SemaType.cpp revision 194613
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// \brief Perform adjustment on the parameter type of a function.
23///
24/// This routine adjusts the given parameter type @p T to the actual
25/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
26/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
27QualType Sema::adjustParameterType(QualType T) {
28  // C99 6.7.5.3p7:
29  if (T->isArrayType()) {
30    // C99 6.7.5.3p7:
31    //   A declaration of a parameter as "array of type" shall be
32    //   adjusted to "qualified pointer to type", where the type
33    //   qualifiers (if any) are those specified within the [ and ] of
34    //   the array type derivation.
35    return Context.getArrayDecayedType(T);
36  } else if (T->isFunctionType())
37    // C99 6.7.5.3p8:
38    //   A declaration of a parameter as "function returning type"
39    //   shall be adjusted to "pointer to function returning type", as
40    //   in 6.3.2.1.
41    return Context.getPointerType(T);
42
43  return T;
44}
45
46/// \brief Convert the specified declspec to the appropriate type
47/// object.
48/// \param DS  the declaration specifiers
49/// \param DeclLoc The location of the declarator identifier or invalid if none.
50/// \returns The type described by the declaration specifiers.  This function
51/// never returns null.
52QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
53                                     SourceLocation DeclLoc,
54                                     bool &isInvalid) {
55  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
56  // checking.
57  QualType Result;
58
59  switch (DS.getTypeSpecType()) {
60  case DeclSpec::TST_void:
61    Result = Context.VoidTy;
62    break;
63  case DeclSpec::TST_char:
64    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
65      Result = Context.CharTy;
66    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
67      Result = Context.SignedCharTy;
68    else {
69      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
70             "Unknown TSS value");
71      Result = Context.UnsignedCharTy;
72    }
73    break;
74  case DeclSpec::TST_wchar:
75    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
76      Result = Context.WCharTy;
77    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
78      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
79        << DS.getSpecifierName(DS.getTypeSpecType());
80      Result = Context.getSignedWCharType();
81    } else {
82      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
83        "Unknown TSS value");
84      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
85        << DS.getSpecifierName(DS.getTypeSpecType());
86      Result = Context.getUnsignedWCharType();
87    }
88    break;
89  case DeclSpec::TST_unspecified:
90    // "<proto1,proto2>" is an objc qualified ID with a missing id.
91    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
92      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
93                                              DS.getNumProtocolQualifiers());
94      break;
95    }
96
97    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
98    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
99    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
100    // Note that the one exception to this is function definitions, which are
101    // allowed to be completely missing a declspec.  This is handled in the
102    // parser already though by it pretending to have seen an 'int' in this
103    // case.
104    if (getLangOptions().ImplicitInt) {
105      // In C89 mode, we only warn if there is a completely missing declspec
106      // when one is not allowed.
107      if (DS.isEmpty()) {
108        if (DeclLoc.isInvalid())
109          DeclLoc = DS.getSourceRange().getBegin();
110        Diag(DeclLoc, diag::ext_missing_declspec)
111          << DS.getSourceRange()
112        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
113                                                 "int");
114      }
115    } else if (!DS.hasTypeSpecifier()) {
116      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
117      // "At least one type specifier shall be given in the declaration
118      // specifiers in each declaration, and in the specifier-qualifier list in
119      // each struct declaration and type name."
120      // FIXME: Does Microsoft really have the implicit int extension in C++?
121      if (DeclLoc.isInvalid())
122        DeclLoc = DS.getSourceRange().getBegin();
123
124      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft)
125        Diag(DeclLoc, diag::err_missing_type_specifier)
126          << DS.getSourceRange();
127      else
128        Diag(DeclLoc, diag::ext_missing_type_specifier)
129          << DS.getSourceRange();
130
131      // FIXME: If we could guarantee that the result would be well-formed, it
132      // would be useful to have a code insertion hint here. However, after
133      // emitting this warning/error, we often emit other errors.
134    }
135
136    // FALL THROUGH.
137  case DeclSpec::TST_int: {
138    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
139      switch (DS.getTypeSpecWidth()) {
140      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
141      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
142      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
143      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
144      }
145    } else {
146      switch (DS.getTypeSpecWidth()) {
147      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
148      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
149      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
150      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
151      }
152    }
153    break;
154  }
155  case DeclSpec::TST_float: Result = Context.FloatTy; break;
156  case DeclSpec::TST_double:
157    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
158      Result = Context.LongDoubleTy;
159    else
160      Result = Context.DoubleTy;
161    break;
162  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
163  case DeclSpec::TST_decimal32:    // _Decimal32
164  case DeclSpec::TST_decimal64:    // _Decimal64
165  case DeclSpec::TST_decimal128:   // _Decimal128
166    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
167    Result = Context.IntTy;
168    isInvalid = true;
169    break;
170  case DeclSpec::TST_class:
171  case DeclSpec::TST_enum:
172  case DeclSpec::TST_union:
173  case DeclSpec::TST_struct: {
174    Decl *D = static_cast<Decl *>(DS.getTypeRep());
175    assert(D && "Didn't get a decl for a class/enum/union/struct?");
176    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
177           DS.getTypeSpecSign() == 0 &&
178           "Can't handle qualifiers on typedef names yet!");
179    // TypeQuals handled by caller.
180    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
181
182    if (D->isInvalidDecl())
183      isInvalid = true;
184    break;
185  }
186  case DeclSpec::TST_typename: {
187    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
188           DS.getTypeSpecSign() == 0 &&
189           "Can't handle qualifiers on typedef names yet!");
190    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
191
192    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
193      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
194      // this "hack" for now...
195      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
196        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
197                                                       (ObjCProtocolDecl**)PQ,
198                                               DS.getNumProtocolQualifiers());
199      else if (Result == Context.getObjCIdType())
200        // id<protocol-list>
201        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
202                                                DS.getNumProtocolQualifiers());
203      else if (Result == Context.getObjCClassType()) {
204        if (DeclLoc.isInvalid())
205          DeclLoc = DS.getSourceRange().getBegin();
206        // Class<protocol-list>
207        Diag(DeclLoc, diag::err_qualified_class_unsupported)
208          << DS.getSourceRange();
209      } else {
210        if (DeclLoc.isInvalid())
211          DeclLoc = DS.getSourceRange().getBegin();
212        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
213          << DS.getSourceRange();
214        isInvalid = true;
215      }
216    }
217
218    // If this is a reference to an invalid typedef, propagate the invalidity.
219    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
220      if (TDT->getDecl()->isInvalidDecl())
221        isInvalid = true;
222
223    // TypeQuals handled by caller.
224    break;
225  }
226  case DeclSpec::TST_typeofType:
227    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
228    assert(!Result.isNull() && "Didn't get a type for typeof?");
229    // TypeQuals handled by caller.
230    Result = Context.getTypeOfType(Result);
231    break;
232  case DeclSpec::TST_typeofExpr: {
233    Expr *E = static_cast<Expr *>(DS.getTypeRep());
234    assert(E && "Didn't get an expression for typeof?");
235    // TypeQuals handled by caller.
236    Result = Context.getTypeOfExprType(E);
237    break;
238  }
239  case DeclSpec::TST_error:
240    Result = Context.IntTy;
241    isInvalid = true;
242    break;
243  }
244
245  // Handle complex types.
246  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
247    if (getLangOptions().Freestanding)
248      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
249    Result = Context.getComplexType(Result);
250  }
251
252  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
253         "FIXME: imaginary types not supported yet!");
254
255  // See if there are any attributes on the declspec that apply to the type (as
256  // opposed to the decl).
257  if (const AttributeList *AL = DS.getAttributes())
258    ProcessTypeAttributeList(Result, AL);
259
260  // Apply const/volatile/restrict qualifiers to T.
261  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
262
263    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
264    // or incomplete types shall not be restrict-qualified."  C++ also allows
265    // restrict-qualified references.
266    if (TypeQuals & QualType::Restrict) {
267      if (Result->isPointerType() || Result->isReferenceType()) {
268        QualType EltTy = Result->isPointerType() ?
269          Result->getAsPointerType()->getPointeeType() :
270          Result->getAsReferenceType()->getPointeeType();
271
272        // If we have a pointer or reference, the pointee must have an object
273        // incomplete type.
274        if (!EltTy->isIncompleteOrObjectType()) {
275          Diag(DS.getRestrictSpecLoc(),
276               diag::err_typecheck_invalid_restrict_invalid_pointee)
277            << EltTy << DS.getSourceRange();
278          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
279        }
280      } else {
281        Diag(DS.getRestrictSpecLoc(),
282             diag::err_typecheck_invalid_restrict_not_pointer)
283          << Result << DS.getSourceRange();
284        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
285      }
286    }
287
288    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
289    // of a function type includes any type qualifiers, the behavior is
290    // undefined."
291    if (Result->isFunctionType() && TypeQuals) {
292      // Get some location to point at, either the C or V location.
293      SourceLocation Loc;
294      if (TypeQuals & QualType::Const)
295        Loc = DS.getConstSpecLoc();
296      else {
297        assert((TypeQuals & QualType::Volatile) &&
298               "Has CV quals but not C or V?");
299        Loc = DS.getVolatileSpecLoc();
300      }
301      Diag(Loc, diag::warn_typecheck_function_qualifiers)
302        << Result << DS.getSourceRange();
303    }
304
305    // C++ [dcl.ref]p1:
306    //   Cv-qualified references are ill-formed except when the
307    //   cv-qualifiers are introduced through the use of a typedef
308    //   (7.1.3) or of a template type argument (14.3), in which
309    //   case the cv-qualifiers are ignored.
310    // FIXME: Shouldn't we be checking SCS_typedef here?
311    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
312        TypeQuals && Result->isReferenceType()) {
313      TypeQuals &= ~QualType::Const;
314      TypeQuals &= ~QualType::Volatile;
315    }
316
317    Result = Result.getQualifiedType(TypeQuals);
318  }
319  return Result;
320}
321
322static std::string getPrintableNameForEntity(DeclarationName Entity) {
323  if (Entity)
324    return Entity.getAsString();
325
326  return "type name";
327}
328
329/// \brief Build a pointer type.
330///
331/// \param T The type to which we'll be building a pointer.
332///
333/// \param Quals The cvr-qualifiers to be applied to the pointer type.
334///
335/// \param Loc The location of the entity whose type involves this
336/// pointer type or, if there is no such entity, the location of the
337/// type that will have pointer type.
338///
339/// \param Entity The name of the entity that involves the pointer
340/// type, if known.
341///
342/// \returns A suitable pointer type, if there are no
343/// errors. Otherwise, returns a NULL type.
344QualType Sema::BuildPointerType(QualType T, unsigned Quals,
345                                SourceLocation Loc, DeclarationName Entity) {
346  if (T->isReferenceType()) {
347    // C++ 8.3.2p4: There shall be no ... pointers to references ...
348    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
349      << getPrintableNameForEntity(Entity);
350    return QualType();
351  }
352
353  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
354  // object or incomplete types shall not be restrict-qualified."
355  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
356    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
357      << T;
358    Quals &= ~QualType::Restrict;
359  }
360
361  // Build the pointer type.
362  return Context.getPointerType(T).getQualifiedType(Quals);
363}
364
365/// \brief Build a reference type.
366///
367/// \param T The type to which we'll be building a reference.
368///
369/// \param Quals The cvr-qualifiers to be applied to the reference type.
370///
371/// \param Loc The location of the entity whose type involves this
372/// reference type or, if there is no such entity, the location of the
373/// type that will have reference type.
374///
375/// \param Entity The name of the entity that involves the reference
376/// type, if known.
377///
378/// \returns A suitable reference type, if there are no
379/// errors. Otherwise, returns a NULL type.
380QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
381                                  SourceLocation Loc, DeclarationName Entity) {
382  if (LValueRef) {
383    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
384      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
385      //   reference to a type T, and attempt to create the type "lvalue
386      //   reference to cv TD" creates the type "lvalue reference to T".
387      // We use the qualifiers (restrict or none) of the original reference,
388      // not the new ones. This is consistent with GCC.
389      return Context.getLValueReferenceType(R->getPointeeType()).
390               getQualifiedType(T.getCVRQualifiers());
391    }
392  }
393  if (T->isReferenceType()) {
394    // C++ [dcl.ref]p4: There shall be no references to references.
395    //
396    // According to C++ DR 106, references to references are only
397    // diagnosed when they are written directly (e.g., "int & &"),
398    // but not when they happen via a typedef:
399    //
400    //   typedef int& intref;
401    //   typedef intref& intref2;
402    //
403    // Parser::ParserDeclaratorInternal diagnoses the case where
404    // references are written directly; here, we handle the
405    // collapsing of references-to-references as described in C++
406    // DR 106 and amended by C++ DR 540.
407    return T;
408  }
409
410  // C++ [dcl.ref]p1:
411  //   A declarator that specifies the type ���reference to cv void���
412  //   is ill-formed.
413  if (T->isVoidType()) {
414    Diag(Loc, diag::err_reference_to_void);
415    return QualType();
416  }
417
418  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
419  // object or incomplete types shall not be restrict-qualified."
420  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
421    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
422      << T;
423    Quals &= ~QualType::Restrict;
424  }
425
426  // C++ [dcl.ref]p1:
427  //   [...] Cv-qualified references are ill-formed except when the
428  //   cv-qualifiers are introduced through the use of a typedef
429  //   (7.1.3) or of a template type argument (14.3), in which case
430  //   the cv-qualifiers are ignored.
431  //
432  // We diagnose extraneous cv-qualifiers for the non-typedef,
433  // non-template type argument case within the parser. Here, we just
434  // ignore any extraneous cv-qualifiers.
435  Quals &= ~QualType::Const;
436  Quals &= ~QualType::Volatile;
437
438  // Handle restrict on references.
439  if (LValueRef)
440    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
441  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
442}
443
444/// \brief Build an array type.
445///
446/// \param T The type of each element in the array.
447///
448/// \param ASM C99 array size modifier (e.g., '*', 'static').
449///
450/// \param ArraySize Expression describing the size of the array.
451///
452/// \param Quals The cvr-qualifiers to be applied to the array's
453/// element type.
454///
455/// \param Loc The location of the entity whose type involves this
456/// array type or, if there is no such entity, the location of the
457/// type that will have array type.
458///
459/// \param Entity The name of the entity that involves the array
460/// type, if known.
461///
462/// \returns A suitable array type, if there are no errors. Otherwise,
463/// returns a NULL type.
464QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
465                              Expr *ArraySize, unsigned Quals,
466                              SourceLocation Loc, DeclarationName Entity) {
467  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
468  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
469  if (RequireCompleteType(Loc, T,
470                             diag::err_illegal_decl_array_incomplete_type))
471    return QualType();
472
473  if (T->isFunctionType()) {
474    Diag(Loc, diag::err_illegal_decl_array_of_functions)
475      << getPrintableNameForEntity(Entity);
476    return QualType();
477  }
478
479  // C++ 8.3.2p4: There shall be no ... arrays of references ...
480  if (T->isReferenceType()) {
481    Diag(Loc, diag::err_illegal_decl_array_of_references)
482      << getPrintableNameForEntity(Entity);
483    return QualType();
484  }
485
486  if (const RecordType *EltTy = T->getAsRecordType()) {
487    // If the element type is a struct or union that contains a variadic
488    // array, accept it as a GNU extension: C99 6.7.2.1p2.
489    if (EltTy->getDecl()->hasFlexibleArrayMember())
490      Diag(Loc, diag::ext_flexible_array_in_array) << T;
491  } else if (T->isObjCInterfaceType()) {
492    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
493    return QualType();
494  }
495
496  // C99 6.7.5.2p1: The size expression shall have integer type.
497  if (ArraySize && !ArraySize->isTypeDependent() &&
498      !ArraySize->getType()->isIntegerType()) {
499    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
500      << ArraySize->getType() << ArraySize->getSourceRange();
501    ArraySize->Destroy(Context);
502    return QualType();
503  }
504  llvm::APSInt ConstVal(32);
505  if (!ArraySize) {
506    if (ASM == ArrayType::Star)
507      T = Context.getVariableArrayType(T, 0, ASM, Quals);
508    else
509      T = Context.getIncompleteArrayType(T, ASM, Quals);
510  } else if (ArraySize->isValueDependent()) {
511    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
512  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
513             (!T->isDependentType() && !T->isConstantSizeType())) {
514    // Per C99, a variable array is an array with either a non-constant
515    // size or an element type that has a non-constant-size
516    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
517  } else {
518    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
519    // have a value greater than zero.
520    if (ConstVal.isSigned()) {
521      if (ConstVal.isNegative()) {
522        Diag(ArraySize->getLocStart(),
523             diag::err_typecheck_negative_array_size)
524          << ArraySize->getSourceRange();
525        return QualType();
526      } else if (ConstVal == 0) {
527        // GCC accepts zero sized static arrays.
528        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
529          << ArraySize->getSourceRange();
530      }
531    }
532    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
533  }
534  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
535  if (!getLangOptions().C99) {
536    if (ArraySize && !ArraySize->isTypeDependent() &&
537        !ArraySize->isValueDependent() &&
538        !ArraySize->isIntegerConstantExpr(Context))
539      Diag(Loc, diag::ext_vla);
540    else if (ASM != ArrayType::Normal || Quals != 0)
541      Diag(Loc, diag::ext_c99_array_usage);
542  }
543
544  return T;
545}
546
547/// \brief Build an ext-vector type.
548///
549/// Run the required checks for the extended vector type.
550QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
551                                  SourceLocation AttrLoc) {
552
553  Expr *Arg = (Expr *)ArraySize.get();
554
555  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
556  // in conjunction with complex types (pointers, arrays, functions, etc.).
557  if (!T->isDependentType() &&
558      !T->isIntegerType() && !T->isRealFloatingType()) {
559    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
560    return QualType();
561  }
562
563  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
564    llvm::APSInt vecSize(32);
565    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
566      Diag(AttrLoc, diag::err_attribute_argument_not_int)
567      << "ext_vector_type" << Arg->getSourceRange();
568      return QualType();
569    }
570
571    // unlike gcc's vector_size attribute, the size is specified as the
572    // number of elements, not the number of bytes.
573    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
574
575    if (vectorSize == 0) {
576      Diag(AttrLoc, diag::err_attribute_zero_size)
577      << Arg->getSourceRange();
578      return QualType();
579    }
580
581    if (!T->isDependentType())
582      return Context.getExtVectorType(T, vectorSize);
583  }
584
585  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
586                                                AttrLoc);
587}
588
589/// \brief Build a function type.
590///
591/// This routine checks the function type according to C++ rules and
592/// under the assumption that the result type and parameter types have
593/// just been instantiated from a template. It therefore duplicates
594/// some of the behavior of GetTypeForDeclarator, but in a much
595/// simpler form that is only suitable for this narrow use case.
596///
597/// \param T The return type of the function.
598///
599/// \param ParamTypes The parameter types of the function. This array
600/// will be modified to account for adjustments to the types of the
601/// function parameters.
602///
603/// \param NumParamTypes The number of parameter types in ParamTypes.
604///
605/// \param Variadic Whether this is a variadic function type.
606///
607/// \param Quals The cvr-qualifiers to be applied to the function type.
608///
609/// \param Loc The location of the entity whose type involves this
610/// function type or, if there is no such entity, the location of the
611/// type that will have function type.
612///
613/// \param Entity The name of the entity that involves the function
614/// type, if known.
615///
616/// \returns A suitable function type, if there are no
617/// errors. Otherwise, returns a NULL type.
618QualType Sema::BuildFunctionType(QualType T,
619                                 QualType *ParamTypes,
620                                 unsigned NumParamTypes,
621                                 bool Variadic, unsigned Quals,
622                                 SourceLocation Loc, DeclarationName Entity) {
623  if (T->isArrayType() || T->isFunctionType()) {
624    Diag(Loc, diag::err_func_returning_array_function) << T;
625    return QualType();
626  }
627
628  bool Invalid = false;
629  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
630    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
631    if (ParamType->isVoidType()) {
632      Diag(Loc, diag::err_param_with_void_type);
633      Invalid = true;
634    }
635
636    ParamTypes[Idx] = ParamType;
637  }
638
639  if (Invalid)
640    return QualType();
641
642  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
643                                 Quals);
644}
645
646/// \brief Build a member pointer type \c T Class::*.
647///
648/// \param T the type to which the member pointer refers.
649/// \param Class the class type into which the member pointer points.
650/// \param Quals Qualifiers applied to the member pointer type
651/// \param Loc the location where this type begins
652/// \param Entity the name of the entity that will have this member pointer type
653///
654/// \returns a member pointer type, if successful, or a NULL type if there was
655/// an error.
656QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
657                                      unsigned Quals, SourceLocation Loc,
658                                      DeclarationName Entity) {
659  // Verify that we're not building a pointer to pointer to function with
660  // exception specification.
661  if (CheckDistantExceptionSpec(T)) {
662    Diag(Loc, diag::err_distant_exception_spec);
663
664    // FIXME: If we're doing this as part of template instantiation,
665    // we should return immediately.
666
667    // Build the type anyway, but use the canonical type so that the
668    // exception specifiers are stripped off.
669    T = Context.getCanonicalType(T);
670  }
671
672  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
673  //   with reference type, or "cv void."
674  if (T->isReferenceType()) {
675    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
676      << (Entity? Entity.getAsString() : "type name");
677    return QualType();
678  }
679
680  if (T->isVoidType()) {
681    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
682      << (Entity? Entity.getAsString() : "type name");
683    return QualType();
684  }
685
686  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
687  // object or incomplete types shall not be restrict-qualified."
688  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
689    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
690      << T;
691
692    // FIXME: If we're doing this as part of template instantiation,
693    // we should return immediately.
694    Quals &= ~QualType::Restrict;
695  }
696
697  if (!Class->isDependentType() && !Class->isRecordType()) {
698    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
699    return QualType();
700  }
701
702  return Context.getMemberPointerType(T, Class.getTypePtr())
703           .getQualifiedType(Quals);
704}
705
706/// \brief Build a block pointer type.
707///
708/// \param T The type to which we'll be building a block pointer.
709///
710/// \param Quals The cvr-qualifiers to be applied to the block pointer type.
711///
712/// \param Loc The location of the entity whose type involves this
713/// block pointer type or, if there is no such entity, the location of the
714/// type that will have block pointer type.
715///
716/// \param Entity The name of the entity that involves the block pointer
717/// type, if known.
718///
719/// \returns A suitable block pointer type, if there are no
720/// errors. Otherwise, returns a NULL type.
721QualType Sema::BuildBlockPointerType(QualType T, unsigned Quals,
722                                     SourceLocation Loc,
723                                     DeclarationName Entity) {
724  if (!T.getTypePtr()->isFunctionType()) {
725    Diag(Loc, diag::err_nonfunction_block_type);
726    return QualType();
727  }
728
729  return Context.getBlockPointerType(T).getQualifiedType(Quals);
730}
731
732/// GetTypeForDeclarator - Convert the type for the specified
733/// declarator to Type instances. Skip the outermost Skip type
734/// objects.
735///
736/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
737/// owns the declaration of a type (e.g., the definition of a struct
738/// type), then *OwnedDecl will receive the owned declaration.
739QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
740                                    TagDecl **OwnedDecl) {
741  bool OmittedReturnType = false;
742
743  if (D.getContext() == Declarator::BlockLiteralContext
744      && Skip == 0
745      && !D.getDeclSpec().hasTypeSpecifier()
746      && (D.getNumTypeObjects() == 0
747          || (D.getNumTypeObjects() == 1
748              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
749    OmittedReturnType = true;
750
751  // long long is a C99 feature.
752  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
753      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
754    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
755
756  // Determine the type of the declarator. Not all forms of declarator
757  // have a type.
758  QualType T;
759  switch (D.getKind()) {
760  case Declarator::DK_Abstract:
761  case Declarator::DK_Normal:
762  case Declarator::DK_Operator: {
763    const DeclSpec &DS = D.getDeclSpec();
764    if (OmittedReturnType) {
765      // We default to a dependent type initially.  Can be modified by
766      // the first return statement.
767      T = Context.DependentTy;
768    } else {
769      bool isInvalid = false;
770      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
771      if (isInvalid)
772        D.setInvalidType(true);
773      else if (OwnedDecl && DS.isTypeSpecOwned())
774        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
775    }
776    break;
777  }
778
779  case Declarator::DK_Constructor:
780  case Declarator::DK_Destructor:
781  case Declarator::DK_Conversion:
782    // Constructors and destructors don't have return types. Use
783    // "void" instead. Conversion operators will check their return
784    // types separately.
785    T = Context.VoidTy;
786    break;
787  }
788
789  // The name we're declaring, if any.
790  DeclarationName Name;
791  if (D.getIdentifier())
792    Name = D.getIdentifier();
793
794  // Walk the DeclTypeInfo, building the recursive type as we go.
795  // DeclTypeInfos are ordered from the identifier out, which is
796  // opposite of what we want :).
797  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
798    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
799    switch (DeclType.Kind) {
800    default: assert(0 && "Unknown decltype!");
801    case DeclaratorChunk::BlockPointer:
802      // If blocks are disabled, emit an error.
803      if (!LangOpts.Blocks)
804        Diag(DeclType.Loc, diag::err_blocks_disable);
805
806      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
807                                Name);
808      break;
809    case DeclaratorChunk::Pointer:
810      // Verify that we're not building a pointer to pointer to function with
811      // exception specification.
812      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
813        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
814        D.setInvalidType(true);
815        // Build the type anyway.
816      }
817      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
818      break;
819    case DeclaratorChunk::Reference:
820      // Verify that we're not building a reference to pointer to function with
821      // exception specification.
822      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
823        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
824        D.setInvalidType(true);
825        // Build the type anyway.
826      }
827      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
828                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
829                             DeclType.Loc, Name);
830      break;
831    case DeclaratorChunk::Array: {
832      // Verify that we're not building an array of pointers to function with
833      // exception specification.
834      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
835        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
836        D.setInvalidType(true);
837        // Build the type anyway.
838      }
839      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
840      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
841      ArrayType::ArraySizeModifier ASM;
842      if (ATI.isStar)
843        ASM = ArrayType::Star;
844      else if (ATI.hasStatic)
845        ASM = ArrayType::Static;
846      else
847        ASM = ArrayType::Normal;
848      if (ASM == ArrayType::Star &&
849          D.getContext() != Declarator::PrototypeContext) {
850        // FIXME: This check isn't quite right: it allows star in prototypes
851        // for function definitions, and disallows some edge cases detailed
852        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
853        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
854        ASM = ArrayType::Normal;
855        D.setInvalidType(true);
856      }
857      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
858      break;
859    }
860    case DeclaratorChunk::Function: {
861      // If the function declarator has a prototype (i.e. it is not () and
862      // does not have a K&R-style identifier list), then the arguments are part
863      // of the type, otherwise the argument list is ().
864      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
865
866      // C99 6.7.5.3p1: The return type may not be a function or array type.
867      if (T->isArrayType() || T->isFunctionType()) {
868        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
869        T = Context.IntTy;
870        D.setInvalidType(true);
871      }
872
873      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
874        // C++ [dcl.fct]p6:
875        //   Types shall not be defined in return or parameter types.
876        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
877        if (Tag->isDefinition())
878          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
879            << Context.getTypeDeclType(Tag);
880      }
881
882      // Exception specs are not allowed in typedefs. Complain, but add it
883      // anyway.
884      if (FTI.hasExceptionSpec &&
885          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
886        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
887
888      if (FTI.NumArgs == 0) {
889        if (getLangOptions().CPlusPlus) {
890          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
891          // function takes no arguments.
892          llvm::SmallVector<QualType, 4> Exceptions;
893          Exceptions.reserve(FTI.NumExceptions);
894          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
895            QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
896            // Check that the type is valid for an exception spec, and drop it
897            // if not.
898            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
899              Exceptions.push_back(ET);
900          }
901          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
902                                      FTI.hasExceptionSpec,
903                                      FTI.hasAnyExceptionSpec,
904                                      Exceptions.size(), Exceptions.data());
905        } else if (FTI.isVariadic) {
906          // We allow a zero-parameter variadic function in C if the
907          // function is marked with the "overloadable"
908          // attribute. Scan for this attribute now.
909          bool Overloadable = false;
910          for (const AttributeList *Attrs = D.getAttributes();
911               Attrs; Attrs = Attrs->getNext()) {
912            if (Attrs->getKind() == AttributeList::AT_overloadable) {
913              Overloadable = true;
914              break;
915            }
916          }
917
918          if (!Overloadable)
919            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
920          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
921        } else {
922          // Simple void foo(), where the incoming T is the result type.
923          T = Context.getFunctionNoProtoType(T);
924        }
925      } else if (FTI.ArgInfo[0].Param == 0) {
926        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
927        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
928      } else {
929        // Otherwise, we have a function with an argument list that is
930        // potentially variadic.
931        llvm::SmallVector<QualType, 16> ArgTys;
932
933        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
934          ParmVarDecl *Param =
935            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
936          QualType ArgTy = Param->getType();
937          assert(!ArgTy.isNull() && "Couldn't parse type?");
938
939          // Adjust the parameter type.
940          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
941
942          // Look for 'void'.  void is allowed only as a single argument to a
943          // function with no other parameters (C99 6.7.5.3p10).  We record
944          // int(void) as a FunctionProtoType with an empty argument list.
945          if (ArgTy->isVoidType()) {
946            // If this is something like 'float(int, void)', reject it.  'void'
947            // is an incomplete type (C99 6.2.5p19) and function decls cannot
948            // have arguments of incomplete type.
949            if (FTI.NumArgs != 1 || FTI.isVariadic) {
950              Diag(DeclType.Loc, diag::err_void_only_param);
951              ArgTy = Context.IntTy;
952              Param->setType(ArgTy);
953            } else if (FTI.ArgInfo[i].Ident) {
954              // Reject, but continue to parse 'int(void abc)'.
955              Diag(FTI.ArgInfo[i].IdentLoc,
956                   diag::err_param_with_void_type);
957              ArgTy = Context.IntTy;
958              Param->setType(ArgTy);
959            } else {
960              // Reject, but continue to parse 'float(const void)'.
961              if (ArgTy.getCVRQualifiers())
962                Diag(DeclType.Loc, diag::err_void_param_qualified);
963
964              // Do not add 'void' to the ArgTys list.
965              break;
966            }
967          } else if (!FTI.hasPrototype) {
968            if (ArgTy->isPromotableIntegerType()) {
969              ArgTy = Context.IntTy;
970            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
971              if (BTy->getKind() == BuiltinType::Float)
972                ArgTy = Context.DoubleTy;
973            }
974          }
975
976          ArgTys.push_back(ArgTy);
977        }
978
979        llvm::SmallVector<QualType, 4> Exceptions;
980        Exceptions.reserve(FTI.NumExceptions);
981        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
982          QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
983          // Check that the type is valid for an exception spec, and drop it if
984          // not.
985          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
986            Exceptions.push_back(ET);
987        }
988
989        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
990                                    FTI.isVariadic, FTI.TypeQuals,
991                                    FTI.hasExceptionSpec,
992                                    FTI.hasAnyExceptionSpec,
993                                    Exceptions.size(), Exceptions.data());
994      }
995      break;
996    }
997    case DeclaratorChunk::MemberPointer:
998      // The scope spec must refer to a class, or be dependent.
999      QualType ClsType;
1000      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1001        NestedNameSpecifier *NNS
1002          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1003        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1004        ClsType = QualType(NNS->getAsType(), 0);
1005      } else if (CXXRecordDecl *RD
1006                   = dyn_cast_or_null<CXXRecordDecl>(
1007                                    computeDeclContext(DeclType.Mem.Scope()))) {
1008        ClsType = Context.getTagDeclType(RD);
1009      } else {
1010        Diag(DeclType.Mem.Scope().getBeginLoc(),
1011             diag::err_illegal_decl_mempointer_in_nonclass)
1012          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1013          << DeclType.Mem.Scope().getRange();
1014        D.setInvalidType(true);
1015      }
1016
1017      if (!ClsType.isNull())
1018        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1019                                   DeclType.Loc, D.getIdentifier());
1020      if (T.isNull()) {
1021        T = Context.IntTy;
1022        D.setInvalidType(true);
1023      }
1024      break;
1025    }
1026
1027    if (T.isNull()) {
1028      D.setInvalidType(true);
1029      T = Context.IntTy;
1030    }
1031
1032    // See if there are any attributes on this declarator chunk.
1033    if (const AttributeList *AL = DeclType.getAttrs())
1034      ProcessTypeAttributeList(T, AL);
1035  }
1036
1037  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1038    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
1039    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1040
1041    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1042    // for a nonstatic member function, the function type to which a pointer
1043    // to member refers, or the top-level function type of a function typedef
1044    // declaration.
1045    if (FnTy->getTypeQuals() != 0 &&
1046        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1047        ((D.getContext() != Declarator::MemberContext &&
1048          (!D.getCXXScopeSpec().isSet() ||
1049           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
1050         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1051      if (D.isFunctionDeclarator())
1052        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1053      else
1054        Diag(D.getIdentifierLoc(),
1055             diag::err_invalid_qualified_typedef_function_type_use);
1056
1057      // Strip the cv-quals from the type.
1058      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1059                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1060    }
1061  }
1062
1063  // If there were any type attributes applied to the decl itself (not the
1064  // type, apply the type attribute to the type!)
1065  if (const AttributeList *Attrs = D.getAttributes())
1066    ProcessTypeAttributeList(T, Attrs);
1067
1068  return T;
1069}
1070
1071/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1072/// exception specification. Incomplete types, or pointers to incomplete types
1073/// other than void are not allowed.
1074bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1075  // FIXME: This may not correctly work with the fix for core issue 437,
1076  // where a class's own type is considered complete within its body.
1077
1078  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1079  //   an incomplete type.
1080  if (T->isIncompleteType())
1081    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1082      << Range << T << /*direct*/0;
1083
1084  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1085  //   an incomplete type a pointer or reference to an incomplete type, other
1086  //   than (cv) void*.
1087  int kind;
1088  if (const PointerType* IT = T->getAsPointerType()) {
1089    T = IT->getPointeeType();
1090    kind = 1;
1091  } else if (const ReferenceType* IT = T->getAsReferenceType()) {
1092    T = IT->getPointeeType();
1093    kind = 2;
1094  } else
1095    return false;
1096
1097  if (T->isIncompleteType() && !T->isVoidType())
1098    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1099      << Range << T << /*indirect*/kind;
1100
1101  return false;
1102}
1103
1104/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1105/// to member to a function with an exception specification. This means that
1106/// it is invalid to add another level of indirection.
1107bool Sema::CheckDistantExceptionSpec(QualType T) {
1108  if (const PointerType *PT = T->getAsPointerType())
1109    T = PT->getPointeeType();
1110  else if (const MemberPointerType *PT = T->getAsMemberPointerType())
1111    T = PT->getPointeeType();
1112  else
1113    return false;
1114
1115  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1116  if (!FnT)
1117    return false;
1118
1119  return FnT->hasExceptionSpec();
1120}
1121
1122/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1123/// declarator
1124QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1125  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1126  QualType T = MDecl->getResultType();
1127  llvm::SmallVector<QualType, 16> ArgTys;
1128
1129  // Add the first two invisible argument types for self and _cmd.
1130  if (MDecl->isInstanceMethod()) {
1131    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1132    selfTy = Context.getPointerType(selfTy);
1133    ArgTys.push_back(selfTy);
1134  } else
1135    ArgTys.push_back(Context.getObjCIdType());
1136  ArgTys.push_back(Context.getObjCSelType());
1137
1138  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1139       E = MDecl->param_end(); PI != E; ++PI) {
1140    QualType ArgTy = (*PI)->getType();
1141    assert(!ArgTy.isNull() && "Couldn't parse type?");
1142    ArgTy = adjustParameterType(ArgTy);
1143    ArgTys.push_back(ArgTy);
1144  }
1145  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1146                              MDecl->isVariadic(), 0);
1147  return T;
1148}
1149
1150/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1151/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1152/// they point to and return true. If T1 and T2 aren't pointer types
1153/// or pointer-to-member types, or if they are not similar at this
1154/// level, returns false and leaves T1 and T2 unchanged. Top-level
1155/// qualifiers on T1 and T2 are ignored. This function will typically
1156/// be called in a loop that successively "unwraps" pointer and
1157/// pointer-to-member types to compare them at each level.
1158bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1159  const PointerType *T1PtrType = T1->getAsPointerType(),
1160                    *T2PtrType = T2->getAsPointerType();
1161  if (T1PtrType && T2PtrType) {
1162    T1 = T1PtrType->getPointeeType();
1163    T2 = T2PtrType->getPointeeType();
1164    return true;
1165  }
1166
1167  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
1168                          *T2MPType = T2->getAsMemberPointerType();
1169  if (T1MPType && T2MPType &&
1170      Context.getCanonicalType(T1MPType->getClass()) ==
1171      Context.getCanonicalType(T2MPType->getClass())) {
1172    T1 = T1MPType->getPointeeType();
1173    T2 = T2MPType->getPointeeType();
1174    return true;
1175  }
1176  return false;
1177}
1178
1179Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1180  // C99 6.7.6: Type names have no identifier.  This is already validated by
1181  // the parser.
1182  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1183
1184  TagDecl *OwnedTag = 0;
1185  QualType T = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedTag);
1186  if (D.isInvalidType())
1187    return true;
1188
1189  if (getLangOptions().CPlusPlus) {
1190    // Check that there are no default arguments (C++ only).
1191    CheckExtraCXXDefaultArguments(D);
1192
1193    // C++0x [dcl.type]p3:
1194    //   A type-specifier-seq shall not define a class or enumeration
1195    //   unless it appears in the type-id of an alias-declaration
1196    //   (7.1.3).
1197    if (OwnedTag && OwnedTag->isDefinition())
1198      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1199        << Context.getTypeDeclType(OwnedTag);
1200  }
1201
1202  return T.getAsOpaquePtr();
1203}
1204
1205
1206
1207//===----------------------------------------------------------------------===//
1208// Type Attribute Processing
1209//===----------------------------------------------------------------------===//
1210
1211/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1212/// specified type.  The attribute contains 1 argument, the id of the address
1213/// space for the type.
1214static void HandleAddressSpaceTypeAttribute(QualType &Type,
1215                                            const AttributeList &Attr, Sema &S){
1216  // If this type is already address space qualified, reject it.
1217  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1218  // for two or more different address spaces."
1219  if (Type.getAddressSpace()) {
1220    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1221    return;
1222  }
1223
1224  // Check the attribute arguments.
1225  if (Attr.getNumArgs() != 1) {
1226    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1227    return;
1228  }
1229  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1230  llvm::APSInt addrSpace(32);
1231  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1232    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1233      << ASArgExpr->getSourceRange();
1234    return;
1235  }
1236
1237  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1238  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1239}
1240
1241/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1242/// specified type.  The attribute contains 1 argument, weak or strong.
1243static void HandleObjCGCTypeAttribute(QualType &Type,
1244                                      const AttributeList &Attr, Sema &S) {
1245  if (Type.getObjCGCAttr() != QualType::GCNone) {
1246    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1247    return;
1248  }
1249
1250  // Check the attribute arguments.
1251  if (!Attr.getParameterName()) {
1252    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1253      << "objc_gc" << 1;
1254    return;
1255  }
1256  QualType::GCAttrTypes GCAttr;
1257  if (Attr.getNumArgs() != 0) {
1258    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1259    return;
1260  }
1261  if (Attr.getParameterName()->isStr("weak"))
1262    GCAttr = QualType::Weak;
1263  else if (Attr.getParameterName()->isStr("strong"))
1264    GCAttr = QualType::Strong;
1265  else {
1266    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1267      << "objc_gc" << Attr.getParameterName();
1268    return;
1269  }
1270
1271  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1272}
1273
1274void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1275  // Scan through and apply attributes to this type where it makes sense.  Some
1276  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1277  // type, but others can be present in the type specifiers even though they
1278  // apply to the decl.  Here we apply type attributes and ignore the rest.
1279  for (; AL; AL = AL->getNext()) {
1280    // If this is an attribute we can handle, do so now, otherwise, add it to
1281    // the LeftOverAttrs list for rechaining.
1282    switch (AL->getKind()) {
1283    default: break;
1284    case AttributeList::AT_address_space:
1285      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1286      break;
1287    case AttributeList::AT_objc_gc:
1288      HandleObjCGCTypeAttribute(Result, *AL, *this);
1289      break;
1290    }
1291  }
1292}
1293
1294/// @brief Ensure that the type T is a complete type.
1295///
1296/// This routine checks whether the type @p T is complete in any
1297/// context where a complete type is required. If @p T is a complete
1298/// type, returns false. If @p T is a class template specialization,
1299/// this routine then attempts to perform class template
1300/// instantiation. If instantiation fails, or if @p T is incomplete
1301/// and cannot be completed, issues the diagnostic @p diag (giving it
1302/// the type @p T) and returns true.
1303///
1304/// @param Loc  The location in the source that the incomplete type
1305/// diagnostic should refer to.
1306///
1307/// @param T  The type that this routine is examining for completeness.
1308///
1309/// @param diag The diagnostic value (e.g.,
1310/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1311/// for the error message if @p T is incomplete.
1312///
1313/// @param Range1  An optional range in the source code that will be a
1314/// part of the "incomplete type" error message.
1315///
1316/// @param Range2  An optional range in the source code that will be a
1317/// part of the "incomplete type" error message.
1318///
1319/// @param PrintType If non-NULL, the type that should be printed
1320/// instead of @p T. This parameter should be used when the type that
1321/// we're checking for incompleteness isn't the type that should be
1322/// displayed to the user, e.g., when T is a type and PrintType is a
1323/// pointer to T.
1324///
1325/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1326/// @c false otherwise.
1327bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1328                               SourceRange Range1, SourceRange Range2,
1329                               QualType PrintType) {
1330  // FIXME: Add this assertion to help us flush out problems with
1331  // checking for dependent types and type-dependent expressions.
1332  //
1333  //  assert(!T->isDependentType() &&
1334  //         "Can't ask whether a dependent type is complete");
1335
1336  // If we have a complete type, we're done.
1337  if (!T->isIncompleteType())
1338    return false;
1339
1340  // If we have a class template specialization or a class member of a
1341  // class template specialization, try to instantiate it.
1342  if (const RecordType *Record = T->getAsRecordType()) {
1343    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1344          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1345      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1346        // Update the class template specialization's location to
1347        // refer to the point of instantiation.
1348        if (Loc.isValid())
1349          ClassTemplateSpec->setLocation(Loc);
1350        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1351                                             /*ExplicitInstantiation=*/false);
1352      }
1353    } else if (CXXRecordDecl *Rec
1354                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1355      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1356        // Find the class template specialization that surrounds this
1357        // member class.
1358        ClassTemplateSpecializationDecl *Spec = 0;
1359        for (DeclContext *Parent = Rec->getDeclContext();
1360             Parent && !Spec; Parent = Parent->getParent())
1361          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1362        assert(Spec && "Not a member of a class template specialization?");
1363        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1364                                /*ExplicitInstantiation=*/false);
1365      }
1366    }
1367  }
1368
1369  if (PrintType.isNull())
1370    PrintType = T;
1371
1372  // We have an incomplete type. Produce a diagnostic.
1373  Diag(Loc, diag) << PrintType << Range1 << Range2;
1374
1375  // If the type was a forward declaration of a class/struct/union
1376  // type, produce
1377  const TagType *Tag = 0;
1378  if (const RecordType *Record = T->getAsRecordType())
1379    Tag = Record;
1380  else if (const EnumType *Enum = T->getAsEnumType())
1381    Tag = Enum;
1382
1383  if (Tag && !Tag->getDecl()->isInvalidDecl())
1384    Diag(Tag->getDecl()->getLocation(),
1385         Tag->isBeingDefined() ? diag::note_type_being_defined
1386                               : diag::note_forward_declaration)
1387        << QualType(Tag, 0);
1388
1389  return true;
1390}
1391
1392/// \brief Retrieve a version of the type 'T' that is qualified by the
1393/// nested-name-specifier contained in SS.
1394QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1395  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1396    return T;
1397
1398  NestedNameSpecifier *NNS
1399    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1400  return Context.getQualifiedNameType(NNS, T);
1401}
1402