410  }
411
412  OS << "\n};\n\n";
413
414  // MCInstrInfo initialization routine.
415  OS << "static inline void Init" << TargetName
416     << "MCInstrInfo(MCInstrInfo *II) {\n";
417  OS << "  II->InitMCInstrInfo(" << TargetName << "Insts, "
418     << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
419     << NumberedInstructions.size() << ");\n}\n\n";
420
421  OS << "} // end llvm namespace \n";
422
423  OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
424
425  // Create a TargetInstrInfo subclass to hide the MC layer initialization.
426  OS << "\n#ifdef GET_INSTRINFO_HEADER\n";
427  OS << "#undef GET_INSTRINFO_HEADER\n";
428
429  std::string ClassName = TargetName + "GenInstrInfo";
430  OS << "namespace llvm {\n";
431  OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
432     << "  explicit " << ClassName
433     << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1, int CatchRetOpcode = -1);\n"
434     << "  ~" << ClassName << "() override {}\n"
435     << "};\n";
436  OS << "} // end llvm namespace \n";
437
438  OS << "#endif // GET_INSTRINFO_HEADER\n\n";
439
440  OS << "\n#ifdef GET_INSTRINFO_CTOR_DTOR\n";
441  OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
442
443  OS << "namespace llvm {\n";
444  OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
445  OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
446  OS << "extern const char " << TargetName << "InstrNameData[];\n";
447  OS << ClassName << "::" << ClassName
448     << "(int CFSetupOpcode, int CFDestroyOpcode, int CatchRetOpcode)\n"
449     << "  : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode) {\n"
450     << "  InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
451     << "InstrNameIndices, " << TargetName << "InstrNameData, "
452     << NumberedInstructions.size() << ");\n}\n";
453  OS << "} // end llvm namespace \n";
454
455  OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
456
457  emitOperandNameMappings(OS, Target, NumberedInstructions);
458
459  emitOperandTypesEnum(OS, Target);
460}
461
462void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
463                                  Record *InstrInfo,
464                         std::map<std::vector<Record*>, unsigned> &EmittedLists,
465                                  const OperandInfoMapTy &OpInfo,
466                                  raw_ostream &OS) {
467  int MinOperands = 0;
468  if (!Inst.Operands.empty())
469    // Each logical operand can be multiple MI operands.
470    MinOperands = Inst.Operands.back().MIOperandNo +
471                  Inst.Operands.back().MINumOperands;
472
473  OS << "  { ";
474  OS << Num << ",\t" << MinOperands << ",\t"
475     << Inst.Operands.NumDefs << ",\t"
476     << Inst.TheDef->getValueAsInt("Size") << ",\t"
477     << SchedModels.getSchedClassIdx(Inst) << ",\t0";
478
479  // Emit all of the target independent flags...
480  if (Inst.isPseudo)           OS << "|(1ULL<<MCID::Pseudo)";
481  if (Inst.isReturn)           OS << "|(1ULL<<MCID::Return)";
482  if (Inst.isBranch)           OS << "|(1ULL<<MCID::Branch)";
483  if (Inst.isIndirectBranch)   OS << "|(1ULL<<MCID::IndirectBranch)";
484  if (Inst.isCompare)          OS << "|(1ULL<<MCID::Compare)";
485  if (Inst.isMoveImm)          OS << "|(1ULL<<MCID::MoveImm)";
486  if (Inst.isBitcast)          OS << "|(1ULL<<MCID::Bitcast)";
487  if (Inst.isSelect)           OS << "|(1ULL<<MCID::Select)";
488  if (Inst.isBarrier)          OS << "|(1ULL<<MCID::Barrier)";
489  if (Inst.hasDelaySlot)       OS << "|(1ULL<<MCID::DelaySlot)";
490  if (Inst.isCall)             OS << "|(1ULL<<MCID::Call)";
491  if (Inst.canFoldAsLoad)      OS << "|(1ULL<<MCID::FoldableAsLoad)";
492  if (Inst.mayLoad)            OS << "|(1ULL<<MCID::MayLoad)";
493  if (Inst.mayStore)           OS << "|(1ULL<<MCID::MayStore)";
494  if (Inst.isPredicable)       OS << "|(1ULL<<MCID::Predicable)";
495  if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
496  if (Inst.isCommutable)       OS << "|(1ULL<<MCID::Commutable)";
497  if (Inst.isTerminator)       OS << "|(1ULL<<MCID::Terminator)";
498  if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
499  if (Inst.isNotDuplicable)    OS << "|(1ULL<<MCID::NotDuplicable)";
500  if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
501  if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
502  if (Inst.hasPostISelHook)    OS << "|(1ULL<<MCID::HasPostISelHook)";
503  if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
504  if (Inst.hasSideEffects)     OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
505  if (Inst.isAsCheapAsAMove)   OS << "|(1ULL<<MCID::CheapAsAMove)";
506  if (Inst.hasExtraSrcRegAllocReq) OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
507  if (Inst.hasExtraDefRegAllocReq) OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
508  if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
509  if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
510  if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
511  if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
512
513  // Emit all of the target-specific flags...
514  BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
515  if (!TSF)
516    PrintFatalError("no TSFlags?");
517  uint64_t Value = 0;
518  for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
519    if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
520      Value |= uint64_t(Bit->getValue()) << i;
521    else
522      PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
523  }
524  OS << ", 0x";
525  OS.write_hex(Value);
526  OS << "ULL, ";
527
528  // Emit the implicit uses and defs lists...
529  std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
530  if (UseList.empty())
531    OS << "nullptr, ";
532  else
533    OS << "ImplicitList" << EmittedLists[UseList] << ", ";
534
535  std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
536  if (DefList.empty())
537    OS << "nullptr, ";
538  else
539    OS << "ImplicitList" << EmittedLists[DefList] << ", ";
540
541  // Emit the operand info.
542  std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
543  if (OperandInfo.empty())
544    OS << "nullptr";
545  else
546    OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
547
548  CodeGenTarget &Target = CDP.getTargetInfo();
549  if (Inst.HasComplexDeprecationPredicate)
550    // Emit a function pointer to the complex predicate method.
551    OS << ", -1 "
552       << ",&get" << Inst.DeprecatedReason << "DeprecationInfo";
553  else if (!Inst.DeprecatedReason.empty())
554    // Emit the Subtarget feature.
555    OS << ", " << Target.getInstNamespace() << "::" << Inst.DeprecatedReason
556       << " ,nullptr";
557  else
558    // Instruction isn't deprecated.
559    OS << ", -1 ,nullptr";
560
561  OS << " },  // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
562}
563
564// emitEnums - Print out enum values for all of the instructions.
565void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
566
567  OS << "\n#ifdef GET_INSTRINFO_ENUM\n";
568  OS << "#undef GET_INSTRINFO_ENUM\n";
569
570  OS << "namespace llvm {\n\n";
571
572  CodeGenTarget Target(Records);
573
574  // We must emit the PHI opcode first...
575  std::string Namespace = Target.getInstNamespace();
576
577  if (Namespace.empty())
578    PrintFatalError("No instructions defined!");
579
580  const std::vector<const CodeGenInstruction*> &NumberedInstructions =
581    Target.getInstructionsByEnumValue();
582
583  OS << "namespace " << Namespace << " {\n";
584  OS << "  enum {\n";
585  unsigned Num = 0;
586  for (const CodeGenInstruction *Inst : NumberedInstructions)
587    OS << "    " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
588  OS << "    INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n";
589  OS << "  };\n\n";
590  OS << "namespace Sched {\n";
591  OS << "  enum {\n";
592  Num = 0;
593  for (const auto &Class : SchedModels.explicit_classes())
594    OS << "    " << Class.Name << "\t= " << Num++ << ",\n";
595  OS << "    SCHED_LIST_END = " << SchedModels.numInstrSchedClasses() << "\n";
596  OS << "  };\n";
597  OS << "} // end Sched namespace\n";
598  OS << "} // end " << Namespace << " namespace\n";
599  OS << "} // end llvm namespace \n";
600
601  OS << "#endif // GET_INSTRINFO_ENUM\n\n";
602}
603
604namespace llvm {
605
606void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
607  InstrInfoEmitter(RK).run(OS);
608  EmitMapTable(RK, OS);
609}
610
611} // end llvm namespace
612