NeonEmitter.cpp revision 302408
1//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend is responsible for emitting arm_neon.h, which includes
11// a declaration and definition of each function specified by the ARM NEON
12// compiler interface.  See ARM document DUI0348B.
13//
14// Each NEON instruction is implemented in terms of 1 or more functions which
15// are suffixed with the element type of the input vectors.  Functions may be
16// implemented in terms of generic vector operations such as +, *, -, etc. or
17// by calling a __builtin_-prefixed function which will be handled by clang's
18// CodeGen library.
19//
20// Additional validation code can be generated by this file when runHeader() is
21// called, rather than the normal run() entry point.
22//
23// See also the documentation in include/clang/Basic/arm_neon.td.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/ADT/StringMap.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/TableGen/Error.h"
35#include "llvm/TableGen/Record.h"
36#include "llvm/TableGen/SetTheory.h"
37#include "llvm/TableGen/TableGenBackend.h"
38#include <algorithm>
39#include <deque>
40#include <map>
41#include <sstream>
42#include <string>
43#include <vector>
44using namespace llvm;
45
46namespace {
47
48// While globals are generally bad, this one allows us to perform assertions
49// liberally and somehow still trace them back to the def they indirectly
50// came from.
51static Record *CurrentRecord = nullptr;
52static void assert_with_loc(bool Assertion, const std::string &Str) {
53  if (!Assertion) {
54    if (CurrentRecord)
55      PrintFatalError(CurrentRecord->getLoc(), Str);
56    else
57      PrintFatalError(Str);
58  }
59}
60
61enum ClassKind {
62  ClassNone,
63  ClassI,     // generic integer instruction, e.g., "i8" suffix
64  ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
65  ClassW,     // width-specific instruction, e.g., "8" suffix
66  ClassB,     // bitcast arguments with enum argument to specify type
67  ClassL,     // Logical instructions which are op instructions
68              // but we need to not emit any suffix for in our
69              // tests.
70  ClassNoTest // Instructions which we do not test since they are
71              // not TRUE instructions.
72};
73
74/// NeonTypeFlags - Flags to identify the types for overloaded Neon
75/// builtins.  These must be kept in sync with the flags in
76/// include/clang/Basic/TargetBuiltins.h.
77namespace NeonTypeFlags {
78enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
79
80enum EltType {
81  Int8,
82  Int16,
83  Int32,
84  Int64,
85  Poly8,
86  Poly16,
87  Poly64,
88  Poly128,
89  Float16,
90  Float32,
91  Float64
92};
93}
94
95class Intrinsic;
96class NeonEmitter;
97class Type;
98class Variable;
99
100//===----------------------------------------------------------------------===//
101// TypeSpec
102//===----------------------------------------------------------------------===//
103
104/// A TypeSpec is just a simple wrapper around a string, but gets its own type
105/// for strong typing purposes.
106///
107/// A TypeSpec can be used to create a type.
108class TypeSpec : public std::string {
109public:
110  static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
111    std::vector<TypeSpec> Ret;
112    TypeSpec Acc;
113    for (char I : Str.str()) {
114      if (islower(I)) {
115        Acc.push_back(I);
116        Ret.push_back(TypeSpec(Acc));
117        Acc.clear();
118      } else {
119        Acc.push_back(I);
120      }
121    }
122    return Ret;
123  }
124};
125
126//===----------------------------------------------------------------------===//
127// Type
128//===----------------------------------------------------------------------===//
129
130/// A Type. Not much more to say here.
131class Type {
132private:
133  TypeSpec TS;
134
135  bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
136  // ScalarForMangling and NoManglingQ are really not suited to live here as
137  // they are not related to the type. But they live in the TypeSpec (not the
138  // prototype), so this is really the only place to store them.
139  bool ScalarForMangling, NoManglingQ;
140  unsigned Bitwidth, ElementBitwidth, NumVectors;
141
142public:
143  Type()
144      : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
145        Constant(false), Pointer(false), ScalarForMangling(false),
146        NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
147
148  Type(TypeSpec TS, char CharMod)
149      : TS(TS), Float(false), Signed(false), Immediate(false), Void(false),
150        Poly(false), Constant(false), Pointer(false), ScalarForMangling(false),
151        NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
152    applyModifier(CharMod);
153  }
154
155  /// Returns a type representing "void".
156  static Type getVoid() { return Type(); }
157
158  bool operator==(const Type &Other) const { return str() == Other.str(); }
159  bool operator!=(const Type &Other) const { return !operator==(Other); }
160
161  //
162  // Query functions
163  //
164  bool isScalarForMangling() const { return ScalarForMangling; }
165  bool noManglingQ() const { return NoManglingQ; }
166
167  bool isPointer() const { return Pointer; }
168  bool isFloating() const { return Float; }
169  bool isInteger() const { return !Float && !Poly; }
170  bool isSigned() const { return Signed; }
171  bool isImmediate() const { return Immediate; }
172  bool isScalar() const { return NumVectors == 0; }
173  bool isVector() const { return NumVectors > 0; }
174  bool isFloat() const { return Float && ElementBitwidth == 32; }
175  bool isDouble() const { return Float && ElementBitwidth == 64; }
176  bool isHalf() const { return Float && ElementBitwidth == 16; }
177  bool isPoly() const { return Poly; }
178  bool isChar() const { return ElementBitwidth == 8; }
179  bool isShort() const { return !Float && ElementBitwidth == 16; }
180  bool isInt() const { return !Float && ElementBitwidth == 32; }
181  bool isLong() const { return !Float && ElementBitwidth == 64; }
182  bool isVoid() const { return Void; }
183  unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
184  unsigned getSizeInBits() const { return Bitwidth; }
185  unsigned getElementSizeInBits() const { return ElementBitwidth; }
186  unsigned getNumVectors() const { return NumVectors; }
187
188  //
189  // Mutator functions
190  //
191  void makeUnsigned() { Signed = false; }
192  void makeSigned() { Signed = true; }
193  void makeInteger(unsigned ElemWidth, bool Sign) {
194    Float = false;
195    Poly = false;
196    Signed = Sign;
197    Immediate = false;
198    ElementBitwidth = ElemWidth;
199  }
200  void makeImmediate(unsigned ElemWidth) {
201    Float = false;
202    Poly = false;
203    Signed = true;
204    Immediate = true;
205    ElementBitwidth = ElemWidth;
206  }
207  void makeScalar() {
208    Bitwidth = ElementBitwidth;
209    NumVectors = 0;
210  }
211  void makeOneVector() {
212    assert(isVector());
213    NumVectors = 1;
214  }
215  void doubleLanes() {
216    assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
217    Bitwidth = 128;
218  }
219  void halveLanes() {
220    assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
221    Bitwidth = 64;
222  }
223
224  /// Return the C string representation of a type, which is the typename
225  /// defined in stdint.h or arm_neon.h.
226  std::string str() const;
227
228  /// Return the string representation of a type, which is an encoded
229  /// string for passing to the BUILTIN() macro in Builtins.def.
230  std::string builtin_str() const;
231
232  /// Return the value in NeonTypeFlags for this type.
233  unsigned getNeonEnum() const;
234
235  /// Parse a type from a stdint.h or arm_neon.h typedef name,
236  /// for example uint32x2_t or int64_t.
237  static Type fromTypedefName(StringRef Name);
238
239private:
240  /// Creates the type based on the typespec string in TS.
241  /// Sets "Quad" to true if the "Q" or "H" modifiers were
242  /// seen. This is needed by applyModifier as some modifiers
243  /// only take effect if the type size was changed by "Q" or "H".
244  void applyTypespec(bool &Quad);
245  /// Applies a prototype modifier to the type.
246  void applyModifier(char Mod);
247};
248
249//===----------------------------------------------------------------------===//
250// Variable
251//===----------------------------------------------------------------------===//
252
253/// A variable is a simple class that just has a type and a name.
254class Variable {
255  Type T;
256  std::string N;
257
258public:
259  Variable() : T(Type::getVoid()), N("") {}
260  Variable(Type T, std::string N) : T(T), N(N) {}
261
262  Type getType() const { return T; }
263  std::string getName() const { return "__" + N; }
264};
265
266//===----------------------------------------------------------------------===//
267// Intrinsic
268//===----------------------------------------------------------------------===//
269
270/// The main grunt class. This represents an instantiation of an intrinsic with
271/// a particular typespec and prototype.
272class Intrinsic {
273  friend class DagEmitter;
274
275  /// The Record this intrinsic was created from.
276  Record *R;
277  /// The unmangled name and prototype.
278  std::string Name, Proto;
279  /// The input and output typespecs. InTS == OutTS except when
280  /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
281  TypeSpec OutTS, InTS;
282  /// The base class kind. Most intrinsics use ClassS, which has full type
283  /// info for integers (s32/u32). Some use ClassI, which doesn't care about
284  /// signedness (i32), while some (ClassB) have no type at all, only a width
285  /// (32).
286  ClassKind CK;
287  /// The list of DAGs for the body. May be empty, in which case we should
288  /// emit a builtin call.
289  ListInit *Body;
290  /// The architectural #ifdef guard.
291  std::string Guard;
292  /// Set if the Unvailable bit is 1. This means we don't generate a body,
293  /// just an "unavailable" attribute on a declaration.
294  bool IsUnavailable;
295  /// Is this intrinsic safe for big-endian? or does it need its arguments
296  /// reversing?
297  bool BigEndianSafe;
298
299  /// The types of return value [0] and parameters [1..].
300  std::vector<Type> Types;
301  /// The local variables defined.
302  std::map<std::string, Variable> Variables;
303  /// NeededEarly - set if any other intrinsic depends on this intrinsic.
304  bool NeededEarly;
305  /// UseMacro - set if we should implement using a macro or unset for a
306  ///            function.
307  bool UseMacro;
308  /// The set of intrinsics that this intrinsic uses/requires.
309  std::set<Intrinsic *> Dependencies;
310  /// The "base type", which is Type('d', OutTS). InBaseType is only
311  /// different if CartesianProductOfTypes = 1 (for vreinterpret).
312  Type BaseType, InBaseType;
313  /// The return variable.
314  Variable RetVar;
315  /// A postfix to apply to every variable. Defaults to "".
316  std::string VariablePostfix;
317
318  NeonEmitter &Emitter;
319  std::stringstream OS;
320
321public:
322  Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
323            TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
324            StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
325      : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
326        CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
327        BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
328        BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
329    // If this builtin takes an immediate argument, we need to #define it rather
330    // than use a standard declaration, so that SemaChecking can range check
331    // the immediate passed by the user.
332    if (Proto.find('i') != std::string::npos)
333      UseMacro = true;
334
335    // Pointer arguments need to use macros to avoid hiding aligned attributes
336    // from the pointer type.
337    if (Proto.find('p') != std::string::npos ||
338        Proto.find('c') != std::string::npos)
339      UseMacro = true;
340
341    // It is not permitted to pass or return an __fp16 by value, so intrinsics
342    // taking a scalar float16_t must be implemented as macros.
343    if (OutTS.find('h') != std::string::npos &&
344        Proto.find('s') != std::string::npos)
345      UseMacro = true;
346
347    // Modify the TypeSpec per-argument to get a concrete Type, and create
348    // known variables for each.
349    // Types[0] is the return value.
350    Types.emplace_back(OutTS, Proto[0]);
351    for (unsigned I = 1; I < Proto.size(); ++I)
352      Types.emplace_back(InTS, Proto[I]);
353  }
354
355  /// Get the Record that this intrinsic is based off.
356  Record *getRecord() const { return R; }
357  /// Get the set of Intrinsics that this intrinsic calls.
358  /// this is the set of immediate dependencies, NOT the
359  /// transitive closure.
360  const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
361  /// Get the architectural guard string (#ifdef).
362  std::string getGuard() const { return Guard; }
363  /// Get the non-mangled name.
364  std::string getName() const { return Name; }
365
366  /// Return true if the intrinsic takes an immediate operand.
367  bool hasImmediate() const {
368    return Proto.find('i') != std::string::npos;
369  }
370  /// Return the parameter index of the immediate operand.
371  unsigned getImmediateIdx() const {
372    assert(hasImmediate());
373    unsigned Idx = Proto.find('i');
374    assert(Idx > 0 && "Can't return an immediate!");
375    return Idx - 1;
376  }
377
378  /// Return true if the intrinsic takes an splat operand.
379  bool hasSplat() const { return Proto.find('a') != std::string::npos; }
380  /// Return the parameter index of the splat operand.
381  unsigned getSplatIdx() const {
382    assert(hasSplat());
383    unsigned Idx = Proto.find('a');
384    assert(Idx > 0 && "Can't return a splat!");
385    return Idx - 1;
386  }
387
388  unsigned getNumParams() const { return Proto.size() - 1; }
389  Type getReturnType() const { return Types[0]; }
390  Type getParamType(unsigned I) const { return Types[I + 1]; }
391  Type getBaseType() const { return BaseType; }
392  /// Return the raw prototype string.
393  std::string getProto() const { return Proto; }
394
395  /// Return true if the prototype has a scalar argument.
396  /// This does not return true for the "splat" code ('a').
397  bool protoHasScalar() const;
398
399  /// Return the index that parameter PIndex will sit at
400  /// in a generated function call. This is often just PIndex,
401  /// but may not be as things such as multiple-vector operands
402  /// and sret parameters need to be taken into accont.
403  unsigned getGeneratedParamIdx(unsigned PIndex) {
404    unsigned Idx = 0;
405    if (getReturnType().getNumVectors() > 1)
406      // Multiple vectors are passed as sret.
407      ++Idx;
408
409    for (unsigned I = 0; I < PIndex; ++I)
410      Idx += std::max(1U, getParamType(I).getNumVectors());
411
412    return Idx;
413  }
414
415  bool hasBody() const { return Body && Body->getValues().size() > 0; }
416
417  void setNeededEarly() { NeededEarly = true; }
418
419  bool operator<(const Intrinsic &Other) const {
420    // Sort lexicographically on a two-tuple (Guard, Name)
421    if (Guard != Other.Guard)
422      return Guard < Other.Guard;
423    return Name < Other.Name;
424  }
425
426  ClassKind getClassKind(bool UseClassBIfScalar = false) {
427    if (UseClassBIfScalar && !protoHasScalar())
428      return ClassB;
429    return CK;
430  }
431
432  /// Return the name, mangled with type information.
433  /// If ForceClassS is true, use ClassS (u32/s32) instead
434  /// of the intrinsic's own type class.
435  std::string getMangledName(bool ForceClassS = false) const;
436  /// Return the type code for a builtin function call.
437  std::string getInstTypeCode(Type T, ClassKind CK) const;
438  /// Return the type string for a BUILTIN() macro in Builtins.def.
439  std::string getBuiltinTypeStr();
440
441  /// Generate the intrinsic, returning code.
442  std::string generate();
443  /// Perform type checking and populate the dependency graph, but
444  /// don't generate code yet.
445  void indexBody();
446
447private:
448  std::string mangleName(std::string Name, ClassKind CK) const;
449
450  void initVariables();
451  std::string replaceParamsIn(std::string S);
452
453  void emitBodyAsBuiltinCall();
454
455  void generateImpl(bool ReverseArguments,
456                    StringRef NamePrefix, StringRef CallPrefix);
457  void emitReturn();
458  void emitBody(StringRef CallPrefix);
459  void emitShadowedArgs();
460  void emitArgumentReversal();
461  void emitReturnReversal();
462  void emitReverseVariable(Variable &Dest, Variable &Src);
463  void emitNewLine();
464  void emitClosingBrace();
465  void emitOpeningBrace();
466  void emitPrototype(StringRef NamePrefix);
467
468  class DagEmitter {
469    Intrinsic &Intr;
470    StringRef CallPrefix;
471
472  public:
473    DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
474      Intr(Intr), CallPrefix(CallPrefix) {
475    }
476    std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
477    std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
478    std::pair<Type, std::string> emitDagSplat(DagInit *DI);
479    std::pair<Type, std::string> emitDagDup(DagInit *DI);
480    std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
481    std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
482    std::pair<Type, std::string> emitDagCall(DagInit *DI);
483    std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
484    std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
485    std::pair<Type, std::string> emitDagOp(DagInit *DI);
486    std::pair<Type, std::string> emitDag(DagInit *DI);
487  };
488
489};
490
491//===----------------------------------------------------------------------===//
492// NeonEmitter
493//===----------------------------------------------------------------------===//
494
495class NeonEmitter {
496  RecordKeeper &Records;
497  DenseMap<Record *, ClassKind> ClassMap;
498  std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
499  unsigned UniqueNumber;
500
501  void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
502  void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
503  void genOverloadTypeCheckCode(raw_ostream &OS,
504                                SmallVectorImpl<Intrinsic *> &Defs);
505  void genIntrinsicRangeCheckCode(raw_ostream &OS,
506                                  SmallVectorImpl<Intrinsic *> &Defs);
507
508public:
509  /// Called by Intrinsic - this attempts to get an intrinsic that takes
510  /// the given types as arguments.
511  Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
512
513  /// Called by Intrinsic - returns a globally-unique number.
514  unsigned getUniqueNumber() { return UniqueNumber++; }
515
516  NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
517    Record *SI = R.getClass("SInst");
518    Record *II = R.getClass("IInst");
519    Record *WI = R.getClass("WInst");
520    Record *SOpI = R.getClass("SOpInst");
521    Record *IOpI = R.getClass("IOpInst");
522    Record *WOpI = R.getClass("WOpInst");
523    Record *LOpI = R.getClass("LOpInst");
524    Record *NoTestOpI = R.getClass("NoTestOpInst");
525
526    ClassMap[SI] = ClassS;
527    ClassMap[II] = ClassI;
528    ClassMap[WI] = ClassW;
529    ClassMap[SOpI] = ClassS;
530    ClassMap[IOpI] = ClassI;
531    ClassMap[WOpI] = ClassW;
532    ClassMap[LOpI] = ClassL;
533    ClassMap[NoTestOpI] = ClassNoTest;
534  }
535
536  // run - Emit arm_neon.h.inc
537  void run(raw_ostream &o);
538
539  // runHeader - Emit all the __builtin prototypes used in arm_neon.h
540  void runHeader(raw_ostream &o);
541
542  // runTests - Emit tests for all the Neon intrinsics.
543  void runTests(raw_ostream &o);
544};
545
546} // end anonymous namespace
547
548//===----------------------------------------------------------------------===//
549// Type implementation
550//===----------------------------------------------------------------------===//
551
552std::string Type::str() const {
553  if (Void)
554    return "void";
555  std::string S;
556
557  if (!Signed && isInteger())
558    S += "u";
559
560  if (Poly)
561    S += "poly";
562  else if (Float)
563    S += "float";
564  else
565    S += "int";
566
567  S += utostr(ElementBitwidth);
568  if (isVector())
569    S += "x" + utostr(getNumElements());
570  if (NumVectors > 1)
571    S += "x" + utostr(NumVectors);
572  S += "_t";
573
574  if (Constant)
575    S += " const";
576  if (Pointer)
577    S += " *";
578
579  return S;
580}
581
582std::string Type::builtin_str() const {
583  std::string S;
584  if (isVoid())
585    return "v";
586
587  if (Pointer)
588    // All pointers are void pointers.
589    S += "v";
590  else if (isInteger())
591    switch (ElementBitwidth) {
592    case 8: S += "c"; break;
593    case 16: S += "s"; break;
594    case 32: S += "i"; break;
595    case 64: S += "Wi"; break;
596    case 128: S += "LLLi"; break;
597    default: llvm_unreachable("Unhandled case!");
598    }
599  else
600    switch (ElementBitwidth) {
601    case 16: S += "h"; break;
602    case 32: S += "f"; break;
603    case 64: S += "d"; break;
604    default: llvm_unreachable("Unhandled case!");
605    }
606
607  if (isChar() && !Pointer)
608    // Make chars explicitly signed.
609    S = "S" + S;
610  else if (isInteger() && !Pointer && !Signed)
611    S = "U" + S;
612
613  // Constant indices are "int", but have the "constant expression" modifier.
614  if (isImmediate()) {
615    assert(isInteger() && isSigned());
616    S = "I" + S;
617  }
618
619  if (isScalar()) {
620    if (Constant) S += "C";
621    if (Pointer) S += "*";
622    return S;
623  }
624
625  std::string Ret;
626  for (unsigned I = 0; I < NumVectors; ++I)
627    Ret += "V" + utostr(getNumElements()) + S;
628
629  return Ret;
630}
631
632unsigned Type::getNeonEnum() const {
633  unsigned Addend;
634  switch (ElementBitwidth) {
635  case 8: Addend = 0; break;
636  case 16: Addend = 1; break;
637  case 32: Addend = 2; break;
638  case 64: Addend = 3; break;
639  case 128: Addend = 4; break;
640  default: llvm_unreachable("Unhandled element bitwidth!");
641  }
642
643  unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
644  if (Poly) {
645    // Adjustment needed because Poly32 doesn't exist.
646    if (Addend >= 2)
647      --Addend;
648    Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
649  }
650  if (Float) {
651    assert(Addend != 0 && "Float8 doesn't exist!");
652    Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
653  }
654
655  if (Bitwidth == 128)
656    Base |= (unsigned)NeonTypeFlags::QuadFlag;
657  if (isInteger() && !Signed)
658    Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
659
660  return Base;
661}
662
663Type Type::fromTypedefName(StringRef Name) {
664  Type T;
665  T.Void = false;
666  T.Float = false;
667  T.Poly = false;
668
669  if (Name.front() == 'u') {
670    T.Signed = false;
671    Name = Name.drop_front();
672  } else {
673    T.Signed = true;
674  }
675
676  if (Name.startswith("float")) {
677    T.Float = true;
678    Name = Name.drop_front(5);
679  } else if (Name.startswith("poly")) {
680    T.Poly = true;
681    Name = Name.drop_front(4);
682  } else {
683    assert(Name.startswith("int"));
684    Name = Name.drop_front(3);
685  }
686
687  unsigned I = 0;
688  for (I = 0; I < Name.size(); ++I) {
689    if (!isdigit(Name[I]))
690      break;
691  }
692  Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
693  Name = Name.drop_front(I);
694
695  T.Bitwidth = T.ElementBitwidth;
696  T.NumVectors = 1;
697
698  if (Name.front() == 'x') {
699    Name = Name.drop_front();
700    unsigned I = 0;
701    for (I = 0; I < Name.size(); ++I) {
702      if (!isdigit(Name[I]))
703        break;
704    }
705    unsigned NumLanes;
706    Name.substr(0, I).getAsInteger(10, NumLanes);
707    Name = Name.drop_front(I);
708    T.Bitwidth = T.ElementBitwidth * NumLanes;
709  } else {
710    // Was scalar.
711    T.NumVectors = 0;
712  }
713  if (Name.front() == 'x') {
714    Name = Name.drop_front();
715    unsigned I = 0;
716    for (I = 0; I < Name.size(); ++I) {
717      if (!isdigit(Name[I]))
718        break;
719    }
720    Name.substr(0, I).getAsInteger(10, T.NumVectors);
721    Name = Name.drop_front(I);
722  }
723
724  assert(Name.startswith("_t") && "Malformed typedef!");
725  return T;
726}
727
728void Type::applyTypespec(bool &Quad) {
729  std::string S = TS;
730  ScalarForMangling = false;
731  Void = false;
732  Poly = Float = false;
733  ElementBitwidth = ~0U;
734  Signed = true;
735  NumVectors = 1;
736
737  for (char I : S) {
738    switch (I) {
739    case 'S':
740      ScalarForMangling = true;
741      break;
742    case 'H':
743      NoManglingQ = true;
744      Quad = true;
745      break;
746    case 'Q':
747      Quad = true;
748      break;
749    case 'P':
750      Poly = true;
751      break;
752    case 'U':
753      Signed = false;
754      break;
755    case 'c':
756      ElementBitwidth = 8;
757      break;
758    case 'h':
759      Float = true;
760    // Fall through
761    case 's':
762      ElementBitwidth = 16;
763      break;
764    case 'f':
765      Float = true;
766    // Fall through
767    case 'i':
768      ElementBitwidth = 32;
769      break;
770    case 'd':
771      Float = true;
772    // Fall through
773    case 'l':
774      ElementBitwidth = 64;
775      break;
776    case 'k':
777      ElementBitwidth = 128;
778      // Poly doesn't have a 128x1 type.
779      if (Poly)
780        NumVectors = 0;
781      break;
782    default:
783      llvm_unreachable("Unhandled type code!");
784    }
785  }
786  assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
787
788  Bitwidth = Quad ? 128 : 64;
789}
790
791void Type::applyModifier(char Mod) {
792  bool AppliedQuad = false;
793  applyTypespec(AppliedQuad);
794
795  switch (Mod) {
796  case 'v':
797    Void = true;
798    break;
799  case 't':
800    if (Poly) {
801      Poly = false;
802      Signed = false;
803    }
804    break;
805  case 'b':
806    Signed = false;
807    Float = false;
808    Poly = false;
809    NumVectors = 0;
810    Bitwidth = ElementBitwidth;
811    break;
812  case '$':
813    Signed = true;
814    Float = false;
815    Poly = false;
816    NumVectors = 0;
817    Bitwidth = ElementBitwidth;
818    break;
819  case 'u':
820    Signed = false;
821    Poly = false;
822    Float = false;
823    break;
824  case 'x':
825    Signed = true;
826    assert(!Poly && "'u' can't be used with poly types!");
827    Float = false;
828    break;
829  case 'o':
830    Bitwidth = ElementBitwidth = 64;
831    NumVectors = 0;
832    Float = true;
833    break;
834  case 'y':
835    Bitwidth = ElementBitwidth = 32;
836    NumVectors = 0;
837    Float = true;
838    break;
839  case 'f':
840    Float = true;
841    ElementBitwidth = 32;
842    break;
843  case 'F':
844    Float = true;
845    ElementBitwidth = 64;
846    break;
847  case 'g':
848    if (AppliedQuad)
849      Bitwidth /= 2;
850    break;
851  case 'j':
852    if (!AppliedQuad)
853      Bitwidth *= 2;
854    break;
855  case 'w':
856    ElementBitwidth *= 2;
857    Bitwidth *= 2;
858    break;
859  case 'n':
860    ElementBitwidth *= 2;
861    break;
862  case 'i':
863    Float = false;
864    Poly = false;
865    ElementBitwidth = Bitwidth = 32;
866    NumVectors = 0;
867    Signed = true;
868    Immediate = true;
869    break;
870  case 'l':
871    Float = false;
872    Poly = false;
873    ElementBitwidth = Bitwidth = 64;
874    NumVectors = 0;
875    Signed = false;
876    Immediate = true;
877    break;
878  case 'z':
879    ElementBitwidth /= 2;
880    Bitwidth = ElementBitwidth;
881    NumVectors = 0;
882    break;
883  case 'r':
884    ElementBitwidth *= 2;
885    Bitwidth = ElementBitwidth;
886    NumVectors = 0;
887    break;
888  case 's':
889  case 'a':
890    Bitwidth = ElementBitwidth;
891    NumVectors = 0;
892    break;
893  case 'k':
894    Bitwidth *= 2;
895    break;
896  case 'c':
897    Constant = true;
898  // Fall through
899  case 'p':
900    Pointer = true;
901    Bitwidth = ElementBitwidth;
902    NumVectors = 0;
903    break;
904  case 'h':
905    ElementBitwidth /= 2;
906    break;
907  case 'q':
908    ElementBitwidth /= 2;
909    Bitwidth *= 2;
910    break;
911  case 'e':
912    ElementBitwidth /= 2;
913    Signed = false;
914    break;
915  case 'm':
916    ElementBitwidth /= 2;
917    Bitwidth /= 2;
918    break;
919  case 'd':
920    break;
921  case '2':
922    NumVectors = 2;
923    break;
924  case '3':
925    NumVectors = 3;
926    break;
927  case '4':
928    NumVectors = 4;
929    break;
930  case 'B':
931    NumVectors = 2;
932    if (!AppliedQuad)
933      Bitwidth *= 2;
934    break;
935  case 'C':
936    NumVectors = 3;
937    if (!AppliedQuad)
938      Bitwidth *= 2;
939    break;
940  case 'D':
941    NumVectors = 4;
942    if (!AppliedQuad)
943      Bitwidth *= 2;
944    break;
945  default:
946    llvm_unreachable("Unhandled character!");
947  }
948}
949
950//===----------------------------------------------------------------------===//
951// Intrinsic implementation
952//===----------------------------------------------------------------------===//
953
954std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
955  char typeCode = '\0';
956  bool printNumber = true;
957
958  if (CK == ClassB)
959    return "";
960
961  if (T.isPoly())
962    typeCode = 'p';
963  else if (T.isInteger())
964    typeCode = T.isSigned() ? 's' : 'u';
965  else
966    typeCode = 'f';
967
968  if (CK == ClassI) {
969    switch (typeCode) {
970    default:
971      break;
972    case 's':
973    case 'u':
974    case 'p':
975      typeCode = 'i';
976      break;
977    }
978  }
979  if (CK == ClassB) {
980    typeCode = '\0';
981  }
982
983  std::string S;
984  if (typeCode != '\0')
985    S.push_back(typeCode);
986  if (printNumber)
987    S += utostr(T.getElementSizeInBits());
988
989  return S;
990}
991
992static bool isFloatingPointProtoModifier(char Mod) {
993  return Mod == 'F' || Mod == 'f';
994}
995
996std::string Intrinsic::getBuiltinTypeStr() {
997  ClassKind LocalCK = getClassKind(true);
998  std::string S;
999
1000  Type RetT = getReturnType();
1001  if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1002      !RetT.isFloating())
1003    RetT.makeInteger(RetT.getElementSizeInBits(), false);
1004
1005  // Since the return value must be one type, return a vector type of the
1006  // appropriate width which we will bitcast.  An exception is made for
1007  // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1008  // fashion, storing them to a pointer arg.
1009  if (RetT.getNumVectors() > 1) {
1010    S += "vv*"; // void result with void* first argument
1011  } else {
1012    if (RetT.isPoly())
1013      RetT.makeInteger(RetT.getElementSizeInBits(), false);
1014    if (!RetT.isScalar() && !RetT.isSigned())
1015      RetT.makeSigned();
1016
1017    bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
1018    if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1019      // Cast to vector of 8-bit elements.
1020      RetT.makeInteger(8, true);
1021
1022    S += RetT.builtin_str();
1023  }
1024
1025  for (unsigned I = 0; I < getNumParams(); ++I) {
1026    Type T = getParamType(I);
1027    if (T.isPoly())
1028      T.makeInteger(T.getElementSizeInBits(), false);
1029
1030    bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
1031    if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1032      T.makeInteger(8, true);
1033    // Halves always get converted to 8-bit elements.
1034    if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1035      T.makeInteger(8, true);
1036
1037    if (LocalCK == ClassI)
1038      T.makeSigned();
1039
1040    if (hasImmediate() && getImmediateIdx() == I)
1041      T.makeImmediate(32);
1042
1043    S += T.builtin_str();
1044  }
1045
1046  // Extra constant integer to hold type class enum for this function, e.g. s8
1047  if (LocalCK == ClassB)
1048    S += "i";
1049
1050  return S;
1051}
1052
1053std::string Intrinsic::getMangledName(bool ForceClassS) const {
1054  // Check if the prototype has a scalar operand with the type of the vector
1055  // elements.  If not, bitcasting the args will take care of arg checking.
1056  // The actual signedness etc. will be taken care of with special enums.
1057  ClassKind LocalCK = CK;
1058  if (!protoHasScalar())
1059    LocalCK = ClassB;
1060
1061  return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1062}
1063
1064std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1065  std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1066  std::string S = Name;
1067
1068  if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1069      Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1070    return Name;
1071
1072  if (typeCode.size() > 0) {
1073    // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1074    if (Name.size() >= 3 && isdigit(Name.back()) &&
1075        Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1076      S.insert(S.length() - 3, "_" + typeCode);
1077    else
1078      S += "_" + typeCode;
1079  }
1080
1081  if (BaseType != InBaseType) {
1082    // A reinterpret - out the input base type at the end.
1083    S += "_" + getInstTypeCode(InBaseType, LocalCK);
1084  }
1085
1086  if (LocalCK == ClassB)
1087    S += "_v";
1088
1089  // Insert a 'q' before the first '_' character so that it ends up before
1090  // _lane or _n on vector-scalar operations.
1091  if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1092    size_t Pos = S.find('_');
1093    S.insert(Pos, "q");
1094  }
1095
1096  char Suffix = '\0';
1097  if (BaseType.isScalarForMangling()) {
1098    switch (BaseType.getElementSizeInBits()) {
1099    case 8: Suffix = 'b'; break;
1100    case 16: Suffix = 'h'; break;
1101    case 32: Suffix = 's'; break;
1102    case 64: Suffix = 'd'; break;
1103    default: llvm_unreachable("Bad suffix!");
1104    }
1105  }
1106  if (Suffix != '\0') {
1107    size_t Pos = S.find('_');
1108    S.insert(Pos, &Suffix, 1);
1109  }
1110
1111  return S;
1112}
1113
1114std::string Intrinsic::replaceParamsIn(std::string S) {
1115  while (S.find('$') != std::string::npos) {
1116    size_t Pos = S.find('$');
1117    size_t End = Pos + 1;
1118    while (isalpha(S[End]))
1119      ++End;
1120
1121    std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1122    assert_with_loc(Variables.find(VarName) != Variables.end(),
1123                    "Variable not defined!");
1124    S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1125  }
1126
1127  return S;
1128}
1129
1130void Intrinsic::initVariables() {
1131  Variables.clear();
1132
1133  // Modify the TypeSpec per-argument to get a concrete Type, and create
1134  // known variables for each.
1135  for (unsigned I = 1; I < Proto.size(); ++I) {
1136    char NameC = '0' + (I - 1);
1137    std::string Name = "p";
1138    Name.push_back(NameC);
1139
1140    Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1141  }
1142  RetVar = Variable(Types[0], "ret" + VariablePostfix);
1143}
1144
1145void Intrinsic::emitPrototype(StringRef NamePrefix) {
1146  if (UseMacro)
1147    OS << "#define ";
1148  else
1149    OS << "__ai " << Types[0].str() << " ";
1150
1151  OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1152
1153  for (unsigned I = 0; I < getNumParams(); ++I) {
1154    if (I != 0)
1155      OS << ", ";
1156
1157    char NameC = '0' + I;
1158    std::string Name = "p";
1159    Name.push_back(NameC);
1160    assert(Variables.find(Name) != Variables.end());
1161    Variable &V = Variables[Name];
1162
1163    if (!UseMacro)
1164      OS << V.getType().str() << " ";
1165    OS << V.getName();
1166  }
1167
1168  OS << ")";
1169}
1170
1171void Intrinsic::emitOpeningBrace() {
1172  if (UseMacro)
1173    OS << " __extension__ ({";
1174  else
1175    OS << " {";
1176  emitNewLine();
1177}
1178
1179void Intrinsic::emitClosingBrace() {
1180  if (UseMacro)
1181    OS << "})";
1182  else
1183    OS << "}";
1184}
1185
1186void Intrinsic::emitNewLine() {
1187  if (UseMacro)
1188    OS << " \\\n";
1189  else
1190    OS << "\n";
1191}
1192
1193void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1194  if (Dest.getType().getNumVectors() > 1) {
1195    emitNewLine();
1196
1197    for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1198      OS << "  " << Dest.getName() << ".val[" << utostr(K) << "] = "
1199         << "__builtin_shufflevector("
1200         << Src.getName() << ".val[" << utostr(K) << "], "
1201         << Src.getName() << ".val[" << utostr(K) << "]";
1202      for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1203        OS << ", " << utostr(J);
1204      OS << ");";
1205      emitNewLine();
1206    }
1207  } else {
1208    OS << "  " << Dest.getName()
1209       << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1210    for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1211      OS << ", " << utostr(J);
1212    OS << ");";
1213    emitNewLine();
1214  }
1215}
1216
1217void Intrinsic::emitArgumentReversal() {
1218  if (BigEndianSafe)
1219    return;
1220
1221  // Reverse all vector arguments.
1222  for (unsigned I = 0; I < getNumParams(); ++I) {
1223    std::string Name = "p" + utostr(I);
1224    std::string NewName = "rev" + utostr(I);
1225
1226    Variable &V = Variables[Name];
1227    Variable NewV(V.getType(), NewName + VariablePostfix);
1228
1229    if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1230      continue;
1231
1232    OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1233    emitReverseVariable(NewV, V);
1234    V = NewV;
1235  }
1236}
1237
1238void Intrinsic::emitReturnReversal() {
1239  if (BigEndianSafe)
1240    return;
1241  if (!getReturnType().isVector() || getReturnType().isVoid() ||
1242      getReturnType().getNumElements() == 1)
1243    return;
1244  emitReverseVariable(RetVar, RetVar);
1245}
1246
1247
1248void Intrinsic::emitShadowedArgs() {
1249  // Macro arguments are not type-checked like inline function arguments,
1250  // so assign them to local temporaries to get the right type checking.
1251  if (!UseMacro)
1252    return;
1253
1254  for (unsigned I = 0; I < getNumParams(); ++I) {
1255    // Do not create a temporary for an immediate argument.
1256    // That would defeat the whole point of using a macro!
1257    if (hasImmediate() && Proto[I+1] == 'i')
1258      continue;
1259    // Do not create a temporary for pointer arguments. The input
1260    // pointer may have an alignment hint.
1261    if (getParamType(I).isPointer())
1262      continue;
1263
1264    std::string Name = "p" + utostr(I);
1265
1266    assert(Variables.find(Name) != Variables.end());
1267    Variable &V = Variables[Name];
1268
1269    std::string NewName = "s" + utostr(I);
1270    Variable V2(V.getType(), NewName + VariablePostfix);
1271
1272    OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1273       << V.getName() << ";";
1274    emitNewLine();
1275
1276    V = V2;
1277  }
1278}
1279
1280// We don't check 'a' in this function, because for builtin function the
1281// argument matching to 'a' uses a vector type splatted from a scalar type.
1282bool Intrinsic::protoHasScalar() const {
1283  return (Proto.find('s') != std::string::npos ||
1284          Proto.find('z') != std::string::npos ||
1285          Proto.find('r') != std::string::npos ||
1286          Proto.find('b') != std::string::npos ||
1287          Proto.find('$') != std::string::npos ||
1288          Proto.find('y') != std::string::npos ||
1289          Proto.find('o') != std::string::npos);
1290}
1291
1292void Intrinsic::emitBodyAsBuiltinCall() {
1293  std::string S;
1294
1295  // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1296  // sret-like argument.
1297  bool SRet = getReturnType().getNumVectors() >= 2;
1298
1299  StringRef N = Name;
1300  if (hasSplat()) {
1301    // Call the non-splat builtin: chop off the "_n" suffix from the name.
1302    assert(N.endswith("_n"));
1303    N = N.drop_back(2);
1304  }
1305
1306  ClassKind LocalCK = CK;
1307  if (!protoHasScalar())
1308    LocalCK = ClassB;
1309
1310  if (!getReturnType().isVoid() && !SRet)
1311    S += "(" + RetVar.getType().str() + ") ";
1312
1313  S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1314
1315  if (SRet)
1316    S += "&" + RetVar.getName() + ", ";
1317
1318  for (unsigned I = 0; I < getNumParams(); ++I) {
1319    Variable &V = Variables["p" + utostr(I)];
1320    Type T = V.getType();
1321
1322    // Handle multiple-vector values specially, emitting each subvector as an
1323    // argument to the builtin.
1324    if (T.getNumVectors() > 1) {
1325      // Check if an explicit cast is needed.
1326      std::string Cast;
1327      if (T.isChar() || T.isPoly() || !T.isSigned()) {
1328        Type T2 = T;
1329        T2.makeOneVector();
1330        T2.makeInteger(8, /*Signed=*/true);
1331        Cast = "(" + T2.str() + ")";
1332      }
1333
1334      for (unsigned J = 0; J < T.getNumVectors(); ++J)
1335        S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1336      continue;
1337    }
1338
1339    std::string Arg;
1340    Type CastToType = T;
1341    if (hasSplat() && I == getSplatIdx()) {
1342      Arg = "(" + BaseType.str() + ") {";
1343      for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1344        if (J != 0)
1345          Arg += ", ";
1346        Arg += V.getName();
1347      }
1348      Arg += "}";
1349
1350      CastToType = BaseType;
1351    } else {
1352      Arg = V.getName();
1353    }
1354
1355    // Check if an explicit cast is needed.
1356    if (CastToType.isVector()) {
1357      CastToType.makeInteger(8, true);
1358      Arg = "(" + CastToType.str() + ")" + Arg;
1359    }
1360
1361    S += Arg + ", ";
1362  }
1363
1364  // Extra constant integer to hold type class enum for this function, e.g. s8
1365  if (getClassKind(true) == ClassB) {
1366    Type ThisTy = getReturnType();
1367    if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
1368      ThisTy = getParamType(0);
1369    if (ThisTy.isPointer())
1370      ThisTy = getParamType(1);
1371
1372    S += utostr(ThisTy.getNeonEnum());
1373  } else {
1374    // Remove extraneous ", ".
1375    S.pop_back();
1376    S.pop_back();
1377  }
1378  S += ");";
1379
1380  std::string RetExpr;
1381  if (!SRet && !RetVar.getType().isVoid())
1382    RetExpr = RetVar.getName() + " = ";
1383
1384  OS << "  " << RetExpr << S;
1385  emitNewLine();
1386}
1387
1388void Intrinsic::emitBody(StringRef CallPrefix) {
1389  std::vector<std::string> Lines;
1390
1391  assert(RetVar.getType() == Types[0]);
1392  // Create a return variable, if we're not void.
1393  if (!RetVar.getType().isVoid()) {
1394    OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1395    emitNewLine();
1396  }
1397
1398  if (!Body || Body->getValues().size() == 0) {
1399    // Nothing specific to output - must output a builtin.
1400    emitBodyAsBuiltinCall();
1401    return;
1402  }
1403
1404  // We have a list of "things to output". The last should be returned.
1405  for (auto *I : Body->getValues()) {
1406    if (StringInit *SI = dyn_cast<StringInit>(I)) {
1407      Lines.push_back(replaceParamsIn(SI->getAsString()));
1408    } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1409      DagEmitter DE(*this, CallPrefix);
1410      Lines.push_back(DE.emitDag(DI).second + ";");
1411    }
1412  }
1413
1414  assert(!Lines.empty() && "Empty def?");
1415  if (!RetVar.getType().isVoid())
1416    Lines.back().insert(0, RetVar.getName() + " = ");
1417
1418  for (auto &L : Lines) {
1419    OS << "  " << L;
1420    emitNewLine();
1421  }
1422}
1423
1424void Intrinsic::emitReturn() {
1425  if (RetVar.getType().isVoid())
1426    return;
1427  if (UseMacro)
1428    OS << "  " << RetVar.getName() << ";";
1429  else
1430    OS << "  return " << RetVar.getName() << ";";
1431  emitNewLine();
1432}
1433
1434std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1435  // At this point we should only be seeing a def.
1436  DefInit *DefI = cast<DefInit>(DI->getOperator());
1437  std::string Op = DefI->getAsString();
1438
1439  if (Op == "cast" || Op == "bitcast")
1440    return emitDagCast(DI, Op == "bitcast");
1441  if (Op == "shuffle")
1442    return emitDagShuffle(DI);
1443  if (Op == "dup")
1444    return emitDagDup(DI);
1445  if (Op == "splat")
1446    return emitDagSplat(DI);
1447  if (Op == "save_temp")
1448    return emitDagSaveTemp(DI);
1449  if (Op == "op")
1450    return emitDagOp(DI);
1451  if (Op == "call")
1452    return emitDagCall(DI);
1453  if (Op == "name_replace")
1454    return emitDagNameReplace(DI);
1455  if (Op == "literal")
1456    return emitDagLiteral(DI);
1457  assert_with_loc(false, "Unknown operation!");
1458  return std::make_pair(Type::getVoid(), "");
1459}
1460
1461std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1462  std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1463  if (DI->getNumArgs() == 2) {
1464    // Unary op.
1465    std::pair<Type, std::string> R =
1466        emitDagArg(DI->getArg(1), DI->getArgName(1));
1467    return std::make_pair(R.first, Op + R.second);
1468  } else {
1469    assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1470    std::pair<Type, std::string> R1 =
1471        emitDagArg(DI->getArg(1), DI->getArgName(1));
1472    std::pair<Type, std::string> R2 =
1473        emitDagArg(DI->getArg(2), DI->getArgName(2));
1474    assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1475    return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1476  }
1477}
1478
1479std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1480  std::vector<Type> Types;
1481  std::vector<std::string> Values;
1482  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1483    std::pair<Type, std::string> R =
1484        emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
1485    Types.push_back(R.first);
1486    Values.push_back(R.second);
1487  }
1488
1489  // Look up the called intrinsic.
1490  std::string N;
1491  if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1492    N = SI->getAsUnquotedString();
1493  else
1494    N = emitDagArg(DI->getArg(0), "").second;
1495  Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1496
1497  // Make sure the callee is known as an early def.
1498  Callee.setNeededEarly();
1499  Intr.Dependencies.insert(&Callee);
1500
1501  // Now create the call itself.
1502  std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
1503  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1504    if (I != 0)
1505      S += ", ";
1506    S += Values[I];
1507  }
1508  S += ")";
1509
1510  return std::make_pair(Callee.getReturnType(), S);
1511}
1512
1513std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1514                                                                bool IsBitCast){
1515  // (cast MOD* VAL) -> cast VAL to type given by MOD.
1516  std::pair<Type, std::string> R = emitDagArg(
1517      DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
1518  Type castToType = R.first;
1519  for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1520
1521    // MOD can take several forms:
1522    //   1. $X - take the type of parameter / variable X.
1523    //   2. The value "R" - take the type of the return type.
1524    //   3. a type string
1525    //   4. The value "U" or "S" to switch the signedness.
1526    //   5. The value "H" or "D" to half or double the bitwidth.
1527    //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1528    if (DI->getArgName(ArgIdx).size()) {
1529      assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
1530                      Intr.Variables.end(),
1531                      "Variable not found");
1532      castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
1533    } else {
1534      StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1535      assert_with_loc(SI, "Expected string type or $Name for cast type");
1536
1537      if (SI->getAsUnquotedString() == "R") {
1538        castToType = Intr.getReturnType();
1539      } else if (SI->getAsUnquotedString() == "U") {
1540        castToType.makeUnsigned();
1541      } else if (SI->getAsUnquotedString() == "S") {
1542        castToType.makeSigned();
1543      } else if (SI->getAsUnquotedString() == "H") {
1544        castToType.halveLanes();
1545      } else if (SI->getAsUnquotedString() == "D") {
1546        castToType.doubleLanes();
1547      } else if (SI->getAsUnquotedString() == "8") {
1548        castToType.makeInteger(8, true);
1549      } else {
1550        castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1551        assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1552      }
1553    }
1554  }
1555
1556  std::string S;
1557  if (IsBitCast) {
1558    // Emit a reinterpret cast. The second operand must be an lvalue, so create
1559    // a temporary.
1560    std::string N = "reint";
1561    unsigned I = 0;
1562    while (Intr.Variables.find(N) != Intr.Variables.end())
1563      N = "reint" + utostr(++I);
1564    Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1565
1566    Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1567            << R.second << ";";
1568    Intr.emitNewLine();
1569
1570    S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1571  } else {
1572    // Emit a normal (static) cast.
1573    S = "(" + castToType.str() + ")(" + R.second + ")";
1574  }
1575
1576  return std::make_pair(castToType, S);
1577}
1578
1579std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1580  // See the documentation in arm_neon.td for a description of these operators.
1581  class LowHalf : public SetTheory::Operator {
1582  public:
1583    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1584               ArrayRef<SMLoc> Loc) override {
1585      SetTheory::RecSet Elts2;
1586      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1587      Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1588    }
1589  };
1590  class HighHalf : public SetTheory::Operator {
1591  public:
1592    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1593               ArrayRef<SMLoc> Loc) override {
1594      SetTheory::RecSet Elts2;
1595      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1596      Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1597    }
1598  };
1599  class Rev : public SetTheory::Operator {
1600    unsigned ElementSize;
1601
1602  public:
1603    Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1604    void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1605               ArrayRef<SMLoc> Loc) override {
1606      SetTheory::RecSet Elts2;
1607      ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1608
1609      int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1610      VectorSize /= ElementSize;
1611
1612      std::vector<Record *> Revved;
1613      for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1614        for (int LI = VectorSize - 1; LI >= 0; --LI) {
1615          Revved.push_back(Elts2[VI + LI]);
1616        }
1617      }
1618
1619      Elts.insert(Revved.begin(), Revved.end());
1620    }
1621  };
1622  class MaskExpander : public SetTheory::Expander {
1623    unsigned N;
1624
1625  public:
1626    MaskExpander(unsigned N) : N(N) {}
1627    void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1628      unsigned Addend = 0;
1629      if (R->getName() == "mask0")
1630        Addend = 0;
1631      else if (R->getName() == "mask1")
1632        Addend = N;
1633      else
1634        return;
1635      for (unsigned I = 0; I < N; ++I)
1636        Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1637    }
1638  };
1639
1640  // (shuffle arg1, arg2, sequence)
1641  std::pair<Type, std::string> Arg1 =
1642      emitDagArg(DI->getArg(0), DI->getArgName(0));
1643  std::pair<Type, std::string> Arg2 =
1644      emitDagArg(DI->getArg(1), DI->getArgName(1));
1645  assert_with_loc(Arg1.first == Arg2.first,
1646                  "Different types in arguments to shuffle!");
1647
1648  SetTheory ST;
1649  SetTheory::RecSet Elts;
1650  ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
1651  ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
1652  ST.addOperator("rev",
1653                 llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1654  ST.addExpander("MaskExpand",
1655                 llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1656  ST.evaluate(DI->getArg(2), Elts, None);
1657
1658  std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1659  for (auto &E : Elts) {
1660    StringRef Name = E->getName();
1661    assert_with_loc(Name.startswith("sv"),
1662                    "Incorrect element kind in shuffle mask!");
1663    S += ", " + Name.drop_front(2).str();
1664  }
1665  S += ")";
1666
1667  // Recalculate the return type - the shuffle may have halved or doubled it.
1668  Type T(Arg1.first);
1669  if (Elts.size() > T.getNumElements()) {
1670    assert_with_loc(
1671        Elts.size() == T.getNumElements() * 2,
1672        "Can only double or half the number of elements in a shuffle!");
1673    T.doubleLanes();
1674  } else if (Elts.size() < T.getNumElements()) {
1675    assert_with_loc(
1676        Elts.size() == T.getNumElements() / 2,
1677        "Can only double or half the number of elements in a shuffle!");
1678    T.halveLanes();
1679  }
1680
1681  return std::make_pair(T, S);
1682}
1683
1684std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1685  assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1686  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1687  assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1688
1689  Type T = Intr.getBaseType();
1690  assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1691  std::string S = "(" + T.str() + ") {";
1692  for (unsigned I = 0; I < T.getNumElements(); ++I) {
1693    if (I != 0)
1694      S += ", ";
1695    S += A.second;
1696  }
1697  S += "}";
1698
1699  return std::make_pair(T, S);
1700}
1701
1702std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1703  assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1704  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1705  std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
1706
1707  assert_with_loc(B.first.isScalar(),
1708                  "splat() requires a scalar int as the second argument");
1709
1710  std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1711  for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1712    S += ", " + B.second;
1713  }
1714  S += ")";
1715
1716  return std::make_pair(Intr.getBaseType(), S);
1717}
1718
1719std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1720  assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1721  std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
1722
1723  assert_with_loc(!A.first.isVoid(),
1724                  "Argument to save_temp() must have non-void type!");
1725
1726  std::string N = DI->getArgName(0);
1727  assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
1728
1729  assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1730                  "Variable already defined!");
1731  Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1732
1733  std::string S =
1734      A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1735
1736  return std::make_pair(Type::getVoid(), S);
1737}
1738
1739std::pair<Type, std::string>
1740Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1741  std::string S = Intr.Name;
1742
1743  assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1744  std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1745  std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1746
1747  size_t Idx = S.find(ToReplace);
1748
1749  assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1750  S.replace(Idx, ToReplace.size(), ReplaceWith);
1751
1752  return std::make_pair(Type::getVoid(), S);
1753}
1754
1755std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1756  std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1757  std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1758  return std::make_pair(Type::fromTypedefName(Ty), Value);
1759}
1760
1761std::pair<Type, std::string>
1762Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1763  if (ArgName.size()) {
1764    assert_with_loc(!Arg->isComplete(),
1765                    "Arguments must either be DAGs or names, not both!");
1766    assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1767                    "Variable not defined!");
1768    Variable &V = Intr.Variables[ArgName];
1769    return std::make_pair(V.getType(), V.getName());
1770  }
1771
1772  assert(Arg && "Neither ArgName nor Arg?!");
1773  DagInit *DI = dyn_cast<DagInit>(Arg);
1774  assert_with_loc(DI, "Arguments must either be DAGs or names!");
1775
1776  return emitDag(DI);
1777}
1778
1779std::string Intrinsic::generate() {
1780  // Little endian intrinsics are simple and don't require any argument
1781  // swapping.
1782  OS << "#ifdef __LITTLE_ENDIAN__\n";
1783
1784  generateImpl(false, "", "");
1785
1786  OS << "#else\n";
1787
1788  // Big endian intrinsics are more complex. The user intended these
1789  // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1790  // but we load as-if (V)LD1. So we should swap all arguments and
1791  // swap the return value too.
1792  //
1793  // If we call sub-intrinsics, we should call a version that does
1794  // not re-swap the arguments!
1795  generateImpl(true, "", "__noswap_");
1796
1797  // If we're needed early, create a non-swapping variant for
1798  // big-endian.
1799  if (NeededEarly) {
1800    generateImpl(false, "__noswap_", "__noswap_");
1801  }
1802  OS << "#endif\n\n";
1803
1804  return OS.str();
1805}
1806
1807void Intrinsic::generateImpl(bool ReverseArguments,
1808                             StringRef NamePrefix, StringRef CallPrefix) {
1809  CurrentRecord = R;
1810
1811  // If we call a macro, our local variables may be corrupted due to
1812  // lack of proper lexical scoping. So, add a globally unique postfix
1813  // to every variable.
1814  //
1815  // indexBody() should have set up the Dependencies set by now.
1816  for (auto *I : Dependencies)
1817    if (I->UseMacro) {
1818      VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1819      break;
1820    }
1821
1822  initVariables();
1823
1824  emitPrototype(NamePrefix);
1825
1826  if (IsUnavailable) {
1827    OS << " __attribute__((unavailable));";
1828  } else {
1829    emitOpeningBrace();
1830    emitShadowedArgs();
1831    if (ReverseArguments)
1832      emitArgumentReversal();
1833    emitBody(CallPrefix);
1834    if (ReverseArguments)
1835      emitReturnReversal();
1836    emitReturn();
1837    emitClosingBrace();
1838  }
1839  OS << "\n";
1840
1841  CurrentRecord = nullptr;
1842}
1843
1844void Intrinsic::indexBody() {
1845  CurrentRecord = R;
1846
1847  initVariables();
1848  emitBody("");
1849  OS.str("");
1850
1851  CurrentRecord = nullptr;
1852}
1853
1854//===----------------------------------------------------------------------===//
1855// NeonEmitter implementation
1856//===----------------------------------------------------------------------===//
1857
1858Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1859  // First, look up the name in the intrinsic map.
1860  assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1861                  ("Intrinsic '" + Name + "' not found!").str());
1862  auto &V = IntrinsicMap.find(Name.str())->second;
1863  std::vector<Intrinsic *> GoodVec;
1864
1865  // Create a string to print if we end up failing.
1866  std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1867  for (unsigned I = 0; I < Types.size(); ++I) {
1868    if (I != 0)
1869      ErrMsg += ", ";
1870    ErrMsg += Types[I].str();
1871  }
1872  ErrMsg += ")'\n";
1873  ErrMsg += "Available overloads:\n";
1874
1875  // Now, look through each intrinsic implementation and see if the types are
1876  // compatible.
1877  for (auto &I : V) {
1878    ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1879    ErrMsg += "(";
1880    for (unsigned A = 0; A < I.getNumParams(); ++A) {
1881      if (A != 0)
1882        ErrMsg += ", ";
1883      ErrMsg += I.getParamType(A).str();
1884    }
1885    ErrMsg += ")\n";
1886
1887    if (I.getNumParams() != Types.size())
1888      continue;
1889
1890    bool Good = true;
1891    for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1892      if (I.getParamType(Arg) != Types[Arg]) {
1893        Good = false;
1894        break;
1895      }
1896    }
1897    if (Good)
1898      GoodVec.push_back(&I);
1899  }
1900
1901  assert_with_loc(GoodVec.size() > 0,
1902                  "No compatible intrinsic found - " + ErrMsg);
1903  assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1904
1905  return *GoodVec.front();
1906}
1907
1908void NeonEmitter::createIntrinsic(Record *R,
1909                                  SmallVectorImpl<Intrinsic *> &Out) {
1910  std::string Name = R->getValueAsString("Name");
1911  std::string Proto = R->getValueAsString("Prototype");
1912  std::string Types = R->getValueAsString("Types");
1913  Record *OperationRec = R->getValueAsDef("Operation");
1914  bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1915  bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1916  std::string Guard = R->getValueAsString("ArchGuard");
1917  bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1918
1919  // Set the global current record. This allows assert_with_loc to produce
1920  // decent location information even when highly nested.
1921  CurrentRecord = R;
1922
1923  ListInit *Body = OperationRec->getValueAsListInit("Ops");
1924
1925  std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1926
1927  ClassKind CK = ClassNone;
1928  if (R->getSuperClasses().size() >= 2)
1929    CK = ClassMap[R->getSuperClasses()[1]];
1930
1931  std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1932  for (auto TS : TypeSpecs) {
1933    if (CartesianProductOfTypes) {
1934      Type DefaultT(TS, 'd');
1935      for (auto SrcTS : TypeSpecs) {
1936        Type DefaultSrcT(SrcTS, 'd');
1937        if (TS == SrcTS ||
1938            DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1939          continue;
1940        NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1941      }
1942    } else {
1943      NewTypeSpecs.push_back(std::make_pair(TS, TS));
1944    }
1945  }
1946
1947  std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
1948  NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1949		     NewTypeSpecs.end());
1950  auto &Entry = IntrinsicMap[Name];
1951
1952  for (auto &I : NewTypeSpecs) {
1953    Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1954                       Guard, IsUnavailable, BigEndianSafe);
1955    Out.push_back(&Entry.back());
1956  }
1957
1958  CurrentRecord = nullptr;
1959}
1960
1961/// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1962/// declaration of builtins, checking for unique builtin declarations.
1963void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1964                                 SmallVectorImpl<Intrinsic *> &Defs) {
1965  OS << "#ifdef GET_NEON_BUILTINS\n";
1966
1967  // We only want to emit a builtin once, and we want to emit them in
1968  // alphabetical order, so use a std::set.
1969  std::set<std::string> Builtins;
1970
1971  for (auto *Def : Defs) {
1972    if (Def->hasBody())
1973      continue;
1974    // Functions with 'a' (the splat code) in the type prototype should not get
1975    // their own builtin as they use the non-splat variant.
1976    if (Def->hasSplat())
1977      continue;
1978
1979    std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1980
1981    S += Def->getBuiltinTypeStr();
1982    S += "\", \"n\")";
1983
1984    Builtins.insert(S);
1985  }
1986
1987  for (auto &S : Builtins)
1988    OS << S << "\n";
1989  OS << "#endif\n\n";
1990}
1991
1992/// Generate the ARM and AArch64 overloaded type checking code for
1993/// SemaChecking.cpp, checking for unique builtin declarations.
1994void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1995                                           SmallVectorImpl<Intrinsic *> &Defs) {
1996  OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1997
1998  // We record each overload check line before emitting because subsequent Inst
1999  // definitions may extend the number of permitted types (i.e. augment the
2000  // Mask). Use std::map to avoid sorting the table by hash number.
2001  struct OverloadInfo {
2002    uint64_t Mask;
2003    int PtrArgNum;
2004    bool HasConstPtr;
2005    OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2006  };
2007  std::map<std::string, OverloadInfo> OverloadMap;
2008
2009  for (auto *Def : Defs) {
2010    // If the def has a body (that is, it has Operation DAGs), it won't call
2011    // __builtin_neon_* so we don't need to generate a definition for it.
2012    if (Def->hasBody())
2013      continue;
2014    // Functions with 'a' (the splat code) in the type prototype should not get
2015    // their own builtin as they use the non-splat variant.
2016    if (Def->hasSplat())
2017      continue;
2018    // Functions which have a scalar argument cannot be overloaded, no need to
2019    // check them if we are emitting the type checking code.
2020    if (Def->protoHasScalar())
2021      continue;
2022
2023    uint64_t Mask = 0ULL;
2024    Type Ty = Def->getReturnType();
2025    if (Def->getProto()[0] == 'v' ||
2026        isFloatingPointProtoModifier(Def->getProto()[0]))
2027      Ty = Def->getParamType(0);
2028    if (Ty.isPointer())
2029      Ty = Def->getParamType(1);
2030
2031    Mask |= 1ULL << Ty.getNeonEnum();
2032
2033    // Check if the function has a pointer or const pointer argument.
2034    std::string Proto = Def->getProto();
2035    int PtrArgNum = -1;
2036    bool HasConstPtr = false;
2037    for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2038      char ArgType = Proto[I + 1];
2039      if (ArgType == 'c') {
2040        HasConstPtr = true;
2041        PtrArgNum = I;
2042        break;
2043      }
2044      if (ArgType == 'p') {
2045        PtrArgNum = I;
2046        break;
2047      }
2048    }
2049    // For sret builtins, adjust the pointer argument index.
2050    if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2051      PtrArgNum += 1;
2052
2053    std::string Name = Def->getName();
2054    // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2055    // and vst1_lane intrinsics.  Using a pointer to the vector element
2056    // type with one of those operations causes codegen to select an aligned
2057    // load/store instruction.  If you want an unaligned operation,
2058    // the pointer argument needs to have less alignment than element type,
2059    // so just accept any pointer type.
2060    if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2061      PtrArgNum = -1;
2062      HasConstPtr = false;
2063    }
2064
2065    if (Mask) {
2066      std::string Name = Def->getMangledName();
2067      OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2068      OverloadInfo &OI = OverloadMap[Name];
2069      OI.Mask |= Mask;
2070      OI.PtrArgNum |= PtrArgNum;
2071      OI.HasConstPtr = HasConstPtr;
2072    }
2073  }
2074
2075  for (auto &I : OverloadMap) {
2076    OverloadInfo &OI = I.second;
2077
2078    OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2079    OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
2080    if (OI.PtrArgNum >= 0)
2081      OS << "; PtrArgNum = " << OI.PtrArgNum;
2082    if (OI.HasConstPtr)
2083      OS << "; HasConstPtr = true";
2084    OS << "; break;\n";
2085  }
2086  OS << "#endif\n\n";
2087}
2088
2089void
2090NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2091                                        SmallVectorImpl<Intrinsic *> &Defs) {
2092  OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2093
2094  std::set<std::string> Emitted;
2095
2096  for (auto *Def : Defs) {
2097    if (Def->hasBody())
2098      continue;
2099    // Functions with 'a' (the splat code) in the type prototype should not get
2100    // their own builtin as they use the non-splat variant.
2101    if (Def->hasSplat())
2102      continue;
2103    // Functions which do not have an immediate do not need to have range
2104    // checking code emitted.
2105    if (!Def->hasImmediate())
2106      continue;
2107    if (Emitted.find(Def->getMangledName()) != Emitted.end())
2108      continue;
2109
2110    std::string LowerBound, UpperBound;
2111
2112    Record *R = Def->getRecord();
2113    if (R->getValueAsBit("isVCVT_N")) {
2114      // VCVT between floating- and fixed-point values takes an immediate
2115      // in the range [1, 32) for f32 or [1, 64) for f64.
2116      LowerBound = "1";
2117      if (Def->getBaseType().getElementSizeInBits() == 32)
2118        UpperBound = "31";
2119      else
2120        UpperBound = "63";
2121    } else if (R->getValueAsBit("isScalarShift")) {
2122      // Right shifts have an 'r' in the name, left shifts do not. Convert
2123      // instructions have the same bounds and right shifts.
2124      if (Def->getName().find('r') != std::string::npos ||
2125          Def->getName().find("cvt") != std::string::npos)
2126        LowerBound = "1";
2127
2128      UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2129    } else if (R->getValueAsBit("isShift")) {
2130      // Builtins which are overloaded by type will need to have their upper
2131      // bound computed at Sema time based on the type constant.
2132
2133      // Right shifts have an 'r' in the name, left shifts do not.
2134      if (Def->getName().find('r') != std::string::npos)
2135        LowerBound = "1";
2136      UpperBound = "RFT(TV, true)";
2137    } else if (Def->getClassKind(true) == ClassB) {
2138      // ClassB intrinsics have a type (and hence lane number) that is only
2139      // known at runtime.
2140      if (R->getValueAsBit("isLaneQ"))
2141        UpperBound = "RFT(TV, false, true)";
2142      else
2143        UpperBound = "RFT(TV, false, false)";
2144    } else {
2145      // The immediate generally refers to a lane in the preceding argument.
2146      assert(Def->getImmediateIdx() > 0);
2147      Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2148      UpperBound = utostr(T.getNumElements() - 1);
2149    }
2150
2151    // Calculate the index of the immediate that should be range checked.
2152    unsigned Idx = Def->getNumParams();
2153    if (Def->hasImmediate())
2154      Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2155
2156    OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2157       << "i = " << Idx << ";";
2158    if (LowerBound.size())
2159      OS << " l = " << LowerBound << ";";
2160    if (UpperBound.size())
2161      OS << " u = " << UpperBound << ";";
2162    OS << " break;\n";
2163
2164    Emitted.insert(Def->getMangledName());
2165  }
2166
2167  OS << "#endif\n\n";
2168}
2169
2170/// runHeader - Emit a file with sections defining:
2171/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2172/// 2. the SemaChecking code for the type overload checking.
2173/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2174void NeonEmitter::runHeader(raw_ostream &OS) {
2175  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2176
2177  SmallVector<Intrinsic *, 128> Defs;
2178  for (auto *R : RV)
2179    createIntrinsic(R, Defs);
2180
2181  // Generate shared BuiltinsXXX.def
2182  genBuiltinsDef(OS, Defs);
2183
2184  // Generate ARM overloaded type checking code for SemaChecking.cpp
2185  genOverloadTypeCheckCode(OS, Defs);
2186
2187  // Generate ARM range checking code for shift/lane immediates.
2188  genIntrinsicRangeCheckCode(OS, Defs);
2189}
2190
2191/// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2192/// is comprised of type definitions and function declarations.
2193void NeonEmitter::run(raw_ostream &OS) {
2194  OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2195        "------------------------------"
2196        "---===\n"
2197        " *\n"
2198        " * Permission is hereby granted, free of charge, to any person "
2199        "obtaining "
2200        "a copy\n"
2201        " * of this software and associated documentation files (the "
2202        "\"Software\"),"
2203        " to deal\n"
2204        " * in the Software without restriction, including without limitation "
2205        "the "
2206        "rights\n"
2207        " * to use, copy, modify, merge, publish, distribute, sublicense, "
2208        "and/or sell\n"
2209        " * copies of the Software, and to permit persons to whom the Software "
2210        "is\n"
2211        " * furnished to do so, subject to the following conditions:\n"
2212        " *\n"
2213        " * The above copyright notice and this permission notice shall be "
2214        "included in\n"
2215        " * all copies or substantial portions of the Software.\n"
2216        " *\n"
2217        " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2218        "EXPRESS OR\n"
2219        " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2220        "MERCHANTABILITY,\n"
2221        " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2222        "SHALL THE\n"
2223        " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2224        "OTHER\n"
2225        " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2226        "ARISING FROM,\n"
2227        " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2228        "DEALINGS IN\n"
2229        " * THE SOFTWARE.\n"
2230        " *\n"
2231        " *===-----------------------------------------------------------------"
2232        "---"
2233        "---===\n"
2234        " */\n\n";
2235
2236  OS << "#ifndef __ARM_NEON_H\n";
2237  OS << "#define __ARM_NEON_H\n\n";
2238
2239  OS << "#if !defined(__ARM_NEON)\n";
2240  OS << "#error \"NEON support not enabled\"\n";
2241  OS << "#endif\n\n";
2242
2243  OS << "#include <stdint.h>\n\n";
2244
2245  // Emit NEON-specific scalar typedefs.
2246  OS << "typedef float float32_t;\n";
2247  OS << "typedef __fp16 float16_t;\n";
2248
2249  OS << "#ifdef __aarch64__\n";
2250  OS << "typedef double float64_t;\n";
2251  OS << "#endif\n\n";
2252
2253  // For now, signedness of polynomial types depends on target
2254  OS << "#ifdef __aarch64__\n";
2255  OS << "typedef uint8_t poly8_t;\n";
2256  OS << "typedef uint16_t poly16_t;\n";
2257  OS << "typedef uint64_t poly64_t;\n";
2258  OS << "typedef __uint128_t poly128_t;\n";
2259  OS << "#else\n";
2260  OS << "typedef int8_t poly8_t;\n";
2261  OS << "typedef int16_t poly16_t;\n";
2262  OS << "#endif\n";
2263
2264  // Emit Neon vector typedefs.
2265  std::string TypedefTypes(
2266      "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2267  std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2268
2269  // Emit vector typedefs.
2270  bool InIfdef = false;
2271  for (auto &TS : TDTypeVec) {
2272    bool IsA64 = false;
2273    Type T(TS, 'd');
2274    if (T.isDouble() || (T.isPoly() && T.isLong()))
2275      IsA64 = true;
2276
2277    if (InIfdef && !IsA64) {
2278      OS << "#endif\n";
2279      InIfdef = false;
2280    }
2281    if (!InIfdef && IsA64) {
2282      OS << "#ifdef __aarch64__\n";
2283      InIfdef = true;
2284    }
2285
2286    if (T.isPoly())
2287      OS << "typedef __attribute__((neon_polyvector_type(";
2288    else
2289      OS << "typedef __attribute__((neon_vector_type(";
2290
2291    Type T2 = T;
2292    T2.makeScalar();
2293    OS << utostr(T.getNumElements()) << "))) ";
2294    OS << T2.str();
2295    OS << " " << T.str() << ";\n";
2296  }
2297  if (InIfdef)
2298    OS << "#endif\n";
2299  OS << "\n";
2300
2301  // Emit struct typedefs.
2302  InIfdef = false;
2303  for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2304    for (auto &TS : TDTypeVec) {
2305      bool IsA64 = false;
2306      Type T(TS, 'd');
2307      if (T.isDouble() || (T.isPoly() && T.isLong()))
2308        IsA64 = true;
2309
2310      if (InIfdef && !IsA64) {
2311        OS << "#endif\n";
2312        InIfdef = false;
2313      }
2314      if (!InIfdef && IsA64) {
2315        OS << "#ifdef __aarch64__\n";
2316        InIfdef = true;
2317      }
2318
2319      char M = '2' + (NumMembers - 2);
2320      Type VT(TS, M);
2321      OS << "typedef struct " << VT.str() << " {\n";
2322      OS << "  " << T.str() << " val";
2323      OS << "[" << utostr(NumMembers) << "]";
2324      OS << ";\n} ";
2325      OS << VT.str() << ";\n";
2326      OS << "\n";
2327    }
2328  }
2329  if (InIfdef)
2330    OS << "#endif\n";
2331  OS << "\n";
2332
2333  OS << "#define __ai static inline __attribute__((__always_inline__, "
2334        "__nodebug__))\n\n";
2335
2336  SmallVector<Intrinsic *, 128> Defs;
2337  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2338  for (auto *R : RV)
2339    createIntrinsic(R, Defs);
2340
2341  for (auto *I : Defs)
2342    I->indexBody();
2343
2344  std::stable_sort(
2345      Defs.begin(), Defs.end(),
2346      [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2347
2348  // Only emit a def when its requirements have been met.
2349  // FIXME: This loop could be made faster, but it's fast enough for now.
2350  bool MadeProgress = true;
2351  std::string InGuard = "";
2352  while (!Defs.empty() && MadeProgress) {
2353    MadeProgress = false;
2354
2355    for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2356         I != Defs.end(); /*No step*/) {
2357      bool DependenciesSatisfied = true;
2358      for (auto *II : (*I)->getDependencies()) {
2359        if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2360          DependenciesSatisfied = false;
2361      }
2362      if (!DependenciesSatisfied) {
2363        // Try the next one.
2364        ++I;
2365        continue;
2366      }
2367
2368      // Emit #endif/#if pair if needed.
2369      if ((*I)->getGuard() != InGuard) {
2370        if (!InGuard.empty())
2371          OS << "#endif\n";
2372        InGuard = (*I)->getGuard();
2373        if (!InGuard.empty())
2374          OS << "#if " << InGuard << "\n";
2375      }
2376
2377      // Actually generate the intrinsic code.
2378      OS << (*I)->generate();
2379
2380      MadeProgress = true;
2381      I = Defs.erase(I);
2382    }
2383  }
2384  assert(Defs.empty() && "Some requirements were not satisfied!");
2385  if (!InGuard.empty())
2386    OS << "#endif\n";
2387
2388  OS << "\n";
2389  OS << "#undef __ai\n\n";
2390  OS << "#endif /* __ARM_NEON_H */\n";
2391}
2392
2393namespace clang {
2394void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2395  NeonEmitter(Records).run(OS);
2396}
2397void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2398  NeonEmitter(Records).runHeader(OS);
2399}
2400void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2401  llvm_unreachable("Neon test generation no longer implemented!");
2402}
2403} // End namespace clang
2404