ProgramState.cpp revision 249423
1//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements ProgramState and ProgramStateManager.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
15#include "clang/Analysis/CFG.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
20#include "llvm/Support/raw_ostream.h"
21
22using namespace clang;
23using namespace ento;
24
25namespace clang { namespace  ento {
26/// Increments the number of times this state is referenced.
27
28void ProgramStateRetain(const ProgramState *state) {
29  ++const_cast<ProgramState*>(state)->refCount;
30}
31
32/// Decrement the number of times this state is referenced.
33void ProgramStateRelease(const ProgramState *state) {
34  assert(state->refCount > 0);
35  ProgramState *s = const_cast<ProgramState*>(state);
36  if (--s->refCount == 0) {
37    ProgramStateManager &Mgr = s->getStateManager();
38    Mgr.StateSet.RemoveNode(s);
39    s->~ProgramState();
40    Mgr.freeStates.push_back(s);
41  }
42}
43}}
44
45ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
46                 StoreRef st, GenericDataMap gdm)
47  : stateMgr(mgr),
48    Env(env),
49    store(st.getStore()),
50    GDM(gdm),
51    refCount(0) {
52  stateMgr->getStoreManager().incrementReferenceCount(store);
53}
54
55ProgramState::ProgramState(const ProgramState &RHS)
56    : llvm::FoldingSetNode(),
57      stateMgr(RHS.stateMgr),
58      Env(RHS.Env),
59      store(RHS.store),
60      GDM(RHS.GDM),
61      refCount(0) {
62  stateMgr->getStoreManager().incrementReferenceCount(store);
63}
64
65ProgramState::~ProgramState() {
66  if (store)
67    stateMgr->getStoreManager().decrementReferenceCount(store);
68}
69
70ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
71                                         StoreManagerCreator CreateSMgr,
72                                         ConstraintManagerCreator CreateCMgr,
73                                         llvm::BumpPtrAllocator &alloc,
74                                         SubEngine *SubEng)
75  : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
76    svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
77    CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
78  StoreMgr.reset((*CreateSMgr)(*this));
79  ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
80}
81
82
83ProgramStateManager::~ProgramStateManager() {
84  for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
85       I!=E; ++I)
86    I->second.second(I->second.first);
87}
88
89ProgramStateRef
90ProgramStateManager::removeDeadBindings(ProgramStateRef state,
91                                   const StackFrameContext *LCtx,
92                                   SymbolReaper& SymReaper) {
93
94  // This code essentially performs a "mark-and-sweep" of the VariableBindings.
95  // The roots are any Block-level exprs and Decls that our liveness algorithm
96  // tells us are live.  We then see what Decls they may reference, and keep
97  // those around.  This code more than likely can be made faster, and the
98  // frequency of which this method is called should be experimented with
99  // for optimum performance.
100  ProgramState NewState = *state;
101
102  NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
103
104  // Clean up the store.
105  StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
106                                                   SymReaper);
107  NewState.setStore(newStore);
108  SymReaper.setReapedStore(newStore);
109
110  ProgramStateRef Result = getPersistentState(NewState);
111  return ConstraintMgr->removeDeadBindings(Result, SymReaper);
112}
113
114ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
115                                            const LocationContext *LC,
116                                            SVal V) const {
117  const StoreRef &newStore =
118    getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
119  return makeWithStore(newStore);
120}
121
122ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
123  ProgramStateManager &Mgr = getStateManager();
124  ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
125                                                             LV, V));
126  const MemRegion *MR = LV.getAsRegion();
127  if (MR && Mgr.getOwningEngine() && notifyChanges)
128    return Mgr.getOwningEngine()->processRegionChange(newState, MR);
129
130  return newState;
131}
132
133ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
134  ProgramStateManager &Mgr = getStateManager();
135  const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
136  const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
137  ProgramStateRef new_state = makeWithStore(newStore);
138  return Mgr.getOwningEngine() ?
139           Mgr.getOwningEngine()->processRegionChange(new_state, R) :
140           new_state;
141}
142
143typedef ArrayRef<const MemRegion *> RegionList;
144typedef ArrayRef<SVal> ValueList;
145
146ProgramStateRef
147ProgramState::invalidateRegions(RegionList Regions,
148                                const Expr *E, unsigned Count,
149                                const LocationContext *LCtx,
150                                bool CausedByPointerEscape,
151                                InvalidatedSymbols *IS,
152                                const CallEvent *Call,
153                                RegionList ConstRegions) const {
154  SmallVector<SVal, 8> Values;
155  for (RegionList::const_iterator I = Regions.begin(),
156                                  End = Regions.end(); I != End; ++I)
157    Values.push_back(loc::MemRegionVal(*I));
158
159  SmallVector<SVal, 8> ConstValues;
160  for (RegionList::const_iterator I = ConstRegions.begin(),
161                                  End = ConstRegions.end(); I != End; ++I)
162    ConstValues.push_back(loc::MemRegionVal(*I));
163
164  if (!IS) {
165    InvalidatedSymbols invalidated;
166    return invalidateRegionsImpl(Values, E, Count, LCtx,
167                                 CausedByPointerEscape,
168                                 invalidated, Call, ConstValues);
169  }
170  return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
171                               *IS, Call, ConstValues);
172}
173
174ProgramStateRef
175ProgramState::invalidateRegions(ValueList Values,
176                                const Expr *E, unsigned Count,
177                                const LocationContext *LCtx,
178                                bool CausedByPointerEscape,
179                                InvalidatedSymbols *IS,
180                                const CallEvent *Call,
181                                ValueList ConstValues) const {
182  if (!IS) {
183    InvalidatedSymbols invalidated;
184    return invalidateRegionsImpl(Values, E, Count, LCtx,
185                                 CausedByPointerEscape,
186                                 invalidated, Call, ConstValues);
187  }
188  return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
189                               *IS, Call, ConstValues);
190}
191
192ProgramStateRef
193ProgramState::invalidateRegionsImpl(ValueList Values,
194                                    const Expr *E, unsigned Count,
195                                    const LocationContext *LCtx,
196                                    bool CausedByPointerEscape,
197                                    InvalidatedSymbols &IS,
198                                    const CallEvent *Call,
199                                    ValueList ConstValues) const {
200  ProgramStateManager &Mgr = getStateManager();
201  SubEngine* Eng = Mgr.getOwningEngine();
202  InvalidatedSymbols ConstIS;
203
204  if (Eng) {
205    StoreManager::InvalidatedRegions TopLevelInvalidated;
206    StoreManager::InvalidatedRegions TopLevelConstInvalidated;
207    StoreManager::InvalidatedRegions Invalidated;
208    const StoreRef &newStore
209    = Mgr.StoreMgr->invalidateRegions(getStore(), Values, ConstValues,
210                                      E, Count, LCtx, Call,
211                                      IS, ConstIS,
212                                      &TopLevelInvalidated,
213                                      &TopLevelConstInvalidated,
214                                      &Invalidated);
215
216    ProgramStateRef newState = makeWithStore(newStore);
217
218    if (CausedByPointerEscape) {
219      newState = Eng->notifyCheckersOfPointerEscape(newState, &IS,
220                                                    TopLevelInvalidated,
221                                                    Invalidated, Call);
222      if (!ConstValues.empty()) {
223        StoreManager::InvalidatedRegions Empty;
224        newState = Eng->notifyCheckersOfPointerEscape(newState, &ConstIS,
225                                                      TopLevelConstInvalidated,
226                                                      Empty, Call,
227                                                      true);
228      }
229    }
230
231    return Eng->processRegionChanges(newState, &IS,
232                                     TopLevelInvalidated, Invalidated,
233                                     Call);
234  }
235
236  const StoreRef &newStore =
237  Mgr.StoreMgr->invalidateRegions(getStore(), Values, ConstValues,
238                                  E, Count, LCtx, Call,
239                                  IS, ConstIS, NULL, NULL, NULL);
240  return makeWithStore(newStore);
241}
242
243ProgramStateRef ProgramState::killBinding(Loc LV) const {
244  assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
245
246  Store OldStore = getStore();
247  const StoreRef &newStore =
248    getStateManager().StoreMgr->killBinding(OldStore, LV);
249
250  if (newStore.getStore() == OldStore)
251    return this;
252
253  return makeWithStore(newStore);
254}
255
256ProgramStateRef
257ProgramState::enterStackFrame(const CallEvent &Call,
258                              const StackFrameContext *CalleeCtx) const {
259  const StoreRef &NewStore =
260    getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
261  return makeWithStore(NewStore);
262}
263
264SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
265  // We only want to do fetches from regions that we can actually bind
266  // values.  For example, SymbolicRegions of type 'id<...>' cannot
267  // have direct bindings (but their can be bindings on their subregions).
268  if (!R->isBoundable())
269    return UnknownVal();
270
271  if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
272    QualType T = TR->getValueType();
273    if (Loc::isLocType(T) || T->isIntegerType())
274      return getSVal(R);
275  }
276
277  return UnknownVal();
278}
279
280SVal ProgramState::getSVal(Loc location, QualType T) const {
281  SVal V = getRawSVal(cast<Loc>(location), T);
282
283  // If 'V' is a symbolic value that is *perfectly* constrained to
284  // be a constant value, use that value instead to lessen the burden
285  // on later analysis stages (so we have less symbolic values to reason
286  // about).
287  if (!T.isNull()) {
288    if (SymbolRef sym = V.getAsSymbol()) {
289      if (const llvm::APSInt *Int = getStateManager()
290                                    .getConstraintManager()
291                                    .getSymVal(this, sym)) {
292        // FIXME: Because we don't correctly model (yet) sign-extension
293        // and truncation of symbolic values, we need to convert
294        // the integer value to the correct signedness and bitwidth.
295        //
296        // This shows up in the following:
297        //
298        //   char foo();
299        //   unsigned x = foo();
300        //   if (x == 54)
301        //     ...
302        //
303        //  The symbolic value stored to 'x' is actually the conjured
304        //  symbol for the call to foo(); the type of that symbol is 'char',
305        //  not unsigned.
306        const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
307
308        if (V.getAs<Loc>())
309          return loc::ConcreteInt(NewV);
310        else
311          return nonloc::ConcreteInt(NewV);
312      }
313    }
314  }
315
316  return V;
317}
318
319ProgramStateRef ProgramState::BindExpr(const Stmt *S,
320                                           const LocationContext *LCtx,
321                                           SVal V, bool Invalidate) const{
322  Environment NewEnv =
323    getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
324                                      Invalidate);
325  if (NewEnv == Env)
326    return this;
327
328  ProgramState NewSt = *this;
329  NewSt.Env = NewEnv;
330  return getStateManager().getPersistentState(NewSt);
331}
332
333ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
334                                      DefinedOrUnknownSVal UpperBound,
335                                      bool Assumption,
336                                      QualType indexTy) const {
337  if (Idx.isUnknown() || UpperBound.isUnknown())
338    return this;
339
340  // Build an expression for 0 <= Idx < UpperBound.
341  // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
342  // FIXME: This should probably be part of SValBuilder.
343  ProgramStateManager &SM = getStateManager();
344  SValBuilder &svalBuilder = SM.getSValBuilder();
345  ASTContext &Ctx = svalBuilder.getContext();
346
347  // Get the offset: the minimum value of the array index type.
348  BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
349  // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
350  if (indexTy.isNull())
351    indexTy = Ctx.IntTy;
352  nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
353
354  // Adjust the index.
355  SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
356                                        Idx.castAs<NonLoc>(), Min, indexTy);
357  if (newIdx.isUnknownOrUndef())
358    return this;
359
360  // Adjust the upper bound.
361  SVal newBound =
362    svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
363                            Min, indexTy);
364
365  if (newBound.isUnknownOrUndef())
366    return this;
367
368  // Build the actual comparison.
369  SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
370                                         newBound.castAs<NonLoc>(), Ctx.IntTy);
371  if (inBound.isUnknownOrUndef())
372    return this;
373
374  // Finally, let the constraint manager take care of it.
375  ConstraintManager &CM = SM.getConstraintManager();
376  return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
377}
378
379ConditionTruthVal ProgramState::isNull(SVal V) const {
380  if (V.isZeroConstant())
381    return true;
382
383  if (V.isConstant())
384    return false;
385
386  SymbolRef Sym = V.getAsSymbol();
387  if (!Sym)
388    return ConditionTruthVal();
389
390  return getStateManager().ConstraintMgr->isNull(this, Sym);
391}
392
393ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
394  ProgramState State(this,
395                EnvMgr.getInitialEnvironment(),
396                StoreMgr->getInitialStore(InitLoc),
397                GDMFactory.getEmptyMap());
398
399  return getPersistentState(State);
400}
401
402ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
403                                                     ProgramStateRef FromState,
404                                                     ProgramStateRef GDMState) {
405  ProgramState NewState(*FromState);
406  NewState.GDM = GDMState->GDM;
407  return getPersistentState(NewState);
408}
409
410ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
411
412  llvm::FoldingSetNodeID ID;
413  State.Profile(ID);
414  void *InsertPos;
415
416  if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
417    return I;
418
419  ProgramState *newState = 0;
420  if (!freeStates.empty()) {
421    newState = freeStates.back();
422    freeStates.pop_back();
423  }
424  else {
425    newState = (ProgramState*) Alloc.Allocate<ProgramState>();
426  }
427  new (newState) ProgramState(State);
428  StateSet.InsertNode(newState, InsertPos);
429  return newState;
430}
431
432ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
433  ProgramState NewSt(*this);
434  NewSt.setStore(store);
435  return getStateManager().getPersistentState(NewSt);
436}
437
438void ProgramState::setStore(const StoreRef &newStore) {
439  Store newStoreStore = newStore.getStore();
440  if (newStoreStore)
441    stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
442  if (store)
443    stateMgr->getStoreManager().decrementReferenceCount(store);
444  store = newStoreStore;
445}
446
447//===----------------------------------------------------------------------===//
448//  State pretty-printing.
449//===----------------------------------------------------------------------===//
450
451void ProgramState::print(raw_ostream &Out,
452                         const char *NL, const char *Sep) const {
453  // Print the store.
454  ProgramStateManager &Mgr = getStateManager();
455  Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
456
457  // Print out the environment.
458  Env.print(Out, NL, Sep);
459
460  // Print out the constraints.
461  Mgr.getConstraintManager().print(this, Out, NL, Sep);
462
463  // Print checker-specific data.
464  Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
465}
466
467void ProgramState::printDOT(raw_ostream &Out) const {
468  print(Out, "\\l", "\\|");
469}
470
471void ProgramState::dump() const {
472  print(llvm::errs());
473}
474
475void ProgramState::printTaint(raw_ostream &Out,
476                              const char *NL, const char *Sep) const {
477  TaintMapImpl TM = get<TaintMap>();
478
479  if (!TM.isEmpty())
480    Out <<"Tainted Symbols:" << NL;
481
482  for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
483    Out << I->first << " : " << I->second << NL;
484  }
485}
486
487void ProgramState::dumpTaint() const {
488  printTaint(llvm::errs());
489}
490
491//===----------------------------------------------------------------------===//
492// Generic Data Map.
493//===----------------------------------------------------------------------===//
494
495void *const* ProgramState::FindGDM(void *K) const {
496  return GDM.lookup(K);
497}
498
499void*
500ProgramStateManager::FindGDMContext(void *K,
501                               void *(*CreateContext)(llvm::BumpPtrAllocator&),
502                               void (*DeleteContext)(void*)) {
503
504  std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
505  if (!p.first) {
506    p.first = CreateContext(Alloc);
507    p.second = DeleteContext;
508  }
509
510  return p.first;
511}
512
513ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
514  ProgramState::GenericDataMap M1 = St->getGDM();
515  ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
516
517  if (M1 == M2)
518    return St;
519
520  ProgramState NewSt = *St;
521  NewSt.GDM = M2;
522  return getPersistentState(NewSt);
523}
524
525ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
526  ProgramState::GenericDataMap OldM = state->getGDM();
527  ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
528
529  if (NewM == OldM)
530    return state;
531
532  ProgramState NewState = *state;
533  NewState.GDM = NewM;
534  return getPersistentState(NewState);
535}
536
537bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
538  for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
539    if (!scan(*I))
540      return false;
541
542  return true;
543}
544
545bool ScanReachableSymbols::scan(const SymExpr *sym) {
546  unsigned &isVisited = visited[sym];
547  if (isVisited)
548    return true;
549  isVisited = 1;
550
551  if (!visitor.VisitSymbol(sym))
552    return false;
553
554  // TODO: should be rewritten using SymExpr::symbol_iterator.
555  switch (sym->getKind()) {
556    case SymExpr::RegionValueKind:
557    case SymExpr::ConjuredKind:
558    case SymExpr::DerivedKind:
559    case SymExpr::ExtentKind:
560    case SymExpr::MetadataKind:
561      break;
562    case SymExpr::CastSymbolKind:
563      return scan(cast<SymbolCast>(sym)->getOperand());
564    case SymExpr::SymIntKind:
565      return scan(cast<SymIntExpr>(sym)->getLHS());
566    case SymExpr::IntSymKind:
567      return scan(cast<IntSymExpr>(sym)->getRHS());
568    case SymExpr::SymSymKind: {
569      const SymSymExpr *x = cast<SymSymExpr>(sym);
570      return scan(x->getLHS()) && scan(x->getRHS());
571    }
572  }
573  return true;
574}
575
576bool ScanReachableSymbols::scan(SVal val) {
577  if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
578    return scan(X->getRegion());
579
580  if (Optional<nonloc::LazyCompoundVal> X =
581          val.getAs<nonloc::LazyCompoundVal>()) {
582    StoreManager &StoreMgr = state->getStateManager().getStoreManager();
583    // FIXME: We don't really want to use getBaseRegion() here because pointer
584    // arithmetic doesn't apply, but scanReachableSymbols only accepts base
585    // regions right now.
586    if (!StoreMgr.scanReachableSymbols(X->getStore(),
587                                       X->getRegion()->getBaseRegion(),
588                                       *this))
589      return false;
590  }
591
592  if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
593    return scan(X->getLoc());
594
595  if (SymbolRef Sym = val.getAsSymbol())
596    return scan(Sym);
597
598  if (const SymExpr *Sym = val.getAsSymbolicExpression())
599    return scan(Sym);
600
601  if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
602    return scan(*X);
603
604  return true;
605}
606
607bool ScanReachableSymbols::scan(const MemRegion *R) {
608  if (isa<MemSpaceRegion>(R))
609    return true;
610
611  unsigned &isVisited = visited[R];
612  if (isVisited)
613    return true;
614  isVisited = 1;
615
616
617  if (!visitor.VisitMemRegion(R))
618    return false;
619
620  // If this is a symbolic region, visit the symbol for the region.
621  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
622    if (!visitor.VisitSymbol(SR->getSymbol()))
623      return false;
624
625  // If this is a subregion, also visit the parent regions.
626  if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
627    const MemRegion *Super = SR->getSuperRegion();
628    if (!scan(Super))
629      return false;
630
631    // When we reach the topmost region, scan all symbols in it.
632    if (isa<MemSpaceRegion>(Super)) {
633      StoreManager &StoreMgr = state->getStateManager().getStoreManager();
634      if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
635        return false;
636    }
637  }
638
639  // Regions captured by a block are also implicitly reachable.
640  if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
641    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
642                                              E = BDR->referenced_vars_end();
643    for ( ; I != E; ++I) {
644      if (!scan(I.getCapturedRegion()))
645        return false;
646    }
647  }
648
649  return true;
650}
651
652bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
653  ScanReachableSymbols S(this, visitor);
654  return S.scan(val);
655}
656
657bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
658                                   SymbolVisitor &visitor) const {
659  ScanReachableSymbols S(this, visitor);
660  for ( ; I != E; ++I) {
661    if (!S.scan(*I))
662      return false;
663  }
664  return true;
665}
666
667bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
668                                   const MemRegion * const *E,
669                                   SymbolVisitor &visitor) const {
670  ScanReachableSymbols S(this, visitor);
671  for ( ; I != E; ++I) {
672    if (!S.scan(*I))
673      return false;
674  }
675  return true;
676}
677
678ProgramStateRef ProgramState::addTaint(const Stmt *S,
679                                           const LocationContext *LCtx,
680                                           TaintTagType Kind) const {
681  if (const Expr *E = dyn_cast_or_null<Expr>(S))
682    S = E->IgnoreParens();
683
684  SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
685  if (Sym)
686    return addTaint(Sym, Kind);
687
688  const MemRegion *R = getSVal(S, LCtx).getAsRegion();
689  addTaint(R, Kind);
690
691  // Cannot add taint, so just return the state.
692  return this;
693}
694
695ProgramStateRef ProgramState::addTaint(const MemRegion *R,
696                                           TaintTagType Kind) const {
697  if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
698    return addTaint(SR->getSymbol(), Kind);
699  return this;
700}
701
702ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
703                                           TaintTagType Kind) const {
704  // If this is a symbol cast, remove the cast before adding the taint. Taint
705  // is cast agnostic.
706  while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
707    Sym = SC->getOperand();
708
709  ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
710  assert(NewState);
711  return NewState;
712}
713
714bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
715                             TaintTagType Kind) const {
716  if (const Expr *E = dyn_cast_or_null<Expr>(S))
717    S = E->IgnoreParens();
718
719  SVal val = getSVal(S, LCtx);
720  return isTainted(val, Kind);
721}
722
723bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
724  if (const SymExpr *Sym = V.getAsSymExpr())
725    return isTainted(Sym, Kind);
726  if (const MemRegion *Reg = V.getAsRegion())
727    return isTainted(Reg, Kind);
728  return false;
729}
730
731bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
732  if (!Reg)
733    return false;
734
735  // Element region (array element) is tainted if either the base or the offset
736  // are tainted.
737  if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
738    return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
739
740  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
741    return isTainted(SR->getSymbol(), K);
742
743  if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
744    return isTainted(ER->getSuperRegion(), K);
745
746  return false;
747}
748
749bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
750  if (!Sym)
751    return false;
752
753  // Traverse all the symbols this symbol depends on to see if any are tainted.
754  bool Tainted = false;
755  for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
756       SI != SE; ++SI) {
757    if (!isa<SymbolData>(*SI))
758      continue;
759
760    const TaintTagType *Tag = get<TaintMap>(*SI);
761    Tainted = (Tag && *Tag == Kind);
762
763    // If this is a SymbolDerived with a tainted parent, it's also tainted.
764    if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
765      Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
766
767    // If memory region is tainted, data is also tainted.
768    if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
769      Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
770
771    // If If this is a SymbolCast from a tainted value, it's also tainted.
772    if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
773      Tainted = Tainted || isTainted(SC->getOperand(), Kind);
774
775    if (Tainted)
776      return true;
777  }
778
779  return Tainted;
780}
781
782/// The GDM component containing the dynamic type info. This is a map from a
783/// symbol to its most likely type.
784REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
785                                 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
786                                                             DynamicTypeInfo))
787
788DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
789  Reg = Reg->StripCasts();
790
791  // Look up the dynamic type in the GDM.
792  const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
793  if (GDMType)
794    return *GDMType;
795
796  // Otherwise, fall back to what we know about the region.
797  if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
798    return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
799
800  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
801    SymbolRef Sym = SR->getSymbol();
802    return DynamicTypeInfo(Sym->getType());
803  }
804
805  return DynamicTypeInfo();
806}
807
808ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
809                                                 DynamicTypeInfo NewTy) const {
810  Reg = Reg->StripCasts();
811  ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
812  assert(NewState);
813  return NewState;
814}
815