CallEvent.cpp revision 296417
1//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file This file defines CallEvent and its subclasses, which represent path-
11/// sensitive instances of different kinds of function and method calls
12/// (C, C++, and Objective-C).
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
17#include "clang/AST/ParentMap.h"
18#include "clang/Analysis/ProgramPoint.h"
19#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Support/raw_ostream.h"
24
25using namespace clang;
26using namespace ento;
27
28QualType CallEvent::getResultType() const {
29  const Expr *E = getOriginExpr();
30  assert(E && "Calls without origin expressions do not have results");
31  QualType ResultTy = E->getType();
32
33  ASTContext &Ctx = getState()->getStateManager().getContext();
34
35  // A function that returns a reference to 'int' will have a result type
36  // of simply 'int'. Check the origin expr's value kind to recover the
37  // proper type.
38  switch (E->getValueKind()) {
39  case VK_LValue:
40    ResultTy = Ctx.getLValueReferenceType(ResultTy);
41    break;
42  case VK_XValue:
43    ResultTy = Ctx.getRValueReferenceType(ResultTy);
44    break;
45  case VK_RValue:
46    // No adjustment is necessary.
47    break;
48  }
49
50  return ResultTy;
51}
52
53static bool isCallback(QualType T) {
54  // If a parameter is a block or a callback, assume it can modify pointer.
55  if (T->isBlockPointerType() ||
56      T->isFunctionPointerType() ||
57      T->isObjCSelType())
58    return true;
59
60  // Check if a callback is passed inside a struct (for both, struct passed by
61  // reference and by value). Dig just one level into the struct for now.
62
63  if (T->isAnyPointerType() || T->isReferenceType())
64    T = T->getPointeeType();
65
66  if (const RecordType *RT = T->getAsStructureType()) {
67    const RecordDecl *RD = RT->getDecl();
68    for (const auto *I : RD->fields()) {
69      QualType FieldT = I->getType();
70      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
71        return true;
72    }
73  }
74  return false;
75}
76
77static bool isVoidPointerToNonConst(QualType T) {
78  if (const PointerType *PT = T->getAs<PointerType>()) {
79    QualType PointeeTy = PT->getPointeeType();
80    if (PointeeTy.isConstQualified())
81      return false;
82    return PointeeTy->isVoidType();
83  } else
84    return false;
85}
86
87bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
88  unsigned NumOfArgs = getNumArgs();
89
90  // If calling using a function pointer, assume the function does not
91  // satisfy the callback.
92  // TODO: We could check the types of the arguments here.
93  if (!getDecl())
94    return false;
95
96  unsigned Idx = 0;
97  for (CallEvent::param_type_iterator I = param_type_begin(),
98                                      E = param_type_end();
99       I != E && Idx < NumOfArgs; ++I, ++Idx) {
100    if (NumOfArgs <= Idx)
101      break;
102
103    // If the parameter is 0, it's harmless.
104    if (getArgSVal(Idx).isZeroConstant())
105      continue;
106
107    if (Condition(*I))
108      return true;
109  }
110  return false;
111}
112
113bool CallEvent::hasNonZeroCallbackArg() const {
114  return hasNonNullArgumentsWithType(isCallback);
115}
116
117bool CallEvent::hasVoidPointerToNonConstArg() const {
118  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
119}
120
121bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
122  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
123  if (!FD)
124    return false;
125
126  return CheckerContext::isCLibraryFunction(FD, FunctionName);
127}
128
129/// \brief Returns true if a type is a pointer-to-const or reference-to-const
130/// with no further indirection.
131static bool isPointerToConst(QualType Ty) {
132  QualType PointeeTy = Ty->getPointeeType();
133  if (PointeeTy == QualType())
134    return false;
135  if (!PointeeTy.isConstQualified())
136    return false;
137  if (PointeeTy->isAnyPointerType())
138    return false;
139  return true;
140}
141
142// Try to retrieve the function declaration and find the function parameter
143// types which are pointers/references to a non-pointer const.
144// We will not invalidate the corresponding argument regions.
145static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
146                                 const CallEvent &Call) {
147  unsigned Idx = 0;
148  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
149                                      E = Call.param_type_end();
150       I != E; ++I, ++Idx) {
151    if (isPointerToConst(*I))
152      PreserveArgs.insert(Idx);
153  }
154}
155
156ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
157                                             ProgramStateRef Orig) const {
158  ProgramStateRef Result = (Orig ? Orig : getState());
159
160  // Don't invalidate anything if the callee is marked pure/const.
161  if (const Decl *callee = getDecl())
162    if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
163      return Result;
164
165  SmallVector<SVal, 8> ValuesToInvalidate;
166  RegionAndSymbolInvalidationTraits ETraits;
167
168  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
169
170  // Indexes of arguments whose values will be preserved by the call.
171  llvm::SmallSet<unsigned, 4> PreserveArgs;
172  if (!argumentsMayEscape())
173    findPtrToConstParams(PreserveArgs, *this);
174
175  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
176    // Mark this region for invalidation.  We batch invalidate regions
177    // below for efficiency.
178    if (PreserveArgs.count(Idx))
179      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
180        ETraits.setTrait(MR->StripCasts(),
181                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
182        // TODO: Factor this out + handle the lower level const pointers.
183
184    ValuesToInvalidate.push_back(getArgSVal(Idx));
185  }
186
187  // Invalidate designated regions using the batch invalidation API.
188  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
189  //  global variables.
190  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
191                                   BlockCount, getLocationContext(),
192                                   /*CausedByPointerEscape*/ true,
193                                   /*Symbols=*/nullptr, this, &ETraits);
194}
195
196ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
197                                        const ProgramPointTag *Tag) const {
198  if (const Expr *E = getOriginExpr()) {
199    if (IsPreVisit)
200      return PreStmt(E, getLocationContext(), Tag);
201    return PostStmt(E, getLocationContext(), Tag);
202  }
203
204  const Decl *D = getDecl();
205  assert(D && "Cannot get a program point without a statement or decl");
206
207  SourceLocation Loc = getSourceRange().getBegin();
208  if (IsPreVisit)
209    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
210  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
211}
212
213SVal CallEvent::getArgSVal(unsigned Index) const {
214  const Expr *ArgE = getArgExpr(Index);
215  if (!ArgE)
216    return UnknownVal();
217  return getSVal(ArgE);
218}
219
220SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
221  const Expr *ArgE = getArgExpr(Index);
222  if (!ArgE)
223    return SourceRange();
224  return ArgE->getSourceRange();
225}
226
227SVal CallEvent::getReturnValue() const {
228  const Expr *E = getOriginExpr();
229  if (!E)
230    return UndefinedVal();
231  return getSVal(E);
232}
233
234LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
235
236void CallEvent::dump(raw_ostream &Out) const {
237  ASTContext &Ctx = getState()->getStateManager().getContext();
238  if (const Expr *E = getOriginExpr()) {
239    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
240    Out << "\n";
241    return;
242  }
243
244  if (const Decl *D = getDecl()) {
245    Out << "Call to ";
246    D->print(Out, Ctx.getPrintingPolicy());
247    return;
248  }
249
250  // FIXME: a string representation of the kind would be nice.
251  Out << "Unknown call (type " << getKind() << ")";
252}
253
254
255bool CallEvent::isCallStmt(const Stmt *S) {
256  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
257                          || isa<CXXConstructExpr>(S)
258                          || isa<CXXNewExpr>(S);
259}
260
261QualType CallEvent::getDeclaredResultType(const Decl *D) {
262  assert(D);
263  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
264    return FD->getReturnType();
265  if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
266    return MD->getReturnType();
267  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
268    // Blocks are difficult because the return type may not be stored in the
269    // BlockDecl itself. The AST should probably be enhanced, but for now we
270    // just do what we can.
271    // If the block is declared without an explicit argument list, the
272    // signature-as-written just includes the return type, not the entire
273    // function type.
274    // FIXME: All blocks should have signatures-as-written, even if the return
275    // type is inferred. (That's signified with a dependent result type.)
276    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
277      QualType Ty = TSI->getType();
278      if (const FunctionType *FT = Ty->getAs<FunctionType>())
279        Ty = FT->getReturnType();
280      if (!Ty->isDependentType())
281        return Ty;
282    }
283
284    return QualType();
285  }
286
287  llvm_unreachable("unknown callable kind");
288}
289
290bool CallEvent::isVariadic(const Decl *D) {
291  assert(D);
292
293  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
294    return FD->isVariadic();
295  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
296    return MD->isVariadic();
297  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
298    return BD->isVariadic();
299
300  llvm_unreachable("unknown callable kind");
301}
302
303static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
304                                         CallEvent::BindingsTy &Bindings,
305                                         SValBuilder &SVB,
306                                         const CallEvent &Call,
307                                         ArrayRef<ParmVarDecl*> parameters) {
308  MemRegionManager &MRMgr = SVB.getRegionManager();
309
310  // If the function has fewer parameters than the call has arguments, we simply
311  // do not bind any values to them.
312  unsigned NumArgs = Call.getNumArgs();
313  unsigned Idx = 0;
314  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
315  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
316    const ParmVarDecl *ParamDecl = *I;
317    assert(ParamDecl && "Formal parameter has no decl?");
318
319    SVal ArgVal = Call.getArgSVal(Idx);
320    if (!ArgVal.isUnknown()) {
321      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
322      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
323    }
324  }
325
326  // FIXME: Variadic arguments are not handled at all right now.
327}
328
329ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
330  const FunctionDecl *D = getDecl();
331  if (!D)
332    return None;
333  return D->parameters();
334}
335
336void AnyFunctionCall::getInitialStackFrameContents(
337                                        const StackFrameContext *CalleeCtx,
338                                        BindingsTy &Bindings) const {
339  const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
340  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
341  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
342                               D->parameters());
343}
344
345bool AnyFunctionCall::argumentsMayEscape() const {
346  if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
347    return true;
348
349  const FunctionDecl *D = getDecl();
350  if (!D)
351    return true;
352
353  const IdentifierInfo *II = D->getIdentifier();
354  if (!II)
355    return false;
356
357  // This set of "escaping" APIs is
358
359  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
360  //   value into thread local storage. The value can later be retrieved with
361  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
362  //   parameter is 'const void *', the region escapes through the call.
363  if (II->isStr("pthread_setspecific"))
364    return true;
365
366  // - xpc_connection_set_context stores a value which can be retrieved later
367  //   with xpc_connection_get_context.
368  if (II->isStr("xpc_connection_set_context"))
369    return true;
370
371  // - funopen - sets a buffer for future IO calls.
372  if (II->isStr("funopen"))
373    return true;
374
375  StringRef FName = II->getName();
376
377  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
378  //   buffer even if it is const.
379  if (FName.endswith("NoCopy"))
380    return true;
381
382  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
383  //   be deallocated by NSMapRemove.
384  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
385    return true;
386
387  // - Many CF containers allow objects to escape through custom
388  //   allocators/deallocators upon container construction. (PR12101)
389  if (FName.startswith("CF") || FName.startswith("CG")) {
390    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
391           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
392           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
393           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
394           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
395           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
396  }
397
398  return false;
399}
400
401
402const FunctionDecl *SimpleFunctionCall::getDecl() const {
403  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
404  if (D)
405    return D;
406
407  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
408}
409
410
411const FunctionDecl *CXXInstanceCall::getDecl() const {
412  const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
413  if (!CE)
414    return AnyFunctionCall::getDecl();
415
416  const FunctionDecl *D = CE->getDirectCallee();
417  if (D)
418    return D;
419
420  return getSVal(CE->getCallee()).getAsFunctionDecl();
421}
422
423void CXXInstanceCall::getExtraInvalidatedValues(
424    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
425  SVal ThisVal = getCXXThisVal();
426  Values.push_back(ThisVal);
427
428  // Don't invalidate if the method is const and there are no mutable fields.
429  if (const CXXMethodDecl *D = cast_or_null<CXXMethodDecl>(getDecl())) {
430    if (!D->isConst())
431      return;
432    // Get the record decl for the class of 'This'. D->getParent() may return a
433    // base class decl, rather than the class of the instance which needs to be
434    // checked for mutable fields.
435    const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
436    const CXXRecordDecl *ParentRecord = Ex->getType()->getAsCXXRecordDecl();
437    if (!ParentRecord || ParentRecord->hasMutableFields())
438      return;
439    // Preserve CXXThis.
440    const MemRegion *ThisRegion = ThisVal.getAsRegion();
441    if (!ThisRegion)
442      return;
443
444    ETraits->setTrait(ThisRegion->getBaseRegion(),
445                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
446  }
447}
448
449SVal CXXInstanceCall::getCXXThisVal() const {
450  const Expr *Base = getCXXThisExpr();
451  // FIXME: This doesn't handle an overloaded ->* operator.
452  if (!Base)
453    return UnknownVal();
454
455  SVal ThisVal = getSVal(Base);
456  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
457  return ThisVal;
458}
459
460
461RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
462  // Do we have a decl at all?
463  const Decl *D = getDecl();
464  if (!D)
465    return RuntimeDefinition();
466
467  // If the method is non-virtual, we know we can inline it.
468  const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
469  if (!MD->isVirtual())
470    return AnyFunctionCall::getRuntimeDefinition();
471
472  // Do we know the implicit 'this' object being called?
473  const MemRegion *R = getCXXThisVal().getAsRegion();
474  if (!R)
475    return RuntimeDefinition();
476
477  // Do we know anything about the type of 'this'?
478  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
479  if (!DynType.isValid())
480    return RuntimeDefinition();
481
482  // Is the type a C++ class? (This is mostly a defensive check.)
483  QualType RegionType = DynType.getType()->getPointeeType();
484  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
485
486  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
487  if (!RD || !RD->hasDefinition())
488    return RuntimeDefinition();
489
490  // Find the decl for this method in that class.
491  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
492  if (!Result) {
493    // We might not even get the original statically-resolved method due to
494    // some particularly nasty casting (e.g. casts to sister classes).
495    // However, we should at least be able to search up and down our own class
496    // hierarchy, and some real bugs have been caught by checking this.
497    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
498
499    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
500    // the static type. However, because we currently don't update
501    // DynamicTypeInfo when an object is cast, we can't actually be sure the
502    // DynamicTypeInfo is up to date. This assert should be re-enabled once
503    // this is fixed. <rdar://problem/12287087>
504    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
505
506    return RuntimeDefinition();
507  }
508
509  // Does the decl that we found have an implementation?
510  const FunctionDecl *Definition;
511  if (!Result->hasBody(Definition))
512    return RuntimeDefinition();
513
514  // We found a definition. If we're not sure that this devirtualization is
515  // actually what will happen at runtime, make sure to provide the region so
516  // that ExprEngine can decide what to do with it.
517  if (DynType.canBeASubClass())
518    return RuntimeDefinition(Definition, R->StripCasts());
519  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
520}
521
522void CXXInstanceCall::getInitialStackFrameContents(
523                                            const StackFrameContext *CalleeCtx,
524                                            BindingsTy &Bindings) const {
525  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
526
527  // Handle the binding of 'this' in the new stack frame.
528  SVal ThisVal = getCXXThisVal();
529  if (!ThisVal.isUnknown()) {
530    ProgramStateManager &StateMgr = getState()->getStateManager();
531    SValBuilder &SVB = StateMgr.getSValBuilder();
532
533    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
534    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
535
536    // If we devirtualized to a different member function, we need to make sure
537    // we have the proper layering of CXXBaseObjectRegions.
538    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
539      ASTContext &Ctx = SVB.getContext();
540      const CXXRecordDecl *Class = MD->getParent();
541      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
542
543      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
544      bool Failed;
545      ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
546      assert(!Failed && "Calling an incorrectly devirtualized method");
547    }
548
549    if (!ThisVal.isUnknown())
550      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
551  }
552}
553
554
555
556const Expr *CXXMemberCall::getCXXThisExpr() const {
557  return getOriginExpr()->getImplicitObjectArgument();
558}
559
560RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
561  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
562  // id-expression in the class member access expression is a qualified-id,
563  // that function is called. Otherwise, its final overrider in the dynamic type
564  // of the object expression is called.
565  if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
566    if (ME->hasQualifier())
567      return AnyFunctionCall::getRuntimeDefinition();
568
569  return CXXInstanceCall::getRuntimeDefinition();
570}
571
572
573const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
574  return getOriginExpr()->getArg(0);
575}
576
577
578const BlockDataRegion *BlockCall::getBlockRegion() const {
579  const Expr *Callee = getOriginExpr()->getCallee();
580  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
581
582  return dyn_cast_or_null<BlockDataRegion>(DataReg);
583}
584
585ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
586  const BlockDecl *D = getDecl();
587  if (!D)
588    return nullptr;
589  return D->parameters();
590}
591
592void BlockCall::getExtraInvalidatedValues(ValueList &Values,
593                  RegionAndSymbolInvalidationTraits *ETraits) const {
594  // FIXME: This also needs to invalidate captured globals.
595  if (const MemRegion *R = getBlockRegion())
596    Values.push_back(loc::MemRegionVal(R));
597}
598
599void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
600                                             BindingsTy &Bindings) const {
601  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
602  ArrayRef<ParmVarDecl*> Params;
603  if (isConversionFromLambda()) {
604    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
605    Params = LambdaOperatorDecl->parameters();
606
607    // For blocks converted from a C++ lambda, the callee declaration is the
608    // operator() method on the lambda so we bind "this" to
609    // the lambda captured by the block.
610    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
611    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
612    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
613    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
614  } else {
615    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
616  }
617
618  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
619                               Params);
620}
621
622
623SVal CXXConstructorCall::getCXXThisVal() const {
624  if (Data)
625    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
626  return UnknownVal();
627}
628
629void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
630                           RegionAndSymbolInvalidationTraits *ETraits) const {
631  if (Data)
632    Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
633}
634
635void CXXConstructorCall::getInitialStackFrameContents(
636                                             const StackFrameContext *CalleeCtx,
637                                             BindingsTy &Bindings) const {
638  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
639
640  SVal ThisVal = getCXXThisVal();
641  if (!ThisVal.isUnknown()) {
642    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
643    const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
644    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
645    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
646  }
647}
648
649SVal CXXDestructorCall::getCXXThisVal() const {
650  if (Data)
651    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
652  return UnknownVal();
653}
654
655RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
656  // Base destructors are always called non-virtually.
657  // Skip CXXInstanceCall's devirtualization logic in this case.
658  if (isBaseDestructor())
659    return AnyFunctionCall::getRuntimeDefinition();
660
661  return CXXInstanceCall::getRuntimeDefinition();
662}
663
664ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
665  const ObjCMethodDecl *D = getDecl();
666  if (!D)
667    return None;
668  return D->parameters();
669}
670
671void
672ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values,
673                  RegionAndSymbolInvalidationTraits *ETraits) const {
674  Values.push_back(getReceiverSVal());
675}
676
677SVal ObjCMethodCall::getSelfSVal() const {
678  const LocationContext *LCtx = getLocationContext();
679  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
680  if (!SelfDecl)
681    return SVal();
682  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
683}
684
685SVal ObjCMethodCall::getReceiverSVal() const {
686  // FIXME: Is this the best way to handle class receivers?
687  if (!isInstanceMessage())
688    return UnknownVal();
689
690  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
691    return getSVal(RecE);
692
693  // An instance message with no expression means we are sending to super.
694  // In this case the object reference is the same as 'self'.
695  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
696  SVal SelfVal = getSelfSVal();
697  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
698  return SelfVal;
699}
700
701bool ObjCMethodCall::isReceiverSelfOrSuper() const {
702  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
703      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
704      return true;
705
706  if (!isInstanceMessage())
707    return false;
708
709  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
710
711  return (RecVal == getSelfSVal());
712}
713
714SourceRange ObjCMethodCall::getSourceRange() const {
715  switch (getMessageKind()) {
716  case OCM_Message:
717    return getOriginExpr()->getSourceRange();
718  case OCM_PropertyAccess:
719  case OCM_Subscript:
720    return getContainingPseudoObjectExpr()->getSourceRange();
721  }
722  llvm_unreachable("unknown message kind");
723}
724
725typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
726
727const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
728  assert(Data && "Lazy lookup not yet performed.");
729  assert(getMessageKind() != OCM_Message && "Explicit message send.");
730  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
731}
732
733ObjCMessageKind ObjCMethodCall::getMessageKind() const {
734  if (!Data) {
735
736    // Find the parent, ignoring implicit casts.
737    ParentMap &PM = getLocationContext()->getParentMap();
738    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
739
740    // Check if parent is a PseudoObjectExpr.
741    if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
742      const Expr *Syntactic = POE->getSyntacticForm();
743
744      // This handles the funny case of assigning to the result of a getter.
745      // This can happen if the getter returns a non-const reference.
746      if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
747        Syntactic = BO->getLHS();
748
749      ObjCMessageKind K;
750      switch (Syntactic->getStmtClass()) {
751      case Stmt::ObjCPropertyRefExprClass:
752        K = OCM_PropertyAccess;
753        break;
754      case Stmt::ObjCSubscriptRefExprClass:
755        K = OCM_Subscript;
756        break;
757      default:
758        // FIXME: Can this ever happen?
759        K = OCM_Message;
760        break;
761      }
762
763      if (K != OCM_Message) {
764        const_cast<ObjCMethodCall *>(this)->Data
765          = ObjCMessageDataTy(POE, K).getOpaqueValue();
766        assert(getMessageKind() == K);
767        return K;
768      }
769    }
770
771    const_cast<ObjCMethodCall *>(this)->Data
772      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
773    assert(getMessageKind() == OCM_Message);
774    return OCM_Message;
775  }
776
777  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
778  if (!Info.getPointer())
779    return OCM_Message;
780  return static_cast<ObjCMessageKind>(Info.getInt());
781}
782
783
784bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
785                                             Selector Sel) const {
786  assert(IDecl);
787  const SourceManager &SM =
788    getState()->getStateManager().getContext().getSourceManager();
789
790  // If the class interface is declared inside the main file, assume it is not
791  // subcassed.
792  // TODO: It could actually be subclassed if the subclass is private as well.
793  // This is probably very rare.
794  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
795  if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
796    return false;
797
798  // Assume that property accessors are not overridden.
799  if (getMessageKind() == OCM_PropertyAccess)
800    return false;
801
802  // We assume that if the method is public (declared outside of main file) or
803  // has a parent which publicly declares the method, the method could be
804  // overridden in a subclass.
805
806  // Find the first declaration in the class hierarchy that declares
807  // the selector.
808  ObjCMethodDecl *D = nullptr;
809  while (true) {
810    D = IDecl->lookupMethod(Sel, true);
811
812    // Cannot find a public definition.
813    if (!D)
814      return false;
815
816    // If outside the main file,
817    if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
818      return true;
819
820    if (D->isOverriding()) {
821      // Search in the superclass on the next iteration.
822      IDecl = D->getClassInterface();
823      if (!IDecl)
824        return false;
825
826      IDecl = IDecl->getSuperClass();
827      if (!IDecl)
828        return false;
829
830      continue;
831    }
832
833    return false;
834  };
835
836  llvm_unreachable("The while loop should always terminate.");
837}
838
839RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
840  const ObjCMessageExpr *E = getOriginExpr();
841  assert(E);
842  Selector Sel = E->getSelector();
843
844  if (E->isInstanceMessage()) {
845
846    // Find the receiver type.
847    const ObjCObjectPointerType *ReceiverT = nullptr;
848    bool CanBeSubClassed = false;
849    QualType SupersType = E->getSuperType();
850    const MemRegion *Receiver = nullptr;
851
852    if (!SupersType.isNull()) {
853      // Super always means the type of immediate predecessor to the method
854      // where the call occurs.
855      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
856    } else {
857      Receiver = getReceiverSVal().getAsRegion();
858      if (!Receiver)
859        return RuntimeDefinition();
860
861      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
862      QualType DynType = DTI.getType();
863      CanBeSubClassed = DTI.canBeASubClass();
864      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
865
866      if (ReceiverT && CanBeSubClassed)
867        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
868          if (!canBeOverridenInSubclass(IDecl, Sel))
869            CanBeSubClassed = false;
870    }
871
872    // Lookup the method implementation.
873    if (ReceiverT)
874      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
875        // Repeatedly calling lookupPrivateMethod() is expensive, especially
876        // when in many cases it returns null.  We cache the results so
877        // that repeated queries on the same ObjCIntefaceDecl and Selector
878        // don't incur the same cost.  On some test cases, we can see the
879        // same query being issued thousands of times.
880        //
881        // NOTE: This cache is essentially a "global" variable, but it
882        // only gets lazily created when we get here.  The value of the
883        // cache probably comes from it being global across ExprEngines,
884        // where the same queries may get issued.  If we are worried about
885        // concurrency, or possibly loading/unloading ASTs, etc., we may
886        // need to revisit this someday.  In terms of memory, this table
887        // stays around until clang quits, which also may be bad if we
888        // need to release memory.
889        typedef std::pair<const ObjCInterfaceDecl*, Selector>
890                PrivateMethodKey;
891        typedef llvm::DenseMap<PrivateMethodKey,
892                               Optional<const ObjCMethodDecl *> >
893                PrivateMethodCache;
894
895        static PrivateMethodCache PMC;
896        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
897
898        // Query lookupPrivateMethod() if the cache does not hit.
899        if (!Val.hasValue()) {
900          Val = IDecl->lookupPrivateMethod(Sel);
901
902          // If the method is a property accessor, we should try to "inline" it
903          // even if we don't actually have an implementation.
904          if (!*Val)
905            if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
906              if (CompileTimeMD->isPropertyAccessor())
907                Val = IDecl->lookupInstanceMethod(Sel);
908        }
909
910        const ObjCMethodDecl *MD = Val.getValue();
911        if (CanBeSubClassed)
912          return RuntimeDefinition(MD, Receiver);
913        else
914          return RuntimeDefinition(MD, nullptr);
915      }
916
917  } else {
918    // This is a class method.
919    // If we have type info for the receiver class, we are calling via
920    // class name.
921    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
922      // Find/Return the method implementation.
923      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
924    }
925  }
926
927  return RuntimeDefinition();
928}
929
930bool ObjCMethodCall::argumentsMayEscape() const {
931  if (isInSystemHeader() && !isInstanceMessage()) {
932    Selector Sel = getSelector();
933    if (Sel.getNumArgs() == 1 &&
934        Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
935      return true;
936  }
937
938  return CallEvent::argumentsMayEscape();
939}
940
941void ObjCMethodCall::getInitialStackFrameContents(
942                                             const StackFrameContext *CalleeCtx,
943                                             BindingsTy &Bindings) const {
944  const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
945  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
946  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
947                               D->parameters());
948
949  SVal SelfVal = getReceiverSVal();
950  if (!SelfVal.isUnknown()) {
951    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
952    MemRegionManager &MRMgr = SVB.getRegionManager();
953    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
954    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
955  }
956}
957
958CallEventRef<>
959CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
960                                const LocationContext *LCtx) {
961  if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
962    return create<CXXMemberCall>(MCE, State, LCtx);
963
964  if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
965    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
967      if (MD->isInstance())
968        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
969
970  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
971    return create<BlockCall>(CE, State, LCtx);
972  }
973
974  // Otherwise, it's a normal function call, static member function call, or
975  // something we can't reason about.
976  return create<SimpleFunctionCall>(CE, State, LCtx);
977}
978
979
980CallEventRef<>
981CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
982                            ProgramStateRef State) {
983  const LocationContext *ParentCtx = CalleeCtx->getParent();
984  const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
985  assert(CallerCtx && "This should not be used for top-level stack frames");
986
987  const Stmt *CallSite = CalleeCtx->getCallSite();
988
989  if (CallSite) {
990    if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
991      return getSimpleCall(CE, State, CallerCtx);
992
993    switch (CallSite->getStmtClass()) {
994    case Stmt::CXXConstructExprClass:
995    case Stmt::CXXTemporaryObjectExprClass: {
996      SValBuilder &SVB = State->getStateManager().getSValBuilder();
997      const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
998      Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
999      SVal ThisVal = State->getSVal(ThisPtr);
1000
1001      return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1002                                   ThisVal.getAsRegion(), State, CallerCtx);
1003    }
1004    case Stmt::CXXNewExprClass:
1005      return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
1006    case Stmt::ObjCMessageExprClass:
1007      return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
1008                               State, CallerCtx);
1009    default:
1010      llvm_unreachable("This is not an inlineable statement.");
1011    }
1012  }
1013
1014  // Fall back to the CFG. The only thing we haven't handled yet is
1015  // destructors, though this could change in the future.
1016  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1017  CFGElement E = (*B)[CalleeCtx->getIndex()];
1018  assert(E.getAs<CFGImplicitDtor>() &&
1019         "All other CFG elements should have exprs");
1020  assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
1021
1022  SValBuilder &SVB = State->getStateManager().getSValBuilder();
1023  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1024  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1025  SVal ThisVal = State->getSVal(ThisPtr);
1026
1027  const Stmt *Trigger;
1028  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1029    Trigger = AutoDtor->getTriggerStmt();
1030  else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1031    Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
1032  else
1033    Trigger = Dtor->getBody();
1034
1035  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1036                              E.getAs<CFGBaseDtor>().hasValue(), State,
1037                              CallerCtx);
1038}
1039