SemaStmt.cpp revision 280031
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/RecursiveASTVisitor.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/Initialization.h"
28#include "clang/Sema/Lookup.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/ScopeInfo.h"
31#include "llvm/ADT/ArrayRef.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/SmallVector.h"
36using namespace clang;
37using namespace sema;
38
39StmtResult Sema::ActOnExprStmt(ExprResult FE) {
40  if (FE.isInvalid())
41    return StmtError();
42
43  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
44                           /*DiscardedValue*/ true);
45  if (FE.isInvalid())
46    return StmtError();
47
48  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
49  // void expression for its side effects.  Conversion to void allows any
50  // operand, even incomplete types.
51
52  // Same thing in for stmt first clause (when expr) and third clause.
53  return StmtResult(FE.getAs<Stmt>());
54}
55
56
57StmtResult Sema::ActOnExprStmtError() {
58  DiscardCleanupsInEvaluationContext();
59  return StmtError();
60}
61
62StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
63                               bool HasLeadingEmptyMacro) {
64  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
65}
66
67StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
68                               SourceLocation EndLoc) {
69  DeclGroupRef DG = dg.get();
70
71  // If we have an invalid decl, just return an error.
72  if (DG.isNull()) return StmtError();
73
74  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
75}
76
77void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
78  DeclGroupRef DG = dg.get();
79
80  // If we don't have a declaration, or we have an invalid declaration,
81  // just return.
82  if (DG.isNull() || !DG.isSingleDecl())
83    return;
84
85  Decl *decl = DG.getSingleDecl();
86  if (!decl || decl->isInvalidDecl())
87    return;
88
89  // Only variable declarations are permitted.
90  VarDecl *var = dyn_cast<VarDecl>(decl);
91  if (!var) {
92    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
93    decl->setInvalidDecl();
94    return;
95  }
96
97  // foreach variables are never actually initialized in the way that
98  // the parser came up with.
99  var->setInit(nullptr);
100
101  // In ARC, we don't need to retain the iteration variable of a fast
102  // enumeration loop.  Rather than actually trying to catch that
103  // during declaration processing, we remove the consequences here.
104  if (getLangOpts().ObjCAutoRefCount) {
105    QualType type = var->getType();
106
107    // Only do this if we inferred the lifetime.  Inferred lifetime
108    // will show up as a local qualifier because explicit lifetime
109    // should have shown up as an AttributedType instead.
110    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
111      // Add 'const' and mark the variable as pseudo-strong.
112      var->setType(type.withConst());
113      var->setARCPseudoStrong(true);
114    }
115  }
116}
117
118/// \brief Diagnose unused comparisons, both builtin and overloaded operators.
119/// For '==' and '!=', suggest fixits for '=' or '|='.
120///
121/// Adding a cast to void (or other expression wrappers) will prevent the
122/// warning from firing.
123static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
124  SourceLocation Loc;
125  bool IsNotEqual, CanAssign, IsRelational;
126
127  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
128    if (!Op->isComparisonOp())
129      return false;
130
131    IsRelational = Op->isRelationalOp();
132    Loc = Op->getOperatorLoc();
133    IsNotEqual = Op->getOpcode() == BO_NE;
134    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
135  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
136    switch (Op->getOperator()) {
137    default:
138      return false;
139    case OO_EqualEqual:
140    case OO_ExclaimEqual:
141      IsRelational = false;
142      break;
143    case OO_Less:
144    case OO_Greater:
145    case OO_GreaterEqual:
146    case OO_LessEqual:
147      IsRelational = true;
148      break;
149    }
150
151    Loc = Op->getOperatorLoc();
152    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
153    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
154  } else {
155    // Not a typo-prone comparison.
156    return false;
157  }
158
159  // Suppress warnings when the operator, suspicious as it may be, comes from
160  // a macro expansion.
161  if (S.SourceMgr.isMacroBodyExpansion(Loc))
162    return false;
163
164  S.Diag(Loc, diag::warn_unused_comparison)
165    << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
166
167  // If the LHS is a plausible entity to assign to, provide a fixit hint to
168  // correct common typos.
169  if (!IsRelational && CanAssign) {
170    if (IsNotEqual)
171      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
172        << FixItHint::CreateReplacement(Loc, "|=");
173    else
174      S.Diag(Loc, diag::note_equality_comparison_to_assign)
175        << FixItHint::CreateReplacement(Loc, "=");
176  }
177
178  return true;
179}
180
181void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
182  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
183    return DiagnoseUnusedExprResult(Label->getSubStmt());
184
185  const Expr *E = dyn_cast_or_null<Expr>(S);
186  if (!E)
187    return;
188
189  // If we are in an unevaluated expression context, then there can be no unused
190  // results because the results aren't expected to be used in the first place.
191  if (isUnevaluatedContext())
192    return;
193
194  SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
195  // In most cases, we don't want to warn if the expression is written in a
196  // macro body, or if the macro comes from a system header. If the offending
197  // expression is a call to a function with the warn_unused_result attribute,
198  // we warn no matter the location. Because of the order in which the various
199  // checks need to happen, we factor out the macro-related test here.
200  bool ShouldSuppress =
201      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
202      SourceMgr.isInSystemMacro(ExprLoc);
203
204  const Expr *WarnExpr;
205  SourceLocation Loc;
206  SourceRange R1, R2;
207  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
208    return;
209
210  // If this is a GNU statement expression expanded from a macro, it is probably
211  // unused because it is a function-like macro that can be used as either an
212  // expression or statement.  Don't warn, because it is almost certainly a
213  // false positive.
214  if (isa<StmtExpr>(E) && Loc.isMacroID())
215    return;
216
217  // Okay, we have an unused result.  Depending on what the base expression is,
218  // we might want to make a more specific diagnostic.  Check for one of these
219  // cases now.
220  unsigned DiagID = diag::warn_unused_expr;
221  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
222    E = Temps->getSubExpr();
223  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
224    E = TempExpr->getSubExpr();
225
226  if (DiagnoseUnusedComparison(*this, E))
227    return;
228
229  E = WarnExpr;
230  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
231    if (E->getType()->isVoidType())
232      return;
233
234    // If the callee has attribute pure, const, or warn_unused_result, warn with
235    // a more specific message to make it clear what is happening. If the call
236    // is written in a macro body, only warn if it has the warn_unused_result
237    // attribute.
238    if (const Decl *FD = CE->getCalleeDecl()) {
239      if (FD->hasAttr<WarnUnusedResultAttr>()) {
240        Diag(Loc, diag::warn_unused_result) << R1 << R2;
241        return;
242      }
243      if (ShouldSuppress)
244        return;
245      if (FD->hasAttr<PureAttr>()) {
246        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
247        return;
248      }
249      if (FD->hasAttr<ConstAttr>()) {
250        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
251        return;
252      }
253    }
254  } else if (ShouldSuppress)
255    return;
256
257  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
258    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
259      Diag(Loc, diag::err_arc_unused_init_message) << R1;
260      return;
261    }
262    const ObjCMethodDecl *MD = ME->getMethodDecl();
263    if (MD) {
264      if (MD->hasAttr<WarnUnusedResultAttr>()) {
265        Diag(Loc, diag::warn_unused_result) << R1 << R2;
266        return;
267      }
268      if (MD->isPropertyAccessor()) {
269        Diag(Loc, diag::warn_unused_property_expr);
270        return;
271      }
272    }
273  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
274    const Expr *Source = POE->getSyntacticForm();
275    if (isa<ObjCSubscriptRefExpr>(Source))
276      DiagID = diag::warn_unused_container_subscript_expr;
277    else
278      DiagID = diag::warn_unused_property_expr;
279  } else if (const CXXFunctionalCastExpr *FC
280                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
281    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
282        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
283      return;
284  }
285  // Diagnose "(void*) blah" as a typo for "(void) blah".
286  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
287    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
288    QualType T = TI->getType();
289
290    // We really do want to use the non-canonical type here.
291    if (T == Context.VoidPtrTy) {
292      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
293
294      Diag(Loc, diag::warn_unused_voidptr)
295        << FixItHint::CreateRemoval(TL.getStarLoc());
296      return;
297    }
298  }
299
300  if (E->isGLValue() && E->getType().isVolatileQualified()) {
301    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
302    return;
303  }
304
305  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
306}
307
308void Sema::ActOnStartOfCompoundStmt() {
309  PushCompoundScope();
310}
311
312void Sema::ActOnFinishOfCompoundStmt() {
313  PopCompoundScope();
314}
315
316sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
317  return getCurFunction()->CompoundScopes.back();
318}
319
320StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
321                                   ArrayRef<Stmt *> Elts, bool isStmtExpr) {
322  const unsigned NumElts = Elts.size();
323
324  // If we're in C89 mode, check that we don't have any decls after stmts.  If
325  // so, emit an extension diagnostic.
326  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
327    // Note that __extension__ can be around a decl.
328    unsigned i = 0;
329    // Skip over all declarations.
330    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
331      /*empty*/;
332
333    // We found the end of the list or a statement.  Scan for another declstmt.
334    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
335      /*empty*/;
336
337    if (i != NumElts) {
338      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
339      Diag(D->getLocation(), diag::ext_mixed_decls_code);
340    }
341  }
342  // Warn about unused expressions in statements.
343  for (unsigned i = 0; i != NumElts; ++i) {
344    // Ignore statements that are last in a statement expression.
345    if (isStmtExpr && i == NumElts - 1)
346      continue;
347
348    DiagnoseUnusedExprResult(Elts[i]);
349  }
350
351  // Check for suspicious empty body (null statement) in `for' and `while'
352  // statements.  Don't do anything for template instantiations, this just adds
353  // noise.
354  if (NumElts != 0 && !CurrentInstantiationScope &&
355      getCurCompoundScope().HasEmptyLoopBodies) {
356    for (unsigned i = 0; i != NumElts - 1; ++i)
357      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
358  }
359
360  return new (Context) CompoundStmt(Context, Elts, L, R);
361}
362
363StmtResult
364Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
365                    SourceLocation DotDotDotLoc, Expr *RHSVal,
366                    SourceLocation ColonLoc) {
367  assert(LHSVal && "missing expression in case statement");
368
369  if (getCurFunction()->SwitchStack.empty()) {
370    Diag(CaseLoc, diag::err_case_not_in_switch);
371    return StmtError();
372  }
373
374  ExprResult LHS =
375      CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
376        if (!getLangOpts().CPlusPlus11)
377          return VerifyIntegerConstantExpression(E);
378        if (Expr *CondExpr =
379                getCurFunction()->SwitchStack.back()->getCond()) {
380          QualType CondType = CondExpr->getType();
381          llvm::APSInt TempVal;
382          return CheckConvertedConstantExpression(E, CondType, TempVal,
383                                                        CCEK_CaseValue);
384        }
385        return ExprError();
386      });
387  if (LHS.isInvalid())
388    return StmtError();
389  LHSVal = LHS.get();
390
391  if (!getLangOpts().CPlusPlus11) {
392    // C99 6.8.4.2p3: The expression shall be an integer constant.
393    // However, GCC allows any evaluatable integer expression.
394    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
395      LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
396      if (!LHSVal)
397        return StmtError();
398    }
399
400    // GCC extension: The expression shall be an integer constant.
401
402    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
403      RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
404      // Recover from an error by just forgetting about it.
405    }
406  }
407
408  LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
409                                 getLangOpts().CPlusPlus11);
410  if (LHS.isInvalid())
411    return StmtError();
412
413  auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
414                                          getLangOpts().CPlusPlus11)
415                    : ExprResult();
416  if (RHS.isInvalid())
417    return StmtError();
418
419  CaseStmt *CS = new (Context)
420      CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
421  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
422  return CS;
423}
424
425/// ActOnCaseStmtBody - This installs a statement as the body of a case.
426void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
427  DiagnoseUnusedExprResult(SubStmt);
428
429  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
430  CS->setSubStmt(SubStmt);
431}
432
433StmtResult
434Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
435                       Stmt *SubStmt, Scope *CurScope) {
436  DiagnoseUnusedExprResult(SubStmt);
437
438  if (getCurFunction()->SwitchStack.empty()) {
439    Diag(DefaultLoc, diag::err_default_not_in_switch);
440    return SubStmt;
441  }
442
443  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
444  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
445  return DS;
446}
447
448StmtResult
449Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
450                     SourceLocation ColonLoc, Stmt *SubStmt) {
451  // If the label was multiply defined, reject it now.
452  if (TheDecl->getStmt()) {
453    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
454    Diag(TheDecl->getLocation(), diag::note_previous_definition);
455    return SubStmt;
456  }
457
458  // Otherwise, things are good.  Fill in the declaration and return it.
459  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
460  TheDecl->setStmt(LS);
461  if (!TheDecl->isGnuLocal()) {
462    TheDecl->setLocStart(IdentLoc);
463    if (!TheDecl->isMSAsmLabel()) {
464      // Don't update the location of MS ASM labels.  These will result in
465      // a diagnostic, and changing the location here will mess that up.
466      TheDecl->setLocation(IdentLoc);
467    }
468  }
469  return LS;
470}
471
472StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
473                                     ArrayRef<const Attr*> Attrs,
474                                     Stmt *SubStmt) {
475  // Fill in the declaration and return it.
476  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
477  return LS;
478}
479
480StmtResult
481Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
482                  Stmt *thenStmt, SourceLocation ElseLoc,
483                  Stmt *elseStmt) {
484  // If the condition was invalid, discard the if statement.  We could recover
485  // better by replacing it with a valid expr, but don't do that yet.
486  if (!CondVal.get() && !CondVar) {
487    getCurFunction()->setHasDroppedStmt();
488    return StmtError();
489  }
490
491  ExprResult CondResult(CondVal.release());
492
493  VarDecl *ConditionVar = nullptr;
494  if (CondVar) {
495    ConditionVar = cast<VarDecl>(CondVar);
496    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
497    if (CondResult.isInvalid())
498      return StmtError();
499  }
500  Expr *ConditionExpr = CondResult.getAs<Expr>();
501  if (!ConditionExpr)
502    return StmtError();
503
504  DiagnoseUnusedExprResult(thenStmt);
505
506  if (!elseStmt) {
507    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
508                          diag::warn_empty_if_body);
509  }
510
511  DiagnoseUnusedExprResult(elseStmt);
512
513  return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
514                              thenStmt, ElseLoc, elseStmt);
515}
516
517namespace {
518  struct CaseCompareFunctor {
519    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
520                    const llvm::APSInt &RHS) {
521      return LHS.first < RHS;
522    }
523    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
524                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
525      return LHS.first < RHS.first;
526    }
527    bool operator()(const llvm::APSInt &LHS,
528                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
529      return LHS < RHS.first;
530    }
531  };
532}
533
534/// CmpCaseVals - Comparison predicate for sorting case values.
535///
536static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
537                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
538  if (lhs.first < rhs.first)
539    return true;
540
541  if (lhs.first == rhs.first &&
542      lhs.second->getCaseLoc().getRawEncoding()
543       < rhs.second->getCaseLoc().getRawEncoding())
544    return true;
545  return false;
546}
547
548/// CmpEnumVals - Comparison predicate for sorting enumeration values.
549///
550static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
551                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
552{
553  return lhs.first < rhs.first;
554}
555
556/// EqEnumVals - Comparison preficate for uniqing enumeration values.
557///
558static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
559                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
560{
561  return lhs.first == rhs.first;
562}
563
564/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
565/// potentially integral-promoted expression @p expr.
566static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
567  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
568    expr = cleanups->getSubExpr();
569  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
570    if (impcast->getCastKind() != CK_IntegralCast) break;
571    expr = impcast->getSubExpr();
572  }
573  return expr->getType();
574}
575
576StmtResult
577Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
578                             Decl *CondVar) {
579  ExprResult CondResult;
580
581  VarDecl *ConditionVar = nullptr;
582  if (CondVar) {
583    ConditionVar = cast<VarDecl>(CondVar);
584    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
585    if (CondResult.isInvalid())
586      return StmtError();
587
588    Cond = CondResult.get();
589  }
590
591  if (!Cond)
592    return StmtError();
593
594  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
595    Expr *Cond;
596
597  public:
598    SwitchConvertDiagnoser(Expr *Cond)
599        : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
600          Cond(Cond) {}
601
602    SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
603                                         QualType T) override {
604      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
605    }
606
607    SemaDiagnosticBuilder diagnoseIncomplete(
608        Sema &S, SourceLocation Loc, QualType T) override {
609      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
610               << T << Cond->getSourceRange();
611    }
612
613    SemaDiagnosticBuilder diagnoseExplicitConv(
614        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
615      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
616    }
617
618    SemaDiagnosticBuilder noteExplicitConv(
619        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
620      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
621        << ConvTy->isEnumeralType() << ConvTy;
622    }
623
624    SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
625                                            QualType T) override {
626      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
627    }
628
629    SemaDiagnosticBuilder noteAmbiguous(
630        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
631      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
632      << ConvTy->isEnumeralType() << ConvTy;
633    }
634
635    SemaDiagnosticBuilder diagnoseConversion(
636        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
637      llvm_unreachable("conversion functions are permitted");
638    }
639  } SwitchDiagnoser(Cond);
640
641  CondResult =
642      PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
643  if (CondResult.isInvalid()) return StmtError();
644  Cond = CondResult.get();
645
646  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
647  CondResult = UsualUnaryConversions(Cond);
648  if (CondResult.isInvalid()) return StmtError();
649  Cond = CondResult.get();
650
651  if (!CondVar) {
652    CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
653    if (CondResult.isInvalid())
654      return StmtError();
655    Cond = CondResult.get();
656  }
657
658  getCurFunction()->setHasBranchIntoScope();
659
660  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
661  getCurFunction()->SwitchStack.push_back(SS);
662  return SS;
663}
664
665static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
666  Val = Val.extOrTrunc(BitWidth);
667  Val.setIsSigned(IsSigned);
668}
669
670/// Check the specified case value is in range for the given unpromoted switch
671/// type.
672static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
673                           unsigned UnpromotedWidth, bool UnpromotedSign) {
674  // If the case value was signed and negative and the switch expression is
675  // unsigned, don't bother to warn: this is implementation-defined behavior.
676  // FIXME: Introduce a second, default-ignored warning for this case?
677  if (UnpromotedWidth < Val.getBitWidth()) {
678    llvm::APSInt ConvVal(Val);
679    AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
680    AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
681    // FIXME: Use different diagnostics for overflow  in conversion to promoted
682    // type versus "switch expression cannot have this value". Use proper
683    // IntRange checking rather than just looking at the unpromoted type here.
684    if (ConvVal != Val)
685      S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
686                                                  << ConvVal.toString(10);
687  }
688}
689
690/// Returns true if we should emit a diagnostic about this case expression not
691/// being a part of the enum used in the switch controlling expression.
692static bool ShouldDiagnoseSwitchCaseNotInEnum(const ASTContext &Ctx,
693                                              const EnumDecl *ED,
694                                              const Expr *CaseExpr) {
695  // Don't warn if the 'case' expression refers to a static const variable of
696  // the enum type.
697  CaseExpr = CaseExpr->IgnoreParenImpCasts();
698  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseExpr)) {
699    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
700      if (!VD->hasGlobalStorage())
701        return true;
702      QualType VarType = VD->getType();
703      if (!VarType.isConstQualified())
704        return true;
705      QualType EnumType = Ctx.getTypeDeclType(ED);
706      if (Ctx.hasSameUnqualifiedType(EnumType, VarType))
707        return false;
708    }
709  }
710  return true;
711}
712
713StmtResult
714Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
715                            Stmt *BodyStmt) {
716  SwitchStmt *SS = cast<SwitchStmt>(Switch);
717  assert(SS == getCurFunction()->SwitchStack.back() &&
718         "switch stack missing push/pop!");
719
720  getCurFunction()->SwitchStack.pop_back();
721
722  if (!BodyStmt) return StmtError();
723  SS->setBody(BodyStmt, SwitchLoc);
724
725  Expr *CondExpr = SS->getCond();
726  if (!CondExpr) return StmtError();
727
728  QualType CondType = CondExpr->getType();
729
730  Expr *CondExprBeforePromotion = CondExpr;
731  QualType CondTypeBeforePromotion =
732      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
733
734  // C++ 6.4.2.p2:
735  // Integral promotions are performed (on the switch condition).
736  //
737  // A case value unrepresentable by the original switch condition
738  // type (before the promotion) doesn't make sense, even when it can
739  // be represented by the promoted type.  Therefore we need to find
740  // the pre-promotion type of the switch condition.
741  if (!CondExpr->isTypeDependent()) {
742    // We have already converted the expression to an integral or enumeration
743    // type, when we started the switch statement. If we don't have an
744    // appropriate type now, just return an error.
745    if (!CondType->isIntegralOrEnumerationType())
746      return StmtError();
747
748    if (CondExpr->isKnownToHaveBooleanValue()) {
749      // switch(bool_expr) {...} is often a programmer error, e.g.
750      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
751      // One can always use an if statement instead of switch(bool_expr).
752      Diag(SwitchLoc, diag::warn_bool_switch_condition)
753          << CondExpr->getSourceRange();
754    }
755  }
756
757  // Get the bitwidth of the switched-on value after promotions. We must
758  // convert the integer case values to this width before comparison.
759  bool HasDependentValue
760    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
761  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
762  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
763
764  // Get the width and signedness that the condition might actually have, for
765  // warning purposes.
766  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
767  // type.
768  unsigned CondWidthBeforePromotion
769    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
770  bool CondIsSignedBeforePromotion
771    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
772
773  // Accumulate all of the case values in a vector so that we can sort them
774  // and detect duplicates.  This vector contains the APInt for the case after
775  // it has been converted to the condition type.
776  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
777  CaseValsTy CaseVals;
778
779  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
780  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
781  CaseRangesTy CaseRanges;
782
783  DefaultStmt *TheDefaultStmt = nullptr;
784
785  bool CaseListIsErroneous = false;
786
787  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
788       SC = SC->getNextSwitchCase()) {
789
790    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
791      if (TheDefaultStmt) {
792        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
793        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
794
795        // FIXME: Remove the default statement from the switch block so that
796        // we'll return a valid AST.  This requires recursing down the AST and
797        // finding it, not something we are set up to do right now.  For now,
798        // just lop the entire switch stmt out of the AST.
799        CaseListIsErroneous = true;
800      }
801      TheDefaultStmt = DS;
802
803    } else {
804      CaseStmt *CS = cast<CaseStmt>(SC);
805
806      Expr *Lo = CS->getLHS();
807
808      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
809        HasDependentValue = true;
810        break;
811      }
812
813      llvm::APSInt LoVal;
814
815      if (getLangOpts().CPlusPlus11) {
816        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
817        // constant expression of the promoted type of the switch condition.
818        ExprResult ConvLo =
819          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
820        if (ConvLo.isInvalid()) {
821          CaseListIsErroneous = true;
822          continue;
823        }
824        Lo = ConvLo.get();
825      } else {
826        // We already verified that the expression has a i-c-e value (C99
827        // 6.8.4.2p3) - get that value now.
828        LoVal = Lo->EvaluateKnownConstInt(Context);
829
830        // If the LHS is not the same type as the condition, insert an implicit
831        // cast.
832        Lo = DefaultLvalueConversion(Lo).get();
833        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
834      }
835
836      // Check the unconverted value is within the range of possible values of
837      // the switch expression.
838      checkCaseValue(*this, Lo->getLocStart(), LoVal,
839                     CondWidthBeforePromotion, CondIsSignedBeforePromotion);
840
841      // Convert the value to the same width/sign as the condition.
842      AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
843
844      CS->setLHS(Lo);
845
846      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
847      if (CS->getRHS()) {
848        if (CS->getRHS()->isTypeDependent() ||
849            CS->getRHS()->isValueDependent()) {
850          HasDependentValue = true;
851          break;
852        }
853        CaseRanges.push_back(std::make_pair(LoVal, CS));
854      } else
855        CaseVals.push_back(std::make_pair(LoVal, CS));
856    }
857  }
858
859  if (!HasDependentValue) {
860    // If we don't have a default statement, check whether the
861    // condition is constant.
862    llvm::APSInt ConstantCondValue;
863    bool HasConstantCond = false;
864    if (!HasDependentValue && !TheDefaultStmt) {
865      HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
866                                                Expr::SE_AllowSideEffects);
867      assert(!HasConstantCond ||
868             (ConstantCondValue.getBitWidth() == CondWidth &&
869              ConstantCondValue.isSigned() == CondIsSigned));
870    }
871    bool ShouldCheckConstantCond = HasConstantCond;
872
873    // Sort all the scalar case values so we can easily detect duplicates.
874    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
875
876    if (!CaseVals.empty()) {
877      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
878        if (ShouldCheckConstantCond &&
879            CaseVals[i].first == ConstantCondValue)
880          ShouldCheckConstantCond = false;
881
882        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
883          // If we have a duplicate, report it.
884          // First, determine if either case value has a name
885          StringRef PrevString, CurrString;
886          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
887          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
888          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
889            PrevString = DeclRef->getDecl()->getName();
890          }
891          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
892            CurrString = DeclRef->getDecl()->getName();
893          }
894          SmallString<16> CaseValStr;
895          CaseVals[i-1].first.toString(CaseValStr);
896
897          if (PrevString == CurrString)
898            Diag(CaseVals[i].second->getLHS()->getLocStart(),
899                 diag::err_duplicate_case) <<
900                 (PrevString.empty() ? CaseValStr.str() : PrevString);
901          else
902            Diag(CaseVals[i].second->getLHS()->getLocStart(),
903                 diag::err_duplicate_case_differing_expr) <<
904                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
905                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
906                 CaseValStr;
907
908          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
909               diag::note_duplicate_case_prev);
910          // FIXME: We really want to remove the bogus case stmt from the
911          // substmt, but we have no way to do this right now.
912          CaseListIsErroneous = true;
913        }
914      }
915    }
916
917    // Detect duplicate case ranges, which usually don't exist at all in
918    // the first place.
919    if (!CaseRanges.empty()) {
920      // Sort all the case ranges by their low value so we can easily detect
921      // overlaps between ranges.
922      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
923
924      // Scan the ranges, computing the high values and removing empty ranges.
925      std::vector<llvm::APSInt> HiVals;
926      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
927        llvm::APSInt &LoVal = CaseRanges[i].first;
928        CaseStmt *CR = CaseRanges[i].second;
929        Expr *Hi = CR->getRHS();
930        llvm::APSInt HiVal;
931
932        if (getLangOpts().CPlusPlus11) {
933          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
934          // constant expression of the promoted type of the switch condition.
935          ExprResult ConvHi =
936            CheckConvertedConstantExpression(Hi, CondType, HiVal,
937                                             CCEK_CaseValue);
938          if (ConvHi.isInvalid()) {
939            CaseListIsErroneous = true;
940            continue;
941          }
942          Hi = ConvHi.get();
943        } else {
944          HiVal = Hi->EvaluateKnownConstInt(Context);
945
946          // If the RHS is not the same type as the condition, insert an
947          // implicit cast.
948          Hi = DefaultLvalueConversion(Hi).get();
949          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
950        }
951
952        // Check the unconverted value is within the range of possible values of
953        // the switch expression.
954        checkCaseValue(*this, Hi->getLocStart(), HiVal,
955                       CondWidthBeforePromotion, CondIsSignedBeforePromotion);
956
957        // Convert the value to the same width/sign as the condition.
958        AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
959
960        CR->setRHS(Hi);
961
962        // If the low value is bigger than the high value, the case is empty.
963        if (LoVal > HiVal) {
964          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
965            << SourceRange(CR->getLHS()->getLocStart(),
966                           Hi->getLocEnd());
967          CaseRanges.erase(CaseRanges.begin()+i);
968          --i, --e;
969          continue;
970        }
971
972        if (ShouldCheckConstantCond &&
973            LoVal <= ConstantCondValue &&
974            ConstantCondValue <= HiVal)
975          ShouldCheckConstantCond = false;
976
977        HiVals.push_back(HiVal);
978      }
979
980      // Rescan the ranges, looking for overlap with singleton values and other
981      // ranges.  Since the range list is sorted, we only need to compare case
982      // ranges with their neighbors.
983      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
984        llvm::APSInt &CRLo = CaseRanges[i].first;
985        llvm::APSInt &CRHi = HiVals[i];
986        CaseStmt *CR = CaseRanges[i].second;
987
988        // Check to see whether the case range overlaps with any
989        // singleton cases.
990        CaseStmt *OverlapStmt = nullptr;
991        llvm::APSInt OverlapVal(32);
992
993        // Find the smallest value >= the lower bound.  If I is in the
994        // case range, then we have overlap.
995        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
996                                                  CaseVals.end(), CRLo,
997                                                  CaseCompareFunctor());
998        if (I != CaseVals.end() && I->first < CRHi) {
999          OverlapVal  = I->first;   // Found overlap with scalar.
1000          OverlapStmt = I->second;
1001        }
1002
1003        // Find the smallest value bigger than the upper bound.
1004        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1005        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1006          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1007          OverlapStmt = (I-1)->second;
1008        }
1009
1010        // Check to see if this case stmt overlaps with the subsequent
1011        // case range.
1012        if (i && CRLo <= HiVals[i-1]) {
1013          OverlapVal  = HiVals[i-1];       // Found overlap with range.
1014          OverlapStmt = CaseRanges[i-1].second;
1015        }
1016
1017        if (OverlapStmt) {
1018          // If we have a duplicate, report it.
1019          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1020            << OverlapVal.toString(10);
1021          Diag(OverlapStmt->getLHS()->getLocStart(),
1022               diag::note_duplicate_case_prev);
1023          // FIXME: We really want to remove the bogus case stmt from the
1024          // substmt, but we have no way to do this right now.
1025          CaseListIsErroneous = true;
1026        }
1027      }
1028    }
1029
1030    // Complain if we have a constant condition and we didn't find a match.
1031    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1032      // TODO: it would be nice if we printed enums as enums, chars as
1033      // chars, etc.
1034      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1035        << ConstantCondValue.toString(10)
1036        << CondExpr->getSourceRange();
1037    }
1038
1039    // Check to see if switch is over an Enum and handles all of its
1040    // values.  We only issue a warning if there is not 'default:', but
1041    // we still do the analysis to preserve this information in the AST
1042    // (which can be used by flow-based analyes).
1043    //
1044    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1045
1046    // If switch has default case, then ignore it.
1047    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
1048      const EnumDecl *ED = ET->getDecl();
1049      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1050        EnumValsTy;
1051      EnumValsTy EnumVals;
1052
1053      // Gather all enum values, set their type and sort them,
1054      // allowing easier comparison with CaseVals.
1055      for (auto *EDI : ED->enumerators()) {
1056        llvm::APSInt Val = EDI->getInitVal();
1057        AdjustAPSInt(Val, CondWidth, CondIsSigned);
1058        EnumVals.push_back(std::make_pair(Val, EDI));
1059      }
1060      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1061      EnumValsTy::iterator EIend =
1062        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1063
1064      // See which case values aren't in enum.
1065      EnumValsTy::const_iterator EI = EnumVals.begin();
1066      for (CaseValsTy::const_iterator CI = CaseVals.begin();
1067           CI != CaseVals.end(); CI++) {
1068        while (EI != EIend && EI->first < CI->first)
1069          EI++;
1070        if (EI == EIend || EI->first > CI->first) {
1071          Expr *CaseExpr = CI->second->getLHS();
1072          if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1073            Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1074              << CondTypeBeforePromotion;
1075        }
1076      }
1077      // See which of case ranges aren't in enum
1078      EI = EnumVals.begin();
1079      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1080           RI != CaseRanges.end() && EI != EIend; RI++) {
1081        while (EI != EIend && EI->first < RI->first)
1082          EI++;
1083
1084        if (EI == EIend || EI->first != RI->first) {
1085          Expr *CaseExpr = RI->second->getLHS();
1086          if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1087            Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1088              << CondTypeBeforePromotion;
1089        }
1090
1091        llvm::APSInt Hi =
1092          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1093        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1094        while (EI != EIend && EI->first < Hi)
1095          EI++;
1096        if (EI == EIend || EI->first != Hi) {
1097          Expr *CaseExpr = RI->second->getRHS();
1098          if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1099            Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1100              << CondTypeBeforePromotion;
1101        }
1102      }
1103
1104      // Check which enum vals aren't in switch
1105      CaseValsTy::const_iterator CI = CaseVals.begin();
1106      CaseRangesTy::const_iterator RI = CaseRanges.begin();
1107      bool hasCasesNotInSwitch = false;
1108
1109      SmallVector<DeclarationName,8> UnhandledNames;
1110
1111      for (EI = EnumVals.begin(); EI != EIend; EI++){
1112        // Drop unneeded case values
1113        while (CI != CaseVals.end() && CI->first < EI->first)
1114          CI++;
1115
1116        if (CI != CaseVals.end() && CI->first == EI->first)
1117          continue;
1118
1119        // Drop unneeded case ranges
1120        for (; RI != CaseRanges.end(); RI++) {
1121          llvm::APSInt Hi =
1122            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1123          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1124          if (EI->first <= Hi)
1125            break;
1126        }
1127
1128        if (RI == CaseRanges.end() || EI->first < RI->first) {
1129          hasCasesNotInSwitch = true;
1130          UnhandledNames.push_back(EI->second->getDeclName());
1131        }
1132      }
1133
1134      if (TheDefaultStmt && UnhandledNames.empty())
1135        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1136
1137      // Produce a nice diagnostic if multiple values aren't handled.
1138      switch (UnhandledNames.size()) {
1139      case 0: break;
1140      case 1:
1141        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1142          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1143          << UnhandledNames[0];
1144        break;
1145      case 2:
1146        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1147          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1148          << UnhandledNames[0] << UnhandledNames[1];
1149        break;
1150      case 3:
1151        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1152          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1153          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1154        break;
1155      default:
1156        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1157          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1158          << (unsigned)UnhandledNames.size()
1159          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1160        break;
1161      }
1162
1163      if (!hasCasesNotInSwitch)
1164        SS->setAllEnumCasesCovered();
1165    }
1166  }
1167
1168  if (BodyStmt)
1169    DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1170                          diag::warn_empty_switch_body);
1171
1172  // FIXME: If the case list was broken is some way, we don't have a good system
1173  // to patch it up.  Instead, just return the whole substmt as broken.
1174  if (CaseListIsErroneous)
1175    return StmtError();
1176
1177  return SS;
1178}
1179
1180void
1181Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1182                             Expr *SrcExpr) {
1183  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1184    return;
1185
1186  if (const EnumType *ET = DstType->getAs<EnumType>())
1187    if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1188        SrcType->isIntegerType()) {
1189      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1190          SrcExpr->isIntegerConstantExpr(Context)) {
1191        // Get the bitwidth of the enum value before promotions.
1192        unsigned DstWidth = Context.getIntWidth(DstType);
1193        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1194
1195        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1196        AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1197        const EnumDecl *ED = ET->getDecl();
1198        typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1199            EnumValsTy;
1200        EnumValsTy EnumVals;
1201
1202        // Gather all enum values, set their type and sort them,
1203        // allowing easier comparison with rhs constant.
1204        for (auto *EDI : ED->enumerators()) {
1205          llvm::APSInt Val = EDI->getInitVal();
1206          AdjustAPSInt(Val, DstWidth, DstIsSigned);
1207          EnumVals.push_back(std::make_pair(Val, EDI));
1208        }
1209        if (EnumVals.empty())
1210          return;
1211        std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1212        EnumValsTy::iterator EIend =
1213            std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1214
1215        // See which values aren't in the enum.
1216        EnumValsTy::const_iterator EI = EnumVals.begin();
1217        while (EI != EIend && EI->first < RhsVal)
1218          EI++;
1219        if (EI == EIend || EI->first != RhsVal) {
1220          Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1221              << DstType.getUnqualifiedType();
1222        }
1223      }
1224    }
1225}
1226
1227StmtResult
1228Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1229                     Decl *CondVar, Stmt *Body) {
1230  ExprResult CondResult(Cond.release());
1231
1232  VarDecl *ConditionVar = nullptr;
1233  if (CondVar) {
1234    ConditionVar = cast<VarDecl>(CondVar);
1235    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1236    if (CondResult.isInvalid())
1237      return StmtError();
1238  }
1239  Expr *ConditionExpr = CondResult.get();
1240  if (!ConditionExpr)
1241    return StmtError();
1242  CheckBreakContinueBinding(ConditionExpr);
1243
1244  DiagnoseUnusedExprResult(Body);
1245
1246  if (isa<NullStmt>(Body))
1247    getCurCompoundScope().setHasEmptyLoopBodies();
1248
1249  return new (Context)
1250      WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1251}
1252
1253StmtResult
1254Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1255                  SourceLocation WhileLoc, SourceLocation CondLParen,
1256                  Expr *Cond, SourceLocation CondRParen) {
1257  assert(Cond && "ActOnDoStmt(): missing expression");
1258
1259  CheckBreakContinueBinding(Cond);
1260  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1261  if (CondResult.isInvalid())
1262    return StmtError();
1263  Cond = CondResult.get();
1264
1265  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1266  if (CondResult.isInvalid())
1267    return StmtError();
1268  Cond = CondResult.get();
1269
1270  DiagnoseUnusedExprResult(Body);
1271
1272  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1273}
1274
1275namespace {
1276  // This visitor will traverse a conditional statement and store all
1277  // the evaluated decls into a vector.  Simple is set to true if none
1278  // of the excluded constructs are used.
1279  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1280    llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1281    SmallVectorImpl<SourceRange> &Ranges;
1282    bool Simple;
1283  public:
1284    typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1285
1286    DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1287                  SmallVectorImpl<SourceRange> &Ranges) :
1288        Inherited(S.Context),
1289        Decls(Decls),
1290        Ranges(Ranges),
1291        Simple(true) {}
1292
1293    bool isSimple() { return Simple; }
1294
1295    // Replaces the method in EvaluatedExprVisitor.
1296    void VisitMemberExpr(MemberExpr* E) {
1297      Simple = false;
1298    }
1299
1300    // Any Stmt not whitelisted will cause the condition to be marked complex.
1301    void VisitStmt(Stmt *S) {
1302      Simple = false;
1303    }
1304
1305    void VisitBinaryOperator(BinaryOperator *E) {
1306      Visit(E->getLHS());
1307      Visit(E->getRHS());
1308    }
1309
1310    void VisitCastExpr(CastExpr *E) {
1311      Visit(E->getSubExpr());
1312    }
1313
1314    void VisitUnaryOperator(UnaryOperator *E) {
1315      // Skip checking conditionals with derefernces.
1316      if (E->getOpcode() == UO_Deref)
1317        Simple = false;
1318      else
1319        Visit(E->getSubExpr());
1320    }
1321
1322    void VisitConditionalOperator(ConditionalOperator *E) {
1323      Visit(E->getCond());
1324      Visit(E->getTrueExpr());
1325      Visit(E->getFalseExpr());
1326    }
1327
1328    void VisitParenExpr(ParenExpr *E) {
1329      Visit(E->getSubExpr());
1330    }
1331
1332    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1333      Visit(E->getOpaqueValue()->getSourceExpr());
1334      Visit(E->getFalseExpr());
1335    }
1336
1337    void VisitIntegerLiteral(IntegerLiteral *E) { }
1338    void VisitFloatingLiteral(FloatingLiteral *E) { }
1339    void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1340    void VisitCharacterLiteral(CharacterLiteral *E) { }
1341    void VisitGNUNullExpr(GNUNullExpr *E) { }
1342    void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1343
1344    void VisitDeclRefExpr(DeclRefExpr *E) {
1345      VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1346      if (!VD) return;
1347
1348      Ranges.push_back(E->getSourceRange());
1349
1350      Decls.insert(VD);
1351    }
1352
1353  }; // end class DeclExtractor
1354
1355  // DeclMatcher checks to see if the decls are used in a non-evauluated
1356  // context.
1357  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1358    llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1359    bool FoundDecl;
1360
1361  public:
1362    typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1363
1364    DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1365                Stmt *Statement) :
1366        Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1367      if (!Statement) return;
1368
1369      Visit(Statement);
1370    }
1371
1372    void VisitReturnStmt(ReturnStmt *S) {
1373      FoundDecl = true;
1374    }
1375
1376    void VisitBreakStmt(BreakStmt *S) {
1377      FoundDecl = true;
1378    }
1379
1380    void VisitGotoStmt(GotoStmt *S) {
1381      FoundDecl = true;
1382    }
1383
1384    void VisitCastExpr(CastExpr *E) {
1385      if (E->getCastKind() == CK_LValueToRValue)
1386        CheckLValueToRValueCast(E->getSubExpr());
1387      else
1388        Visit(E->getSubExpr());
1389    }
1390
1391    void CheckLValueToRValueCast(Expr *E) {
1392      E = E->IgnoreParenImpCasts();
1393
1394      if (isa<DeclRefExpr>(E)) {
1395        return;
1396      }
1397
1398      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1399        Visit(CO->getCond());
1400        CheckLValueToRValueCast(CO->getTrueExpr());
1401        CheckLValueToRValueCast(CO->getFalseExpr());
1402        return;
1403      }
1404
1405      if (BinaryConditionalOperator *BCO =
1406              dyn_cast<BinaryConditionalOperator>(E)) {
1407        CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1408        CheckLValueToRValueCast(BCO->getFalseExpr());
1409        return;
1410      }
1411
1412      Visit(E);
1413    }
1414
1415    void VisitDeclRefExpr(DeclRefExpr *E) {
1416      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1417        if (Decls.count(VD))
1418          FoundDecl = true;
1419    }
1420
1421    bool FoundDeclInUse() { return FoundDecl; }
1422
1423  };  // end class DeclMatcher
1424
1425  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1426                                        Expr *Third, Stmt *Body) {
1427    // Condition is empty
1428    if (!Second) return;
1429
1430    if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1431                          Second->getLocStart()))
1432      return;
1433
1434    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1435    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1436    SmallVector<SourceRange, 10> Ranges;
1437    DeclExtractor DE(S, Decls, Ranges);
1438    DE.Visit(Second);
1439
1440    // Don't analyze complex conditionals.
1441    if (!DE.isSimple()) return;
1442
1443    // No decls found.
1444    if (Decls.size() == 0) return;
1445
1446    // Don't warn on volatile, static, or global variables.
1447    for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1448                                                   E = Decls.end();
1449         I != E; ++I)
1450      if ((*I)->getType().isVolatileQualified() ||
1451          (*I)->hasGlobalStorage()) return;
1452
1453    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1454        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1455        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1456      return;
1457
1458    // Load decl names into diagnostic.
1459    if (Decls.size() > 4)
1460      PDiag << 0;
1461    else {
1462      PDiag << Decls.size();
1463      for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1464                                                     E = Decls.end();
1465           I != E; ++I)
1466        PDiag << (*I)->getDeclName();
1467    }
1468
1469    // Load SourceRanges into diagnostic if there is room.
1470    // Otherwise, load the SourceRange of the conditional expression.
1471    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1472      for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1473                                                  E = Ranges.end();
1474           I != E; ++I)
1475        PDiag << *I;
1476    else
1477      PDiag << Second->getSourceRange();
1478
1479    S.Diag(Ranges.begin()->getBegin(), PDiag);
1480  }
1481
1482  // If Statement is an incemement or decrement, return true and sets the
1483  // variables Increment and DRE.
1484  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1485                            DeclRefExpr *&DRE) {
1486    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1487      switch (UO->getOpcode()) {
1488        default: return false;
1489        case UO_PostInc:
1490        case UO_PreInc:
1491          Increment = true;
1492          break;
1493        case UO_PostDec:
1494        case UO_PreDec:
1495          Increment = false;
1496          break;
1497      }
1498      DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1499      return DRE;
1500    }
1501
1502    if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1503      FunctionDecl *FD = Call->getDirectCallee();
1504      if (!FD || !FD->isOverloadedOperator()) return false;
1505      switch (FD->getOverloadedOperator()) {
1506        default: return false;
1507        case OO_PlusPlus:
1508          Increment = true;
1509          break;
1510        case OO_MinusMinus:
1511          Increment = false;
1512          break;
1513      }
1514      DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1515      return DRE;
1516    }
1517
1518    return false;
1519  }
1520
1521  // A visitor to determine if a continue or break statement is a
1522  // subexpression.
1523  class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1524    SourceLocation BreakLoc;
1525    SourceLocation ContinueLoc;
1526  public:
1527    BreakContinueFinder(Sema &S, Stmt* Body) :
1528        Inherited(S.Context) {
1529      Visit(Body);
1530    }
1531
1532    typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
1533
1534    void VisitContinueStmt(ContinueStmt* E) {
1535      ContinueLoc = E->getContinueLoc();
1536    }
1537
1538    void VisitBreakStmt(BreakStmt* E) {
1539      BreakLoc = E->getBreakLoc();
1540    }
1541
1542    bool ContinueFound() { return ContinueLoc.isValid(); }
1543    bool BreakFound() { return BreakLoc.isValid(); }
1544    SourceLocation GetContinueLoc() { return ContinueLoc; }
1545    SourceLocation GetBreakLoc() { return BreakLoc; }
1546
1547  };  // end class BreakContinueFinder
1548
1549  // Emit a warning when a loop increment/decrement appears twice per loop
1550  // iteration.  The conditions which trigger this warning are:
1551  // 1) The last statement in the loop body and the third expression in the
1552  //    for loop are both increment or both decrement of the same variable
1553  // 2) No continue statements in the loop body.
1554  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1555    // Return when there is nothing to check.
1556    if (!Body || !Third) return;
1557
1558    if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1559                          Third->getLocStart()))
1560      return;
1561
1562    // Get the last statement from the loop body.
1563    CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1564    if (!CS || CS->body_empty()) return;
1565    Stmt *LastStmt = CS->body_back();
1566    if (!LastStmt) return;
1567
1568    bool LoopIncrement, LastIncrement;
1569    DeclRefExpr *LoopDRE, *LastDRE;
1570
1571    if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1572    if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1573
1574    // Check that the two statements are both increments or both decrements
1575    // on the same variable.
1576    if (LoopIncrement != LastIncrement ||
1577        LoopDRE->getDecl() != LastDRE->getDecl()) return;
1578
1579    if (BreakContinueFinder(S, Body).ContinueFound()) return;
1580
1581    S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1582         << LastDRE->getDecl() << LastIncrement;
1583    S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1584         << LoopIncrement;
1585  }
1586
1587} // end namespace
1588
1589
1590void Sema::CheckBreakContinueBinding(Expr *E) {
1591  if (!E || getLangOpts().CPlusPlus)
1592    return;
1593  BreakContinueFinder BCFinder(*this, E);
1594  Scope *BreakParent = CurScope->getBreakParent();
1595  if (BCFinder.BreakFound() && BreakParent) {
1596    if (BreakParent->getFlags() & Scope::SwitchScope) {
1597      Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1598    } else {
1599      Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1600          << "break";
1601    }
1602  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1603    Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1604        << "continue";
1605  }
1606}
1607
1608StmtResult
1609Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1610                   Stmt *First, FullExprArg second, Decl *secondVar,
1611                   FullExprArg third,
1612                   SourceLocation RParenLoc, Stmt *Body) {
1613  if (!getLangOpts().CPlusPlus) {
1614    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1615      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1616      // declare identifiers for objects having storage class 'auto' or
1617      // 'register'.
1618      for (auto *DI : DS->decls()) {
1619        VarDecl *VD = dyn_cast<VarDecl>(DI);
1620        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1621          VD = nullptr;
1622        if (!VD) {
1623          Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1624          DI->setInvalidDecl();
1625        }
1626      }
1627    }
1628  }
1629
1630  CheckBreakContinueBinding(second.get());
1631  CheckBreakContinueBinding(third.get());
1632
1633  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1634  CheckForRedundantIteration(*this, third.get(), Body);
1635
1636  ExprResult SecondResult(second.release());
1637  VarDecl *ConditionVar = nullptr;
1638  if (secondVar) {
1639    ConditionVar = cast<VarDecl>(secondVar);
1640    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1641    if (SecondResult.isInvalid())
1642      return StmtError();
1643  }
1644
1645  Expr *Third  = third.release().getAs<Expr>();
1646
1647  DiagnoseUnusedExprResult(First);
1648  DiagnoseUnusedExprResult(Third);
1649  DiagnoseUnusedExprResult(Body);
1650
1651  if (isa<NullStmt>(Body))
1652    getCurCompoundScope().setHasEmptyLoopBodies();
1653
1654  return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1655                               Third, Body, ForLoc, LParenLoc, RParenLoc);
1656}
1657
1658/// In an Objective C collection iteration statement:
1659///   for (x in y)
1660/// x can be an arbitrary l-value expression.  Bind it up as a
1661/// full-expression.
1662StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1663  // Reduce placeholder expressions here.  Note that this rejects the
1664  // use of pseudo-object l-values in this position.
1665  ExprResult result = CheckPlaceholderExpr(E);
1666  if (result.isInvalid()) return StmtError();
1667  E = result.get();
1668
1669  ExprResult FullExpr = ActOnFinishFullExpr(E);
1670  if (FullExpr.isInvalid())
1671    return StmtError();
1672  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1673}
1674
1675ExprResult
1676Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1677  if (!collection)
1678    return ExprError();
1679
1680  ExprResult result = CorrectDelayedTyposInExpr(collection);
1681  if (!result.isUsable())
1682    return ExprError();
1683  collection = result.get();
1684
1685  // Bail out early if we've got a type-dependent expression.
1686  if (collection->isTypeDependent()) return collection;
1687
1688  // Perform normal l-value conversion.
1689  result = DefaultFunctionArrayLvalueConversion(collection);
1690  if (result.isInvalid())
1691    return ExprError();
1692  collection = result.get();
1693
1694  // The operand needs to have object-pointer type.
1695  // TODO: should we do a contextual conversion?
1696  const ObjCObjectPointerType *pointerType =
1697    collection->getType()->getAs<ObjCObjectPointerType>();
1698  if (!pointerType)
1699    return Diag(forLoc, diag::err_collection_expr_type)
1700             << collection->getType() << collection->getSourceRange();
1701
1702  // Check that the operand provides
1703  //   - countByEnumeratingWithState:objects:count:
1704  const ObjCObjectType *objectType = pointerType->getObjectType();
1705  ObjCInterfaceDecl *iface = objectType->getInterface();
1706
1707  // If we have a forward-declared type, we can't do this check.
1708  // Under ARC, it is an error not to have a forward-declared class.
1709  if (iface &&
1710      RequireCompleteType(forLoc, QualType(objectType, 0),
1711                          getLangOpts().ObjCAutoRefCount
1712                            ? diag::err_arc_collection_forward
1713                            : 0,
1714                          collection)) {
1715    // Otherwise, if we have any useful type information, check that
1716    // the type declares the appropriate method.
1717  } else if (iface || !objectType->qual_empty()) {
1718    IdentifierInfo *selectorIdents[] = {
1719      &Context.Idents.get("countByEnumeratingWithState"),
1720      &Context.Idents.get("objects"),
1721      &Context.Idents.get("count")
1722    };
1723    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1724
1725    ObjCMethodDecl *method = nullptr;
1726
1727    // If there's an interface, look in both the public and private APIs.
1728    if (iface) {
1729      method = iface->lookupInstanceMethod(selector);
1730      if (!method) method = iface->lookupPrivateMethod(selector);
1731    }
1732
1733    // Also check protocol qualifiers.
1734    if (!method)
1735      method = LookupMethodInQualifiedType(selector, pointerType,
1736                                           /*instance*/ true);
1737
1738    // If we didn't find it anywhere, give up.
1739    if (!method) {
1740      Diag(forLoc, diag::warn_collection_expr_type)
1741        << collection->getType() << selector << collection->getSourceRange();
1742    }
1743
1744    // TODO: check for an incompatible signature?
1745  }
1746
1747  // Wrap up any cleanups in the expression.
1748  return collection;
1749}
1750
1751StmtResult
1752Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1753                                 Stmt *First, Expr *collection,
1754                                 SourceLocation RParenLoc) {
1755
1756  ExprResult CollectionExprResult =
1757    CheckObjCForCollectionOperand(ForLoc, collection);
1758
1759  if (First) {
1760    QualType FirstType;
1761    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1762      if (!DS->isSingleDecl())
1763        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1764                         diag::err_toomany_element_decls));
1765
1766      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1767      if (!D || D->isInvalidDecl())
1768        return StmtError();
1769
1770      FirstType = D->getType();
1771      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1772      // declare identifiers for objects having storage class 'auto' or
1773      // 'register'.
1774      if (!D->hasLocalStorage())
1775        return StmtError(Diag(D->getLocation(),
1776                              diag::err_non_local_variable_decl_in_for));
1777
1778      // If the type contained 'auto', deduce the 'auto' to 'id'.
1779      if (FirstType->getContainedAutoType()) {
1780        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1781                                 VK_RValue);
1782        Expr *DeducedInit = &OpaqueId;
1783        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1784                DAR_Failed)
1785          DiagnoseAutoDeductionFailure(D, DeducedInit);
1786        if (FirstType.isNull()) {
1787          D->setInvalidDecl();
1788          return StmtError();
1789        }
1790
1791        D->setType(FirstType);
1792
1793        if (ActiveTemplateInstantiations.empty()) {
1794          SourceLocation Loc =
1795              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1796          Diag(Loc, diag::warn_auto_var_is_id)
1797            << D->getDeclName();
1798        }
1799      }
1800
1801    } else {
1802      Expr *FirstE = cast<Expr>(First);
1803      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1804        return StmtError(Diag(First->getLocStart(),
1805                   diag::err_selector_element_not_lvalue)
1806          << First->getSourceRange());
1807
1808      FirstType = static_cast<Expr*>(First)->getType();
1809      if (FirstType.isConstQualified())
1810        Diag(ForLoc, diag::err_selector_element_const_type)
1811          << FirstType << First->getSourceRange();
1812    }
1813    if (!FirstType->isDependentType() &&
1814        !FirstType->isObjCObjectPointerType() &&
1815        !FirstType->isBlockPointerType())
1816        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1817                           << FirstType << First->getSourceRange());
1818  }
1819
1820  if (CollectionExprResult.isInvalid())
1821    return StmtError();
1822
1823  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1824  if (CollectionExprResult.isInvalid())
1825    return StmtError();
1826
1827  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1828                                             nullptr, ForLoc, RParenLoc);
1829}
1830
1831/// Finish building a variable declaration for a for-range statement.
1832/// \return true if an error occurs.
1833static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1834                                  SourceLocation Loc, int DiagID) {
1835  // Deduce the type for the iterator variable now rather than leaving it to
1836  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1837  QualType InitType;
1838  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1839      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1840          Sema::DAR_Failed)
1841    SemaRef.Diag(Loc, DiagID) << Init->getType();
1842  if (InitType.isNull()) {
1843    Decl->setInvalidDecl();
1844    return true;
1845  }
1846  Decl->setType(InitType);
1847
1848  // In ARC, infer lifetime.
1849  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1850  // we're doing the equivalent of fast iteration.
1851  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1852      SemaRef.inferObjCARCLifetime(Decl))
1853    Decl->setInvalidDecl();
1854
1855  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1856                               /*TypeMayContainAuto=*/false);
1857  SemaRef.FinalizeDeclaration(Decl);
1858  SemaRef.CurContext->addHiddenDecl(Decl);
1859  return false;
1860}
1861
1862namespace {
1863
1864/// Produce a note indicating which begin/end function was implicitly called
1865/// by a C++11 for-range statement. This is often not obvious from the code,
1866/// nor from the diagnostics produced when analysing the implicit expressions
1867/// required in a for-range statement.
1868void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1869                                  Sema::BeginEndFunction BEF) {
1870  CallExpr *CE = dyn_cast<CallExpr>(E);
1871  if (!CE)
1872    return;
1873  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1874  if (!D)
1875    return;
1876  SourceLocation Loc = D->getLocation();
1877
1878  std::string Description;
1879  bool IsTemplate = false;
1880  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1881    Description = SemaRef.getTemplateArgumentBindingsText(
1882      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1883    IsTemplate = true;
1884  }
1885
1886  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1887    << BEF << IsTemplate << Description << E->getType();
1888}
1889
1890/// Build a variable declaration for a for-range statement.
1891VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1892                              QualType Type, const char *Name) {
1893  DeclContext *DC = SemaRef.CurContext;
1894  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1895  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1896  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1897                                  TInfo, SC_None);
1898  Decl->setImplicit();
1899  return Decl;
1900}
1901
1902}
1903
1904static bool ObjCEnumerationCollection(Expr *Collection) {
1905  return !Collection->isTypeDependent()
1906          && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1907}
1908
1909/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1910///
1911/// C++11 [stmt.ranged]:
1912///   A range-based for statement is equivalent to
1913///
1914///   {
1915///     auto && __range = range-init;
1916///     for ( auto __begin = begin-expr,
1917///           __end = end-expr;
1918///           __begin != __end;
1919///           ++__begin ) {
1920///       for-range-declaration = *__begin;
1921///       statement
1922///     }
1923///   }
1924///
1925/// The body of the loop is not available yet, since it cannot be analysed until
1926/// we have determined the type of the for-range-declaration.
1927StmtResult
1928Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1929                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1930                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
1931  if (!First)
1932    return StmtError();
1933
1934  if (Range && ObjCEnumerationCollection(Range))
1935    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1936
1937  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1938  assert(DS && "first part of for range not a decl stmt");
1939
1940  if (!DS->isSingleDecl()) {
1941    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1942    return StmtError();
1943  }
1944
1945  Decl *LoopVar = DS->getSingleDecl();
1946  if (LoopVar->isInvalidDecl() || !Range ||
1947      DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1948    LoopVar->setInvalidDecl();
1949    return StmtError();
1950  }
1951
1952  // Build  auto && __range = range-init
1953  SourceLocation RangeLoc = Range->getLocStart();
1954  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1955                                           Context.getAutoRRefDeductType(),
1956                                           "__range");
1957  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1958                            diag::err_for_range_deduction_failure)) {
1959    LoopVar->setInvalidDecl();
1960    return StmtError();
1961  }
1962
1963  // Claim the type doesn't contain auto: we've already done the checking.
1964  DeclGroupPtrTy RangeGroup =
1965      BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1966                           /*TypeMayContainAuto=*/ false);
1967  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1968  if (RangeDecl.isInvalid()) {
1969    LoopVar->setInvalidDecl();
1970    return StmtError();
1971  }
1972
1973  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1974                              /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1975                              /*Inc=*/nullptr, DS, RParenLoc, Kind);
1976}
1977
1978/// \brief Create the initialization, compare, and increment steps for
1979/// the range-based for loop expression.
1980/// This function does not handle array-based for loops,
1981/// which are created in Sema::BuildCXXForRangeStmt.
1982///
1983/// \returns a ForRangeStatus indicating success or what kind of error occurred.
1984/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1985/// CandidateSet and BEF are set and some non-success value is returned on
1986/// failure.
1987static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1988                                            Expr *BeginRange, Expr *EndRange,
1989                                            QualType RangeType,
1990                                            VarDecl *BeginVar,
1991                                            VarDecl *EndVar,
1992                                            SourceLocation ColonLoc,
1993                                            OverloadCandidateSet *CandidateSet,
1994                                            ExprResult *BeginExpr,
1995                                            ExprResult *EndExpr,
1996                                            Sema::BeginEndFunction *BEF) {
1997  DeclarationNameInfo BeginNameInfo(
1998      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1999  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2000                                  ColonLoc);
2001
2002  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2003                                 Sema::LookupMemberName);
2004  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2005
2006  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2007    // - if _RangeT is a class type, the unqualified-ids begin and end are
2008    //   looked up in the scope of class _RangeT as if by class member access
2009    //   lookup (3.4.5), and if either (or both) finds at least one
2010    //   declaration, begin-expr and end-expr are __range.begin() and
2011    //   __range.end(), respectively;
2012    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2013    SemaRef.LookupQualifiedName(EndMemberLookup, D);
2014
2015    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2016      SourceLocation RangeLoc = BeginVar->getLocation();
2017      *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
2018
2019      SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2020          << RangeLoc << BeginRange->getType() << *BEF;
2021      return Sema::FRS_DiagnosticIssued;
2022    }
2023  } else {
2024    // - otherwise, begin-expr and end-expr are begin(__range) and
2025    //   end(__range), respectively, where begin and end are looked up with
2026    //   argument-dependent lookup (3.4.2). For the purposes of this name
2027    //   lookup, namespace std is an associated namespace.
2028
2029  }
2030
2031  *BEF = Sema::BEF_begin;
2032  Sema::ForRangeStatus RangeStatus =
2033      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
2034                                        Sema::BEF_begin, BeginNameInfo,
2035                                        BeginMemberLookup, CandidateSet,
2036                                        BeginRange, BeginExpr);
2037
2038  if (RangeStatus != Sema::FRS_Success)
2039    return RangeStatus;
2040  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2041                            diag::err_for_range_iter_deduction_failure)) {
2042    NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2043    return Sema::FRS_DiagnosticIssued;
2044  }
2045
2046  *BEF = Sema::BEF_end;
2047  RangeStatus =
2048      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
2049                                        Sema::BEF_end, EndNameInfo,
2050                                        EndMemberLookup, CandidateSet,
2051                                        EndRange, EndExpr);
2052  if (RangeStatus != Sema::FRS_Success)
2053    return RangeStatus;
2054  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2055                            diag::err_for_range_iter_deduction_failure)) {
2056    NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2057    return Sema::FRS_DiagnosticIssued;
2058  }
2059  return Sema::FRS_Success;
2060}
2061
2062/// Speculatively attempt to dereference an invalid range expression.
2063/// If the attempt fails, this function will return a valid, null StmtResult
2064/// and emit no diagnostics.
2065static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2066                                                 SourceLocation ForLoc,
2067                                                 Stmt *LoopVarDecl,
2068                                                 SourceLocation ColonLoc,
2069                                                 Expr *Range,
2070                                                 SourceLocation RangeLoc,
2071                                                 SourceLocation RParenLoc) {
2072  // Determine whether we can rebuild the for-range statement with a
2073  // dereferenced range expression.
2074  ExprResult AdjustedRange;
2075  {
2076    Sema::SFINAETrap Trap(SemaRef);
2077
2078    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2079    if (AdjustedRange.isInvalid())
2080      return StmtResult();
2081
2082    StmtResult SR =
2083      SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2084                                   AdjustedRange.get(), RParenLoc,
2085                                   Sema::BFRK_Check);
2086    if (SR.isInvalid())
2087      return StmtResult();
2088  }
2089
2090  // The attempt to dereference worked well enough that it could produce a valid
2091  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2092  // case there are any other (non-fatal) problems with it.
2093  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2094    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2095  return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2096                                      AdjustedRange.get(), RParenLoc,
2097                                      Sema::BFRK_Rebuild);
2098}
2099
2100namespace {
2101/// RAII object to automatically invalidate a declaration if an error occurs.
2102struct InvalidateOnErrorScope {
2103  InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2104      : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2105  ~InvalidateOnErrorScope() {
2106    if (Enabled && Trap.hasErrorOccurred())
2107      D->setInvalidDecl();
2108  }
2109
2110  DiagnosticErrorTrap Trap;
2111  Decl *D;
2112  bool Enabled;
2113};
2114}
2115
2116/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2117StmtResult
2118Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
2119                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2120                           Expr *Inc, Stmt *LoopVarDecl,
2121                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
2122  Scope *S = getCurScope();
2123
2124  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2125  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2126  QualType RangeVarType = RangeVar->getType();
2127
2128  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2129  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2130
2131  // If we hit any errors, mark the loop variable as invalid if its type
2132  // contains 'auto'.
2133  InvalidateOnErrorScope Invalidate(*this, LoopVar,
2134                                    LoopVar->getType()->isUndeducedType());
2135
2136  StmtResult BeginEndDecl = BeginEnd;
2137  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2138
2139  if (RangeVarType->isDependentType()) {
2140    // The range is implicitly used as a placeholder when it is dependent.
2141    RangeVar->markUsed(Context);
2142
2143    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2144    // them in properly when we instantiate the loop.
2145    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2146      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2147  } else if (!BeginEndDecl.get()) {
2148    SourceLocation RangeLoc = RangeVar->getLocation();
2149
2150    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2151
2152    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2153                                                VK_LValue, ColonLoc);
2154    if (BeginRangeRef.isInvalid())
2155      return StmtError();
2156
2157    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2158                                              VK_LValue, ColonLoc);
2159    if (EndRangeRef.isInvalid())
2160      return StmtError();
2161
2162    QualType AutoType = Context.getAutoDeductType();
2163    Expr *Range = RangeVar->getInit();
2164    if (!Range)
2165      return StmtError();
2166    QualType RangeType = Range->getType();
2167
2168    if (RequireCompleteType(RangeLoc, RangeType,
2169                            diag::err_for_range_incomplete_type))
2170      return StmtError();
2171
2172    // Build auto __begin = begin-expr, __end = end-expr.
2173    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2174                                             "__begin");
2175    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2176                                           "__end");
2177
2178    // Build begin-expr and end-expr and attach to __begin and __end variables.
2179    ExprResult BeginExpr, EndExpr;
2180    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2181      // - if _RangeT is an array type, begin-expr and end-expr are __range and
2182      //   __range + __bound, respectively, where __bound is the array bound. If
2183      //   _RangeT is an array of unknown size or an array of incomplete type,
2184      //   the program is ill-formed;
2185
2186      // begin-expr is __range.
2187      BeginExpr = BeginRangeRef;
2188      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2189                                diag::err_for_range_iter_deduction_failure)) {
2190        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2191        return StmtError();
2192      }
2193
2194      // Find the array bound.
2195      ExprResult BoundExpr;
2196      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2197        BoundExpr = IntegerLiteral::Create(
2198            Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2199      else if (const VariableArrayType *VAT =
2200               dyn_cast<VariableArrayType>(UnqAT))
2201        BoundExpr = VAT->getSizeExpr();
2202      else {
2203        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2204        // UnqAT is not incomplete and Range is not type-dependent.
2205        llvm_unreachable("Unexpected array type in for-range");
2206      }
2207
2208      // end-expr is __range + __bound.
2209      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2210                           BoundExpr.get());
2211      if (EndExpr.isInvalid())
2212        return StmtError();
2213      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2214                                diag::err_for_range_iter_deduction_failure)) {
2215        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2216        return StmtError();
2217      }
2218    } else {
2219      OverloadCandidateSet CandidateSet(RangeLoc,
2220                                        OverloadCandidateSet::CSK_Normal);
2221      Sema::BeginEndFunction BEFFailure;
2222      ForRangeStatus RangeStatus =
2223          BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2224                                EndRangeRef.get(), RangeType,
2225                                BeginVar, EndVar, ColonLoc, &CandidateSet,
2226                                &BeginExpr, &EndExpr, &BEFFailure);
2227
2228      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2229          BEFFailure == BEF_begin) {
2230        // If the range is being built from an array parameter, emit a
2231        // a diagnostic that it is being treated as a pointer.
2232        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2233          if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2234            QualType ArrayTy = PVD->getOriginalType();
2235            QualType PointerTy = PVD->getType();
2236            if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2237              Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2238                << RangeLoc << PVD << ArrayTy << PointerTy;
2239              Diag(PVD->getLocation(), diag::note_declared_at);
2240              return StmtError();
2241            }
2242          }
2243        }
2244
2245        // If building the range failed, try dereferencing the range expression
2246        // unless a diagnostic was issued or the end function is problematic.
2247        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2248                                                       LoopVarDecl, ColonLoc,
2249                                                       Range, RangeLoc,
2250                                                       RParenLoc);
2251        if (SR.isInvalid() || SR.isUsable())
2252          return SR;
2253      }
2254
2255      // Otherwise, emit diagnostics if we haven't already.
2256      if (RangeStatus == FRS_NoViableFunction) {
2257        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2258        Diag(Range->getLocStart(), diag::err_for_range_invalid)
2259            << RangeLoc << Range->getType() << BEFFailure;
2260        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2261      }
2262      // Return an error if no fix was discovered.
2263      if (RangeStatus != FRS_Success)
2264        return StmtError();
2265    }
2266
2267    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2268           "invalid range expression in for loop");
2269
2270    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2271    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2272    if (!Context.hasSameType(BeginType, EndType)) {
2273      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2274        << BeginType << EndType;
2275      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2276      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2277    }
2278
2279    Decl *BeginEndDecls[] = { BeginVar, EndVar };
2280    // Claim the type doesn't contain auto: we've already done the checking.
2281    DeclGroupPtrTy BeginEndGroup =
2282        BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2283                             /*TypeMayContainAuto=*/ false);
2284    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2285
2286    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2287    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2288                                           VK_LValue, ColonLoc);
2289    if (BeginRef.isInvalid())
2290      return StmtError();
2291
2292    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2293                                         VK_LValue, ColonLoc);
2294    if (EndRef.isInvalid())
2295      return StmtError();
2296
2297    // Build and check __begin != __end expression.
2298    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2299                           BeginRef.get(), EndRef.get());
2300    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2301    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2302    if (NotEqExpr.isInvalid()) {
2303      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2304        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2305      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2306      if (!Context.hasSameType(BeginType, EndType))
2307        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2308      return StmtError();
2309    }
2310
2311    // Build and check ++__begin expression.
2312    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2313                                VK_LValue, ColonLoc);
2314    if (BeginRef.isInvalid())
2315      return StmtError();
2316
2317    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2318    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2319    if (IncrExpr.isInvalid()) {
2320      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2321        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2322      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2323      return StmtError();
2324    }
2325
2326    // Build and check *__begin  expression.
2327    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2328                                VK_LValue, ColonLoc);
2329    if (BeginRef.isInvalid())
2330      return StmtError();
2331
2332    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2333    if (DerefExpr.isInvalid()) {
2334      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2335        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2336      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2337      return StmtError();
2338    }
2339
2340    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2341    // trying to determine whether this would be a valid range.
2342    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2343      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2344                           /*TypeMayContainAuto=*/true);
2345      if (LoopVar->isInvalidDecl())
2346        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2347    }
2348  }
2349
2350  // Don't bother to actually allocate the result if we're just trying to
2351  // determine whether it would be valid.
2352  if (Kind == BFRK_Check)
2353    return StmtResult();
2354
2355  return new (Context) CXXForRangeStmt(
2356      RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2357      IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, ColonLoc, RParenLoc);
2358}
2359
2360/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2361/// statement.
2362StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2363  if (!S || !B)
2364    return StmtError();
2365  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2366
2367  ForStmt->setBody(B);
2368  return S;
2369}
2370
2371/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2372/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2373/// body cannot be performed until after the type of the range variable is
2374/// determined.
2375StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2376  if (!S || !B)
2377    return StmtError();
2378
2379  if (isa<ObjCForCollectionStmt>(S))
2380    return FinishObjCForCollectionStmt(S, B);
2381
2382  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2383  ForStmt->setBody(B);
2384
2385  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2386                        diag::warn_empty_range_based_for_body);
2387
2388  return S;
2389}
2390
2391StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2392                               SourceLocation LabelLoc,
2393                               LabelDecl *TheDecl) {
2394  getCurFunction()->setHasBranchIntoScope();
2395  TheDecl->markUsed(Context);
2396  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2397}
2398
2399StmtResult
2400Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2401                            Expr *E) {
2402  // Convert operand to void*
2403  if (!E->isTypeDependent()) {
2404    QualType ETy = E->getType();
2405    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2406    ExprResult ExprRes = E;
2407    AssignConvertType ConvTy =
2408      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2409    if (ExprRes.isInvalid())
2410      return StmtError();
2411    E = ExprRes.get();
2412    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2413      return StmtError();
2414  }
2415
2416  ExprResult ExprRes = ActOnFinishFullExpr(E);
2417  if (ExprRes.isInvalid())
2418    return StmtError();
2419  E = ExprRes.get();
2420
2421  getCurFunction()->setHasIndirectGoto();
2422
2423  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2424}
2425
2426StmtResult
2427Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2428  Scope *S = CurScope->getContinueParent();
2429  if (!S) {
2430    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2431    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2432  }
2433
2434  return new (Context) ContinueStmt(ContinueLoc);
2435}
2436
2437StmtResult
2438Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2439  Scope *S = CurScope->getBreakParent();
2440  if (!S) {
2441    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2442    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2443  }
2444  if (S->isOpenMPLoopScope())
2445    return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2446                     << "break");
2447
2448  return new (Context) BreakStmt(BreakLoc);
2449}
2450
2451/// \brief Determine whether the given expression is a candidate for
2452/// copy elision in either a return statement or a throw expression.
2453///
2454/// \param ReturnType If we're determining the copy elision candidate for
2455/// a return statement, this is the return type of the function. If we're
2456/// determining the copy elision candidate for a throw expression, this will
2457/// be a NULL type.
2458///
2459/// \param E The expression being returned from the function or block, or
2460/// being thrown.
2461///
2462/// \param AllowFunctionParameter Whether we allow function parameters to
2463/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2464/// we re-use this logic to determine whether we should try to move as part of
2465/// a return or throw (which does allow function parameters).
2466///
2467/// \returns The NRVO candidate variable, if the return statement may use the
2468/// NRVO, or NULL if there is no such candidate.
2469VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2470                                       Expr *E,
2471                                       bool AllowFunctionParameter) {
2472  if (!getLangOpts().CPlusPlus)
2473    return nullptr;
2474
2475  // - in a return statement in a function [where] ...
2476  // ... the expression is the name of a non-volatile automatic object ...
2477  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2478  if (!DR || DR->refersToEnclosingVariableOrCapture())
2479    return nullptr;
2480  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2481  if (!VD)
2482    return nullptr;
2483
2484  if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2485    return VD;
2486  return nullptr;
2487}
2488
2489bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2490                                  bool AllowFunctionParameter) {
2491  QualType VDType = VD->getType();
2492  // - in a return statement in a function with ...
2493  // ... a class return type ...
2494  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2495    if (!ReturnType->isRecordType())
2496      return false;
2497    // ... the same cv-unqualified type as the function return type ...
2498    if (!VDType->isDependentType() &&
2499        !Context.hasSameUnqualifiedType(ReturnType, VDType))
2500      return false;
2501  }
2502
2503  // ...object (other than a function or catch-clause parameter)...
2504  if (VD->getKind() != Decl::Var &&
2505      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2506    return false;
2507  if (VD->isExceptionVariable()) return false;
2508
2509  // ...automatic...
2510  if (!VD->hasLocalStorage()) return false;
2511
2512  // ...non-volatile...
2513  if (VD->getType().isVolatileQualified()) return false;
2514
2515  // __block variables can't be allocated in a way that permits NRVO.
2516  if (VD->hasAttr<BlocksAttr>()) return false;
2517
2518  // Variables with higher required alignment than their type's ABI
2519  // alignment cannot use NRVO.
2520  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2521      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2522    return false;
2523
2524  return true;
2525}
2526
2527/// \brief Perform the initialization of a potentially-movable value, which
2528/// is the result of return value.
2529///
2530/// This routine implements C++0x [class.copy]p33, which attempts to treat
2531/// returned lvalues as rvalues in certain cases (to prefer move construction),
2532/// then falls back to treating them as lvalues if that failed.
2533ExprResult
2534Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2535                                      const VarDecl *NRVOCandidate,
2536                                      QualType ResultType,
2537                                      Expr *Value,
2538                                      bool AllowNRVO) {
2539  // C++0x [class.copy]p33:
2540  //   When the criteria for elision of a copy operation are met or would
2541  //   be met save for the fact that the source object is a function
2542  //   parameter, and the object to be copied is designated by an lvalue,
2543  //   overload resolution to select the constructor for the copy is first
2544  //   performed as if the object were designated by an rvalue.
2545  ExprResult Res = ExprError();
2546  if (AllowNRVO &&
2547      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2548    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2549                              Value->getType(), CK_NoOp, Value, VK_XValue);
2550
2551    Expr *InitExpr = &AsRvalue;
2552    InitializationKind Kind
2553      = InitializationKind::CreateCopy(Value->getLocStart(),
2554                                       Value->getLocStart());
2555    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2556
2557    //   [...] If overload resolution fails, or if the type of the first
2558    //   parameter of the selected constructor is not an rvalue reference
2559    //   to the object's type (possibly cv-qualified), overload resolution
2560    //   is performed again, considering the object as an lvalue.
2561    if (Seq) {
2562      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2563           StepEnd = Seq.step_end();
2564           Step != StepEnd; ++Step) {
2565        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2566          continue;
2567
2568        CXXConstructorDecl *Constructor
2569        = cast<CXXConstructorDecl>(Step->Function.Function);
2570
2571        const RValueReferenceType *RRefType
2572          = Constructor->getParamDecl(0)->getType()
2573                                                 ->getAs<RValueReferenceType>();
2574
2575        // If we don't meet the criteria, break out now.
2576        if (!RRefType ||
2577            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2578                            Context.getTypeDeclType(Constructor->getParent())))
2579          break;
2580
2581        // Promote "AsRvalue" to the heap, since we now need this
2582        // expression node to persist.
2583        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2584                                         CK_NoOp, Value, nullptr, VK_XValue);
2585
2586        // Complete type-checking the initialization of the return type
2587        // using the constructor we found.
2588        Res = Seq.Perform(*this, Entity, Kind, Value);
2589      }
2590    }
2591  }
2592
2593  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2594  // above, or overload resolution failed. Either way, we need to try
2595  // (again) now with the return value expression as written.
2596  if (Res.isInvalid())
2597    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2598
2599  return Res;
2600}
2601
2602/// \brief Determine whether the declared return type of the specified function
2603/// contains 'auto'.
2604static bool hasDeducedReturnType(FunctionDecl *FD) {
2605  const FunctionProtoType *FPT =
2606      FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
2607  return FPT->getReturnType()->isUndeducedType();
2608}
2609
2610/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2611/// for capturing scopes.
2612///
2613StmtResult
2614Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2615  // If this is the first return we've seen, infer the return type.
2616  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2617  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2618  QualType FnRetType = CurCap->ReturnType;
2619  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2620
2621  if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2622    // In C++1y, the return type may involve 'auto'.
2623    // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2624    FunctionDecl *FD = CurLambda->CallOperator;
2625    if (CurCap->ReturnType.isNull())
2626      CurCap->ReturnType = FD->getReturnType();
2627
2628    AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2629    assert(AT && "lost auto type from lambda return type");
2630    if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2631      FD->setInvalidDecl();
2632      return StmtError();
2633    }
2634    CurCap->ReturnType = FnRetType = FD->getReturnType();
2635  } else if (CurCap->HasImplicitReturnType) {
2636    // For blocks/lambdas with implicit return types, we check each return
2637    // statement individually, and deduce the common return type when the block
2638    // or lambda is completed.
2639    // FIXME: Fold this into the 'auto' codepath above.
2640    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2641      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2642      if (Result.isInvalid())
2643        return StmtError();
2644      RetValExp = Result.get();
2645
2646      // DR1048: even prior to C++14, we should use the 'auto' deduction rules
2647      // when deducing a return type for a lambda-expression (or by extension
2648      // for a block). These rules differ from the stated C++11 rules only in
2649      // that they remove top-level cv-qualifiers.
2650      if (!CurContext->isDependentContext())
2651        FnRetType = RetValExp->getType().getUnqualifiedType();
2652      else
2653        FnRetType = CurCap->ReturnType = Context.DependentTy;
2654    } else {
2655      if (RetValExp) {
2656        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2657        // initializer list, because it is not an expression (even
2658        // though we represent it as one). We still deduce 'void'.
2659        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2660          << RetValExp->getSourceRange();
2661      }
2662
2663      FnRetType = Context.VoidTy;
2664    }
2665
2666    // Although we'll properly infer the type of the block once it's completed,
2667    // make sure we provide a return type now for better error recovery.
2668    if (CurCap->ReturnType.isNull())
2669      CurCap->ReturnType = FnRetType;
2670  }
2671  assert(!FnRetType.isNull());
2672
2673  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2674    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2675      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2676      return StmtError();
2677    }
2678  } else if (CapturedRegionScopeInfo *CurRegion =
2679                 dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2680    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2681    return StmtError();
2682  } else {
2683    assert(CurLambda && "unknown kind of captured scope");
2684    if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2685            ->getNoReturnAttr()) {
2686      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2687      return StmtError();
2688    }
2689  }
2690
2691  // Otherwise, verify that this result type matches the previous one.  We are
2692  // pickier with blocks than for normal functions because we don't have GCC
2693  // compatibility to worry about here.
2694  const VarDecl *NRVOCandidate = nullptr;
2695  if (FnRetType->isDependentType()) {
2696    // Delay processing for now.  TODO: there are lots of dependent
2697    // types we can conclusively prove aren't void.
2698  } else if (FnRetType->isVoidType()) {
2699    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2700        !(getLangOpts().CPlusPlus &&
2701          (RetValExp->isTypeDependent() ||
2702           RetValExp->getType()->isVoidType()))) {
2703      if (!getLangOpts().CPlusPlus &&
2704          RetValExp->getType()->isVoidType())
2705        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2706      else {
2707        Diag(ReturnLoc, diag::err_return_block_has_expr);
2708        RetValExp = nullptr;
2709      }
2710    }
2711  } else if (!RetValExp) {
2712    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2713  } else if (!RetValExp->isTypeDependent()) {
2714    // we have a non-void block with an expression, continue checking
2715
2716    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2717    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2718    // function return.
2719
2720    // In C++ the return statement is handled via a copy initialization.
2721    // the C version of which boils down to CheckSingleAssignmentConstraints.
2722    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2723    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2724                                                                   FnRetType,
2725                                                      NRVOCandidate != nullptr);
2726    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2727                                                     FnRetType, RetValExp);
2728    if (Res.isInvalid()) {
2729      // FIXME: Cleanup temporaries here, anyway?
2730      return StmtError();
2731    }
2732    RetValExp = Res.get();
2733    CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2734  } else {
2735    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2736  }
2737
2738  if (RetValExp) {
2739    ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2740    if (ER.isInvalid())
2741      return StmtError();
2742    RetValExp = ER.get();
2743  }
2744  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2745                                                NRVOCandidate);
2746
2747  // If we need to check for the named return value optimization,
2748  // or if we need to infer the return type,
2749  // save the return statement in our scope for later processing.
2750  if (CurCap->HasImplicitReturnType || NRVOCandidate)
2751    FunctionScopes.back()->Returns.push_back(Result);
2752
2753  return Result;
2754}
2755
2756namespace {
2757/// \brief Marks all typedefs in all local classes in a type referenced.
2758///
2759/// In a function like
2760/// auto f() {
2761///   struct S { typedef int a; };
2762///   return S();
2763/// }
2764///
2765/// the local type escapes and could be referenced in some TUs but not in
2766/// others. Pretend that all local typedefs are always referenced, to not warn
2767/// on this. This isn't necessary if f has internal linkage, or the typedef
2768/// is private.
2769class LocalTypedefNameReferencer
2770    : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
2771public:
2772  LocalTypedefNameReferencer(Sema &S) : S(S) {}
2773  bool VisitRecordType(const RecordType *RT);
2774private:
2775  Sema &S;
2776};
2777bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
2778  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
2779  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
2780      R->isDependentType())
2781    return true;
2782  for (auto *TmpD : R->decls())
2783    if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2784      if (T->getAccess() != AS_private || R->hasFriends())
2785        S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
2786  return true;
2787}
2788}
2789
2790TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
2791  TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2792  while (auto ATL = TL.getAs<AttributedTypeLoc>())
2793    TL = ATL.getModifiedLoc().IgnoreParens();
2794  return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
2795}
2796
2797/// Deduce the return type for a function from a returned expression, per
2798/// C++1y [dcl.spec.auto]p6.
2799bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
2800                                            SourceLocation ReturnLoc,
2801                                            Expr *&RetExpr,
2802                                            AutoType *AT) {
2803  TypeLoc OrigResultType = getReturnTypeLoc(FD);
2804  QualType Deduced;
2805
2806  if (RetExpr && isa<InitListExpr>(RetExpr)) {
2807    //  If the deduction is for a return statement and the initializer is
2808    //  a braced-init-list, the program is ill-formed.
2809    Diag(RetExpr->getExprLoc(),
2810         getCurLambda() ? diag::err_lambda_return_init_list
2811                        : diag::err_auto_fn_return_init_list)
2812        << RetExpr->getSourceRange();
2813    return true;
2814  }
2815
2816  if (FD->isDependentContext()) {
2817    // C++1y [dcl.spec.auto]p12:
2818    //   Return type deduction [...] occurs when the definition is
2819    //   instantiated even if the function body contains a return
2820    //   statement with a non-type-dependent operand.
2821    assert(AT->isDeduced() && "should have deduced to dependent type");
2822    return false;
2823  } else if (RetExpr) {
2824    //  If the deduction is for a return statement and the initializer is
2825    //  a braced-init-list, the program is ill-formed.
2826    if (isa<InitListExpr>(RetExpr)) {
2827      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
2828      return true;
2829    }
2830
2831    //  Otherwise, [...] deduce a value for U using the rules of template
2832    //  argument deduction.
2833    DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
2834
2835    if (DAR == DAR_Failed && !FD->isInvalidDecl())
2836      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
2837        << OrigResultType.getType() << RetExpr->getType();
2838
2839    if (DAR != DAR_Succeeded)
2840      return true;
2841
2842    // If a local type is part of the returned type, mark its fields as
2843    // referenced.
2844    LocalTypedefNameReferencer Referencer(*this);
2845    Referencer.TraverseType(RetExpr->getType());
2846  } else {
2847    //  In the case of a return with no operand, the initializer is considered
2848    //  to be void().
2849    //
2850    // Deduction here can only succeed if the return type is exactly 'cv auto'
2851    // or 'decltype(auto)', so just check for that case directly.
2852    if (!OrigResultType.getType()->getAs<AutoType>()) {
2853      Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
2854        << OrigResultType.getType();
2855      return true;
2856    }
2857    // We always deduce U = void in this case.
2858    Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
2859    if (Deduced.isNull())
2860      return true;
2861  }
2862
2863  //  If a function with a declared return type that contains a placeholder type
2864  //  has multiple return statements, the return type is deduced for each return
2865  //  statement. [...] if the type deduced is not the same in each deduction,
2866  //  the program is ill-formed.
2867  if (AT->isDeduced() && !FD->isInvalidDecl()) {
2868    AutoType *NewAT = Deduced->getContainedAutoType();
2869    if (!FD->isDependentContext() &&
2870        !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
2871      const LambdaScopeInfo *LambdaSI = getCurLambda();
2872      if (LambdaSI && LambdaSI->HasImplicitReturnType) {
2873        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
2874          << NewAT->getDeducedType() << AT->getDeducedType()
2875          << true /*IsLambda*/;
2876      } else {
2877        Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
2878          << (AT->isDecltypeAuto() ? 1 : 0)
2879          << NewAT->getDeducedType() << AT->getDeducedType();
2880      }
2881      return true;
2882    }
2883  } else if (!FD->isInvalidDecl()) {
2884    // Update all declarations of the function to have the deduced return type.
2885    Context.adjustDeducedFunctionResultType(FD, Deduced);
2886  }
2887
2888  return false;
2889}
2890
2891StmtResult
2892Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
2893                      Scope *CurScope) {
2894  StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
2895  if (R.isInvalid()) {
2896    return R;
2897  }
2898
2899  if (VarDecl *VD =
2900      const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
2901    CurScope->addNRVOCandidate(VD);
2902  } else {
2903    CurScope->setNoNRVO();
2904  }
2905
2906  return R;
2907}
2908
2909StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2910  // Check for unexpanded parameter packs.
2911  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2912    return StmtError();
2913
2914  if (isa<CapturingScopeInfo>(getCurFunction()))
2915    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2916
2917  QualType FnRetType;
2918  QualType RelatedRetType;
2919  const AttrVec *Attrs = nullptr;
2920  bool isObjCMethod = false;
2921
2922  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2923    FnRetType = FD->getReturnType();
2924    if (FD->hasAttrs())
2925      Attrs = &FD->getAttrs();
2926    if (FD->isNoReturn())
2927      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2928        << FD->getDeclName();
2929  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2930    FnRetType = MD->getReturnType();
2931    isObjCMethod = true;
2932    if (MD->hasAttrs())
2933      Attrs = &MD->getAttrs();
2934    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2935      // In the implementation of a method with a related return type, the
2936      // type used to type-check the validity of return statements within the
2937      // method body is a pointer to the type of the class being implemented.
2938      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2939      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2940    }
2941  } else // If we don't have a function/method context, bail.
2942    return StmtError();
2943
2944  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
2945  // deduction.
2946  if (getLangOpts().CPlusPlus14) {
2947    if (AutoType *AT = FnRetType->getContainedAutoType()) {
2948      FunctionDecl *FD = cast<FunctionDecl>(CurContext);
2949      if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2950        FD->setInvalidDecl();
2951        return StmtError();
2952      } else {
2953        FnRetType = FD->getReturnType();
2954      }
2955    }
2956  }
2957
2958  bool HasDependentReturnType = FnRetType->isDependentType();
2959
2960  ReturnStmt *Result = nullptr;
2961  if (FnRetType->isVoidType()) {
2962    if (RetValExp) {
2963      if (isa<InitListExpr>(RetValExp)) {
2964        // We simply never allow init lists as the return value of void
2965        // functions. This is compatible because this was never allowed before,
2966        // so there's no legacy code to deal with.
2967        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2968        int FunctionKind = 0;
2969        if (isa<ObjCMethodDecl>(CurDecl))
2970          FunctionKind = 1;
2971        else if (isa<CXXConstructorDecl>(CurDecl))
2972          FunctionKind = 2;
2973        else if (isa<CXXDestructorDecl>(CurDecl))
2974          FunctionKind = 3;
2975
2976        Diag(ReturnLoc, diag::err_return_init_list)
2977          << CurDecl->getDeclName() << FunctionKind
2978          << RetValExp->getSourceRange();
2979
2980        // Drop the expression.
2981        RetValExp = nullptr;
2982      } else if (!RetValExp->isTypeDependent()) {
2983        // C99 6.8.6.4p1 (ext_ since GCC warns)
2984        unsigned D = diag::ext_return_has_expr;
2985        if (RetValExp->getType()->isVoidType()) {
2986          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2987          if (isa<CXXConstructorDecl>(CurDecl) ||
2988              isa<CXXDestructorDecl>(CurDecl))
2989            D = diag::err_ctor_dtor_returns_void;
2990          else
2991            D = diag::ext_return_has_void_expr;
2992        }
2993        else {
2994          ExprResult Result = RetValExp;
2995          Result = IgnoredValueConversions(Result.get());
2996          if (Result.isInvalid())
2997            return StmtError();
2998          RetValExp = Result.get();
2999          RetValExp = ImpCastExprToType(RetValExp,
3000                                        Context.VoidTy, CK_ToVoid).get();
3001        }
3002        // return of void in constructor/destructor is illegal in C++.
3003        if (D == diag::err_ctor_dtor_returns_void) {
3004          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3005          Diag(ReturnLoc, D)
3006            << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3007            << RetValExp->getSourceRange();
3008        }
3009        // return (some void expression); is legal in C++.
3010        else if (D != diag::ext_return_has_void_expr ||
3011            !getLangOpts().CPlusPlus) {
3012          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3013
3014          int FunctionKind = 0;
3015          if (isa<ObjCMethodDecl>(CurDecl))
3016            FunctionKind = 1;
3017          else if (isa<CXXConstructorDecl>(CurDecl))
3018            FunctionKind = 2;
3019          else if (isa<CXXDestructorDecl>(CurDecl))
3020            FunctionKind = 3;
3021
3022          Diag(ReturnLoc, D)
3023            << CurDecl->getDeclName() << FunctionKind
3024            << RetValExp->getSourceRange();
3025        }
3026      }
3027
3028      if (RetValExp) {
3029        ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3030        if (ER.isInvalid())
3031          return StmtError();
3032        RetValExp = ER.get();
3033      }
3034    }
3035
3036    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3037  } else if (!RetValExp && !HasDependentReturnType) {
3038    FunctionDecl *FD = getCurFunctionDecl();
3039
3040    unsigned DiagID;
3041    if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3042      // C++11 [stmt.return]p2
3043      DiagID = diag::err_constexpr_return_missing_expr;
3044      FD->setInvalidDecl();
3045    } else if (getLangOpts().C99) {
3046      // C99 6.8.6.4p1 (ext_ since GCC warns)
3047      DiagID = diag::ext_return_missing_expr;
3048    } else {
3049      // C90 6.6.6.4p4
3050      DiagID = diag::warn_return_missing_expr;
3051    }
3052
3053    if (FD)
3054      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3055    else
3056      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3057
3058    Result = new (Context) ReturnStmt(ReturnLoc);
3059  } else {
3060    assert(RetValExp || HasDependentReturnType);
3061    const VarDecl *NRVOCandidate = nullptr;
3062
3063    QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3064
3065    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3066    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3067    // function return.
3068
3069    // In C++ the return statement is handled via a copy initialization,
3070    // the C version of which boils down to CheckSingleAssignmentConstraints.
3071    if (RetValExp)
3072      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3073    if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3074      // we have a non-void function with an expression, continue checking
3075      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3076                                                                     RetType,
3077                                                      NRVOCandidate != nullptr);
3078      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3079                                                       RetType, RetValExp);
3080      if (Res.isInvalid()) {
3081        // FIXME: Clean up temporaries here anyway?
3082        return StmtError();
3083      }
3084      RetValExp = Res.getAs<Expr>();
3085
3086      // If we have a related result type, we need to implicitly
3087      // convert back to the formal result type.  We can't pretend to
3088      // initialize the result again --- we might end double-retaining
3089      // --- so instead we initialize a notional temporary.
3090      if (!RelatedRetType.isNull()) {
3091        Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3092                                                            FnRetType);
3093        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3094        if (Res.isInvalid()) {
3095          // FIXME: Clean up temporaries here anyway?
3096          return StmtError();
3097        }
3098        RetValExp = Res.getAs<Expr>();
3099      }
3100
3101      CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3102                         getCurFunctionDecl());
3103    }
3104
3105    if (RetValExp) {
3106      ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3107      if (ER.isInvalid())
3108        return StmtError();
3109      RetValExp = ER.get();
3110    }
3111    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3112  }
3113
3114  // If we need to check for the named return value optimization, save the
3115  // return statement in our scope for later processing.
3116  if (Result->getNRVOCandidate())
3117    FunctionScopes.back()->Returns.push_back(Result);
3118
3119  return Result;
3120}
3121
3122StmtResult
3123Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3124                           SourceLocation RParen, Decl *Parm,
3125                           Stmt *Body) {
3126  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3127  if (Var && Var->isInvalidDecl())
3128    return StmtError();
3129
3130  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3131}
3132
3133StmtResult
3134Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3135  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3136}
3137
3138StmtResult
3139Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3140                         MultiStmtArg CatchStmts, Stmt *Finally) {
3141  if (!getLangOpts().ObjCExceptions)
3142    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3143
3144  getCurFunction()->setHasBranchProtectedScope();
3145  unsigned NumCatchStmts = CatchStmts.size();
3146  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3147                               NumCatchStmts, Finally);
3148}
3149
3150StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3151  if (Throw) {
3152    ExprResult Result = DefaultLvalueConversion(Throw);
3153    if (Result.isInvalid())
3154      return StmtError();
3155
3156    Result = ActOnFinishFullExpr(Result.get());
3157    if (Result.isInvalid())
3158      return StmtError();
3159    Throw = Result.get();
3160
3161    QualType ThrowType = Throw->getType();
3162    // Make sure the expression type is an ObjC pointer or "void *".
3163    if (!ThrowType->isDependentType() &&
3164        !ThrowType->isObjCObjectPointerType()) {
3165      const PointerType *PT = ThrowType->getAs<PointerType>();
3166      if (!PT || !PT->getPointeeType()->isVoidType())
3167        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3168                         << Throw->getType() << Throw->getSourceRange());
3169    }
3170  }
3171
3172  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3173}
3174
3175StmtResult
3176Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3177                           Scope *CurScope) {
3178  if (!getLangOpts().ObjCExceptions)
3179    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3180
3181  if (!Throw) {
3182    // @throw without an expression designates a rethrow (which much occur
3183    // in the context of an @catch clause).
3184    Scope *AtCatchParent = CurScope;
3185    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3186      AtCatchParent = AtCatchParent->getParent();
3187    if (!AtCatchParent)
3188      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3189  }
3190  return BuildObjCAtThrowStmt(AtLoc, Throw);
3191}
3192
3193ExprResult
3194Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3195  ExprResult result = DefaultLvalueConversion(operand);
3196  if (result.isInvalid())
3197    return ExprError();
3198  operand = result.get();
3199
3200  // Make sure the expression type is an ObjC pointer or "void *".
3201  QualType type = operand->getType();
3202  if (!type->isDependentType() &&
3203      !type->isObjCObjectPointerType()) {
3204    const PointerType *pointerType = type->getAs<PointerType>();
3205    if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3206      if (getLangOpts().CPlusPlus) {
3207        if (RequireCompleteType(atLoc, type,
3208                                diag::err_incomplete_receiver_type))
3209          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3210                   << type << operand->getSourceRange();
3211
3212        ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3213        if (!result.isUsable())
3214          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3215                   << type << operand->getSourceRange();
3216
3217        operand = result.get();
3218      } else {
3219          return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3220                   << type << operand->getSourceRange();
3221      }
3222    }
3223  }
3224
3225  // The operand to @synchronized is a full-expression.
3226  return ActOnFinishFullExpr(operand);
3227}
3228
3229StmtResult
3230Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3231                                  Stmt *SyncBody) {
3232  // We can't jump into or indirect-jump out of a @synchronized block.
3233  getCurFunction()->setHasBranchProtectedScope();
3234  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3235}
3236
3237/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3238/// and creates a proper catch handler from them.
3239StmtResult
3240Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3241                         Stmt *HandlerBlock) {
3242  // There's nothing to test that ActOnExceptionDecl didn't already test.
3243  return new (Context)
3244      CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3245}
3246
3247StmtResult
3248Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3249  getCurFunction()->setHasBranchProtectedScope();
3250  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3251}
3252
3253namespace {
3254
3255class TypeWithHandler {
3256  QualType t;
3257  CXXCatchStmt *stmt;
3258public:
3259  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
3260  : t(type), stmt(statement) {}
3261
3262  // An arbitrary order is fine as long as it places identical
3263  // types next to each other.
3264  bool operator<(const TypeWithHandler &y) const {
3265    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
3266      return true;
3267    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
3268      return false;
3269    else
3270      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
3271  }
3272
3273  bool operator==(const TypeWithHandler& other) const {
3274    return t == other.t;
3275  }
3276
3277  CXXCatchStmt *getCatchStmt() const { return stmt; }
3278  SourceLocation getTypeSpecStartLoc() const {
3279    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
3280  }
3281};
3282
3283}
3284
3285/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3286/// handlers and creates a try statement from them.
3287StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3288                                  ArrayRef<Stmt *> Handlers) {
3289  // Don't report an error if 'try' is used in system headers.
3290  if (!getLangOpts().CXXExceptions &&
3291      !getSourceManager().isInSystemHeader(TryLoc))
3292      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3293
3294  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3295    Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3296
3297  const unsigned NumHandlers = Handlers.size();
3298  assert(NumHandlers > 0 &&
3299         "The parser shouldn't call this if there are no handlers.");
3300
3301  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3302
3303  for (unsigned i = 0; i < NumHandlers; ++i) {
3304    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3305    if (!Handler->getExceptionDecl()) {
3306      if (i < NumHandlers - 1)
3307        return StmtError(Diag(Handler->getLocStart(),
3308                              diag::err_early_catch_all));
3309
3310      continue;
3311    }
3312
3313    const QualType CaughtType = Handler->getCaughtType();
3314    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3315    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3316  }
3317
3318  // Detect handlers for the same type as an earlier one.
3319  if (NumHandlers > 1) {
3320    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3321
3322    TypeWithHandler prev = TypesWithHandlers[0];
3323    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3324      TypeWithHandler curr = TypesWithHandlers[i];
3325
3326      if (curr == prev) {
3327        Diag(curr.getTypeSpecStartLoc(),
3328             diag::warn_exception_caught_by_earlier_handler)
3329          << curr.getCatchStmt()->getCaughtType().getAsString();
3330        Diag(prev.getTypeSpecStartLoc(),
3331             diag::note_previous_exception_handler)
3332          << prev.getCatchStmt()->getCaughtType().getAsString();
3333      }
3334
3335      prev = curr;
3336    }
3337  }
3338
3339  getCurFunction()->setHasBranchProtectedScope();
3340
3341  // FIXME: We should detect handlers that cannot catch anything because an
3342  // earlier handler catches a superclass. Need to find a method that is not
3343  // quadratic for this.
3344  // Neither of these are explicitly forbidden, but every compiler detects them
3345  // and warns.
3346
3347  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3348}
3349
3350StmtResult
3351Sema::ActOnSEHTryBlock(bool IsCXXTry,
3352                       SourceLocation TryLoc,
3353                       Stmt *TryBlock,
3354                       Stmt *Handler) {
3355  assert(TryBlock && Handler);
3356
3357  getCurFunction()->setHasBranchProtectedScope();
3358
3359  return SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler);
3360}
3361
3362StmtResult
3363Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3364                          Expr *FilterExpr,
3365                          Stmt *Block) {
3366  assert(FilterExpr && Block);
3367
3368  if(!FilterExpr->getType()->isIntegerType()) {
3369    return StmtError(Diag(FilterExpr->getExprLoc(),
3370                     diag::err_filter_expression_integral)
3371                     << FilterExpr->getType());
3372  }
3373
3374  return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3375}
3376
3377StmtResult
3378Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3379                           Stmt *Block) {
3380  assert(Block);
3381  return SEHFinallyStmt::Create(Context,Loc,Block);
3382}
3383
3384StmtResult
3385Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
3386  Scope *SEHTryParent = CurScope;
3387  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3388    SEHTryParent = SEHTryParent->getParent();
3389  if (!SEHTryParent)
3390    return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3391
3392  return new (Context) SEHLeaveStmt(Loc);
3393}
3394
3395StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3396                                            bool IsIfExists,
3397                                            NestedNameSpecifierLoc QualifierLoc,
3398                                            DeclarationNameInfo NameInfo,
3399                                            Stmt *Nested)
3400{
3401  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3402                                             QualifierLoc, NameInfo,
3403                                             cast<CompoundStmt>(Nested));
3404}
3405
3406
3407StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3408                                            bool IsIfExists,
3409                                            CXXScopeSpec &SS,
3410                                            UnqualifiedId &Name,
3411                                            Stmt *Nested) {
3412  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3413                                    SS.getWithLocInContext(Context),
3414                                    GetNameFromUnqualifiedId(Name),
3415                                    Nested);
3416}
3417
3418RecordDecl*
3419Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3420                                   unsigned NumParams) {
3421  DeclContext *DC = CurContext;
3422  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3423    DC = DC->getParent();
3424
3425  RecordDecl *RD = nullptr;
3426  if (getLangOpts().CPlusPlus)
3427    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3428                               /*Id=*/nullptr);
3429  else
3430    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3431
3432  RD->setCapturedRecord();
3433  DC->addDecl(RD);
3434  RD->setImplicit();
3435  RD->startDefinition();
3436
3437  assert(NumParams > 0 && "CapturedStmt requires context parameter");
3438  CD = CapturedDecl::Create(Context, CurContext, NumParams);
3439  DC->addDecl(CD);
3440  return RD;
3441}
3442
3443static void buildCapturedStmtCaptureList(
3444    SmallVectorImpl<CapturedStmt::Capture> &Captures,
3445    SmallVectorImpl<Expr *> &CaptureInits,
3446    ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3447
3448  typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3449  for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3450
3451    if (Cap->isThisCapture()) {
3452      Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3453                                               CapturedStmt::VCK_This));
3454      CaptureInits.push_back(Cap->getInitExpr());
3455      continue;
3456    } else if (Cap->isVLATypeCapture()) {
3457      Captures.push_back(
3458          CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
3459      CaptureInits.push_back(nullptr);
3460      continue;
3461    }
3462
3463    assert(Cap->isReferenceCapture() &&
3464           "non-reference capture not yet implemented");
3465
3466    Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3467                                             CapturedStmt::VCK_ByRef,
3468                                             Cap->getVariable()));
3469    CaptureInits.push_back(Cap->getInitExpr());
3470  }
3471}
3472
3473void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3474                                    CapturedRegionKind Kind,
3475                                    unsigned NumParams) {
3476  CapturedDecl *CD = nullptr;
3477  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3478
3479  // Build the context parameter
3480  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3481  IdentifierInfo *ParamName = &Context.Idents.get("__context");
3482  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3483  ImplicitParamDecl *Param
3484    = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3485  DC->addDecl(Param);
3486
3487  CD->setContextParam(0, Param);
3488
3489  // Enter the capturing scope for this captured region.
3490  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3491
3492  if (CurScope)
3493    PushDeclContext(CurScope, CD);
3494  else
3495    CurContext = CD;
3496
3497  PushExpressionEvaluationContext(PotentiallyEvaluated);
3498}
3499
3500void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3501                                    CapturedRegionKind Kind,
3502                                    ArrayRef<CapturedParamNameType> Params) {
3503  CapturedDecl *CD = nullptr;
3504  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3505
3506  // Build the context parameter
3507  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3508  bool ContextIsFound = false;
3509  unsigned ParamNum = 0;
3510  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3511                                                 E = Params.end();
3512       I != E; ++I, ++ParamNum) {
3513    if (I->second.isNull()) {
3514      assert(!ContextIsFound &&
3515             "null type has been found already for '__context' parameter");
3516      IdentifierInfo *ParamName = &Context.Idents.get("__context");
3517      QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3518      ImplicitParamDecl *Param
3519        = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3520      DC->addDecl(Param);
3521      CD->setContextParam(ParamNum, Param);
3522      ContextIsFound = true;
3523    } else {
3524      IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3525      ImplicitParamDecl *Param
3526        = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3527      DC->addDecl(Param);
3528      CD->setParam(ParamNum, Param);
3529    }
3530  }
3531  assert(ContextIsFound && "no null type for '__context' parameter");
3532  if (!ContextIsFound) {
3533    // Add __context implicitly if it is not specified.
3534    IdentifierInfo *ParamName = &Context.Idents.get("__context");
3535    QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3536    ImplicitParamDecl *Param =
3537        ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3538    DC->addDecl(Param);
3539    CD->setContextParam(ParamNum, Param);
3540  }
3541  // Enter the capturing scope for this captured region.
3542  PushCapturedRegionScope(CurScope, CD, RD, Kind);
3543
3544  if (CurScope)
3545    PushDeclContext(CurScope, CD);
3546  else
3547    CurContext = CD;
3548
3549  PushExpressionEvaluationContext(PotentiallyEvaluated);
3550}
3551
3552void Sema::ActOnCapturedRegionError() {
3553  DiscardCleanupsInEvaluationContext();
3554  PopExpressionEvaluationContext();
3555
3556  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3557  RecordDecl *Record = RSI->TheRecordDecl;
3558  Record->setInvalidDecl();
3559
3560  SmallVector<Decl*, 4> Fields(Record->fields());
3561  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3562              SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3563
3564  PopDeclContext();
3565  PopFunctionScopeInfo();
3566}
3567
3568StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3569  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3570
3571  SmallVector<CapturedStmt::Capture, 4> Captures;
3572  SmallVector<Expr *, 4> CaptureInits;
3573  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3574
3575  CapturedDecl *CD = RSI->TheCapturedDecl;
3576  RecordDecl *RD = RSI->TheRecordDecl;
3577
3578  CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3579                                           RSI->CapRegionKind, Captures,
3580                                           CaptureInits, CD, RD);
3581
3582  CD->setBody(Res->getCapturedStmt());
3583  RD->completeDefinition();
3584
3585  DiscardCleanupsInEvaluationContext();
3586  PopExpressionEvaluationContext();
3587
3588  PopDeclContext();
3589  PopFunctionScopeInfo();
3590
3591  return Res;
3592}
3593