SemaStmt.cpp revision 302408
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/Initialization.h"
31#include "clang/Sema/Lookup.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallString.h"
39#include "llvm/ADT/SmallVector.h"
40using namespace clang;
41using namespace sema;
42
43StmtResult Sema::ActOnExprStmt(ExprResult FE) {
44  if (FE.isInvalid())
45    return StmtError();
46
47  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
48                           /*DiscardedValue*/ true);
49  if (FE.isInvalid())
50    return StmtError();
51
52  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
53  // void expression for its side effects.  Conversion to void allows any
54  // operand, even incomplete types.
55
56  // Same thing in for stmt first clause (when expr) and third clause.
57  return StmtResult(FE.getAs<Stmt>());
58}
59
60
61StmtResult Sema::ActOnExprStmtError() {
62  DiscardCleanupsInEvaluationContext();
63  return StmtError();
64}
65
66StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
67                               bool HasLeadingEmptyMacro) {
68  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
69}
70
71StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
72                               SourceLocation EndLoc) {
73  DeclGroupRef DG = dg.get();
74
75  // If we have an invalid decl, just return an error.
76  if (DG.isNull()) return StmtError();
77
78  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
79}
80
81void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
82  DeclGroupRef DG = dg.get();
83
84  // If we don't have a declaration, or we have an invalid declaration,
85  // just return.
86  if (DG.isNull() || !DG.isSingleDecl())
87    return;
88
89  Decl *decl = DG.getSingleDecl();
90  if (!decl || decl->isInvalidDecl())
91    return;
92
93  // Only variable declarations are permitted.
94  VarDecl *var = dyn_cast<VarDecl>(decl);
95  if (!var) {
96    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
97    decl->setInvalidDecl();
98    return;
99  }
100
101  // foreach variables are never actually initialized in the way that
102  // the parser came up with.
103  var->setInit(nullptr);
104
105  // In ARC, we don't need to retain the iteration variable of a fast
106  // enumeration loop.  Rather than actually trying to catch that
107  // during declaration processing, we remove the consequences here.
108  if (getLangOpts().ObjCAutoRefCount) {
109    QualType type = var->getType();
110
111    // Only do this if we inferred the lifetime.  Inferred lifetime
112    // will show up as a local qualifier because explicit lifetime
113    // should have shown up as an AttributedType instead.
114    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
115      // Add 'const' and mark the variable as pseudo-strong.
116      var->setType(type.withConst());
117      var->setARCPseudoStrong(true);
118    }
119  }
120}
121
122/// \brief Diagnose unused comparisons, both builtin and overloaded operators.
123/// For '==' and '!=', suggest fixits for '=' or '|='.
124///
125/// Adding a cast to void (or other expression wrappers) will prevent the
126/// warning from firing.
127static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
128  SourceLocation Loc;
129  bool IsNotEqual, CanAssign, IsRelational;
130
131  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
132    if (!Op->isComparisonOp())
133      return false;
134
135    IsRelational = Op->isRelationalOp();
136    Loc = Op->getOperatorLoc();
137    IsNotEqual = Op->getOpcode() == BO_NE;
138    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
139  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
140    switch (Op->getOperator()) {
141    default:
142      return false;
143    case OO_EqualEqual:
144    case OO_ExclaimEqual:
145      IsRelational = false;
146      break;
147    case OO_Less:
148    case OO_Greater:
149    case OO_GreaterEqual:
150    case OO_LessEqual:
151      IsRelational = true;
152      break;
153    }
154
155    Loc = Op->getOperatorLoc();
156    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
157    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
158  } else {
159    // Not a typo-prone comparison.
160    return false;
161  }
162
163  // Suppress warnings when the operator, suspicious as it may be, comes from
164  // a macro expansion.
165  if (S.SourceMgr.isMacroBodyExpansion(Loc))
166    return false;
167
168  S.Diag(Loc, diag::warn_unused_comparison)
169    << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
170
171  // If the LHS is a plausible entity to assign to, provide a fixit hint to
172  // correct common typos.
173  if (!IsRelational && CanAssign) {
174    if (IsNotEqual)
175      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
176        << FixItHint::CreateReplacement(Loc, "|=");
177    else
178      S.Diag(Loc, diag::note_equality_comparison_to_assign)
179        << FixItHint::CreateReplacement(Loc, "=");
180  }
181
182  return true;
183}
184
185void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
186  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
187    return DiagnoseUnusedExprResult(Label->getSubStmt());
188
189  const Expr *E = dyn_cast_or_null<Expr>(S);
190  if (!E)
191    return;
192
193  // If we are in an unevaluated expression context, then there can be no unused
194  // results because the results aren't expected to be used in the first place.
195  if (isUnevaluatedContext())
196    return;
197
198  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
199  // In most cases, we don't want to warn if the expression is written in a
200  // macro body, or if the macro comes from a system header. If the offending
201  // expression is a call to a function with the warn_unused_result attribute,
202  // we warn no matter the location. Because of the order in which the various
203  // checks need to happen, we factor out the macro-related test here.
204  bool ShouldSuppress =
205      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
206      SourceMgr.isInSystemMacro(ExprLoc);
207
208  const Expr *WarnExpr;
209  SourceLocation Loc;
210  SourceRange R1, R2;
211  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
212    return;
213
214  // If this is a GNU statement expression expanded from a macro, it is probably
215  // unused because it is a function-like macro that can be used as either an
216  // expression or statement.  Don't warn, because it is almost certainly a
217  // false positive.
218  if (isa<StmtExpr>(E) && Loc.isMacroID())
219    return;
220
221  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
222  // That macro is frequently used to suppress "unused parameter" warnings,
223  // but its implementation makes clang's -Wunused-value fire.  Prevent this.
224  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
225    SourceLocation SpellLoc = Loc;
226    if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
227      return;
228  }
229
230  // Okay, we have an unused result.  Depending on what the base expression is,
231  // we might want to make a more specific diagnostic.  Check for one of these
232  // cases now.
233  unsigned DiagID = diag::warn_unused_expr;
234  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
235    E = Temps->getSubExpr();
236  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
237    E = TempExpr->getSubExpr();
238
239  if (DiagnoseUnusedComparison(*this, E))
240    return;
241
242  E = WarnExpr;
243  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
244    if (E->getType()->isVoidType())
245      return;
246
247    // If the callee has attribute pure, const, or warn_unused_result, warn with
248    // a more specific message to make it clear what is happening. If the call
249    // is written in a macro body, only warn if it has the warn_unused_result
250    // attribute.
251    if (const Decl *FD = CE->getCalleeDecl()) {
252      const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
253      if (Func ? Func->hasUnusedResultAttr()
254               : FD->hasAttr<WarnUnusedResultAttr>()) {
255        Diag(Loc, diag::warn_unused_result) << R1 << R2;
256        return;
257      }
258      if (ShouldSuppress)
259        return;
260      if (FD->hasAttr<PureAttr>()) {
261        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
262        return;
263      }
264      if (FD->hasAttr<ConstAttr>()) {
265        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
266        return;
267      }
268    }
269  } else if (ShouldSuppress)
270    return;
271
272  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
273    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
274      Diag(Loc, diag::err_arc_unused_init_message) << R1;
275      return;
276    }
277    const ObjCMethodDecl *MD = ME->getMethodDecl();
278    if (MD) {
279      if (MD->hasAttr<WarnUnusedResultAttr>()) {
280        Diag(Loc, diag::warn_unused_result) << R1 << R2;
281        return;
282      }
283    }
284  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
285    const Expr *Source = POE->getSyntacticForm();
286    if (isa<ObjCSubscriptRefExpr>(Source))
287      DiagID = diag::warn_unused_container_subscript_expr;
288    else
289      DiagID = diag::warn_unused_property_expr;
290  } else if (const CXXFunctionalCastExpr *FC
291                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
292    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
293        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
294      return;
295  }
296  // Diagnose "(void*) blah" as a typo for "(void) blah".
297  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
298    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
299    QualType T = TI->getType();
300
301    // We really do want to use the non-canonical type here.
302    if (T == Context.VoidPtrTy) {
303      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
304
305      Diag(Loc, diag::warn_unused_voidptr)
306        << FixItHint::CreateRemoval(TL.getStarLoc());
307      return;
308    }
309  }
310
311  if (E->isGLValue() && E->getType().isVolatileQualified()) {
312    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
313    return;
314  }
315
316  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
317}
318
319void Sema::ActOnStartOfCompoundStmt() {
320  PushCompoundScope();
321}
322
323void Sema::ActOnFinishOfCompoundStmt() {
324  PopCompoundScope();
325}
326
327sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
328  return getCurFunction()->CompoundScopes.back();
329}
330
331StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
332                                   ArrayRef<Stmt *> Elts, bool isStmtExpr) {
333  const unsigned NumElts = Elts.size();
334
335  // If we're in C89 mode, check that we don't have any decls after stmts.  If
336  // so, emit an extension diagnostic.
337  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
338    // Note that __extension__ can be around a decl.
339    unsigned i = 0;
340    // Skip over all declarations.
341    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
342      /*empty*/;
343
344    // We found the end of the list or a statement.  Scan for another declstmt.
345    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
346      /*empty*/;
347
348    if (i != NumElts) {
349      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
350      Diag(D->getLocation(), diag::ext_mixed_decls_code);
351    }
352  }
353  // Warn about unused expressions in statements.
354  for (unsigned i = 0; i != NumElts; ++i) {
355    // Ignore statements that are last in a statement expression.
356    if (isStmtExpr && i == NumElts - 1)
357      continue;
358
359    DiagnoseUnusedExprResult(Elts[i]);
360  }
361
362  // Check for suspicious empty body (null statement) in `for' and `while'
363  // statements.  Don't do anything for template instantiations, this just adds
364  // noise.
365  if (NumElts != 0 && !CurrentInstantiationScope &&
366      getCurCompoundScope().HasEmptyLoopBodies) {
367    for (unsigned i = 0; i != NumElts - 1; ++i)
368      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
369  }
370
371  return new (Context) CompoundStmt(Context, Elts, L, R);
372}
373
374StmtResult
375Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
376                    SourceLocation DotDotDotLoc, Expr *RHSVal,
377                    SourceLocation ColonLoc) {
378  assert(LHSVal && "missing expression in case statement");
379
380  if (getCurFunction()->SwitchStack.empty()) {
381    Diag(CaseLoc, diag::err_case_not_in_switch);
382    return StmtError();
383  }
384
385  ExprResult LHS =
386      CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
387        if (!getLangOpts().CPlusPlus11)
388          return VerifyIntegerConstantExpression(E);
389        if (Expr *CondExpr =
390                getCurFunction()->SwitchStack.back()->getCond()) {
391          QualType CondType = CondExpr->getType();
392          llvm::APSInt TempVal;
393          return CheckConvertedConstantExpression(E, CondType, TempVal,
394                                                        CCEK_CaseValue);
395        }
396        return ExprError();
397      });
398  if (LHS.isInvalid())
399    return StmtError();
400  LHSVal = LHS.get();
401
402  if (!getLangOpts().CPlusPlus11) {
403    // C99 6.8.4.2p3: The expression shall be an integer constant.
404    // However, GCC allows any evaluatable integer expression.
405    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
406      LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
407      if (!LHSVal)
408        return StmtError();
409    }
410
411    // GCC extension: The expression shall be an integer constant.
412
413    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
414      RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
415      // Recover from an error by just forgetting about it.
416    }
417  }
418
419  LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
420                                 getLangOpts().CPlusPlus11);
421  if (LHS.isInvalid())
422    return StmtError();
423
424  auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
425                                          getLangOpts().CPlusPlus11)
426                    : ExprResult();
427  if (RHS.isInvalid())
428    return StmtError();
429
430  CaseStmt *CS = new (Context)
431      CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
432  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
433  return CS;
434}
435
436/// ActOnCaseStmtBody - This installs a statement as the body of a case.
437void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
438  DiagnoseUnusedExprResult(SubStmt);
439
440  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
441  CS->setSubStmt(SubStmt);
442}
443
444StmtResult
445Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
446                       Stmt *SubStmt, Scope *CurScope) {
447  DiagnoseUnusedExprResult(SubStmt);
448
449  if (getCurFunction()->SwitchStack.empty()) {
450    Diag(DefaultLoc, diag::err_default_not_in_switch);
451    return SubStmt;
452  }
453
454  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
455  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
456  return DS;
457}
458
459StmtResult
460Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
461                     SourceLocation ColonLoc, Stmt *SubStmt) {
462  // If the label was multiply defined, reject it now.
463  if (TheDecl->getStmt()) {
464    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
465    Diag(TheDecl->getLocation(), diag::note_previous_definition);
466    return SubStmt;
467  }
468
469  // Otherwise, things are good.  Fill in the declaration and return it.
470  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
471  TheDecl->setStmt(LS);
472  if (!TheDecl->isGnuLocal()) {
473    TheDecl->setLocStart(IdentLoc);
474    if (!TheDecl->isMSAsmLabel()) {
475      // Don't update the location of MS ASM labels.  These will result in
476      // a diagnostic, and changing the location here will mess that up.
477      TheDecl->setLocation(IdentLoc);
478    }
479  }
480  return LS;
481}
482
483StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
484                                     ArrayRef<const Attr*> Attrs,
485                                     Stmt *SubStmt) {
486  // Fill in the declaration and return it.
487  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
488  return LS;
489}
490
491StmtResult
492Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
493                  Stmt *thenStmt, SourceLocation ElseLoc,
494                  Stmt *elseStmt) {
495  ExprResult CondResult(CondVal.release());
496
497  VarDecl *ConditionVar = nullptr;
498  if (CondVar) {
499    ConditionVar = cast<VarDecl>(CondVar);
500    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
501    CondResult = ActOnFinishFullExpr(CondResult.get(), IfLoc);
502  }
503  Expr *ConditionExpr = CondResult.getAs<Expr>();
504  if (ConditionExpr) {
505    DiagnoseUnusedExprResult(thenStmt);
506
507    if (!elseStmt) {
508      DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
509                            diag::warn_empty_if_body);
510    }
511
512    DiagnoseUnusedExprResult(elseStmt);
513  } else {
514    // Create a dummy Expr for the condition for error recovery
515    ConditionExpr = new (Context) OpaqueValueExpr(SourceLocation(),
516                                                  Context.BoolTy, VK_RValue);
517  }
518
519  return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
520                              thenStmt, ElseLoc, elseStmt);
521}
522
523namespace {
524  struct CaseCompareFunctor {
525    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
526                    const llvm::APSInt &RHS) {
527      return LHS.first < RHS;
528    }
529    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
530                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
531      return LHS.first < RHS.first;
532    }
533    bool operator()(const llvm::APSInt &LHS,
534                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
535      return LHS < RHS.first;
536    }
537  };
538}
539
540/// CmpCaseVals - Comparison predicate for sorting case values.
541///
542static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
543                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
544  if (lhs.first < rhs.first)
545    return true;
546
547  if (lhs.first == rhs.first &&
548      lhs.second->getCaseLoc().getRawEncoding()
549       < rhs.second->getCaseLoc().getRawEncoding())
550    return true;
551  return false;
552}
553
554/// CmpEnumVals - Comparison predicate for sorting enumeration values.
555///
556static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
557                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
558{
559  return lhs.first < rhs.first;
560}
561
562/// EqEnumVals - Comparison preficate for uniqing enumeration values.
563///
564static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
565                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
566{
567  return lhs.first == rhs.first;
568}
569
570/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
571/// potentially integral-promoted expression @p expr.
572static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
573  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
574    expr = cleanups->getSubExpr();
575  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
576    if (impcast->getCastKind() != CK_IntegralCast) break;
577    expr = impcast->getSubExpr();
578  }
579  return expr->getType();
580}
581
582StmtResult
583Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
584                             Decl *CondVar) {
585  ExprResult CondResult;
586
587  VarDecl *ConditionVar = nullptr;
588  if (CondVar) {
589    ConditionVar = cast<VarDecl>(CondVar);
590    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
591    if (CondResult.isInvalid())
592      return StmtError();
593
594    Cond = CondResult.get();
595  }
596
597  if (!Cond)
598    return StmtError();
599
600  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
601    Expr *Cond;
602
603  public:
604    SwitchConvertDiagnoser(Expr *Cond)
605        : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
606          Cond(Cond) {}
607
608    SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
609                                         QualType T) override {
610      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
611    }
612
613    SemaDiagnosticBuilder diagnoseIncomplete(
614        Sema &S, SourceLocation Loc, QualType T) override {
615      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
616               << T << Cond->getSourceRange();
617    }
618
619    SemaDiagnosticBuilder diagnoseExplicitConv(
620        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
621      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
622    }
623
624    SemaDiagnosticBuilder noteExplicitConv(
625        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
626      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
627        << ConvTy->isEnumeralType() << ConvTy;
628    }
629
630    SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
631                                            QualType T) override {
632      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
633    }
634
635    SemaDiagnosticBuilder noteAmbiguous(
636        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
637      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
638      << ConvTy->isEnumeralType() << ConvTy;
639    }
640
641    SemaDiagnosticBuilder diagnoseConversion(
642        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
643      llvm_unreachable("conversion functions are permitted");
644    }
645  } SwitchDiagnoser(Cond);
646
647  CondResult =
648      PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
649  if (CondResult.isInvalid()) return StmtError();
650  Cond = CondResult.get();
651
652  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
653  CondResult = UsualUnaryConversions(Cond);
654  if (CondResult.isInvalid()) return StmtError();
655  Cond = CondResult.get();
656
657  CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
658  if (CondResult.isInvalid())
659    return StmtError();
660  Cond = CondResult.get();
661
662  getCurFunction()->setHasBranchIntoScope();
663
664  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
665  getCurFunction()->SwitchStack.push_back(SS);
666  return SS;
667}
668
669static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
670  Val = Val.extOrTrunc(BitWidth);
671  Val.setIsSigned(IsSigned);
672}
673
674/// Check the specified case value is in range for the given unpromoted switch
675/// type.
676static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
677                           unsigned UnpromotedWidth, bool UnpromotedSign) {
678  // If the case value was signed and negative and the switch expression is
679  // unsigned, don't bother to warn: this is implementation-defined behavior.
680  // FIXME: Introduce a second, default-ignored warning for this case?
681  if (UnpromotedWidth < Val.getBitWidth()) {
682    llvm::APSInt ConvVal(Val);
683    AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
684    AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
685    // FIXME: Use different diagnostics for overflow  in conversion to promoted
686    // type versus "switch expression cannot have this value". Use proper
687    // IntRange checking rather than just looking at the unpromoted type here.
688    if (ConvVal != Val)
689      S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
690                                                  << ConvVal.toString(10);
691  }
692}
693
694typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
695
696/// Returns true if we should emit a diagnostic about this case expression not
697/// being a part of the enum used in the switch controlling expression.
698static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
699                                              const EnumDecl *ED,
700                                              const Expr *CaseExpr,
701                                              EnumValsTy::iterator &EI,
702                                              EnumValsTy::iterator &EIEnd,
703                                              const llvm::APSInt &Val) {
704  if (const DeclRefExpr *DRE =
705          dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
706    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
707      QualType VarType = VD->getType();
708      QualType EnumType = S.Context.getTypeDeclType(ED);
709      if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
710          S.Context.hasSameUnqualifiedType(EnumType, VarType))
711        return false;
712    }
713  }
714
715  if (ED->hasAttr<FlagEnumAttr>()) {
716    return !S.IsValueInFlagEnum(ED, Val, false);
717  } else {
718    while (EI != EIEnd && EI->first < Val)
719      EI++;
720
721    if (EI != EIEnd && EI->first == Val)
722      return false;
723  }
724
725  return true;
726}
727
728StmtResult
729Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
730                            Stmt *BodyStmt) {
731  SwitchStmt *SS = cast<SwitchStmt>(Switch);
732  assert(SS == getCurFunction()->SwitchStack.back() &&
733         "switch stack missing push/pop!");
734
735  getCurFunction()->SwitchStack.pop_back();
736
737  if (!BodyStmt) return StmtError();
738  SS->setBody(BodyStmt, SwitchLoc);
739
740  Expr *CondExpr = SS->getCond();
741  if (!CondExpr) return StmtError();
742
743  QualType CondType = CondExpr->getType();
744
745  Expr *CondExprBeforePromotion = CondExpr;
746  QualType CondTypeBeforePromotion =
747      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
748
749  // C++ 6.4.2.p2:
750  // Integral promotions are performed (on the switch condition).
751  //
752  // A case value unrepresentable by the original switch condition
753  // type (before the promotion) doesn't make sense, even when it can
754  // be represented by the promoted type.  Therefore we need to find
755  // the pre-promotion type of the switch condition.
756  if (!CondExpr->isTypeDependent()) {
757    // We have already converted the expression to an integral or enumeration
758    // type, when we started the switch statement. If we don't have an
759    // appropriate type now, just return an error.
760    if (!CondType->isIntegralOrEnumerationType())
761      return StmtError();
762
763    if (CondExpr->isKnownToHaveBooleanValue()) {
764      // switch(bool_expr) {...} is often a programmer error, e.g.
765      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
766      // One can always use an if statement instead of switch(bool_expr).
767      Diag(SwitchLoc, diag::warn_bool_switch_condition)
768          << CondExpr->getSourceRange();
769    }
770  }
771
772  // Get the bitwidth of the switched-on value after promotions. We must
773  // convert the integer case values to this width before comparison.
774  bool HasDependentValue
775    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
776  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
777  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
778
779  // Get the width and signedness that the condition might actually have, for
780  // warning purposes.
781  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
782  // type.
783  unsigned CondWidthBeforePromotion
784    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
785  bool CondIsSignedBeforePromotion
786    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
787
788  // Accumulate all of the case values in a vector so that we can sort them
789  // and detect duplicates.  This vector contains the APInt for the case after
790  // it has been converted to the condition type.
791  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
792  CaseValsTy CaseVals;
793
794  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
795  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
796  CaseRangesTy CaseRanges;
797
798  DefaultStmt *TheDefaultStmt = nullptr;
799
800  bool CaseListIsErroneous = false;
801
802  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
803       SC = SC->getNextSwitchCase()) {
804
805    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
806      if (TheDefaultStmt) {
807        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
808        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
809
810        // FIXME: Remove the default statement from the switch block so that
811        // we'll return a valid AST.  This requires recursing down the AST and
812        // finding it, not something we are set up to do right now.  For now,
813        // just lop the entire switch stmt out of the AST.
814        CaseListIsErroneous = true;
815      }
816      TheDefaultStmt = DS;
817
818    } else {
819      CaseStmt *CS = cast<CaseStmt>(SC);
820
821      Expr *Lo = CS->getLHS();
822
823      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
824        HasDependentValue = true;
825        break;
826      }
827
828      llvm::APSInt LoVal;
829
830      if (getLangOpts().CPlusPlus11) {
831        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
832        // constant expression of the promoted type of the switch condition.
833        ExprResult ConvLo =
834          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
835        if (ConvLo.isInvalid()) {
836          CaseListIsErroneous = true;
837          continue;
838        }
839        Lo = ConvLo.get();
840      } else {
841        // We already verified that the expression has a i-c-e value (C99
842        // 6.8.4.2p3) - get that value now.
843        LoVal = Lo->EvaluateKnownConstInt(Context);
844
845        // If the LHS is not the same type as the condition, insert an implicit
846        // cast.
847        Lo = DefaultLvalueConversion(Lo).get();
848        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
849      }
850
851      // Check the unconverted value is within the range of possible values of
852      // the switch expression.
853      checkCaseValue(*this, Lo->getLocStart(), LoVal,
854                     CondWidthBeforePromotion, CondIsSignedBeforePromotion);
855
856      // Convert the value to the same width/sign as the condition.
857      AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
858
859      CS->setLHS(Lo);
860
861      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
862      if (CS->getRHS()) {
863        if (CS->getRHS()->isTypeDependent() ||
864            CS->getRHS()->isValueDependent()) {
865          HasDependentValue = true;
866          break;
867        }
868        CaseRanges.push_back(std::make_pair(LoVal, CS));
869      } else
870        CaseVals.push_back(std::make_pair(LoVal, CS));
871    }
872  }
873
874  if (!HasDependentValue) {
875    // If we don't have a default statement, check whether the
876    // condition is constant.
877    llvm::APSInt ConstantCondValue;
878    bool HasConstantCond = false;
879    if (!HasDependentValue && !TheDefaultStmt) {
880      HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
881                                                Expr::SE_AllowSideEffects);
882      assert(!HasConstantCond ||
883             (ConstantCondValue.getBitWidth() == CondWidth &&
884              ConstantCondValue.isSigned() == CondIsSigned));
885    }
886    bool ShouldCheckConstantCond = HasConstantCond;
887
888    // Sort all the scalar case values so we can easily detect duplicates.
889    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
890
891    if (!CaseVals.empty()) {
892      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
893        if (ShouldCheckConstantCond &&
894            CaseVals[i].first == ConstantCondValue)
895          ShouldCheckConstantCond = false;
896
897        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
898          // If we have a duplicate, report it.
899          // First, determine if either case value has a name
900          StringRef PrevString, CurrString;
901          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
902          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
903          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
904            PrevString = DeclRef->getDecl()->getName();
905          }
906          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
907            CurrString = DeclRef->getDecl()->getName();
908          }
909          SmallString<16> CaseValStr;
910          CaseVals[i-1].first.toString(CaseValStr);
911
912          if (PrevString == CurrString)
913            Diag(CaseVals[i].second->getLHS()->getLocStart(),
914                 diag::err_duplicate_case) <<
915                 (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
916          else
917            Diag(CaseVals[i].second->getLHS()->getLocStart(),
918                 diag::err_duplicate_case_differing_expr) <<
919                 (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
920                 (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
921                 CaseValStr;
922
923          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
924               diag::note_duplicate_case_prev);
925          // FIXME: We really want to remove the bogus case stmt from the
926          // substmt, but we have no way to do this right now.
927          CaseListIsErroneous = true;
928        }
929      }
930    }
931
932    // Detect duplicate case ranges, which usually don't exist at all in
933    // the first place.
934    if (!CaseRanges.empty()) {
935      // Sort all the case ranges by their low value so we can easily detect
936      // overlaps between ranges.
937      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
938
939      // Scan the ranges, computing the high values and removing empty ranges.
940      std::vector<llvm::APSInt> HiVals;
941      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
942        llvm::APSInt &LoVal = CaseRanges[i].first;
943        CaseStmt *CR = CaseRanges[i].second;
944        Expr *Hi = CR->getRHS();
945        llvm::APSInt HiVal;
946
947        if (getLangOpts().CPlusPlus11) {
948          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
949          // constant expression of the promoted type of the switch condition.
950          ExprResult ConvHi =
951            CheckConvertedConstantExpression(Hi, CondType, HiVal,
952                                             CCEK_CaseValue);
953          if (ConvHi.isInvalid()) {
954            CaseListIsErroneous = true;
955            continue;
956          }
957          Hi = ConvHi.get();
958        } else {
959          HiVal = Hi->EvaluateKnownConstInt(Context);
960
961          // If the RHS is not the same type as the condition, insert an
962          // implicit cast.
963          Hi = DefaultLvalueConversion(Hi).get();
964          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
965        }
966
967        // Check the unconverted value is within the range of possible values of
968        // the switch expression.
969        checkCaseValue(*this, Hi->getLocStart(), HiVal,
970                       CondWidthBeforePromotion, CondIsSignedBeforePromotion);
971
972        // Convert the value to the same width/sign as the condition.
973        AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
974
975        CR->setRHS(Hi);
976
977        // If the low value is bigger than the high value, the case is empty.
978        if (LoVal > HiVal) {
979          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
980            << SourceRange(CR->getLHS()->getLocStart(),
981                           Hi->getLocEnd());
982          CaseRanges.erase(CaseRanges.begin()+i);
983          --i, --e;
984          continue;
985        }
986
987        if (ShouldCheckConstantCond &&
988            LoVal <= ConstantCondValue &&
989            ConstantCondValue <= HiVal)
990          ShouldCheckConstantCond = false;
991
992        HiVals.push_back(HiVal);
993      }
994
995      // Rescan the ranges, looking for overlap with singleton values and other
996      // ranges.  Since the range list is sorted, we only need to compare case
997      // ranges with their neighbors.
998      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
999        llvm::APSInt &CRLo = CaseRanges[i].first;
1000        llvm::APSInt &CRHi = HiVals[i];
1001        CaseStmt *CR = CaseRanges[i].second;
1002
1003        // Check to see whether the case range overlaps with any
1004        // singleton cases.
1005        CaseStmt *OverlapStmt = nullptr;
1006        llvm::APSInt OverlapVal(32);
1007
1008        // Find the smallest value >= the lower bound.  If I is in the
1009        // case range, then we have overlap.
1010        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1011                                                  CaseVals.end(), CRLo,
1012                                                  CaseCompareFunctor());
1013        if (I != CaseVals.end() && I->first < CRHi) {
1014          OverlapVal  = I->first;   // Found overlap with scalar.
1015          OverlapStmt = I->second;
1016        }
1017
1018        // Find the smallest value bigger than the upper bound.
1019        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1020        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1021          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1022          OverlapStmt = (I-1)->second;
1023        }
1024
1025        // Check to see if this case stmt overlaps with the subsequent
1026        // case range.
1027        if (i && CRLo <= HiVals[i-1]) {
1028          OverlapVal  = HiVals[i-1];       // Found overlap with range.
1029          OverlapStmt = CaseRanges[i-1].second;
1030        }
1031
1032        if (OverlapStmt) {
1033          // If we have a duplicate, report it.
1034          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1035            << OverlapVal.toString(10);
1036          Diag(OverlapStmt->getLHS()->getLocStart(),
1037               diag::note_duplicate_case_prev);
1038          // FIXME: We really want to remove the bogus case stmt from the
1039          // substmt, but we have no way to do this right now.
1040          CaseListIsErroneous = true;
1041        }
1042      }
1043    }
1044
1045    // Complain if we have a constant condition and we didn't find a match.
1046    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1047      // TODO: it would be nice if we printed enums as enums, chars as
1048      // chars, etc.
1049      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1050        << ConstantCondValue.toString(10)
1051        << CondExpr->getSourceRange();
1052    }
1053
1054    // Check to see if switch is over an Enum and handles all of its
1055    // values.  We only issue a warning if there is not 'default:', but
1056    // we still do the analysis to preserve this information in the AST
1057    // (which can be used by flow-based analyes).
1058    //
1059    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1060
1061    // If switch has default case, then ignore it.
1062    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
1063      const EnumDecl *ED = ET->getDecl();
1064      EnumValsTy EnumVals;
1065
1066      // Gather all enum values, set their type and sort them,
1067      // allowing easier comparison with CaseVals.
1068      for (auto *EDI : ED->enumerators()) {
1069        llvm::APSInt Val = EDI->getInitVal();
1070        AdjustAPSInt(Val, CondWidth, CondIsSigned);
1071        EnumVals.push_back(std::make_pair(Val, EDI));
1072      }
1073      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1074      auto EI = EnumVals.begin(), EIEnd =
1075        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1076
1077      // See which case values aren't in enum.
1078      for (CaseValsTy::const_iterator CI = CaseVals.begin();
1079          CI != CaseVals.end(); CI++) {
1080        Expr *CaseExpr = CI->second->getLHS();
1081        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1082                                              CI->first))
1083          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1084            << CondTypeBeforePromotion;
1085      }
1086
1087      // See which of case ranges aren't in enum
1088      EI = EnumVals.begin();
1089      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1090          RI != CaseRanges.end(); RI++) {
1091        Expr *CaseExpr = RI->second->getLHS();
1092        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1093                                              RI->first))
1094          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1095            << CondTypeBeforePromotion;
1096
1097        llvm::APSInt Hi =
1098          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1099        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1100
1101        CaseExpr = RI->second->getRHS();
1102        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1103                                              Hi))
1104          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1105            << CondTypeBeforePromotion;
1106      }
1107
1108      // Check which enum vals aren't in switch
1109      auto CI = CaseVals.begin();
1110      auto RI = CaseRanges.begin();
1111      bool hasCasesNotInSwitch = false;
1112
1113      SmallVector<DeclarationName,8> UnhandledNames;
1114
1115      for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1116        // Drop unneeded case values
1117        while (CI != CaseVals.end() && CI->first < EI->first)
1118          CI++;
1119
1120        if (CI != CaseVals.end() && CI->first == EI->first)
1121          continue;
1122
1123        // Drop unneeded case ranges
1124        for (; RI != CaseRanges.end(); RI++) {
1125          llvm::APSInt Hi =
1126            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1127          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1128          if (EI->first <= Hi)
1129            break;
1130        }
1131
1132        if (RI == CaseRanges.end() || EI->first < RI->first) {
1133          hasCasesNotInSwitch = true;
1134          UnhandledNames.push_back(EI->second->getDeclName());
1135        }
1136      }
1137
1138      if (TheDefaultStmt && UnhandledNames.empty())
1139        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1140
1141      // Produce a nice diagnostic if multiple values aren't handled.
1142      if (!UnhandledNames.empty()) {
1143        DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1144                                    TheDefaultStmt ? diag::warn_def_missing_case
1145                                                   : diag::warn_missing_case)
1146                               << (int)UnhandledNames.size();
1147
1148        for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1149             I != E; ++I)
1150          DB << UnhandledNames[I];
1151      }
1152
1153      if (!hasCasesNotInSwitch)
1154        SS->setAllEnumCasesCovered();
1155    }
1156  }
1157
1158  if (BodyStmt)
1159    DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1160                          diag::warn_empty_switch_body);
1161
1162  // FIXME: If the case list was broken is some way, we don't have a good system
1163  // to patch it up.  Instead, just return the whole substmt as broken.
1164  if (CaseListIsErroneous)
1165    return StmtError();
1166
1167  return SS;
1168}
1169
1170void
1171Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1172                             Expr *SrcExpr) {
1173  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1174    return;
1175
1176  if (const EnumType *ET = DstType->getAs<EnumType>())
1177    if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1178        SrcType->isIntegerType()) {
1179      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1180          SrcExpr->isIntegerConstantExpr(Context)) {
1181        // Get the bitwidth of the enum value before promotions.
1182        unsigned DstWidth = Context.getIntWidth(DstType);
1183        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1184
1185        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1186        AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1187        const EnumDecl *ED = ET->getDecl();
1188
1189        if (ED->hasAttr<FlagEnumAttr>()) {
1190          if (!IsValueInFlagEnum(ED, RhsVal, true))
1191            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1192              << DstType.getUnqualifiedType();
1193        } else {
1194          typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1195              EnumValsTy;
1196          EnumValsTy EnumVals;
1197
1198          // Gather all enum values, set their type and sort them,
1199          // allowing easier comparison with rhs constant.
1200          for (auto *EDI : ED->enumerators()) {
1201            llvm::APSInt Val = EDI->getInitVal();
1202            AdjustAPSInt(Val, DstWidth, DstIsSigned);
1203            EnumVals.push_back(std::make_pair(Val, EDI));
1204          }
1205          if (EnumVals.empty())
1206            return;
1207          std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1208          EnumValsTy::iterator EIend =
1209              std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1210
1211          // See which values aren't in the enum.
1212          EnumValsTy::const_iterator EI = EnumVals.begin();
1213          while (EI != EIend && EI->first < RhsVal)
1214            EI++;
1215          if (EI == EIend || EI->first != RhsVal) {
1216            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1217                << DstType.getUnqualifiedType();
1218          }
1219        }
1220      }
1221    }
1222}
1223
1224StmtResult
1225Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1226                     Decl *CondVar, Stmt *Body) {
1227  ExprResult CondResult(Cond.release());
1228
1229  VarDecl *ConditionVar = nullptr;
1230  if (CondVar) {
1231    ConditionVar = cast<VarDecl>(CondVar);
1232    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1233    CondResult = ActOnFinishFullExpr(CondResult.get(), WhileLoc);
1234    if (CondResult.isInvalid())
1235      return StmtError();
1236  }
1237  Expr *ConditionExpr = CondResult.get();
1238  if (!ConditionExpr)
1239    return StmtError();
1240  CheckBreakContinueBinding(ConditionExpr);
1241
1242  DiagnoseUnusedExprResult(Body);
1243
1244  if (isa<NullStmt>(Body))
1245    getCurCompoundScope().setHasEmptyLoopBodies();
1246
1247  return new (Context)
1248      WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1249}
1250
1251StmtResult
1252Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1253                  SourceLocation WhileLoc, SourceLocation CondLParen,
1254                  Expr *Cond, SourceLocation CondRParen) {
1255  assert(Cond && "ActOnDoStmt(): missing expression");
1256
1257  CheckBreakContinueBinding(Cond);
1258  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1259  if (CondResult.isInvalid())
1260    return StmtError();
1261  Cond = CondResult.get();
1262
1263  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1264  if (CondResult.isInvalid())
1265    return StmtError();
1266  Cond = CondResult.get();
1267
1268  DiagnoseUnusedExprResult(Body);
1269
1270  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1271}
1272
1273namespace {
1274  // This visitor will traverse a conditional statement and store all
1275  // the evaluated decls into a vector.  Simple is set to true if none
1276  // of the excluded constructs are used.
1277  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1278    llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1279    SmallVectorImpl<SourceRange> &Ranges;
1280    bool Simple;
1281  public:
1282    typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1283
1284    DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1285                  SmallVectorImpl<SourceRange> &Ranges) :
1286        Inherited(S.Context),
1287        Decls(Decls),
1288        Ranges(Ranges),
1289        Simple(true) {}
1290
1291    bool isSimple() { return Simple; }
1292
1293    // Replaces the method in EvaluatedExprVisitor.
1294    void VisitMemberExpr(MemberExpr* E) {
1295      Simple = false;
1296    }
1297
1298    // Any Stmt not whitelisted will cause the condition to be marked complex.
1299    void VisitStmt(Stmt *S) {
1300      Simple = false;
1301    }
1302
1303    void VisitBinaryOperator(BinaryOperator *E) {
1304      Visit(E->getLHS());
1305      Visit(E->getRHS());
1306    }
1307
1308    void VisitCastExpr(CastExpr *E) {
1309      Visit(E->getSubExpr());
1310    }
1311
1312    void VisitUnaryOperator(UnaryOperator *E) {
1313      // Skip checking conditionals with derefernces.
1314      if (E->getOpcode() == UO_Deref)
1315        Simple = false;
1316      else
1317        Visit(E->getSubExpr());
1318    }
1319
1320    void VisitConditionalOperator(ConditionalOperator *E) {
1321      Visit(E->getCond());
1322      Visit(E->getTrueExpr());
1323      Visit(E->getFalseExpr());
1324    }
1325
1326    void VisitParenExpr(ParenExpr *E) {
1327      Visit(E->getSubExpr());
1328    }
1329
1330    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1331      Visit(E->getOpaqueValue()->getSourceExpr());
1332      Visit(E->getFalseExpr());
1333    }
1334
1335    void VisitIntegerLiteral(IntegerLiteral *E) { }
1336    void VisitFloatingLiteral(FloatingLiteral *E) { }
1337    void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1338    void VisitCharacterLiteral(CharacterLiteral *E) { }
1339    void VisitGNUNullExpr(GNUNullExpr *E) { }
1340    void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1341
1342    void VisitDeclRefExpr(DeclRefExpr *E) {
1343      VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1344      if (!VD) return;
1345
1346      Ranges.push_back(E->getSourceRange());
1347
1348      Decls.insert(VD);
1349    }
1350
1351  }; // end class DeclExtractor
1352
1353  // DeclMatcher checks to see if the decls are used in a non-evaluated
1354  // context.
1355  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1356    llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1357    bool FoundDecl;
1358
1359  public:
1360    typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1361
1362    DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1363                Stmt *Statement) :
1364        Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1365      if (!Statement) return;
1366
1367      Visit(Statement);
1368    }
1369
1370    void VisitReturnStmt(ReturnStmt *S) {
1371      FoundDecl = true;
1372    }
1373
1374    void VisitBreakStmt(BreakStmt *S) {
1375      FoundDecl = true;
1376    }
1377
1378    void VisitGotoStmt(GotoStmt *S) {
1379      FoundDecl = true;
1380    }
1381
1382    void VisitCastExpr(CastExpr *E) {
1383      if (E->getCastKind() == CK_LValueToRValue)
1384        CheckLValueToRValueCast(E->getSubExpr());
1385      else
1386        Visit(E->getSubExpr());
1387    }
1388
1389    void CheckLValueToRValueCast(Expr *E) {
1390      E = E->IgnoreParenImpCasts();
1391
1392      if (isa<DeclRefExpr>(E)) {
1393        return;
1394      }
1395
1396      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1397        Visit(CO->getCond());
1398        CheckLValueToRValueCast(CO->getTrueExpr());
1399        CheckLValueToRValueCast(CO->getFalseExpr());
1400        return;
1401      }
1402
1403      if (BinaryConditionalOperator *BCO =
1404              dyn_cast<BinaryConditionalOperator>(E)) {
1405        CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1406        CheckLValueToRValueCast(BCO->getFalseExpr());
1407        return;
1408      }
1409
1410      Visit(E);
1411    }
1412
1413    void VisitDeclRefExpr(DeclRefExpr *E) {
1414      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1415        if (Decls.count(VD))
1416          FoundDecl = true;
1417    }
1418
1419    bool FoundDeclInUse() { return FoundDecl; }
1420
1421  };  // end class DeclMatcher
1422
1423  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1424                                        Expr *Third, Stmt *Body) {
1425    // Condition is empty
1426    if (!Second) return;
1427
1428    if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1429                          Second->getLocStart()))
1430      return;
1431
1432    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1433    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1434    SmallVector<SourceRange, 10> Ranges;
1435    DeclExtractor DE(S, Decls, Ranges);
1436    DE.Visit(Second);
1437
1438    // Don't analyze complex conditionals.
1439    if (!DE.isSimple()) return;
1440
1441    // No decls found.
1442    if (Decls.size() == 0) return;
1443
1444    // Don't warn on volatile, static, or global variables.
1445    for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1446                                                   E = Decls.end();
1447         I != E; ++I)
1448      if ((*I)->getType().isVolatileQualified() ||
1449          (*I)->hasGlobalStorage()) return;
1450
1451    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1452        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1453        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1454      return;
1455
1456    // Load decl names into diagnostic.
1457    if (Decls.size() > 4)
1458      PDiag << 0;
1459    else {
1460      PDiag << Decls.size();
1461      for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1462                                                     E = Decls.end();
1463           I != E; ++I)
1464        PDiag << (*I)->getDeclName();
1465    }
1466
1467    // Load SourceRanges into diagnostic if there is room.
1468    // Otherwise, load the SourceRange of the conditional expression.
1469    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1470      for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1471                                                  E = Ranges.end();
1472           I != E; ++I)
1473        PDiag << *I;
1474    else
1475      PDiag << Second->getSourceRange();
1476
1477    S.Diag(Ranges.begin()->getBegin(), PDiag);
1478  }
1479
1480  // If Statement is an incemement or decrement, return true and sets the
1481  // variables Increment and DRE.
1482  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1483                            DeclRefExpr *&DRE) {
1484    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1485      switch (UO->getOpcode()) {
1486        default: return false;
1487        case UO_PostInc:
1488        case UO_PreInc:
1489          Increment = true;
1490          break;
1491        case UO_PostDec:
1492        case UO_PreDec:
1493          Increment = false;
1494          break;
1495      }
1496      DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1497      return DRE;
1498    }
1499
1500    if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1501      FunctionDecl *FD = Call->getDirectCallee();
1502      if (!FD || !FD->isOverloadedOperator()) return false;
1503      switch (FD->getOverloadedOperator()) {
1504        default: return false;
1505        case OO_PlusPlus:
1506          Increment = true;
1507          break;
1508        case OO_MinusMinus:
1509          Increment = false;
1510          break;
1511      }
1512      DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1513      return DRE;
1514    }
1515
1516    return false;
1517  }
1518
1519  // A visitor to determine if a continue or break statement is a
1520  // subexpression.
1521  class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1522    SourceLocation BreakLoc;
1523    SourceLocation ContinueLoc;
1524  public:
1525    BreakContinueFinder(Sema &S, Stmt* Body) :
1526        Inherited(S.Context) {
1527      Visit(Body);
1528    }
1529
1530    typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
1531
1532    void VisitContinueStmt(ContinueStmt* E) {
1533      ContinueLoc = E->getContinueLoc();
1534    }
1535
1536    void VisitBreakStmt(BreakStmt* E) {
1537      BreakLoc = E->getBreakLoc();
1538    }
1539
1540    bool ContinueFound() { return ContinueLoc.isValid(); }
1541    bool BreakFound() { return BreakLoc.isValid(); }
1542    SourceLocation GetContinueLoc() { return ContinueLoc; }
1543    SourceLocation GetBreakLoc() { return BreakLoc; }
1544
1545  };  // end class BreakContinueFinder
1546
1547  // Emit a warning when a loop increment/decrement appears twice per loop
1548  // iteration.  The conditions which trigger this warning are:
1549  // 1) The last statement in the loop body and the third expression in the
1550  //    for loop are both increment or both decrement of the same variable
1551  // 2) No continue statements in the loop body.
1552  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1553    // Return when there is nothing to check.
1554    if (!Body || !Third) return;
1555
1556    if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1557                          Third->getLocStart()))
1558      return;
1559
1560    // Get the last statement from the loop body.
1561    CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1562    if (!CS || CS->body_empty()) return;
1563    Stmt *LastStmt = CS->body_back();
1564    if (!LastStmt) return;
1565
1566    bool LoopIncrement, LastIncrement;
1567    DeclRefExpr *LoopDRE, *LastDRE;
1568
1569    if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1570    if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1571
1572    // Check that the two statements are both increments or both decrements
1573    // on the same variable.
1574    if (LoopIncrement != LastIncrement ||
1575        LoopDRE->getDecl() != LastDRE->getDecl()) return;
1576
1577    if (BreakContinueFinder(S, Body).ContinueFound()) return;
1578
1579    S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1580         << LastDRE->getDecl() << LastIncrement;
1581    S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1582         << LoopIncrement;
1583  }
1584
1585} // end namespace
1586
1587
1588void Sema::CheckBreakContinueBinding(Expr *E) {
1589  if (!E || getLangOpts().CPlusPlus)
1590    return;
1591  BreakContinueFinder BCFinder(*this, E);
1592  Scope *BreakParent = CurScope->getBreakParent();
1593  if (BCFinder.BreakFound() && BreakParent) {
1594    if (BreakParent->getFlags() & Scope::SwitchScope) {
1595      Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1596    } else {
1597      Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1598          << "break";
1599    }
1600  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1601    Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1602        << "continue";
1603  }
1604}
1605
1606StmtResult
1607Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1608                   Stmt *First, FullExprArg second, Decl *secondVar,
1609                   FullExprArg third,
1610                   SourceLocation RParenLoc, Stmt *Body) {
1611  if (!getLangOpts().CPlusPlus) {
1612    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1613      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1614      // declare identifiers for objects having storage class 'auto' or
1615      // 'register'.
1616      for (auto *DI : DS->decls()) {
1617        VarDecl *VD = dyn_cast<VarDecl>(DI);
1618        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1619          VD = nullptr;
1620        if (!VD) {
1621          Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1622          DI->setInvalidDecl();
1623        }
1624      }
1625    }
1626  }
1627
1628  CheckBreakContinueBinding(second.get());
1629  CheckBreakContinueBinding(third.get());
1630
1631  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1632  CheckForRedundantIteration(*this, third.get(), Body);
1633
1634  ExprResult SecondResult(second.release());
1635  VarDecl *ConditionVar = nullptr;
1636  if (secondVar) {
1637    ConditionVar = cast<VarDecl>(secondVar);
1638    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1639    SecondResult = ActOnFinishFullExpr(SecondResult.get(), ForLoc);
1640    if (SecondResult.isInvalid())
1641      return StmtError();
1642  }
1643
1644  Expr *Third  = third.release().getAs<Expr>();
1645
1646  DiagnoseUnusedExprResult(First);
1647  DiagnoseUnusedExprResult(Third);
1648  DiagnoseUnusedExprResult(Body);
1649
1650  if (isa<NullStmt>(Body))
1651    getCurCompoundScope().setHasEmptyLoopBodies();
1652
1653  return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1654                               Third, Body, ForLoc, LParenLoc, RParenLoc);
1655}
1656
1657/// In an Objective C collection iteration statement:
1658///   for (x in y)
1659/// x can be an arbitrary l-value expression.  Bind it up as a
1660/// full-expression.
1661StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1662  // Reduce placeholder expressions here.  Note that this rejects the
1663  // use of pseudo-object l-values in this position.
1664  ExprResult result = CheckPlaceholderExpr(E);
1665  if (result.isInvalid()) return StmtError();
1666  E = result.get();
1667
1668  ExprResult FullExpr = ActOnFinishFullExpr(E);
1669  if (FullExpr.isInvalid())
1670    return StmtError();
1671  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1672}
1673
1674ExprResult
1675Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1676  if (!collection)
1677    return ExprError();
1678
1679  ExprResult result = CorrectDelayedTyposInExpr(collection);
1680  if (!result.isUsable())
1681    return ExprError();
1682  collection = result.get();
1683
1684  // Bail out early if we've got a type-dependent expression.
1685  if (collection->isTypeDependent()) return collection;
1686
1687  // Perform normal l-value conversion.
1688  result = DefaultFunctionArrayLvalueConversion(collection);
1689  if (result.isInvalid())
1690    return ExprError();
1691  collection = result.get();
1692
1693  // The operand needs to have object-pointer type.
1694  // TODO: should we do a contextual conversion?
1695  const ObjCObjectPointerType *pointerType =
1696    collection->getType()->getAs<ObjCObjectPointerType>();
1697  if (!pointerType)
1698    return Diag(forLoc, diag::err_collection_expr_type)
1699             << collection->getType() << collection->getSourceRange();
1700
1701  // Check that the operand provides
1702  //   - countByEnumeratingWithState:objects:count:
1703  const ObjCObjectType *objectType = pointerType->getObjectType();
1704  ObjCInterfaceDecl *iface = objectType->getInterface();
1705
1706  // If we have a forward-declared type, we can't do this check.
1707  // Under ARC, it is an error not to have a forward-declared class.
1708  if (iface &&
1709      (getLangOpts().ObjCAutoRefCount
1710           ? RequireCompleteType(forLoc, QualType(objectType, 0),
1711                                 diag::err_arc_collection_forward, collection)
1712           : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1713    // Otherwise, if we have any useful type information, check that
1714    // the type declares the appropriate method.
1715  } else if (iface || !objectType->qual_empty()) {
1716    IdentifierInfo *selectorIdents[] = {
1717      &Context.Idents.get("countByEnumeratingWithState"),
1718      &Context.Idents.get("objects"),
1719      &Context.Idents.get("count")
1720    };
1721    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1722
1723    ObjCMethodDecl *method = nullptr;
1724
1725    // If there's an interface, look in both the public and private APIs.
1726    if (iface) {
1727      method = iface->lookupInstanceMethod(selector);
1728      if (!method) method = iface->lookupPrivateMethod(selector);
1729    }
1730
1731    // Also check protocol qualifiers.
1732    if (!method)
1733      method = LookupMethodInQualifiedType(selector, pointerType,
1734                                           /*instance*/ true);
1735
1736    // If we didn't find it anywhere, give up.
1737    if (!method) {
1738      Diag(forLoc, diag::warn_collection_expr_type)
1739        << collection->getType() << selector << collection->getSourceRange();
1740    }
1741
1742    // TODO: check for an incompatible signature?
1743  }
1744
1745  // Wrap up any cleanups in the expression.
1746  return collection;
1747}
1748
1749StmtResult
1750Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1751                                 Stmt *First, Expr *collection,
1752                                 SourceLocation RParenLoc) {
1753
1754  ExprResult CollectionExprResult =
1755    CheckObjCForCollectionOperand(ForLoc, collection);
1756
1757  if (First) {
1758    QualType FirstType;
1759    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1760      if (!DS->isSingleDecl())
1761        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1762                         diag::err_toomany_element_decls));
1763
1764      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1765      if (!D || D->isInvalidDecl())
1766        return StmtError();
1767
1768      FirstType = D->getType();
1769      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1770      // declare identifiers for objects having storage class 'auto' or
1771      // 'register'.
1772      if (!D->hasLocalStorage())
1773        return StmtError(Diag(D->getLocation(),
1774                              diag::err_non_local_variable_decl_in_for));
1775
1776      // If the type contained 'auto', deduce the 'auto' to 'id'.
1777      if (FirstType->getContainedAutoType()) {
1778        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1779                                 VK_RValue);
1780        Expr *DeducedInit = &OpaqueId;
1781        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1782                DAR_Failed)
1783          DiagnoseAutoDeductionFailure(D, DeducedInit);
1784        if (FirstType.isNull()) {
1785          D->setInvalidDecl();
1786          return StmtError();
1787        }
1788
1789        D->setType(FirstType);
1790
1791        if (ActiveTemplateInstantiations.empty()) {
1792          SourceLocation Loc =
1793              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1794          Diag(Loc, diag::warn_auto_var_is_id)
1795            << D->getDeclName();
1796        }
1797      }
1798
1799    } else {
1800      Expr *FirstE = cast<Expr>(First);
1801      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1802        return StmtError(Diag(First->getLocStart(),
1803                   diag::err_selector_element_not_lvalue)
1804          << First->getSourceRange());
1805
1806      FirstType = static_cast<Expr*>(First)->getType();
1807      if (FirstType.isConstQualified())
1808        Diag(ForLoc, diag::err_selector_element_const_type)
1809          << FirstType << First->getSourceRange();
1810    }
1811    if (!FirstType->isDependentType() &&
1812        !FirstType->isObjCObjectPointerType() &&
1813        !FirstType->isBlockPointerType())
1814        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1815                           << FirstType << First->getSourceRange());
1816  }
1817
1818  if (CollectionExprResult.isInvalid())
1819    return StmtError();
1820
1821  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1822  if (CollectionExprResult.isInvalid())
1823    return StmtError();
1824
1825  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1826                                             nullptr, ForLoc, RParenLoc);
1827}
1828
1829/// Finish building a variable declaration for a for-range statement.
1830/// \return true if an error occurs.
1831static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1832                                  SourceLocation Loc, int DiagID) {
1833  if (Decl->getType()->isUndeducedType()) {
1834    ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1835    if (!Res.isUsable()) {
1836      Decl->setInvalidDecl();
1837      return true;
1838    }
1839    Init = Res.get();
1840  }
1841
1842  // Deduce the type for the iterator variable now rather than leaving it to
1843  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1844  QualType InitType;
1845  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1846      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1847          Sema::DAR_Failed)
1848    SemaRef.Diag(Loc, DiagID) << Init->getType();
1849  if (InitType.isNull()) {
1850    Decl->setInvalidDecl();
1851    return true;
1852  }
1853  Decl->setType(InitType);
1854
1855  // In ARC, infer lifetime.
1856  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1857  // we're doing the equivalent of fast iteration.
1858  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1859      SemaRef.inferObjCARCLifetime(Decl))
1860    Decl->setInvalidDecl();
1861
1862  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1863                               /*TypeMayContainAuto=*/false);
1864  SemaRef.FinalizeDeclaration(Decl);
1865  SemaRef.CurContext->addHiddenDecl(Decl);
1866  return false;
1867}
1868
1869namespace {
1870// An enum to represent whether something is dealing with a call to begin()
1871// or a call to end() in a range-based for loop.
1872enum BeginEndFunction {
1873  BEF_begin,
1874  BEF_end
1875};
1876
1877/// Produce a note indicating which begin/end function was implicitly called
1878/// by a C++11 for-range statement. This is often not obvious from the code,
1879/// nor from the diagnostics produced when analysing the implicit expressions
1880/// required in a for-range statement.
1881void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1882                                  BeginEndFunction BEF) {
1883  CallExpr *CE = dyn_cast<CallExpr>(E);
1884  if (!CE)
1885    return;
1886  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1887  if (!D)
1888    return;
1889  SourceLocation Loc = D->getLocation();
1890
1891  std::string Description;
1892  bool IsTemplate = false;
1893  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1894    Description = SemaRef.getTemplateArgumentBindingsText(
1895      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1896    IsTemplate = true;
1897  }
1898
1899  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1900    << BEF << IsTemplate << Description << E->getType();
1901}
1902
1903/// Build a variable declaration for a for-range statement.
1904VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1905                              QualType Type, const char *Name) {
1906  DeclContext *DC = SemaRef.CurContext;
1907  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1908  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1909  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1910                                  TInfo, SC_None);
1911  Decl->setImplicit();
1912  return Decl;
1913}
1914
1915}
1916
1917static bool ObjCEnumerationCollection(Expr *Collection) {
1918  return !Collection->isTypeDependent()
1919          && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1920}
1921
1922/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1923///
1924/// C++11 [stmt.ranged]:
1925///   A range-based for statement is equivalent to
1926///
1927///   {
1928///     auto && __range = range-init;
1929///     for ( auto __begin = begin-expr,
1930///           __end = end-expr;
1931///           __begin != __end;
1932///           ++__begin ) {
1933///       for-range-declaration = *__begin;
1934///       statement
1935///     }
1936///   }
1937///
1938/// The body of the loop is not available yet, since it cannot be analysed until
1939/// we have determined the type of the for-range-declaration.
1940StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
1941                                      SourceLocation CoawaitLoc, Stmt *First,
1942                                      SourceLocation ColonLoc, Expr *Range,
1943                                      SourceLocation RParenLoc,
1944                                      BuildForRangeKind Kind) {
1945  if (!First)
1946    return StmtError();
1947
1948  if (Range && ObjCEnumerationCollection(Range))
1949    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1950
1951  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1952  assert(DS && "first part of for range not a decl stmt");
1953
1954  if (!DS->isSingleDecl()) {
1955    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1956    return StmtError();
1957  }
1958
1959  Decl *LoopVar = DS->getSingleDecl();
1960  if (LoopVar->isInvalidDecl() || !Range ||
1961      DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1962    LoopVar->setInvalidDecl();
1963    return StmtError();
1964  }
1965
1966  // Coroutines: 'for co_await' implicitly co_awaits its range.
1967  if (CoawaitLoc.isValid()) {
1968    ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range);
1969    if (Coawait.isInvalid()) return StmtError();
1970    Range = Coawait.get();
1971  }
1972
1973  // Build  auto && __range = range-init
1974  SourceLocation RangeLoc = Range->getLocStart();
1975  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1976                                           Context.getAutoRRefDeductType(),
1977                                           "__range");
1978  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1979                            diag::err_for_range_deduction_failure)) {
1980    LoopVar->setInvalidDecl();
1981    return StmtError();
1982  }
1983
1984  // Claim the type doesn't contain auto: we've already done the checking.
1985  DeclGroupPtrTy RangeGroup =
1986      BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1987                           /*TypeMayContainAuto=*/ false);
1988  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1989  if (RangeDecl.isInvalid()) {
1990    LoopVar->setInvalidDecl();
1991    return StmtError();
1992  }
1993
1994  return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
1995                              /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1996                              /*Inc=*/nullptr, DS, RParenLoc, Kind);
1997}
1998
1999/// \brief Create the initialization, compare, and increment steps for
2000/// the range-based for loop expression.
2001/// This function does not handle array-based for loops,
2002/// which are created in Sema::BuildCXXForRangeStmt.
2003///
2004/// \returns a ForRangeStatus indicating success or what kind of error occurred.
2005/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2006/// CandidateSet and BEF are set and some non-success value is returned on
2007/// failure.
2008static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef,
2009                                            Expr *BeginRange, Expr *EndRange,
2010                                            QualType RangeType,
2011                                            VarDecl *BeginVar,
2012                                            VarDecl *EndVar,
2013                                            SourceLocation ColonLoc,
2014                                            OverloadCandidateSet *CandidateSet,
2015                                            ExprResult *BeginExpr,
2016                                            ExprResult *EndExpr,
2017                                            BeginEndFunction *BEF) {
2018  DeclarationNameInfo BeginNameInfo(
2019      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2020  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2021                                  ColonLoc);
2022
2023  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2024                                 Sema::LookupMemberName);
2025  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2026
2027  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2028    // - if _RangeT is a class type, the unqualified-ids begin and end are
2029    //   looked up in the scope of class _RangeT as if by class member access
2030    //   lookup (3.4.5), and if either (or both) finds at least one
2031    //   declaration, begin-expr and end-expr are __range.begin() and
2032    //   __range.end(), respectively;
2033    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2034    SemaRef.LookupQualifiedName(EndMemberLookup, D);
2035
2036    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2037      SourceLocation RangeLoc = BeginVar->getLocation();
2038      *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
2039
2040      SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2041          << RangeLoc << BeginRange->getType() << *BEF;
2042      return Sema::FRS_DiagnosticIssued;
2043    }
2044  } else {
2045    // - otherwise, begin-expr and end-expr are begin(__range) and
2046    //   end(__range), respectively, where begin and end are looked up with
2047    //   argument-dependent lookup (3.4.2). For the purposes of this name
2048    //   lookup, namespace std is an associated namespace.
2049
2050  }
2051
2052  *BEF = BEF_begin;
2053  Sema::ForRangeStatus RangeStatus =
2054      SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2055                                        BeginMemberLookup, CandidateSet,
2056                                        BeginRange, BeginExpr);
2057
2058  if (RangeStatus != Sema::FRS_Success) {
2059    if (RangeStatus == Sema::FRS_DiagnosticIssued)
2060      SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
2061          << ColonLoc << BEF_begin << BeginRange->getType();
2062    return RangeStatus;
2063  }
2064  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2065                            diag::err_for_range_iter_deduction_failure)) {
2066    NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2067    return Sema::FRS_DiagnosticIssued;
2068  }
2069
2070  *BEF = BEF_end;
2071  RangeStatus =
2072      SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2073                                        EndMemberLookup, CandidateSet,
2074                                        EndRange, EndExpr);
2075  if (RangeStatus != Sema::FRS_Success) {
2076    if (RangeStatus == Sema::FRS_DiagnosticIssued)
2077      SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
2078          << ColonLoc << BEF_end << EndRange->getType();
2079    return RangeStatus;
2080  }
2081  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2082                            diag::err_for_range_iter_deduction_failure)) {
2083    NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2084    return Sema::FRS_DiagnosticIssued;
2085  }
2086  return Sema::FRS_Success;
2087}
2088
2089/// Speculatively attempt to dereference an invalid range expression.
2090/// If the attempt fails, this function will return a valid, null StmtResult
2091/// and emit no diagnostics.
2092static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2093                                                 SourceLocation ForLoc,
2094                                                 SourceLocation CoawaitLoc,
2095                                                 Stmt *LoopVarDecl,
2096                                                 SourceLocation ColonLoc,
2097                                                 Expr *Range,
2098                                                 SourceLocation RangeLoc,
2099                                                 SourceLocation RParenLoc) {
2100  // Determine whether we can rebuild the for-range statement with a
2101  // dereferenced range expression.
2102  ExprResult AdjustedRange;
2103  {
2104    Sema::SFINAETrap Trap(SemaRef);
2105
2106    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2107    if (AdjustedRange.isInvalid())
2108      return StmtResult();
2109
2110    StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2111        S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
2112        RParenLoc, Sema::BFRK_Check);
2113    if (SR.isInvalid())
2114      return StmtResult();
2115  }
2116
2117  // The attempt to dereference worked well enough that it could produce a valid
2118  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2119  // case there are any other (non-fatal) problems with it.
2120  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2121    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2122  return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
2123                                      ColonLoc, AdjustedRange.get(), RParenLoc,
2124                                      Sema::BFRK_Rebuild);
2125}
2126
2127namespace {
2128/// RAII object to automatically invalidate a declaration if an error occurs.
2129struct InvalidateOnErrorScope {
2130  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2131      : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2132  ~InvalidateOnErrorScope() {
2133    if (Enabled && Trap.hasErrorOccurred())
2134      D->setInvalidDecl();
2135  }
2136
2137  DiagnosticErrorTrap Trap;
2138  Decl *D;
2139  bool Enabled;
2140};
2141}
2142
2143/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2144StmtResult
2145Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc,
2146                           SourceLocation ColonLoc,
2147                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2148                           Expr *Inc, Stmt *LoopVarDecl,
2149                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
2150  // FIXME: This should not be used during template instantiation. We should
2151  // pick up the set of unqualified lookup results for the != and + operators
2152  // in the initial parse.
2153  //
2154  // Testcase (accepts-invalid):
2155  //   template<typename T> void f() { for (auto x : T()) {} }
2156  //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2157  //   bool operator!=(N::X, N::X); void operator++(N::X);
2158  //   void g() { f<N::X>(); }
2159  Scope *S = getCurScope();
2160
2161  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2162  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2163  QualType RangeVarType = RangeVar->getType();
2164
2165  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2166  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2167
2168  // If we hit any errors, mark the loop variable as invalid if its type
2169  // contains 'auto'.
2170  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2171                                    LoopVar->getType()->isUndeducedType());
2172
2173  StmtResult BeginEndDecl = BeginEnd;
2174  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2175
2176  if (RangeVarType->isDependentType()) {
2177    // The range is implicitly used as a placeholder when it is dependent.
2178    RangeVar->markUsed(Context);
2179
2180    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2181    // them in properly when we instantiate the loop.
2182    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2183      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2184  } else if (!BeginEndDecl.get()) {
2185    SourceLocation RangeLoc = RangeVar->getLocation();
2186
2187    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2188
2189    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2190                                                VK_LValue, ColonLoc);
2191    if (BeginRangeRef.isInvalid())
2192      return StmtError();
2193
2194    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2195                                              VK_LValue, ColonLoc);
2196    if (EndRangeRef.isInvalid())
2197      return StmtError();
2198
2199    QualType AutoType = Context.getAutoDeductType();
2200    Expr *Range = RangeVar->getInit();
2201    if (!Range)
2202      return StmtError();
2203    QualType RangeType = Range->getType();
2204
2205    if (RequireCompleteType(RangeLoc, RangeType,
2206                            diag::err_for_range_incomplete_type))
2207      return StmtError();
2208
2209    // Build auto __begin = begin-expr, __end = end-expr.
2210    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2211                                             "__begin");
2212    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2213                                           "__end");
2214
2215    // Build begin-expr and end-expr and attach to __begin and __end variables.
2216    ExprResult BeginExpr, EndExpr;
2217    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2218      // - if _RangeT is an array type, begin-expr and end-expr are __range and
2219      //   __range + __bound, respectively, where __bound is the array bound. If
2220      //   _RangeT is an array of unknown size or an array of incomplete type,
2221      //   the program is ill-formed;
2222
2223      // begin-expr is __range.
2224      BeginExpr = BeginRangeRef;
2225      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2226                                diag::err_for_range_iter_deduction_failure)) {
2227        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2228        return StmtError();
2229      }
2230
2231      // Find the array bound.
2232      ExprResult BoundExpr;
2233      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2234        BoundExpr = IntegerLiteral::Create(
2235            Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2236      else if (const VariableArrayType *VAT =
2237               dyn_cast<VariableArrayType>(UnqAT))
2238        BoundExpr = VAT->getSizeExpr();
2239      else {
2240        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2241        // UnqAT is not incomplete and Range is not type-dependent.
2242        llvm_unreachable("Unexpected array type in for-range");
2243      }
2244
2245      // end-expr is __range + __bound.
2246      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2247                           BoundExpr.get());
2248      if (EndExpr.isInvalid())
2249        return StmtError();
2250      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2251                                diag::err_for_range_iter_deduction_failure)) {
2252        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2253        return StmtError();
2254      }
2255    } else {
2256      OverloadCandidateSet CandidateSet(RangeLoc,
2257                                        OverloadCandidateSet::CSK_Normal);
2258      BeginEndFunction BEFFailure;
2259      ForRangeStatus RangeStatus =
2260          BuildNonArrayForRange(*this, BeginRangeRef.get(),
2261                                EndRangeRef.get(), RangeType,
2262                                BeginVar, EndVar, ColonLoc, &CandidateSet,
2263                                &BeginExpr, &EndExpr, &BEFFailure);
2264
2265      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2266          BEFFailure == BEF_begin) {
2267        // If the range is being built from an array parameter, emit a
2268        // a diagnostic that it is being treated as a pointer.
2269        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2270          if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2271            QualType ArrayTy = PVD->getOriginalType();
2272            QualType PointerTy = PVD->getType();
2273            if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2274              Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2275                << RangeLoc << PVD << ArrayTy << PointerTy;
2276              Diag(PVD->getLocation(), diag::note_declared_at);
2277              return StmtError();
2278            }
2279          }
2280        }
2281
2282        // If building the range failed, try dereferencing the range expression
2283        // unless a diagnostic was issued or the end function is problematic.
2284        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2285                                                       CoawaitLoc,
2286                                                       LoopVarDecl, ColonLoc,
2287                                                       Range, RangeLoc,
2288                                                       RParenLoc);
2289        if (SR.isInvalid() || SR.isUsable())
2290          return SR;
2291      }
2292
2293      // Otherwise, emit diagnostics if we haven't already.
2294      if (RangeStatus == FRS_NoViableFunction) {
2295        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2296        Diag(Range->getLocStart(), diag::err_for_range_invalid)
2297            << RangeLoc << Range->getType() << BEFFailure;
2298        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2299      }
2300      // Return an error if no fix was discovered.
2301      if (RangeStatus != FRS_Success)
2302        return StmtError();
2303    }
2304
2305    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2306           "invalid range expression in for loop");
2307
2308    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2309    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2310    if (!Context.hasSameType(BeginType, EndType)) {
2311      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2312        << BeginType << EndType;
2313      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2314      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2315    }
2316
2317    Decl *BeginEndDecls[] = { BeginVar, EndVar };
2318    // Claim the type doesn't contain auto: we've already done the checking.
2319    DeclGroupPtrTy BeginEndGroup =
2320        BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2321                             /*TypeMayContainAuto=*/ false);
2322    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2323
2324    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2325    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2326                                           VK_LValue, ColonLoc);
2327    if (BeginRef.isInvalid())
2328      return StmtError();
2329
2330    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2331                                         VK_LValue, ColonLoc);
2332    if (EndRef.isInvalid())
2333      return StmtError();
2334
2335    // Build and check __begin != __end expression.
2336    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2337                           BeginRef.get(), EndRef.get());
2338    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2339    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2340    if (NotEqExpr.isInvalid()) {
2341      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2342        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2343      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2344      if (!Context.hasSameType(BeginType, EndType))
2345        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2346      return StmtError();
2347    }
2348
2349    // Build and check ++__begin expression.
2350    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2351                                VK_LValue, ColonLoc);
2352    if (BeginRef.isInvalid())
2353      return StmtError();
2354
2355    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2356    if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2357      IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2358    if (!IncrExpr.isInvalid())
2359      IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2360    if (IncrExpr.isInvalid()) {
2361      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2362        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2363      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2364      return StmtError();
2365    }
2366
2367    // Build and check *__begin  expression.
2368    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2369                                VK_LValue, ColonLoc);
2370    if (BeginRef.isInvalid())
2371      return StmtError();
2372
2373    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2374    if (DerefExpr.isInvalid()) {
2375      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2376        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2377      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2378      return StmtError();
2379    }
2380
2381    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2382    // trying to determine whether this would be a valid range.
2383    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2384      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2385                           /*TypeMayContainAuto=*/true);
2386      if (LoopVar->isInvalidDecl())
2387        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2388    }
2389  }
2390
2391  // Don't bother to actually allocate the result if we're just trying to
2392  // determine whether it would be valid.
2393  if (Kind == BFRK_Check)
2394    return StmtResult();
2395
2396  return new (Context) CXXForRangeStmt(
2397      RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2398      IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2399      ColonLoc, RParenLoc);
2400}
2401
2402/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2403/// statement.
2404StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2405  if (!S || !B)
2406    return StmtError();
2407  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2408
2409  ForStmt->setBody(B);
2410  return S;
2411}
2412
2413// Warn when the loop variable is a const reference that creates a copy.
2414// Suggest using the non-reference type for copies.  If a copy can be prevented
2415// suggest the const reference type that would do so.
2416// For instance, given "for (const &Foo : Range)", suggest
2417// "for (const Foo : Range)" to denote a copy is made for the loop.  If
2418// possible, also suggest "for (const &Bar : Range)" if this type prevents
2419// the copy altogether.
2420static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2421                                                    const VarDecl *VD,
2422                                                    QualType RangeInitType) {
2423  const Expr *InitExpr = VD->getInit();
2424  if (!InitExpr)
2425    return;
2426
2427  QualType VariableType = VD->getType();
2428
2429  const MaterializeTemporaryExpr *MTE =
2430      dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2431
2432  // No copy made.
2433  if (!MTE)
2434    return;
2435
2436  const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2437
2438  // Searching for either UnaryOperator for dereference of a pointer or
2439  // CXXOperatorCallExpr for handling iterators.
2440  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2441    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2442      E = CCE->getArg(0);
2443    } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2444      const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2445      E = ME->getBase();
2446    } else {
2447      const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2448      E = MTE->GetTemporaryExpr();
2449    }
2450    E = E->IgnoreImpCasts();
2451  }
2452
2453  bool ReturnsReference = false;
2454  if (isa<UnaryOperator>(E)) {
2455    ReturnsReference = true;
2456  } else {
2457    const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2458    const FunctionDecl *FD = Call->getDirectCallee();
2459    QualType ReturnType = FD->getReturnType();
2460    ReturnsReference = ReturnType->isReferenceType();
2461  }
2462
2463  if (ReturnsReference) {
2464    // Loop variable creates a temporary.  Suggest either to go with
2465    // non-reference loop variable to indiciate a copy is made, or
2466    // the correct time to bind a const reference.
2467    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2468        << VD << VariableType << E->getType();
2469    QualType NonReferenceType = VariableType.getNonReferenceType();
2470    NonReferenceType.removeLocalConst();
2471    QualType NewReferenceType =
2472        SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2473    SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2474        << NonReferenceType << NewReferenceType << VD->getSourceRange();
2475  } else {
2476    // The range always returns a copy, so a temporary is always created.
2477    // Suggest removing the reference from the loop variable.
2478    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2479        << VD << RangeInitType;
2480    QualType NonReferenceType = VariableType.getNonReferenceType();
2481    NonReferenceType.removeLocalConst();
2482    SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2483        << NonReferenceType << VD->getSourceRange();
2484  }
2485}
2486
2487// Warns when the loop variable can be changed to a reference type to
2488// prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2489// "for (const Foo &x : Range)" if this form does not make a copy.
2490static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2491                                                const VarDecl *VD) {
2492  const Expr *InitExpr = VD->getInit();
2493  if (!InitExpr)
2494    return;
2495
2496  QualType VariableType = VD->getType();
2497
2498  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2499    if (!CE->getConstructor()->isCopyConstructor())
2500      return;
2501  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2502    if (CE->getCastKind() != CK_LValueToRValue)
2503      return;
2504  } else {
2505    return;
2506  }
2507
2508  // TODO: Determine a maximum size that a POD type can be before a diagnostic
2509  // should be emitted.  Also, only ignore POD types with trivial copy
2510  // constructors.
2511  if (VariableType.isPODType(SemaRef.Context))
2512    return;
2513
2514  // Suggest changing from a const variable to a const reference variable
2515  // if doing so will prevent a copy.
2516  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2517      << VD << VariableType << InitExpr->getType();
2518  SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2519      << SemaRef.Context.getLValueReferenceType(VariableType)
2520      << VD->getSourceRange();
2521}
2522
2523/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2524/// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2525///    using "const foo x" to show that a copy is made
2526/// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
2527///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2528///    prevent the copy.
2529/// 3) for (const foo x : foos) where x is constructed from a reference foo.
2530///    Suggest "const foo &x" to prevent the copy.
2531static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2532                                           const CXXForRangeStmt *ForStmt) {
2533  if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2534                              ForStmt->getLocStart()) &&
2535      SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2536                              ForStmt->getLocStart()) &&
2537      SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2538                              ForStmt->getLocStart())) {
2539    return;
2540  }
2541
2542  const VarDecl *VD = ForStmt->getLoopVariable();
2543  if (!VD)
2544    return;
2545
2546  QualType VariableType = VD->getType();
2547
2548  if (VariableType->isIncompleteType())
2549    return;
2550
2551  const Expr *InitExpr = VD->getInit();
2552  if (!InitExpr)
2553    return;
2554
2555  if (VariableType->isReferenceType()) {
2556    DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2557                                            ForStmt->getRangeInit()->getType());
2558  } else if (VariableType.isConstQualified()) {
2559    DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2560  }
2561}
2562
2563/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2564/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2565/// body cannot be performed until after the type of the range variable is
2566/// determined.
2567StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2568  if (!S || !B)
2569    return StmtError();
2570
2571  if (isa<ObjCForCollectionStmt>(S))
2572    return FinishObjCForCollectionStmt(S, B);
2573
2574  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2575  ForStmt->setBody(B);
2576
2577  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2578                        diag::warn_empty_range_based_for_body);
2579
2580  DiagnoseForRangeVariableCopies(*this, ForStmt);
2581
2582  return S;
2583}
2584
2585StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2586                               SourceLocation LabelLoc,
2587                               LabelDecl *TheDecl) {
2588  getCurFunction()->setHasBranchIntoScope();
2589  TheDecl->markUsed(Context);
2590  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2591}
2592
2593StmtResult
2594Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2595                            Expr *E) {
2596  // Convert operand to void*
2597  if (!E->isTypeDependent()) {
2598    QualType ETy = E->getType();
2599    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2600    ExprResult ExprRes = E;
2601    AssignConvertType ConvTy =
2602      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2603    if (ExprRes.isInvalid())
2604      return StmtError();
2605    E = ExprRes.get();
2606    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2607      return StmtError();
2608  }
2609
2610  ExprResult ExprRes = ActOnFinishFullExpr(E);
2611  if (ExprRes.isInvalid())
2612    return StmtError();
2613  E = ExprRes.get();
2614
2615  getCurFunction()->setHasIndirectGoto();
2616
2617  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2618}
2619
2620static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2621                                     const Scope &DestScope) {
2622  if (!S.CurrentSEHFinally.empty() &&
2623      DestScope.Contains(*S.CurrentSEHFinally.back())) {
2624    S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2625  }
2626}
2627
2628StmtResult
2629Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2630  Scope *S = CurScope->getContinueParent();
2631  if (!S) {
2632    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2633    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2634  }
2635  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2636
2637  return new (Context) ContinueStmt(ContinueLoc);
2638}
2639
2640StmtResult
2641Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2642  Scope *S = CurScope->getBreakParent();
2643  if (!S) {
2644    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2645    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2646  }
2647  if (S->isOpenMPLoopScope())
2648    return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2649                     << "break");
2650  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2651
2652  return new (Context) BreakStmt(BreakLoc);
2653}
2654
2655/// \brief Determine whether the given expression is a candidate for
2656/// copy elision in either a return statement or a throw expression.
2657///
2658/// \param ReturnType If we're determining the copy elision candidate for
2659/// a return statement, this is the return type of the function. If we're
2660/// determining the copy elision candidate for a throw expression, this will
2661/// be a NULL type.
2662///
2663/// \param E The expression being returned from the function or block, or
2664/// being thrown.
2665///
2666/// \param AllowFunctionParameter Whether we allow function parameters to
2667/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2668/// we re-use this logic to determine whether we should try to move as part of
2669/// a return or throw (which does allow function parameters).
2670///
2671/// \returns The NRVO candidate variable, if the return statement may use the
2672/// NRVO, or NULL if there is no such candidate.
2673VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2674                                       Expr *E,
2675                                       bool AllowFunctionParameter) {
2676  if (!getLangOpts().CPlusPlus)
2677    return nullptr;
2678
2679  // - in a return statement in a function [where] ...
2680  // ... the expression is the name of a non-volatile automatic object ...
2681  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2682  if (!DR || DR->refersToEnclosingVariableOrCapture())
2683    return nullptr;
2684  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2685  if (!VD)
2686    return nullptr;
2687
2688  if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2689    return VD;
2690  return nullptr;
2691}
2692
2693bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2694                                  bool AllowFunctionParameter) {
2695  QualType VDType = VD->getType();
2696  // - in a return statement in a function with ...
2697  // ... a class return type ...
2698  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2699    if (!ReturnType->isRecordType())
2700      return false;
2701    // ... the same cv-unqualified type as the function return type ...
2702    if (!VDType->isDependentType() &&
2703        !Context.hasSameUnqualifiedType(ReturnType, VDType))
2704      return false;
2705  }
2706
2707  // ...object (other than a function or catch-clause parameter)...
2708  if (VD->getKind() != Decl::Var &&
2709      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2710    return false;
2711  if (VD->isExceptionVariable()) return false;
2712
2713  // ...automatic...
2714  if (!VD->hasLocalStorage()) return false;
2715
2716  // ...non-volatile...
2717  if (VD->getType().isVolatileQualified()) return false;
2718
2719  // __block variables can't be allocated in a way that permits NRVO.
2720  if (VD->hasAttr<BlocksAttr>()) return false;
2721
2722  // Variables with higher required alignment than their type's ABI
2723  // alignment cannot use NRVO.
2724  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2725      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2726    return false;
2727
2728  return true;
2729}
2730
2731/// \brief Perform the initialization of a potentially-movable value, which
2732/// is the result of return value.
2733///
2734/// This routine implements C++0x [class.copy]p33, which attempts to treat
2735/// returned lvalues as rvalues in certain cases (to prefer move construction),
2736/// then falls back to treating them as lvalues if that failed.
2737ExprResult
2738Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2739                                      const VarDecl *NRVOCandidate,
2740                                      QualType ResultType,
2741                                      Expr *Value,
2742                                      bool AllowNRVO) {
2743  // C++0x [class.copy]p33:
2744  //   When the criteria for elision of a copy operation are met or would
2745  //   be met save for the fact that the source object is a function
2746  //   parameter, and the object to be copied is designated by an lvalue,
2747  //   overload resolution to select the constructor for the copy is first
2748  //   performed as if the object were designated by an rvalue.
2749  ExprResult Res = ExprError();
2750  if (AllowNRVO &&
2751      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2752    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2753                              Value->getType(), CK_NoOp, Value, VK_XValue);
2754
2755    Expr *InitExpr = &AsRvalue;
2756    InitializationKind Kind
2757      = InitializationKind::CreateCopy(Value->getLocStart(),
2758                                       Value->getLocStart());
2759    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2760
2761    //   [...] If overload resolution fails, or if the type of the first
2762    //   parameter of the selected constructor is not an rvalue reference
2763    //   to the object's type (possibly cv-qualified), overload resolution
2764    //   is performed again, considering the object as an lvalue.
2765    if (Seq) {
2766      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2767           StepEnd = Seq.step_end();
2768           Step != StepEnd; ++Step) {
2769        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2770          continue;
2771
2772        CXXConstructorDecl *Constructor
2773        = cast<CXXConstructorDecl>(Step->Function.Function);
2774
2775        const RValueReferenceType *RRefType
2776          = Constructor->getParamDecl(0)->getType()
2777                                                 ->getAs<RValueReferenceType>();
2778
2779        // If we don't meet the criteria, break out now.
2780        if (!RRefType ||
2781            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2782                            Context.getTypeDeclType(Constructor->getParent())))
2783          break;
2784
2785        // Promote "AsRvalue" to the heap, since we now need this
2786        // expression node to persist.
2787        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2788                                         CK_NoOp, Value, nullptr, VK_XValue);
2789
2790        // Complete type-checking the initialization of the return type
2791        // using the constructor we found.
2792        Res = Seq.Perform(*this, Entity, Kind, Value);
2793      }
2794    }
2795  }
2796
2797  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2798  // above, or overload resolution failed. Either way, we need to try
2799  // (again) now with the return value expression as written.
2800  if (Res.isInvalid())
2801    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2802
2803  return Res;
2804}
2805
2806/// \brief Determine whether the declared return type of the specified function
2807/// contains 'auto'.
2808static bool hasDeducedReturnType(FunctionDecl *FD) {
2809  const FunctionProtoType *FPT =
2810      FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
2811  return FPT->getReturnType()->isUndeducedType();
2812}
2813
2814/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2815/// for capturing scopes.
2816///
2817StmtResult
2818Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2819  // If this is the first return we've seen, infer the return type.
2820  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2821  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2822  QualType FnRetType = CurCap->ReturnType;
2823  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2824
2825  if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2826    // In C++1y, the return type may involve 'auto'.
2827    // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2828    FunctionDecl *FD = CurLambda->CallOperator;
2829    if (CurCap->ReturnType.isNull())
2830      CurCap->ReturnType = FD->getReturnType();
2831
2832    AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2833    assert(AT && "lost auto type from lambda return type");
2834    if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2835      FD->setInvalidDecl();
2836      return StmtError();
2837    }
2838    CurCap->ReturnType = FnRetType = FD->getReturnType();
2839  } else if (CurCap->HasImplicitReturnType) {
2840    // For blocks/lambdas with implicit return types, we check each return
2841    // statement individually, and deduce the common return type when the block
2842    // or lambda is completed.
2843    // FIXME: Fold this into the 'auto' codepath above.
2844    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2845      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2846      if (Result.isInvalid())
2847        return StmtError();
2848      RetValExp = Result.get();
2849
2850      // DR1048: even prior to C++14, we should use the 'auto' deduction rules
2851      // when deducing a return type for a lambda-expression (or by extension
2852      // for a block). These rules differ from the stated C++11 rules only in
2853      // that they remove top-level cv-qualifiers.
2854      if (!CurContext->isDependentContext())
2855        FnRetType = RetValExp->getType().getUnqualifiedType();
2856      else
2857        FnRetType = CurCap->ReturnType = Context.DependentTy;
2858    } else {
2859      if (RetValExp) {
2860        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2861        // initializer list, because it is not an expression (even
2862        // though we represent it as one). We still deduce 'void'.
2863        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2864          << RetValExp->getSourceRange();
2865      }
2866
2867      FnRetType = Context.VoidTy;
2868    }
2869
2870    // Although we'll properly infer the type of the block once it's completed,
2871    // make sure we provide a return type now for better error recovery.
2872    if (CurCap->ReturnType.isNull())
2873      CurCap->ReturnType = FnRetType;
2874  }
2875  assert(!FnRetType.isNull());
2876
2877  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2878    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2879      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2880      return StmtError();
2881    }
2882  } else if (CapturedRegionScopeInfo *CurRegion =
2883                 dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2884    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2885    return StmtError();
2886  } else {
2887    assert(CurLambda && "unknown kind of captured scope");
2888    if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2889            ->getNoReturnAttr()) {
2890      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2891      return StmtError();
2892    }
2893  }
2894
2895  // Otherwise, verify that this result type matches the previous one.  We are
2896  // pickier with blocks than for normal functions because we don't have GCC
2897  // compatibility to worry about here.
2898  const VarDecl *NRVOCandidate = nullptr;
2899  if (FnRetType->isDependentType()) {
2900    // Delay processing for now.  TODO: there are lots of dependent
2901    // types we can conclusively prove aren't void.
2902  } else if (FnRetType->isVoidType()) {
2903    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2904        !(getLangOpts().CPlusPlus &&
2905          (RetValExp->isTypeDependent() ||
2906           RetValExp->getType()->isVoidType()))) {
2907      if (!getLangOpts().CPlusPlus &&
2908          RetValExp->getType()->isVoidType())
2909        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2910      else {
2911        Diag(ReturnLoc, diag::err_return_block_has_expr);
2912        RetValExp = nullptr;
2913      }
2914    }
2915  } else if (!RetValExp) {
2916    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2917  } else if (!RetValExp->isTypeDependent()) {
2918    // we have a non-void block with an expression, continue checking
2919
2920    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2921    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2922    // function return.
2923
2924    // In C++ the return statement is handled via a copy initialization.
2925    // the C version of which boils down to CheckSingleAssignmentConstraints.
2926    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2927    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2928                                                                   FnRetType,
2929                                                      NRVOCandidate != nullptr);
2930    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2931                                                     FnRetType, RetValExp);
2932    if (Res.isInvalid()) {
2933      // FIXME: Cleanup temporaries here, anyway?
2934      return StmtError();
2935    }
2936    RetValExp = Res.get();
2937    CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2938  } else {
2939    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2940  }
2941
2942  if (RetValExp) {
2943    ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2944    if (ER.isInvalid())
2945      return StmtError();
2946    RetValExp = ER.get();
2947  }
2948  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2949                                                NRVOCandidate);
2950
2951  // If we need to check for the named return value optimization,
2952  // or if we need to infer the return type,
2953  // save the return statement in our scope for later processing.
2954  if (CurCap->HasImplicitReturnType || NRVOCandidate)
2955    FunctionScopes.back()->Returns.push_back(Result);
2956
2957  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
2958    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
2959
2960  return Result;
2961}
2962
2963namespace {
2964/// \brief Marks all typedefs in all local classes in a type referenced.
2965///
2966/// In a function like
2967/// auto f() {
2968///   struct S { typedef int a; };
2969///   return S();
2970/// }
2971///
2972/// the local type escapes and could be referenced in some TUs but not in
2973/// others. Pretend that all local typedefs are always referenced, to not warn
2974/// on this. This isn't necessary if f has internal linkage, or the typedef
2975/// is private.
2976class LocalTypedefNameReferencer
2977    : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
2978public:
2979  LocalTypedefNameReferencer(Sema &S) : S(S) {}
2980  bool VisitRecordType(const RecordType *RT);
2981private:
2982  Sema &S;
2983};
2984bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
2985  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
2986  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
2987      R->isDependentType())
2988    return true;
2989  for (auto *TmpD : R->decls())
2990    if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2991      if (T->getAccess() != AS_private || R->hasFriends())
2992        S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
2993  return true;
2994}
2995}
2996
2997TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
2998  TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2999  while (auto ATL = TL.getAs<AttributedTypeLoc>())
3000    TL = ATL.getModifiedLoc().IgnoreParens();
3001  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3002}
3003
3004/// Deduce the return type for a function from a returned expression, per
3005/// C++1y [dcl.spec.auto]p6.
3006bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3007                                            SourceLocation ReturnLoc,
3008                                            Expr *&RetExpr,
3009                                            AutoType *AT) {
3010  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3011  QualType Deduced;
3012
3013  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3014    //  If the deduction is for a return statement and the initializer is
3015    //  a braced-init-list, the program is ill-formed.
3016    Diag(RetExpr->getExprLoc(),
3017         getCurLambda() ? diag::err_lambda_return_init_list
3018                        : diag::err_auto_fn_return_init_list)
3019        << RetExpr->getSourceRange();
3020    return true;
3021  }
3022
3023  if (FD->isDependentContext()) {
3024    // C++1y [dcl.spec.auto]p12:
3025    //   Return type deduction [...] occurs when the definition is
3026    //   instantiated even if the function body contains a return
3027    //   statement with a non-type-dependent operand.
3028    assert(AT->isDeduced() && "should have deduced to dependent type");
3029    return false;
3030  }
3031
3032  if (RetExpr) {
3033    //  Otherwise, [...] deduce a value for U using the rules of template
3034    //  argument deduction.
3035    DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3036
3037    if (DAR == DAR_Failed && !FD->isInvalidDecl())
3038      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3039        << OrigResultType.getType() << RetExpr->getType();
3040
3041    if (DAR != DAR_Succeeded)
3042      return true;
3043
3044    // If a local type is part of the returned type, mark its fields as
3045    // referenced.
3046    LocalTypedefNameReferencer Referencer(*this);
3047    Referencer.TraverseType(RetExpr->getType());
3048  } else {
3049    //  In the case of a return with no operand, the initializer is considered
3050    //  to be void().
3051    //
3052    // Deduction here can only succeed if the return type is exactly 'cv auto'
3053    // or 'decltype(auto)', so just check for that case directly.
3054    if (!OrigResultType.getType()->getAs<AutoType>()) {
3055      Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3056        << OrigResultType.getType();
3057      return true;
3058    }
3059    // We always deduce U = void in this case.
3060    Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3061    if (Deduced.isNull())
3062      return true;
3063  }
3064
3065  //  If a function with a declared return type that contains a placeholder type
3066  //  has multiple return statements, the return type is deduced for each return
3067  //  statement. [...] if the type deduced is not the same in each deduction,
3068  //  the program is ill-formed.
3069  if (AT->isDeduced() && !FD->isInvalidDecl()) {
3070    AutoType *NewAT = Deduced->getContainedAutoType();
3071    CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3072                                   AT->getDeducedType());
3073    CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3074                                   NewAT->getDeducedType());
3075    if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3076      const LambdaScopeInfo *LambdaSI = getCurLambda();
3077      if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3078        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3079          << NewAT->getDeducedType() << AT->getDeducedType()
3080          << true /*IsLambda*/;
3081      } else {
3082        Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3083          << (AT->isDecltypeAuto() ? 1 : 0)
3084          << NewAT->getDeducedType() << AT->getDeducedType();
3085      }
3086      return true;
3087    }
3088  } else if (!FD->isInvalidDecl()) {
3089    // Update all declarations of the function to have the deduced return type.
3090    Context.adjustDeducedFunctionResultType(FD, Deduced);
3091  }
3092
3093  return false;
3094}
3095
3096StmtResult
3097Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3098                      Scope *CurScope) {
3099  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3100  if (R.isInvalid()) {
3101    return R;
3102  }
3103
3104  if (VarDecl *VD =
3105      const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3106    CurScope->addNRVOCandidate(VD);
3107  } else {
3108    CurScope->setNoNRVO();
3109  }
3110
3111  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3112
3113  return R;
3114}
3115
3116StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3117  // Check for unexpanded parameter packs.
3118  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3119    return StmtError();
3120
3121  if (isa<CapturingScopeInfo>(getCurFunction()))
3122    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3123
3124  QualType FnRetType;
3125  QualType RelatedRetType;
3126  const AttrVec *Attrs = nullptr;
3127  bool isObjCMethod = false;
3128
3129  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3130    FnRetType = FD->getReturnType();
3131    if (FD->hasAttrs())
3132      Attrs = &FD->getAttrs();
3133    if (FD->isNoReturn())
3134      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3135        << FD->getDeclName();
3136  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3137    FnRetType = MD->getReturnType();
3138    isObjCMethod = true;
3139    if (MD->hasAttrs())
3140      Attrs = &MD->getAttrs();
3141    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3142      // In the implementation of a method with a related return type, the
3143      // type used to type-check the validity of return statements within the
3144      // method body is a pointer to the type of the class being implemented.
3145      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3146      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3147    }
3148  } else // If we don't have a function/method context, bail.
3149    return StmtError();
3150
3151  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3152  // deduction.
3153  if (getLangOpts().CPlusPlus14) {
3154    if (AutoType *AT = FnRetType->getContainedAutoType()) {
3155      FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3156      if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3157        FD->setInvalidDecl();
3158        return StmtError();
3159      } else {
3160        FnRetType = FD->getReturnType();
3161      }
3162    }
3163  }
3164
3165  bool HasDependentReturnType = FnRetType->isDependentType();
3166
3167  ReturnStmt *Result = nullptr;
3168  if (FnRetType->isVoidType()) {
3169    if (RetValExp) {
3170      if (isa<InitListExpr>(RetValExp)) {
3171        // We simply never allow init lists as the return value of void
3172        // functions. This is compatible because this was never allowed before,
3173        // so there's no legacy code to deal with.
3174        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3175        int FunctionKind = 0;
3176        if (isa<ObjCMethodDecl>(CurDecl))
3177          FunctionKind = 1;
3178        else if (isa<CXXConstructorDecl>(CurDecl))
3179          FunctionKind = 2;
3180        else if (isa<CXXDestructorDecl>(CurDecl))
3181          FunctionKind = 3;
3182
3183        Diag(ReturnLoc, diag::err_return_init_list)
3184          << CurDecl->getDeclName() << FunctionKind
3185          << RetValExp->getSourceRange();
3186
3187        // Drop the expression.
3188        RetValExp = nullptr;
3189      } else if (!RetValExp->isTypeDependent()) {
3190        // C99 6.8.6.4p1 (ext_ since GCC warns)
3191        unsigned D = diag::ext_return_has_expr;
3192        if (RetValExp->getType()->isVoidType()) {
3193          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3194          if (isa<CXXConstructorDecl>(CurDecl) ||
3195              isa<CXXDestructorDecl>(CurDecl))
3196            D = diag::err_ctor_dtor_returns_void;
3197          else
3198            D = diag::ext_return_has_void_expr;
3199        }
3200        else {
3201          ExprResult Result = RetValExp;
3202          Result = IgnoredValueConversions(Result.get());
3203          if (Result.isInvalid())
3204            return StmtError();
3205          RetValExp = Result.get();
3206          RetValExp = ImpCastExprToType(RetValExp,
3207                                        Context.VoidTy, CK_ToVoid).get();
3208        }
3209        // return of void in constructor/destructor is illegal in C++.
3210        if (D == diag::err_ctor_dtor_returns_void) {
3211          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3212          Diag(ReturnLoc, D)
3213            << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3214            << RetValExp->getSourceRange();
3215        }
3216        // return (some void expression); is legal in C++.
3217        else if (D != diag::ext_return_has_void_expr ||
3218                 !getLangOpts().CPlusPlus) {
3219          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3220
3221          int FunctionKind = 0;
3222          if (isa<ObjCMethodDecl>(CurDecl))
3223            FunctionKind = 1;
3224          else if (isa<CXXConstructorDecl>(CurDecl))
3225            FunctionKind = 2;
3226          else if (isa<CXXDestructorDecl>(CurDecl))
3227            FunctionKind = 3;
3228
3229          Diag(ReturnLoc, D)
3230            << CurDecl->getDeclName() << FunctionKind
3231            << RetValExp->getSourceRange();
3232        }
3233      }
3234
3235      if (RetValExp) {
3236        ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3237        if (ER.isInvalid())
3238          return StmtError();
3239        RetValExp = ER.get();
3240      }
3241    }
3242
3243    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3244  } else if (!RetValExp && !HasDependentReturnType) {
3245    FunctionDecl *FD = getCurFunctionDecl();
3246
3247    unsigned DiagID;
3248    if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3249      // C++11 [stmt.return]p2
3250      DiagID = diag::err_constexpr_return_missing_expr;
3251      FD->setInvalidDecl();
3252    } else if (getLangOpts().C99) {
3253      // C99 6.8.6.4p1 (ext_ since GCC warns)
3254      DiagID = diag::ext_return_missing_expr;
3255    } else {
3256      // C90 6.6.6.4p4
3257      DiagID = diag::warn_return_missing_expr;
3258    }
3259
3260    if (FD)
3261      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3262    else
3263      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3264
3265    Result = new (Context) ReturnStmt(ReturnLoc);
3266  } else {
3267    assert(RetValExp || HasDependentReturnType);
3268    const VarDecl *NRVOCandidate = nullptr;
3269
3270    QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3271
3272    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3273    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3274    // function return.
3275
3276    // In C++ the return statement is handled via a copy initialization,
3277    // the C version of which boils down to CheckSingleAssignmentConstraints.
3278    if (RetValExp)
3279      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3280    if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3281      // we have a non-void function with an expression, continue checking
3282      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3283                                                                     RetType,
3284                                                      NRVOCandidate != nullptr);
3285      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3286                                                       RetType, RetValExp);
3287      if (Res.isInvalid()) {
3288        // FIXME: Clean up temporaries here anyway?
3289        return StmtError();
3290      }
3291      RetValExp = Res.getAs<Expr>();
3292
3293      // If we have a related result type, we need to implicitly
3294      // convert back to the formal result type.  We can't pretend to
3295      // initialize the result again --- we might end double-retaining
3296      // --- so instead we initialize a notional temporary.
3297      if (!RelatedRetType.isNull()) {
3298        Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3299                                                            FnRetType);
3300        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3301        if (Res.isInvalid()) {
3302          // FIXME: Clean up temporaries here anyway?
3303          return StmtError();
3304        }
3305        RetValExp = Res.getAs<Expr>();
3306      }
3307
3308      CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3309                         getCurFunctionDecl());
3310    }
3311
3312    if (RetValExp) {
3313      ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3314      if (ER.isInvalid())
3315        return StmtError();
3316      RetValExp = ER.get();
3317    }
3318    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3319  }
3320
3321  // If we need to check for the named return value optimization, save the
3322  // return statement in our scope for later processing.
3323  if (Result->getNRVOCandidate())
3324    FunctionScopes.back()->Returns.push_back(Result);
3325
3326  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3327    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3328
3329  return Result;
3330}
3331
3332StmtResult
3333Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3334                           SourceLocation RParen, Decl *Parm,
3335                           Stmt *Body) {
3336  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3337  if (Var && Var->isInvalidDecl())
3338    return StmtError();
3339
3340  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3341}
3342
3343StmtResult
3344Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3345  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3346}
3347
3348StmtResult
3349Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3350                         MultiStmtArg CatchStmts, Stmt *Finally) {
3351  if (!getLangOpts().ObjCExceptions)
3352    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3353
3354  getCurFunction()->setHasBranchProtectedScope();
3355  unsigned NumCatchStmts = CatchStmts.size();
3356  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3357                               NumCatchStmts, Finally);
3358}
3359
3360StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3361  if (Throw) {
3362    ExprResult Result = DefaultLvalueConversion(Throw);
3363    if (Result.isInvalid())
3364      return StmtError();
3365
3366    Result = ActOnFinishFullExpr(Result.get());
3367    if (Result.isInvalid())
3368      return StmtError();
3369    Throw = Result.get();
3370
3371    QualType ThrowType = Throw->getType();
3372    // Make sure the expression type is an ObjC pointer or "void *".
3373    if (!ThrowType->isDependentType() &&
3374        !ThrowType->isObjCObjectPointerType()) {
3375      const PointerType *PT = ThrowType->getAs<PointerType>();
3376      if (!PT || !PT->getPointeeType()->isVoidType())
3377        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3378                         << Throw->getType() << Throw->getSourceRange());
3379    }
3380  }
3381
3382  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3383}
3384
3385StmtResult
3386Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3387                           Scope *CurScope) {
3388  if (!getLangOpts().ObjCExceptions)
3389    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3390
3391  if (!Throw) {
3392    // @throw without an expression designates a rethrow (which must occur
3393    // in the context of an @catch clause).
3394    Scope *AtCatchParent = CurScope;
3395    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3396      AtCatchParent = AtCatchParent->getParent();
3397    if (!AtCatchParent)
3398      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3399  }
3400  return BuildObjCAtThrowStmt(AtLoc, Throw);
3401}
3402
3403ExprResult
3404Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3405  ExprResult result = DefaultLvalueConversion(operand);
3406  if (result.isInvalid())
3407    return ExprError();
3408  operand = result.get();
3409
3410  // Make sure the expression type is an ObjC pointer or "void *".
3411  QualType type = operand->getType();
3412  if (!type->isDependentType() &&
3413      !type->isObjCObjectPointerType()) {
3414    const PointerType *pointerType = type->getAs<PointerType>();
3415    if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3416      if (getLangOpts().CPlusPlus) {
3417        if (RequireCompleteType(atLoc, type,
3418                                diag::err_incomplete_receiver_type))
3419          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3420                   << type << operand->getSourceRange();
3421
3422        ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3423        if (!result.isUsable())
3424          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3425                   << type << operand->getSourceRange();
3426
3427        operand = result.get();
3428      } else {
3429          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3430                   << type << operand->getSourceRange();
3431      }
3432    }
3433  }
3434
3435  // The operand to @synchronized is a full-expression.
3436  return ActOnFinishFullExpr(operand);
3437}
3438
3439StmtResult
3440Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3441                                  Stmt *SyncBody) {
3442  // We can't jump into or indirect-jump out of a @synchronized block.
3443  getCurFunction()->setHasBranchProtectedScope();
3444  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3445}
3446
3447/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3448/// and creates a proper catch handler from them.
3449StmtResult
3450Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3451                         Stmt *HandlerBlock) {
3452  // There's nothing to test that ActOnExceptionDecl didn't already test.
3453  return new (Context)
3454      CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3455}
3456
3457StmtResult
3458Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3459  getCurFunction()->setHasBranchProtectedScope();
3460  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3461}
3462
3463namespace {
3464class CatchHandlerType {
3465  QualType QT;
3466  unsigned IsPointer : 1;
3467
3468  // This is a special constructor to be used only with DenseMapInfo's
3469  // getEmptyKey() and getTombstoneKey() functions.
3470  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3471  enum Unique { ForDenseMap };
3472  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3473
3474public:
3475  /// Used when creating a CatchHandlerType from a handler type; will determine
3476  /// whether the type is a pointer or reference and will strip off the top
3477  /// level pointer and cv-qualifiers.
3478  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3479    if (QT->isPointerType())
3480      IsPointer = true;
3481
3482    if (IsPointer || QT->isReferenceType())
3483      QT = QT->getPointeeType();
3484    QT = QT.getUnqualifiedType();
3485  }
3486
3487  /// Used when creating a CatchHandlerType from a base class type; pretends the
3488  /// type passed in had the pointer qualifier, does not need to get an
3489  /// unqualified type.
3490  CatchHandlerType(QualType QT, bool IsPointer)
3491      : QT(QT), IsPointer(IsPointer) {}
3492
3493  QualType underlying() const { return QT; }
3494  bool isPointer() const { return IsPointer; }
3495
3496  friend bool operator==(const CatchHandlerType &LHS,
3497                         const CatchHandlerType &RHS) {
3498    // If the pointer qualification does not match, we can return early.
3499    if (LHS.IsPointer != RHS.IsPointer)
3500      return false;
3501    // Otherwise, check the underlying type without cv-qualifiers.
3502    return LHS.QT == RHS.QT;
3503  }
3504};
3505} // namespace
3506
3507namespace llvm {
3508template <> struct DenseMapInfo<CatchHandlerType> {
3509  static CatchHandlerType getEmptyKey() {
3510    return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3511                       CatchHandlerType::ForDenseMap);
3512  }
3513
3514  static CatchHandlerType getTombstoneKey() {
3515    return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3516                       CatchHandlerType::ForDenseMap);
3517  }
3518
3519  static unsigned getHashValue(const CatchHandlerType &Base) {
3520    return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3521  }
3522
3523  static bool isEqual(const CatchHandlerType &LHS,
3524                      const CatchHandlerType &RHS) {
3525    return LHS == RHS;
3526  }
3527};
3528
3529// It's OK to treat CatchHandlerType as a POD type.
3530template <> struct isPodLike<CatchHandlerType> {
3531  static const bool value = true;
3532};
3533}
3534
3535namespace {
3536class CatchTypePublicBases {
3537  ASTContext &Ctx;
3538  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3539  const bool CheckAgainstPointer;
3540
3541  CXXCatchStmt *FoundHandler;
3542  CanQualType FoundHandlerType;
3543
3544public:
3545  CatchTypePublicBases(
3546      ASTContext &Ctx,
3547      const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3548      : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3549        FoundHandler(nullptr) {}
3550
3551  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3552  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3553
3554  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3555    if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
3556      CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3557      auto M = TypesToCheck;
3558      auto I = M.find(Check);
3559      if (I != M.end()) {
3560        FoundHandler = I->second;
3561        FoundHandlerType = Ctx.getCanonicalType(S->getType());
3562        return true;
3563      }
3564    }
3565    return false;
3566  }
3567};
3568}
3569
3570/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3571/// handlers and creates a try statement from them.
3572StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3573                                  ArrayRef<Stmt *> Handlers) {
3574  // Don't report an error if 'try' is used in system headers.
3575  if (!getLangOpts().CXXExceptions &&
3576      !getSourceManager().isInSystemHeader(TryLoc))
3577    Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3578
3579  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3580    Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3581
3582  sema::FunctionScopeInfo *FSI = getCurFunction();
3583
3584  // C++ try is incompatible with SEH __try.
3585  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3586    Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3587    Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3588  }
3589
3590  const unsigned NumHandlers = Handlers.size();
3591  assert(!Handlers.empty() &&
3592         "The parser shouldn't call this if there are no handlers.");
3593
3594  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3595  for (unsigned i = 0; i < NumHandlers; ++i) {
3596    CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3597
3598    // Diagnose when the handler is a catch-all handler, but it isn't the last
3599    // handler for the try block. [except.handle]p5. Also, skip exception
3600    // declarations that are invalid, since we can't usefully report on them.
3601    if (!H->getExceptionDecl()) {
3602      if (i < NumHandlers - 1)
3603        return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3604      continue;
3605    } else if (H->getExceptionDecl()->isInvalidDecl())
3606      continue;
3607
3608    // Walk the type hierarchy to diagnose when this type has already been
3609    // handled (duplication), or cannot be handled (derivation inversion). We
3610    // ignore top-level cv-qualifiers, per [except.handle]p3
3611    CatchHandlerType HandlerCHT =
3612        (QualType)Context.getCanonicalType(H->getCaughtType());
3613
3614    // We can ignore whether the type is a reference or a pointer; we need the
3615    // underlying declaration type in order to get at the underlying record
3616    // decl, if there is one.
3617    QualType Underlying = HandlerCHT.underlying();
3618    if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3619      if (!RD->hasDefinition())
3620        continue;
3621      // Check that none of the public, unambiguous base classes are in the
3622      // map ([except.handle]p1). Give the base classes the same pointer
3623      // qualification as the original type we are basing off of. This allows
3624      // comparison against the handler type using the same top-level pointer
3625      // as the original type.
3626      CXXBasePaths Paths;
3627      Paths.setOrigin(RD);
3628      CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3629      if (RD->lookupInBases(CTPB, Paths)) {
3630        const CXXCatchStmt *Problem = CTPB.getFoundHandler();
3631        if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
3632          Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3633               diag::warn_exception_caught_by_earlier_handler)
3634              << H->getCaughtType();
3635          Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3636                diag::note_previous_exception_handler)
3637              << Problem->getCaughtType();
3638        }
3639      }
3640    }
3641
3642    // Add the type the list of ones we have handled; diagnose if we've already
3643    // handled it.
3644    auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
3645    if (!R.second) {
3646      const CXXCatchStmt *Problem = R.first->second;
3647      Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3648           diag::warn_exception_caught_by_earlier_handler)
3649          << H->getCaughtType();
3650      Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3651           diag::note_previous_exception_handler)
3652          << Problem->getCaughtType();
3653    }
3654  }
3655
3656  FSI->setHasCXXTry(TryLoc);
3657
3658  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3659}
3660
3661StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
3662                                  Stmt *TryBlock, Stmt *Handler) {
3663  assert(TryBlock && Handler);
3664
3665  sema::FunctionScopeInfo *FSI = getCurFunction();
3666
3667  // SEH __try is incompatible with C++ try. Borland appears to support this,
3668  // however.
3669  if (!getLangOpts().Borland) {
3670    if (FSI->FirstCXXTryLoc.isValid()) {
3671      Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3672      Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
3673    }
3674  }
3675
3676  FSI->setHasSEHTry(TryLoc);
3677
3678  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
3679  // track if they use SEH.
3680  DeclContext *DC = CurContext;
3681  while (DC && !DC->isFunctionOrMethod())
3682    DC = DC->getParent();
3683  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
3684  if (FD)
3685    FD->setUsesSEHTry(true);
3686  else
3687    Diag(TryLoc, diag::err_seh_try_outside_functions);
3688
3689  // Reject __try on unsupported targets.
3690  if (!Context.getTargetInfo().isSEHTrySupported())
3691    Diag(TryLoc, diag::err_seh_try_unsupported);
3692
3693  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
3694}
3695
3696StmtResult
3697Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3698                          Expr *FilterExpr,
3699                          Stmt *Block) {
3700  assert(FilterExpr && Block);
3701
3702  if(!FilterExpr->getType()->isIntegerType()) {
3703    return StmtError(Diag(FilterExpr->getExprLoc(),
3704                     diag::err_filter_expression_integral)
3705                     << FilterExpr->getType());
3706  }
3707
3708  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3709}
3710
3711void Sema::ActOnStartSEHFinallyBlock() {
3712  CurrentSEHFinally.push_back(CurScope);
3713}
3714
3715void Sema::ActOnAbortSEHFinallyBlock() {
3716  CurrentSEHFinally.pop_back();
3717}
3718
3719StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
3720  assert(Block);
3721  CurrentSEHFinally.pop_back();
3722  return SEHFinallyStmt::Create(Context, Loc, Block);
3723}
3724
3725StmtResult
3726Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
3727  Scope *SEHTryParent = CurScope;
3728  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3729    SEHTryParent = SEHTryParent->getParent();
3730  if (!SEHTryParent)
3731    return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3732  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
3733
3734  return new (Context) SEHLeaveStmt(Loc);
3735}
3736
3737StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3738                                            bool IsIfExists,
3739                                            NestedNameSpecifierLoc QualifierLoc,
3740                                            DeclarationNameInfo NameInfo,
3741                                            Stmt *Nested)
3742{
3743  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3744                                             QualifierLoc, NameInfo,
3745                                             cast<CompoundStmt>(Nested));
3746}
3747
3748
3749StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3750                                            bool IsIfExists,
3751                                            CXXScopeSpec &SS,
3752                                            UnqualifiedId &Name,
3753                                            Stmt *Nested) {
3754  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3755                                    SS.getWithLocInContext(Context),
3756                                    GetNameFromUnqualifiedId(Name),
3757                                    Nested);
3758}
3759
3760RecordDecl*
3761Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3762                                   unsigned NumParams) {
3763  DeclContext *DC = CurContext;
3764  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3765    DC = DC->getParent();
3766
3767  RecordDecl *RD = nullptr;
3768  if (getLangOpts().CPlusPlus)
3769    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3770                               /*Id=*/nullptr);
3771  else
3772    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3773
3774  RD->setCapturedRecord();
3775  DC->addDecl(RD);
3776  RD->setImplicit();
3777  RD->startDefinition();
3778
3779  assert(NumParams > 0 && "CapturedStmt requires context parameter");
3780  CD = CapturedDecl::Create(Context, CurContext, NumParams);
3781  DC->addDecl(CD);
3782  return RD;
3783}
3784
3785static void buildCapturedStmtCaptureList(
3786    SmallVectorImpl<CapturedStmt::Capture> &Captures,
3787    SmallVectorImpl<Expr *> &CaptureInits,
3788    ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3789
3790  typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3791  for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3792
3793    if (Cap->isThisCapture()) {
3794      Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3795                                               CapturedStmt::VCK_This));
3796      CaptureInits.push_back(Cap->getInitExpr());
3797      continue;
3798    } else if (Cap->isVLATypeCapture()) {
3799      Captures.push_back(
3800          CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
3801      CaptureInits.push_back(nullptr);
3802      continue;
3803    }
3804
3805    Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3806                                             Cap->isReferenceCapture()
3807                                                 ? CapturedStmt::VCK_ByRef
3808                                                 : CapturedStmt::VCK_ByCopy,
3809                                             Cap->getVariable()));
3810    CaptureInits.push_back(Cap->getInitExpr());
3811  }
3812}
3813
3814void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3815                                    CapturedRegionKind Kind,
3816                                    unsigned NumParams) {
3817  CapturedDecl *CD = nullptr;
3818  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3819
3820  // Build the context parameter
3821  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3822  IdentifierInfo *ParamName = &Context.Idents.get("__context");
3823  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3824  ImplicitParamDecl *Param
3825    = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3826  DC->addDecl(Param);
3827
3828  CD->setContextParam(0, Param);
3829
3830  // Enter the capturing scope for this captured region.
3831  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3832
3833  if (CurScope)
3834    PushDeclContext(CurScope, CD);
3835  else
3836    CurContext = CD;
3837
3838  PushExpressionEvaluationContext(PotentiallyEvaluated);
3839}
3840
3841void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3842                                    CapturedRegionKind Kind,
3843                                    ArrayRef<CapturedParamNameType> Params) {
3844  CapturedDecl *CD = nullptr;
3845  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3846
3847  // Build the context parameter
3848  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3849  bool ContextIsFound = false;
3850  unsigned ParamNum = 0;
3851  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3852                                                 E = Params.end();
3853       I != E; ++I, ++ParamNum) {
3854    if (I->second.isNull()) {
3855      assert(!ContextIsFound &&
3856             "null type has been found already for '__context' parameter");
3857      IdentifierInfo *ParamName = &Context.Idents.get("__context");
3858      QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3859      ImplicitParamDecl *Param
3860        = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3861      DC->addDecl(Param);
3862      CD->setContextParam(ParamNum, Param);
3863      ContextIsFound = true;
3864    } else {
3865      IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3866      ImplicitParamDecl *Param
3867        = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3868      DC->addDecl(Param);
3869      CD->setParam(ParamNum, Param);
3870    }
3871  }
3872  assert(ContextIsFound && "no null type for '__context' parameter");
3873  if (!ContextIsFound) {
3874    // Add __context implicitly if it is not specified.
3875    IdentifierInfo *ParamName = &Context.Idents.get("__context");
3876    QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3877    ImplicitParamDecl *Param =
3878        ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3879    DC->addDecl(Param);
3880    CD->setContextParam(ParamNum, Param);
3881  }
3882  // Enter the capturing scope for this captured region.
3883  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3884
3885  if (CurScope)
3886    PushDeclContext(CurScope, CD);
3887  else
3888    CurContext = CD;
3889
3890  PushExpressionEvaluationContext(PotentiallyEvaluated);
3891}
3892
3893void Sema::ActOnCapturedRegionError() {
3894  DiscardCleanupsInEvaluationContext();
3895  PopExpressionEvaluationContext();
3896
3897  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3898  RecordDecl *Record = RSI->TheRecordDecl;
3899  Record->setInvalidDecl();
3900
3901  SmallVector<Decl*, 4> Fields(Record->fields());
3902  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3903              SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3904
3905  PopDeclContext();
3906  PopFunctionScopeInfo();
3907}
3908
3909StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3910  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3911
3912  SmallVector<CapturedStmt::Capture, 4> Captures;
3913  SmallVector<Expr *, 4> CaptureInits;
3914  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3915
3916  CapturedDecl *CD = RSI->TheCapturedDecl;
3917  RecordDecl *RD = RSI->TheRecordDecl;
3918
3919  CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3920                                           RSI->CapRegionKind, Captures,
3921                                           CaptureInits, CD, RD);
3922
3923  CD->setBody(Res->getCapturedStmt());
3924  RD->completeDefinition();
3925
3926  DiscardCleanupsInEvaluationContext();
3927  PopExpressionEvaluationContext();
3928
3929  PopDeclContext();
3930  PopFunctionScopeInfo();
3931
3932  return Res;
3933}
3934