SemaLookup.cpp revision 243830
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/Overload.h"
18#include "clang/Sema/DeclSpec.h"
19#include "clang/Sema/Scope.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/Sema/ExternalSemaSource.h"
23#include "clang/Sema/TypoCorrection.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CXXInheritance.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/DeclCXX.h"
28#include "clang/AST/DeclLookups.h"
29#include "clang/AST/DeclObjC.h"
30#include "clang/AST/DeclTemplate.h"
31#include "clang/AST/Expr.h"
32#include "clang/AST/ExprCXX.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/LangOptions.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/StringMap.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/ADT/edit_distance.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <map>
47#include <set>
48#include <utility>
49#include <vector>
50
51using namespace clang;
52using namespace sema;
53
54namespace {
55  class UnqualUsingEntry {
56    const DeclContext *Nominated;
57    const DeclContext *CommonAncestor;
58
59  public:
60    UnqualUsingEntry(const DeclContext *Nominated,
61                     const DeclContext *CommonAncestor)
62      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63    }
64
65    const DeclContext *getCommonAncestor() const {
66      return CommonAncestor;
67    }
68
69    const DeclContext *getNominatedNamespace() const {
70      return Nominated;
71    }
72
73    // Sort by the pointer value of the common ancestor.
74    struct Comparator {
75      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76        return L.getCommonAncestor() < R.getCommonAncestor();
77      }
78
79      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80        return E.getCommonAncestor() < DC;
81      }
82
83      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84        return DC < E.getCommonAncestor();
85      }
86    };
87  };
88
89  /// A collection of using directives, as used by C++ unqualified
90  /// lookup.
91  class UnqualUsingDirectiveSet {
92    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94    ListTy list;
95    llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97  public:
98    UnqualUsingDirectiveSet() {}
99
100    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101      // C++ [namespace.udir]p1:
102      //   During unqualified name lookup, the names appear as if they
103      //   were declared in the nearest enclosing namespace which contains
104      //   both the using-directive and the nominated namespace.
105      DeclContext *InnermostFileDC
106        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107      assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109      for (; S; S = S->getParent()) {
110        // C++ [namespace.udir]p1:
111        //   A using-directive shall not appear in class scope, but may
112        //   appear in namespace scope or in block scope.
113        DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114        if (Ctx && Ctx->isFileContext()) {
115          visit(Ctx, Ctx);
116        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117          Scope::udir_iterator I = S->using_directives_begin(),
118                             End = S->using_directives_end();
119          for (; I != End; ++I)
120            visit(*I, InnermostFileDC);
121        }
122      }
123    }
124
125    // Visits a context and collect all of its using directives
126    // recursively.  Treats all using directives as if they were
127    // declared in the context.
128    //
129    // A given context is only every visited once, so it is important
130    // that contexts be visited from the inside out in order to get
131    // the effective DCs right.
132    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133      if (!visited.insert(DC))
134        return;
135
136      addUsingDirectives(DC, EffectiveDC);
137    }
138
139    // Visits a using directive and collects all of its using
140    // directives recursively.  Treats all using directives as if they
141    // were declared in the effective DC.
142    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143      DeclContext *NS = UD->getNominatedNamespace();
144      if (!visited.insert(NS))
145        return;
146
147      addUsingDirective(UD, EffectiveDC);
148      addUsingDirectives(NS, EffectiveDC);
149    }
150
151    // Adds all the using directives in a context (and those nominated
152    // by its using directives, transitively) as if they appeared in
153    // the given effective context.
154    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155      SmallVector<DeclContext*,4> queue;
156      while (true) {
157        DeclContext::udir_iterator I, End;
158        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159          UsingDirectiveDecl *UD = *I;
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS)) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.back();
171        queue.pop_back();
172      }
173    }
174
175    // Add a using directive as if it had been declared in the given
176    // context.  This helps implement C++ [namespace.udir]p3:
177    //   The using-directive is transitive: if a scope contains a
178    //   using-directive that nominates a second namespace that itself
179    //   contains using-directives, the effect is as if the
180    //   using-directives from the second namespace also appeared in
181    //   the first.
182    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183      // Find the common ancestor between the effective context and
184      // the nominated namespace.
185      DeclContext *Common = UD->getNominatedNamespace();
186      while (!Common->Encloses(EffectiveDC))
187        Common = Common->getParent();
188      Common = Common->getPrimaryContext();
189
190      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191    }
192
193    void done() {
194      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195    }
196
197    typedef ListTy::const_iterator const_iterator;
198
199    const_iterator begin() const { return list.begin(); }
200    const_iterator end() const { return list.end(); }
201
202    std::pair<const_iterator,const_iterator>
203    getNamespacesFor(DeclContext *DC) const {
204      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                              UnqualUsingEntry::Comparator());
206    }
207  };
208}
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220    IDNS = Decl::IDNS_Ordinary;
221    if (CPlusPlus) {
222      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223      if (Redeclaration)
224        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225    }
226    break;
227
228  case Sema::LookupOperatorName:
229    // Operator lookup is its own crazy thing;  it is not the same
230    // as (e.g.) looking up an operator name for redeclaration.
231    assert(!Redeclaration && "cannot do redeclaration operator lookup");
232    IDNS = Decl::IDNS_NonMemberOperator;
233    break;
234
235  case Sema::LookupTagName:
236    if (CPlusPlus) {
237      IDNS = Decl::IDNS_Type;
238
239      // When looking for a redeclaration of a tag name, we add:
240      // 1) TagFriend to find undeclared friend decls
241      // 2) Namespace because they can't "overload" with tag decls.
242      // 3) Tag because it includes class templates, which can't
243      //    "overload" with tag decls.
244      if (Redeclaration)
245        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246    } else {
247      IDNS = Decl::IDNS_Tag;
248    }
249    break;
250  case Sema::LookupLabel:
251    IDNS = Decl::IDNS_Label;
252    break;
253
254  case Sema::LookupMemberName:
255    IDNS = Decl::IDNS_Member;
256    if (CPlusPlus)
257      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258    break;
259
260  case Sema::LookupNestedNameSpecifierName:
261    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262    break;
263
264  case Sema::LookupNamespaceName:
265    IDNS = Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupUsingDeclName:
269    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270         | Decl::IDNS_Member | Decl::IDNS_Using;
271    break;
272
273  case Sema::LookupObjCProtocolName:
274    IDNS = Decl::IDNS_ObjCProtocol;
275    break;
276
277  case Sema::LookupAnyName:
278    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280      | Decl::IDNS_Type;
281    break;
282  }
283  return IDNS;
284}
285
286void LookupResult::configure() {
287  IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                 isForRedeclaration());
289
290  // If we're looking for one of the allocation or deallocation
291  // operators, make sure that the implicitly-declared new and delete
292  // operators can be found.
293  if (!isForRedeclaration()) {
294    switch (NameInfo.getName().getCXXOverloadedOperator()) {
295    case OO_New:
296    case OO_Delete:
297    case OO_Array_New:
298    case OO_Array_Delete:
299      SemaRef.DeclareGlobalNewDelete();
300      break;
301
302    default:
303      break;
304    }
305  }
306}
307
308void LookupResult::sanityImpl() const {
309  // Note that this function is never called by NDEBUG builds. See
310  // LookupResult::sanity().
311  assert(ResultKind != NotFound || Decls.size() == 0);
312  assert(ResultKind != Found || Decls.size() == 1);
313  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314         (Decls.size() == 1 &&
315          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319                                Ambiguity == AmbiguousBaseSubobjectTypes)));
320  assert((Paths != NULL) == (ResultKind == Ambiguous &&
321                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
322                              Ambiguity == AmbiguousBaseSubobjects)));
323}
324
325// Necessary because CXXBasePaths is not complete in Sema.h
326void LookupResult::deletePaths(CXXBasePaths *Paths) {
327  delete Paths;
328}
329
330static NamedDecl *getVisibleDecl(NamedDecl *D);
331
332NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333  return getVisibleDecl(D);
334}
335
336/// Resolves the result kind of this lookup.
337void LookupResult::resolveKind() {
338  unsigned N = Decls.size();
339
340  // Fast case: no possible ambiguity.
341  if (N == 0) {
342    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343    return;
344  }
345
346  // If there's a single decl, we need to examine it to decide what
347  // kind of lookup this is.
348  if (N == 1) {
349    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350    if (isa<FunctionTemplateDecl>(D))
351      ResultKind = FoundOverloaded;
352    else if (isa<UnresolvedUsingValueDecl>(D))
353      ResultKind = FoundUnresolvedValue;
354    return;
355  }
356
357  // Don't do any extra resolution if we've already resolved as ambiguous.
358  if (ResultKind == Ambiguous) return;
359
360  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362
363  bool Ambiguous = false;
364  bool HasTag = false, HasFunction = false, HasNonFunction = false;
365  bool HasFunctionTemplate = false, HasUnresolved = false;
366
367  unsigned UniqueTagIndex = 0;
368
369  unsigned I = 0;
370  while (I < N) {
371    NamedDecl *D = Decls[I]->getUnderlyingDecl();
372    D = cast<NamedDecl>(D->getCanonicalDecl());
373
374    // Redeclarations of types via typedef can occur both within a scope
375    // and, through using declarations and directives, across scopes. There is
376    // no ambiguity if they all refer to the same type, so unique based on the
377    // canonical type.
378    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
379      if (!TD->getDeclContext()->isRecord()) {
380        QualType T = SemaRef.Context.getTypeDeclType(TD);
381        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
382          // The type is not unique; pull something off the back and continue
383          // at this index.
384          Decls[I] = Decls[--N];
385          continue;
386        }
387      }
388    }
389
390    if (!Unique.insert(D)) {
391      // If it's not unique, pull something off the back (and
392      // continue at this index).
393      Decls[I] = Decls[--N];
394      continue;
395    }
396
397    // Otherwise, do some decl type analysis and then continue.
398
399    if (isa<UnresolvedUsingValueDecl>(D)) {
400      HasUnresolved = true;
401    } else if (isa<TagDecl>(D)) {
402      if (HasTag)
403        Ambiguous = true;
404      UniqueTagIndex = I;
405      HasTag = true;
406    } else if (isa<FunctionTemplateDecl>(D)) {
407      HasFunction = true;
408      HasFunctionTemplate = true;
409    } else if (isa<FunctionDecl>(D)) {
410      HasFunction = true;
411    } else {
412      if (HasNonFunction)
413        Ambiguous = true;
414      HasNonFunction = true;
415    }
416    I++;
417  }
418
419  // C++ [basic.scope.hiding]p2:
420  //   A class name or enumeration name can be hidden by the name of
421  //   an object, function, or enumerator declared in the same
422  //   scope. If a class or enumeration name and an object, function,
423  //   or enumerator are declared in the same scope (in any order)
424  //   with the same name, the class or enumeration name is hidden
425  //   wherever the object, function, or enumerator name is visible.
426  // But it's still an error if there are distinct tag types found,
427  // even if they're not visible. (ref?)
428  if (HideTags && HasTag && !Ambiguous &&
429      (HasFunction || HasNonFunction || HasUnresolved)) {
430    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
431         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
432      Decls[UniqueTagIndex] = Decls[--N];
433    else
434      Ambiguous = true;
435  }
436
437  Decls.set_size(N);
438
439  if (HasNonFunction && (HasFunction || HasUnresolved))
440    Ambiguous = true;
441
442  if (Ambiguous)
443    setAmbiguous(LookupResult::AmbiguousReference);
444  else if (HasUnresolved)
445    ResultKind = LookupResult::FoundUnresolvedValue;
446  else if (N > 1 || HasFunctionTemplate)
447    ResultKind = LookupResult::FoundOverloaded;
448  else
449    ResultKind = LookupResult::Found;
450}
451
452void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
453  CXXBasePaths::const_paths_iterator I, E;
454  DeclContext::lookup_iterator DI, DE;
455  for (I = P.begin(), E = P.end(); I != E; ++I)
456    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
457      addDecl(*DI);
458}
459
460void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
461  Paths = new CXXBasePaths;
462  Paths->swap(P);
463  addDeclsFromBasePaths(*Paths);
464  resolveKind();
465  setAmbiguous(AmbiguousBaseSubobjects);
466}
467
468void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
469  Paths = new CXXBasePaths;
470  Paths->swap(P);
471  addDeclsFromBasePaths(*Paths);
472  resolveKind();
473  setAmbiguous(AmbiguousBaseSubobjectTypes);
474}
475
476void LookupResult::print(raw_ostream &Out) {
477  Out << Decls.size() << " result(s)";
478  if (isAmbiguous()) Out << ", ambiguous";
479  if (Paths) Out << ", base paths present";
480
481  for (iterator I = begin(), E = end(); I != E; ++I) {
482    Out << "\n";
483    (*I)->print(Out, 2);
484  }
485}
486
487/// \brief Lookup a builtin function, when name lookup would otherwise
488/// fail.
489static bool LookupBuiltin(Sema &S, LookupResult &R) {
490  Sema::LookupNameKind NameKind = R.getLookupKind();
491
492  // If we didn't find a use of this identifier, and if the identifier
493  // corresponds to a compiler builtin, create the decl object for the builtin
494  // now, injecting it into translation unit scope, and return it.
495  if (NameKind == Sema::LookupOrdinaryName ||
496      NameKind == Sema::LookupRedeclarationWithLinkage) {
497    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
498    if (II) {
499      // If this is a builtin on this (or all) targets, create the decl.
500      if (unsigned BuiltinID = II->getBuiltinID()) {
501        // In C++, we don't have any predefined library functions like
502        // 'malloc'. Instead, we'll just error.
503        if (S.getLangOpts().CPlusPlus &&
504            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
505          return false;
506
507        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
508                                                 BuiltinID, S.TUScope,
509                                                 R.isForRedeclaration(),
510                                                 R.getNameLoc())) {
511          R.addDecl(D);
512          return true;
513        }
514
515        if (R.isForRedeclaration()) {
516          // If we're redeclaring this function anyway, forget that
517          // this was a builtin at all.
518          S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
519        }
520
521        return false;
522      }
523    }
524  }
525
526  return false;
527}
528
529/// \brief Determine whether we can declare a special member function within
530/// the class at this point.
531static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
532                                            const CXXRecordDecl *Class) {
533  // We need to have a definition for the class.
534  if (!Class->getDefinition() || Class->isDependentContext())
535    return false;
536
537  // We can't be in the middle of defining the class.
538  if (const RecordType *RecordTy
539                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
540    return !RecordTy->isBeingDefined();
541
542  return false;
543}
544
545void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
546  if (!CanDeclareSpecialMemberFunction(Context, Class))
547    return;
548
549  // If the default constructor has not yet been declared, do so now.
550  if (Class->needsImplicitDefaultConstructor())
551    DeclareImplicitDefaultConstructor(Class);
552
553  // If the copy constructor has not yet been declared, do so now.
554  if (!Class->hasDeclaredCopyConstructor())
555    DeclareImplicitCopyConstructor(Class);
556
557  // If the copy assignment operator has not yet been declared, do so now.
558  if (!Class->hasDeclaredCopyAssignment())
559    DeclareImplicitCopyAssignment(Class);
560
561  if (getLangOpts().CPlusPlus0x) {
562    // If the move constructor has not yet been declared, do so now.
563    if (Class->needsImplicitMoveConstructor())
564      DeclareImplicitMoveConstructor(Class); // might not actually do it
565
566    // If the move assignment operator has not yet been declared, do so now.
567    if (Class->needsImplicitMoveAssignment())
568      DeclareImplicitMoveAssignment(Class); // might not actually do it
569  }
570
571  // If the destructor has not yet been declared, do so now.
572  if (!Class->hasDeclaredDestructor())
573    DeclareImplicitDestructor(Class);
574}
575
576/// \brief Determine whether this is the name of an implicitly-declared
577/// special member function.
578static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
579  switch (Name.getNameKind()) {
580  case DeclarationName::CXXConstructorName:
581  case DeclarationName::CXXDestructorName:
582    return true;
583
584  case DeclarationName::CXXOperatorName:
585    return Name.getCXXOverloadedOperator() == OO_Equal;
586
587  default:
588    break;
589  }
590
591  return false;
592}
593
594/// \brief If there are any implicit member functions with the given name
595/// that need to be declared in the given declaration context, do so.
596static void DeclareImplicitMemberFunctionsWithName(Sema &S,
597                                                   DeclarationName Name,
598                                                   const DeclContext *DC) {
599  if (!DC)
600    return;
601
602  switch (Name.getNameKind()) {
603  case DeclarationName::CXXConstructorName:
604    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
605      if (Record->getDefinition() &&
606          CanDeclareSpecialMemberFunction(S.Context, Record)) {
607        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608        if (Record->needsImplicitDefaultConstructor())
609          S.DeclareImplicitDefaultConstructor(Class);
610        if (!Record->hasDeclaredCopyConstructor())
611          S.DeclareImplicitCopyConstructor(Class);
612        if (S.getLangOpts().CPlusPlus0x &&
613            Record->needsImplicitMoveConstructor())
614          S.DeclareImplicitMoveConstructor(Class);
615      }
616    break;
617
618  case DeclarationName::CXXDestructorName:
619    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
621          CanDeclareSpecialMemberFunction(S.Context, Record))
622        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623    break;
624
625  case DeclarationName::CXXOperatorName:
626    if (Name.getCXXOverloadedOperator() != OO_Equal)
627      break;
628
629    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630      if (Record->getDefinition() &&
631          CanDeclareSpecialMemberFunction(S.Context, Record)) {
632        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
633        if (!Record->hasDeclaredCopyAssignment())
634          S.DeclareImplicitCopyAssignment(Class);
635        if (S.getLangOpts().CPlusPlus0x &&
636            Record->needsImplicitMoveAssignment())
637          S.DeclareImplicitMoveAssignment(Class);
638      }
639    }
640    break;
641
642  default:
643    break;
644  }
645}
646
647// Adds all qualifying matches for a name within a decl context to the
648// given lookup result.  Returns true if any matches were found.
649static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
650  bool Found = false;
651
652  // Lazily declare C++ special member functions.
653  if (S.getLangOpts().CPlusPlus)
654    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
655
656  // Perform lookup into this declaration context.
657  DeclContext::lookup_const_iterator I, E;
658  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
659    NamedDecl *D = *I;
660    if ((D = R.getAcceptableDecl(D))) {
661      R.addDecl(D);
662      Found = true;
663    }
664  }
665
666  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667    return true;
668
669  if (R.getLookupName().getNameKind()
670        != DeclarationName::CXXConversionFunctionName ||
671      R.getLookupName().getCXXNameType()->isDependentType() ||
672      !isa<CXXRecordDecl>(DC))
673    return Found;
674
675  // C++ [temp.mem]p6:
676  //   A specialization of a conversion function template is not found by
677  //   name lookup. Instead, any conversion function templates visible in the
678  //   context of the use are considered. [...]
679  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680  if (!Record->isCompleteDefinition())
681    return Found;
682
683  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
684  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
685         UEnd = Unresolved->end(); U != UEnd; ++U) {
686    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
687    if (!ConvTemplate)
688      continue;
689
690    // When we're performing lookup for the purposes of redeclaration, just
691    // add the conversion function template. When we deduce template
692    // arguments for specializations, we'll end up unifying the return
693    // type of the new declaration with the type of the function template.
694    if (R.isForRedeclaration()) {
695      R.addDecl(ConvTemplate);
696      Found = true;
697      continue;
698    }
699
700    // C++ [temp.mem]p6:
701    //   [...] For each such operator, if argument deduction succeeds
702    //   (14.9.2.3), the resulting specialization is used as if found by
703    //   name lookup.
704    //
705    // When referencing a conversion function for any purpose other than
706    // a redeclaration (such that we'll be building an expression with the
707    // result), perform template argument deduction and place the
708    // specialization into the result set. We do this to avoid forcing all
709    // callers to perform special deduction for conversion functions.
710    TemplateDeductionInfo Info(R.getNameLoc());
711    FunctionDecl *Specialization = 0;
712
713    const FunctionProtoType *ConvProto
714      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
715    assert(ConvProto && "Nonsensical conversion function template type");
716
717    // Compute the type of the function that we would expect the conversion
718    // function to have, if it were to match the name given.
719    // FIXME: Calling convention!
720    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
721    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
722    EPI.ExceptionSpecType = EST_None;
723    EPI.NumExceptions = 0;
724    QualType ExpectedType
725      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
726                                            0, 0, EPI);
727
728    // Perform template argument deduction against the type that we would
729    // expect the function to have.
730    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
731                                            Specialization, Info)
732          == Sema::TDK_Success) {
733      R.addDecl(Specialization);
734      Found = true;
735    }
736  }
737
738  return Found;
739}
740
741// Performs C++ unqualified lookup into the given file context.
742static bool
743CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
744                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
745
746  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
747
748  // Perform direct name lookup into the LookupCtx.
749  bool Found = LookupDirect(S, R, NS);
750
751  // Perform direct name lookup into the namespaces nominated by the
752  // using directives whose common ancestor is this namespace.
753  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
754  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
755
756  for (; UI != UEnd; ++UI)
757    if (LookupDirect(S, R, UI->getNominatedNamespace()))
758      Found = true;
759
760  R.resolveKind();
761
762  return Found;
763}
764
765static bool isNamespaceOrTranslationUnitScope(Scope *S) {
766  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
767    return Ctx->isFileContext();
768  return false;
769}
770
771// Find the next outer declaration context from this scope. This
772// routine actually returns the semantic outer context, which may
773// differ from the lexical context (encoded directly in the Scope
774// stack) when we are parsing a member of a class template. In this
775// case, the second element of the pair will be true, to indicate that
776// name lookup should continue searching in this semantic context when
777// it leaves the current template parameter scope.
778static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
779  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
780  DeclContext *Lexical = 0;
781  for (Scope *OuterS = S->getParent(); OuterS;
782       OuterS = OuterS->getParent()) {
783    if (OuterS->getEntity()) {
784      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
785      break;
786    }
787  }
788
789  // C++ [temp.local]p8:
790  //   In the definition of a member of a class template that appears
791  //   outside of the namespace containing the class template
792  //   definition, the name of a template-parameter hides the name of
793  //   a member of this namespace.
794  //
795  // Example:
796  //
797  //   namespace N {
798  //     class C { };
799  //
800  //     template<class T> class B {
801  //       void f(T);
802  //     };
803  //   }
804  //
805  //   template<class C> void N::B<C>::f(C) {
806  //     C b;  // C is the template parameter, not N::C
807  //   }
808  //
809  // In this example, the lexical context we return is the
810  // TranslationUnit, while the semantic context is the namespace N.
811  if (!Lexical || !DC || !S->getParent() ||
812      !S->getParent()->isTemplateParamScope())
813    return std::make_pair(Lexical, false);
814
815  // Find the outermost template parameter scope.
816  // For the example, this is the scope for the template parameters of
817  // template<class C>.
818  Scope *OutermostTemplateScope = S->getParent();
819  while (OutermostTemplateScope->getParent() &&
820         OutermostTemplateScope->getParent()->isTemplateParamScope())
821    OutermostTemplateScope = OutermostTemplateScope->getParent();
822
823  // Find the namespace context in which the original scope occurs. In
824  // the example, this is namespace N.
825  DeclContext *Semantic = DC;
826  while (!Semantic->isFileContext())
827    Semantic = Semantic->getParent();
828
829  // Find the declaration context just outside of the template
830  // parameter scope. This is the context in which the template is
831  // being lexically declaration (a namespace context). In the
832  // example, this is the global scope.
833  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
834      Lexical->Encloses(Semantic))
835    return std::make_pair(Semantic, true);
836
837  return std::make_pair(Lexical, false);
838}
839
840bool Sema::CppLookupName(LookupResult &R, Scope *S) {
841  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
842
843  DeclarationName Name = R.getLookupName();
844
845  // If this is the name of an implicitly-declared special member function,
846  // go through the scope stack to implicitly declare
847  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
848    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
849      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
850        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
851  }
852
853  // Implicitly declare member functions with the name we're looking for, if in
854  // fact we are in a scope where it matters.
855
856  Scope *Initial = S;
857  IdentifierResolver::iterator
858    I = IdResolver.begin(Name),
859    IEnd = IdResolver.end();
860
861  // First we lookup local scope.
862  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
863  // ...During unqualified name lookup (3.4.1), the names appear as if
864  // they were declared in the nearest enclosing namespace which contains
865  // both the using-directive and the nominated namespace.
866  // [Note: in this context, "contains" means "contains directly or
867  // indirectly".
868  //
869  // For example:
870  // namespace A { int i; }
871  // void foo() {
872  //   int i;
873  //   {
874  //     using namespace A;
875  //     ++i; // finds local 'i', A::i appears at global scope
876  //   }
877  // }
878  //
879  DeclContext *OutsideOfTemplateParamDC = 0;
880  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
881    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
882
883    // Check whether the IdResolver has anything in this scope.
884    bool Found = false;
885    for (; I != IEnd && S->isDeclScope(*I); ++I) {
886      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
887        Found = true;
888        R.addDecl(ND);
889      }
890    }
891    if (Found) {
892      R.resolveKind();
893      if (S->isClassScope())
894        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
895          R.setNamingClass(Record);
896      return true;
897    }
898
899    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
900        S->getParent() && !S->getParent()->isTemplateParamScope()) {
901      // We've just searched the last template parameter scope and
902      // found nothing, so look into the contexts between the
903      // lexical and semantic declaration contexts returned by
904      // findOuterContext(). This implements the name lookup behavior
905      // of C++ [temp.local]p8.
906      Ctx = OutsideOfTemplateParamDC;
907      OutsideOfTemplateParamDC = 0;
908    }
909
910    if (Ctx) {
911      DeclContext *OuterCtx;
912      bool SearchAfterTemplateScope;
913      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
914      if (SearchAfterTemplateScope)
915        OutsideOfTemplateParamDC = OuterCtx;
916
917      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
918        // We do not directly look into transparent contexts, since
919        // those entities will be found in the nearest enclosing
920        // non-transparent context.
921        if (Ctx->isTransparentContext())
922          continue;
923
924        // We do not look directly into function or method contexts,
925        // since all of the local variables and parameters of the
926        // function/method are present within the Scope.
927        if (Ctx->isFunctionOrMethod()) {
928          // If we have an Objective-C instance method, look for ivars
929          // in the corresponding interface.
930          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
931            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
932              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
933                ObjCInterfaceDecl *ClassDeclared;
934                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
935                                                 Name.getAsIdentifierInfo(),
936                                                             ClassDeclared)) {
937                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
938                    R.addDecl(ND);
939                    R.resolveKind();
940                    return true;
941                  }
942                }
943              }
944          }
945
946          continue;
947        }
948
949        // Perform qualified name lookup into this context.
950        // FIXME: In some cases, we know that every name that could be found by
951        // this qualified name lookup will also be on the identifier chain. For
952        // example, inside a class without any base classes, we never need to
953        // perform qualified lookup because all of the members are on top of the
954        // identifier chain.
955        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
956          return true;
957      }
958    }
959  }
960
961  // Stop if we ran out of scopes.
962  // FIXME:  This really, really shouldn't be happening.
963  if (!S) return false;
964
965  // If we are looking for members, no need to look into global/namespace scope.
966  if (R.getLookupKind() == LookupMemberName)
967    return false;
968
969  // Collect UsingDirectiveDecls in all scopes, and recursively all
970  // nominated namespaces by those using-directives.
971  //
972  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
973  // don't build it for each lookup!
974
975  UnqualUsingDirectiveSet UDirs;
976  UDirs.visitScopeChain(Initial, S);
977  UDirs.done();
978
979  // Lookup namespace scope, and global scope.
980  // Unqualified name lookup in C++ requires looking into scopes
981  // that aren't strictly lexical, and therefore we walk through the
982  // context as well as walking through the scopes.
983
984  for (; S; S = S->getParent()) {
985    // Check whether the IdResolver has anything in this scope.
986    bool Found = false;
987    for (; I != IEnd && S->isDeclScope(*I); ++I) {
988      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
989        // We found something.  Look for anything else in our scope
990        // with this same name and in an acceptable identifier
991        // namespace, so that we can construct an overload set if we
992        // need to.
993        Found = true;
994        R.addDecl(ND);
995      }
996    }
997
998    if (Found && S->isTemplateParamScope()) {
999      R.resolveKind();
1000      return true;
1001    }
1002
1003    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1004    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1005        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1006      // We've just searched the last template parameter scope and
1007      // found nothing, so look into the contexts between the
1008      // lexical and semantic declaration contexts returned by
1009      // findOuterContext(). This implements the name lookup behavior
1010      // of C++ [temp.local]p8.
1011      Ctx = OutsideOfTemplateParamDC;
1012      OutsideOfTemplateParamDC = 0;
1013    }
1014
1015    if (Ctx) {
1016      DeclContext *OuterCtx;
1017      bool SearchAfterTemplateScope;
1018      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1019      if (SearchAfterTemplateScope)
1020        OutsideOfTemplateParamDC = OuterCtx;
1021
1022      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1023        // We do not directly look into transparent contexts, since
1024        // those entities will be found in the nearest enclosing
1025        // non-transparent context.
1026        if (Ctx->isTransparentContext())
1027          continue;
1028
1029        // If we have a context, and it's not a context stashed in the
1030        // template parameter scope for an out-of-line definition, also
1031        // look into that context.
1032        if (!(Found && S && S->isTemplateParamScope())) {
1033          assert(Ctx->isFileContext() &&
1034              "We should have been looking only at file context here already.");
1035
1036          // Look into context considering using-directives.
1037          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1038            Found = true;
1039        }
1040
1041        if (Found) {
1042          R.resolveKind();
1043          return true;
1044        }
1045
1046        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1047          return false;
1048      }
1049    }
1050
1051    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1052      return false;
1053  }
1054
1055  return !R.empty();
1056}
1057
1058/// \brief Retrieve the visible declaration corresponding to D, if any.
1059///
1060/// This routine determines whether the declaration D is visible in the current
1061/// module, with the current imports. If not, it checks whether any
1062/// redeclaration of D is visible, and if so, returns that declaration.
1063///
1064/// \returns D, or a visible previous declaration of D, whichever is more recent
1065/// and visible. If no declaration of D is visible, returns null.
1066static NamedDecl *getVisibleDecl(NamedDecl *D) {
1067  if (LookupResult::isVisible(D))
1068    return D;
1069
1070  for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1071       RD != RDEnd; ++RD) {
1072    if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1073      if (LookupResult::isVisible(ND))
1074        return ND;
1075    }
1076  }
1077
1078  return 0;
1079}
1080
1081/// @brief Perform unqualified name lookup starting from a given
1082/// scope.
1083///
1084/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1085/// used to find names within the current scope. For example, 'x' in
1086/// @code
1087/// int x;
1088/// int f() {
1089///   return x; // unqualified name look finds 'x' in the global scope
1090/// }
1091/// @endcode
1092///
1093/// Different lookup criteria can find different names. For example, a
1094/// particular scope can have both a struct and a function of the same
1095/// name, and each can be found by certain lookup criteria. For more
1096/// information about lookup criteria, see the documentation for the
1097/// class LookupCriteria.
1098///
1099/// @param S        The scope from which unqualified name lookup will
1100/// begin. If the lookup criteria permits, name lookup may also search
1101/// in the parent scopes.
1102///
1103/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1104/// look up and the lookup kind), and is updated with the results of lookup
1105/// including zero or more declarations and possibly additional information
1106/// used to diagnose ambiguities.
1107///
1108/// @returns \c true if lookup succeeded and false otherwise.
1109bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1110  DeclarationName Name = R.getLookupName();
1111  if (!Name) return false;
1112
1113  LookupNameKind NameKind = R.getLookupKind();
1114
1115  if (!getLangOpts().CPlusPlus) {
1116    // Unqualified name lookup in C/Objective-C is purely lexical, so
1117    // search in the declarations attached to the name.
1118    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1119      // Find the nearest non-transparent declaration scope.
1120      while (!(S->getFlags() & Scope::DeclScope) ||
1121             (S->getEntity() &&
1122              static_cast<DeclContext *>(S->getEntity())
1123                ->isTransparentContext()))
1124        S = S->getParent();
1125    }
1126
1127    unsigned IDNS = R.getIdentifierNamespace();
1128
1129    // Scan up the scope chain looking for a decl that matches this
1130    // identifier that is in the appropriate namespace.  This search
1131    // should not take long, as shadowing of names is uncommon, and
1132    // deep shadowing is extremely uncommon.
1133    bool LeftStartingScope = false;
1134
1135    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1136                                   IEnd = IdResolver.end();
1137         I != IEnd; ++I)
1138      if ((*I)->isInIdentifierNamespace(IDNS)) {
1139        if (NameKind == LookupRedeclarationWithLinkage) {
1140          // Determine whether this (or a previous) declaration is
1141          // out-of-scope.
1142          if (!LeftStartingScope && !S->isDeclScope(*I))
1143            LeftStartingScope = true;
1144
1145          // If we found something outside of our starting scope that
1146          // does not have linkage, skip it.
1147          if (LeftStartingScope && !((*I)->hasLinkage()))
1148            continue;
1149        }
1150        else if (NameKind == LookupObjCImplicitSelfParam &&
1151                 !isa<ImplicitParamDecl>(*I))
1152          continue;
1153
1154        // If this declaration is module-private and it came from an AST
1155        // file, we can't see it.
1156        NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1157        if (!D)
1158          continue;
1159
1160        R.addDecl(D);
1161
1162        // Check whether there are any other declarations with the same name
1163        // and in the same scope.
1164        if (I != IEnd) {
1165          // Find the scope in which this declaration was declared (if it
1166          // actually exists in a Scope).
1167          while (S && !S->isDeclScope(D))
1168            S = S->getParent();
1169
1170          // If the scope containing the declaration is the translation unit,
1171          // then we'll need to perform our checks based on the matching
1172          // DeclContexts rather than matching scopes.
1173          if (S && isNamespaceOrTranslationUnitScope(S))
1174            S = 0;
1175
1176          // Compute the DeclContext, if we need it.
1177          DeclContext *DC = 0;
1178          if (!S)
1179            DC = (*I)->getDeclContext()->getRedeclContext();
1180
1181          IdentifierResolver::iterator LastI = I;
1182          for (++LastI; LastI != IEnd; ++LastI) {
1183            if (S) {
1184              // Match based on scope.
1185              if (!S->isDeclScope(*LastI))
1186                break;
1187            } else {
1188              // Match based on DeclContext.
1189              DeclContext *LastDC
1190                = (*LastI)->getDeclContext()->getRedeclContext();
1191              if (!LastDC->Equals(DC))
1192                break;
1193            }
1194
1195            // If the declaration isn't in the right namespace, skip it.
1196            if (!(*LastI)->isInIdentifierNamespace(IDNS))
1197              continue;
1198
1199            D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1200            if (D)
1201              R.addDecl(D);
1202          }
1203
1204          R.resolveKind();
1205        }
1206        return true;
1207      }
1208  } else {
1209    // Perform C++ unqualified name lookup.
1210    if (CppLookupName(R, S))
1211      return true;
1212  }
1213
1214  // If we didn't find a use of this identifier, and if the identifier
1215  // corresponds to a compiler builtin, create the decl object for the builtin
1216  // now, injecting it into translation unit scope, and return it.
1217  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1218    return true;
1219
1220  // If we didn't find a use of this identifier, the ExternalSource
1221  // may be able to handle the situation.
1222  // Note: some lookup failures are expected!
1223  // See e.g. R.isForRedeclaration().
1224  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1225}
1226
1227/// @brief Perform qualified name lookup in the namespaces nominated by
1228/// using directives by the given context.
1229///
1230/// C++98 [namespace.qual]p2:
1231///   Given X::m (where X is a user-declared namespace), or given \::m
1232///   (where X is the global namespace), let S be the set of all
1233///   declarations of m in X and in the transitive closure of all
1234///   namespaces nominated by using-directives in X and its used
1235///   namespaces, except that using-directives are ignored in any
1236///   namespace, including X, directly containing one or more
1237///   declarations of m. No namespace is searched more than once in
1238///   the lookup of a name. If S is the empty set, the program is
1239///   ill-formed. Otherwise, if S has exactly one member, or if the
1240///   context of the reference is a using-declaration
1241///   (namespace.udecl), S is the required set of declarations of
1242///   m. Otherwise if the use of m is not one that allows a unique
1243///   declaration to be chosen from S, the program is ill-formed.
1244///
1245/// C++98 [namespace.qual]p5:
1246///   During the lookup of a qualified namespace member name, if the
1247///   lookup finds more than one declaration of the member, and if one
1248///   declaration introduces a class name or enumeration name and the
1249///   other declarations either introduce the same object, the same
1250///   enumerator or a set of functions, the non-type name hides the
1251///   class or enumeration name if and only if the declarations are
1252///   from the same namespace; otherwise (the declarations are from
1253///   different namespaces), the program is ill-formed.
1254static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1255                                                 DeclContext *StartDC) {
1256  assert(StartDC->isFileContext() && "start context is not a file context");
1257
1258  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1259  DeclContext::udir_iterator E = StartDC->using_directives_end();
1260
1261  if (I == E) return false;
1262
1263  // We have at least added all these contexts to the queue.
1264  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1265  Visited.insert(StartDC);
1266
1267  // We have not yet looked into these namespaces, much less added
1268  // their "using-children" to the queue.
1269  SmallVector<NamespaceDecl*, 8> Queue;
1270
1271  // We have already looked into the initial namespace; seed the queue
1272  // with its using-children.
1273  for (; I != E; ++I) {
1274    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1275    if (Visited.insert(ND))
1276      Queue.push_back(ND);
1277  }
1278
1279  // The easiest way to implement the restriction in [namespace.qual]p5
1280  // is to check whether any of the individual results found a tag
1281  // and, if so, to declare an ambiguity if the final result is not
1282  // a tag.
1283  bool FoundTag = false;
1284  bool FoundNonTag = false;
1285
1286  LookupResult LocalR(LookupResult::Temporary, R);
1287
1288  bool Found = false;
1289  while (!Queue.empty()) {
1290    NamespaceDecl *ND = Queue.back();
1291    Queue.pop_back();
1292
1293    // We go through some convolutions here to avoid copying results
1294    // between LookupResults.
1295    bool UseLocal = !R.empty();
1296    LookupResult &DirectR = UseLocal ? LocalR : R;
1297    bool FoundDirect = LookupDirect(S, DirectR, ND);
1298
1299    if (FoundDirect) {
1300      // First do any local hiding.
1301      DirectR.resolveKind();
1302
1303      // If the local result is a tag, remember that.
1304      if (DirectR.isSingleTagDecl())
1305        FoundTag = true;
1306      else
1307        FoundNonTag = true;
1308
1309      // Append the local results to the total results if necessary.
1310      if (UseLocal) {
1311        R.addAllDecls(LocalR);
1312        LocalR.clear();
1313      }
1314    }
1315
1316    // If we find names in this namespace, ignore its using directives.
1317    if (FoundDirect) {
1318      Found = true;
1319      continue;
1320    }
1321
1322    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1323      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1324      if (Visited.insert(Nom))
1325        Queue.push_back(Nom);
1326    }
1327  }
1328
1329  if (Found) {
1330    if (FoundTag && FoundNonTag)
1331      R.setAmbiguousQualifiedTagHiding();
1332    else
1333      R.resolveKind();
1334  }
1335
1336  return Found;
1337}
1338
1339/// \brief Callback that looks for any member of a class with the given name.
1340static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1341                            CXXBasePath &Path,
1342                            void *Name) {
1343  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1344
1345  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1346  Path.Decls = BaseRecord->lookup(N);
1347  return Path.Decls.first != Path.Decls.second;
1348}
1349
1350/// \brief Determine whether the given set of member declarations contains only
1351/// static members, nested types, and enumerators.
1352template<typename InputIterator>
1353static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1354  Decl *D = (*First)->getUnderlyingDecl();
1355  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1356    return true;
1357
1358  if (isa<CXXMethodDecl>(D)) {
1359    // Determine whether all of the methods are static.
1360    bool AllMethodsAreStatic = true;
1361    for(; First != Last; ++First) {
1362      D = (*First)->getUnderlyingDecl();
1363
1364      if (!isa<CXXMethodDecl>(D)) {
1365        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1366        break;
1367      }
1368
1369      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1370        AllMethodsAreStatic = false;
1371        break;
1372      }
1373    }
1374
1375    if (AllMethodsAreStatic)
1376      return true;
1377  }
1378
1379  return false;
1380}
1381
1382/// \brief Perform qualified name lookup into a given context.
1383///
1384/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1385/// names when the context of those names is explicit specified, e.g.,
1386/// "std::vector" or "x->member", or as part of unqualified name lookup.
1387///
1388/// Different lookup criteria can find different names. For example, a
1389/// particular scope can have both a struct and a function of the same
1390/// name, and each can be found by certain lookup criteria. For more
1391/// information about lookup criteria, see the documentation for the
1392/// class LookupCriteria.
1393///
1394/// \param R captures both the lookup criteria and any lookup results found.
1395///
1396/// \param LookupCtx The context in which qualified name lookup will
1397/// search. If the lookup criteria permits, name lookup may also search
1398/// in the parent contexts or (for C++ classes) base classes.
1399///
1400/// \param InUnqualifiedLookup true if this is qualified name lookup that
1401/// occurs as part of unqualified name lookup.
1402///
1403/// \returns true if lookup succeeded, false if it failed.
1404bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1405                               bool InUnqualifiedLookup) {
1406  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1407
1408  if (!R.getLookupName())
1409    return false;
1410
1411  // Make sure that the declaration context is complete.
1412  assert((!isa<TagDecl>(LookupCtx) ||
1413          LookupCtx->isDependentContext() ||
1414          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1415          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1416         "Declaration context must already be complete!");
1417
1418  // Perform qualified name lookup into the LookupCtx.
1419  if (LookupDirect(*this, R, LookupCtx)) {
1420    R.resolveKind();
1421    if (isa<CXXRecordDecl>(LookupCtx))
1422      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1423    return true;
1424  }
1425
1426  // Don't descend into implied contexts for redeclarations.
1427  // C++98 [namespace.qual]p6:
1428  //   In a declaration for a namespace member in which the
1429  //   declarator-id is a qualified-id, given that the qualified-id
1430  //   for the namespace member has the form
1431  //     nested-name-specifier unqualified-id
1432  //   the unqualified-id shall name a member of the namespace
1433  //   designated by the nested-name-specifier.
1434  // See also [class.mfct]p5 and [class.static.data]p2.
1435  if (R.isForRedeclaration())
1436    return false;
1437
1438  // If this is a namespace, look it up in the implied namespaces.
1439  if (LookupCtx->isFileContext())
1440    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1441
1442  // If this isn't a C++ class, we aren't allowed to look into base
1443  // classes, we're done.
1444  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1445  if (!LookupRec || !LookupRec->getDefinition())
1446    return false;
1447
1448  // If we're performing qualified name lookup into a dependent class,
1449  // then we are actually looking into a current instantiation. If we have any
1450  // dependent base classes, then we either have to delay lookup until
1451  // template instantiation time (at which point all bases will be available)
1452  // or we have to fail.
1453  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1454      LookupRec->hasAnyDependentBases()) {
1455    R.setNotFoundInCurrentInstantiation();
1456    return false;
1457  }
1458
1459  // Perform lookup into our base classes.
1460  CXXBasePaths Paths;
1461  Paths.setOrigin(LookupRec);
1462
1463  // Look for this member in our base classes
1464  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1465  switch (R.getLookupKind()) {
1466    case LookupObjCImplicitSelfParam:
1467    case LookupOrdinaryName:
1468    case LookupMemberName:
1469    case LookupRedeclarationWithLinkage:
1470      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1471      break;
1472
1473    case LookupTagName:
1474      BaseCallback = &CXXRecordDecl::FindTagMember;
1475      break;
1476
1477    case LookupAnyName:
1478      BaseCallback = &LookupAnyMember;
1479      break;
1480
1481    case LookupUsingDeclName:
1482      // This lookup is for redeclarations only.
1483
1484    case LookupOperatorName:
1485    case LookupNamespaceName:
1486    case LookupObjCProtocolName:
1487    case LookupLabel:
1488      // These lookups will never find a member in a C++ class (or base class).
1489      return false;
1490
1491    case LookupNestedNameSpecifierName:
1492      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1493      break;
1494  }
1495
1496  if (!LookupRec->lookupInBases(BaseCallback,
1497                                R.getLookupName().getAsOpaquePtr(), Paths))
1498    return false;
1499
1500  R.setNamingClass(LookupRec);
1501
1502  // C++ [class.member.lookup]p2:
1503  //   [...] If the resulting set of declarations are not all from
1504  //   sub-objects of the same type, or the set has a nonstatic member
1505  //   and includes members from distinct sub-objects, there is an
1506  //   ambiguity and the program is ill-formed. Otherwise that set is
1507  //   the result of the lookup.
1508  QualType SubobjectType;
1509  int SubobjectNumber = 0;
1510  AccessSpecifier SubobjectAccess = AS_none;
1511
1512  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1513       Path != PathEnd; ++Path) {
1514    const CXXBasePathElement &PathElement = Path->back();
1515
1516    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1517    // across all paths.
1518    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1519
1520    // Determine whether we're looking at a distinct sub-object or not.
1521    if (SubobjectType.isNull()) {
1522      // This is the first subobject we've looked at. Record its type.
1523      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1524      SubobjectNumber = PathElement.SubobjectNumber;
1525      continue;
1526    }
1527
1528    if (SubobjectType
1529                 != Context.getCanonicalType(PathElement.Base->getType())) {
1530      // We found members of the given name in two subobjects of
1531      // different types. If the declaration sets aren't the same, this
1532      // this lookup is ambiguous.
1533      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1534        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1535        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1536        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1537
1538        while (FirstD != FirstPath->Decls.second &&
1539               CurrentD != Path->Decls.second) {
1540         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1541             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1542           break;
1543
1544          ++FirstD;
1545          ++CurrentD;
1546        }
1547
1548        if (FirstD == FirstPath->Decls.second &&
1549            CurrentD == Path->Decls.second)
1550          continue;
1551      }
1552
1553      R.setAmbiguousBaseSubobjectTypes(Paths);
1554      return true;
1555    }
1556
1557    if (SubobjectNumber != PathElement.SubobjectNumber) {
1558      // We have a different subobject of the same type.
1559
1560      // C++ [class.member.lookup]p5:
1561      //   A static member, a nested type or an enumerator defined in
1562      //   a base class T can unambiguously be found even if an object
1563      //   has more than one base class subobject of type T.
1564      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1565        continue;
1566
1567      // We have found a nonstatic member name in multiple, distinct
1568      // subobjects. Name lookup is ambiguous.
1569      R.setAmbiguousBaseSubobjects(Paths);
1570      return true;
1571    }
1572  }
1573
1574  // Lookup in a base class succeeded; return these results.
1575
1576  DeclContext::lookup_iterator I, E;
1577  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1578    NamedDecl *D = *I;
1579    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1580                                                    D->getAccess());
1581    R.addDecl(D, AS);
1582  }
1583  R.resolveKind();
1584  return true;
1585}
1586
1587/// @brief Performs name lookup for a name that was parsed in the
1588/// source code, and may contain a C++ scope specifier.
1589///
1590/// This routine is a convenience routine meant to be called from
1591/// contexts that receive a name and an optional C++ scope specifier
1592/// (e.g., "N::M::x"). It will then perform either qualified or
1593/// unqualified name lookup (with LookupQualifiedName or LookupName,
1594/// respectively) on the given name and return those results.
1595///
1596/// @param S        The scope from which unqualified name lookup will
1597/// begin.
1598///
1599/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1600///
1601/// @param EnteringContext Indicates whether we are going to enter the
1602/// context of the scope-specifier SS (if present).
1603///
1604/// @returns True if any decls were found (but possibly ambiguous)
1605bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1606                            bool AllowBuiltinCreation, bool EnteringContext) {
1607  if (SS && SS->isInvalid()) {
1608    // When the scope specifier is invalid, don't even look for
1609    // anything.
1610    return false;
1611  }
1612
1613  if (SS && SS->isSet()) {
1614    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1615      // We have resolved the scope specifier to a particular declaration
1616      // contex, and will perform name lookup in that context.
1617      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1618        return false;
1619
1620      R.setContextRange(SS->getRange());
1621      return LookupQualifiedName(R, DC);
1622    }
1623
1624    // We could not resolve the scope specified to a specific declaration
1625    // context, which means that SS refers to an unknown specialization.
1626    // Name lookup can't find anything in this case.
1627    R.setNotFoundInCurrentInstantiation();
1628    R.setContextRange(SS->getRange());
1629    return false;
1630  }
1631
1632  // Perform unqualified name lookup starting in the given scope.
1633  return LookupName(R, S, AllowBuiltinCreation);
1634}
1635
1636
1637/// \brief Produce a diagnostic describing the ambiguity that resulted
1638/// from name lookup.
1639///
1640/// \param Result The result of the ambiguous lookup to be diagnosed.
1641///
1642/// \returns true
1643bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1644  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1645
1646  DeclarationName Name = Result.getLookupName();
1647  SourceLocation NameLoc = Result.getNameLoc();
1648  SourceRange LookupRange = Result.getContextRange();
1649
1650  switch (Result.getAmbiguityKind()) {
1651  case LookupResult::AmbiguousBaseSubobjects: {
1652    CXXBasePaths *Paths = Result.getBasePaths();
1653    QualType SubobjectType = Paths->front().back().Base->getType();
1654    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1655      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1656      << LookupRange;
1657
1658    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1659    while (isa<CXXMethodDecl>(*Found) &&
1660           cast<CXXMethodDecl>(*Found)->isStatic())
1661      ++Found;
1662
1663    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1664
1665    return true;
1666  }
1667
1668  case LookupResult::AmbiguousBaseSubobjectTypes: {
1669    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1670      << Name << LookupRange;
1671
1672    CXXBasePaths *Paths = Result.getBasePaths();
1673    std::set<Decl *> DeclsPrinted;
1674    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1675                                      PathEnd = Paths->end();
1676         Path != PathEnd; ++Path) {
1677      Decl *D = *Path->Decls.first;
1678      if (DeclsPrinted.insert(D).second)
1679        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1680    }
1681
1682    return true;
1683  }
1684
1685  case LookupResult::AmbiguousTagHiding: {
1686    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1687
1688    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1689
1690    LookupResult::iterator DI, DE = Result.end();
1691    for (DI = Result.begin(); DI != DE; ++DI)
1692      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1693        TagDecls.insert(TD);
1694        Diag(TD->getLocation(), diag::note_hidden_tag);
1695      }
1696
1697    for (DI = Result.begin(); DI != DE; ++DI)
1698      if (!isa<TagDecl>(*DI))
1699        Diag((*DI)->getLocation(), diag::note_hiding_object);
1700
1701    // For recovery purposes, go ahead and implement the hiding.
1702    LookupResult::Filter F = Result.makeFilter();
1703    while (F.hasNext()) {
1704      if (TagDecls.count(F.next()))
1705        F.erase();
1706    }
1707    F.done();
1708
1709    return true;
1710  }
1711
1712  case LookupResult::AmbiguousReference: {
1713    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1714
1715    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1716    for (; DI != DE; ++DI)
1717      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1718
1719    return true;
1720  }
1721  }
1722
1723  llvm_unreachable("unknown ambiguity kind");
1724}
1725
1726namespace {
1727  struct AssociatedLookup {
1728    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1729                     Sema::AssociatedNamespaceSet &Namespaces,
1730                     Sema::AssociatedClassSet &Classes)
1731      : S(S), Namespaces(Namespaces), Classes(Classes),
1732        InstantiationLoc(InstantiationLoc) {
1733    }
1734
1735    Sema &S;
1736    Sema::AssociatedNamespaceSet &Namespaces;
1737    Sema::AssociatedClassSet &Classes;
1738    SourceLocation InstantiationLoc;
1739  };
1740}
1741
1742static void
1743addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1744
1745static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1746                                      DeclContext *Ctx) {
1747  // Add the associated namespace for this class.
1748
1749  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1750  // be a locally scoped record.
1751
1752  // We skip out of inline namespaces. The innermost non-inline namespace
1753  // contains all names of all its nested inline namespaces anyway, so we can
1754  // replace the entire inline namespace tree with its root.
1755  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1756         Ctx->isInlineNamespace())
1757    Ctx = Ctx->getParent();
1758
1759  if (Ctx->isFileContext())
1760    Namespaces.insert(Ctx->getPrimaryContext());
1761}
1762
1763// \brief Add the associated classes and namespaces for argument-dependent
1764// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1765static void
1766addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1767                                  const TemplateArgument &Arg) {
1768  // C++ [basic.lookup.koenig]p2, last bullet:
1769  //   -- [...] ;
1770  switch (Arg.getKind()) {
1771    case TemplateArgument::Null:
1772      break;
1773
1774    case TemplateArgument::Type:
1775      // [...] the namespaces and classes associated with the types of the
1776      // template arguments provided for template type parameters (excluding
1777      // template template parameters)
1778      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1779      break;
1780
1781    case TemplateArgument::Template:
1782    case TemplateArgument::TemplateExpansion: {
1783      // [...] the namespaces in which any template template arguments are
1784      // defined; and the classes in which any member templates used as
1785      // template template arguments are defined.
1786      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1787      if (ClassTemplateDecl *ClassTemplate
1788                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1789        DeclContext *Ctx = ClassTemplate->getDeclContext();
1790        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1791          Result.Classes.insert(EnclosingClass);
1792        // Add the associated namespace for this class.
1793        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1794      }
1795      break;
1796    }
1797
1798    case TemplateArgument::Declaration:
1799    case TemplateArgument::Integral:
1800    case TemplateArgument::Expression:
1801    case TemplateArgument::NullPtr:
1802      // [Note: non-type template arguments do not contribute to the set of
1803      //  associated namespaces. ]
1804      break;
1805
1806    case TemplateArgument::Pack:
1807      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1808                                        PEnd = Arg.pack_end();
1809           P != PEnd; ++P)
1810        addAssociatedClassesAndNamespaces(Result, *P);
1811      break;
1812  }
1813}
1814
1815// \brief Add the associated classes and namespaces for
1816// argument-dependent lookup with an argument of class type
1817// (C++ [basic.lookup.koenig]p2).
1818static void
1819addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1820                                  CXXRecordDecl *Class) {
1821
1822  // Just silently ignore anything whose name is __va_list_tag.
1823  if (Class->getDeclName() == Result.S.VAListTagName)
1824    return;
1825
1826  // C++ [basic.lookup.koenig]p2:
1827  //   [...]
1828  //     -- If T is a class type (including unions), its associated
1829  //        classes are: the class itself; the class of which it is a
1830  //        member, if any; and its direct and indirect base
1831  //        classes. Its associated namespaces are the namespaces in
1832  //        which its associated classes are defined.
1833
1834  // Add the class of which it is a member, if any.
1835  DeclContext *Ctx = Class->getDeclContext();
1836  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1837    Result.Classes.insert(EnclosingClass);
1838  // Add the associated namespace for this class.
1839  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1840
1841  // Add the class itself. If we've already seen this class, we don't
1842  // need to visit base classes.
1843  if (!Result.Classes.insert(Class))
1844    return;
1845
1846  // -- If T is a template-id, its associated namespaces and classes are
1847  //    the namespace in which the template is defined; for member
1848  //    templates, the member template's class; the namespaces and classes
1849  //    associated with the types of the template arguments provided for
1850  //    template type parameters (excluding template template parameters); the
1851  //    namespaces in which any template template arguments are defined; and
1852  //    the classes in which any member templates used as template template
1853  //    arguments are defined. [Note: non-type template arguments do not
1854  //    contribute to the set of associated namespaces. ]
1855  if (ClassTemplateSpecializationDecl *Spec
1856        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1857    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1858    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1859      Result.Classes.insert(EnclosingClass);
1860    // Add the associated namespace for this class.
1861    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1862
1863    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1864    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1865      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1866  }
1867
1868  // Only recurse into base classes for complete types.
1869  if (!Class->hasDefinition()) {
1870    QualType type = Result.S.Context.getTypeDeclType(Class);
1871    if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1872                                     /*no diagnostic*/ 0))
1873      return;
1874  }
1875
1876  // Add direct and indirect base classes along with their associated
1877  // namespaces.
1878  SmallVector<CXXRecordDecl *, 32> Bases;
1879  Bases.push_back(Class);
1880  while (!Bases.empty()) {
1881    // Pop this class off the stack.
1882    Class = Bases.back();
1883    Bases.pop_back();
1884
1885    // Visit the base classes.
1886    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1887                                         BaseEnd = Class->bases_end();
1888         Base != BaseEnd; ++Base) {
1889      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1890      // In dependent contexts, we do ADL twice, and the first time around,
1891      // the base type might be a dependent TemplateSpecializationType, or a
1892      // TemplateTypeParmType. If that happens, simply ignore it.
1893      // FIXME: If we want to support export, we probably need to add the
1894      // namespace of the template in a TemplateSpecializationType, or even
1895      // the classes and namespaces of known non-dependent arguments.
1896      if (!BaseType)
1897        continue;
1898      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1899      if (Result.Classes.insert(BaseDecl)) {
1900        // Find the associated namespace for this base class.
1901        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1902        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1903
1904        // Make sure we visit the bases of this base class.
1905        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1906          Bases.push_back(BaseDecl);
1907      }
1908    }
1909  }
1910}
1911
1912// \brief Add the associated classes and namespaces for
1913// argument-dependent lookup with an argument of type T
1914// (C++ [basic.lookup.koenig]p2).
1915static void
1916addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1917  // C++ [basic.lookup.koenig]p2:
1918  //
1919  //   For each argument type T in the function call, there is a set
1920  //   of zero or more associated namespaces and a set of zero or more
1921  //   associated classes to be considered. The sets of namespaces and
1922  //   classes is determined entirely by the types of the function
1923  //   arguments (and the namespace of any template template
1924  //   argument). Typedef names and using-declarations used to specify
1925  //   the types do not contribute to this set. The sets of namespaces
1926  //   and classes are determined in the following way:
1927
1928  SmallVector<const Type *, 16> Queue;
1929  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1930
1931  while (true) {
1932    switch (T->getTypeClass()) {
1933
1934#define TYPE(Class, Base)
1935#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1936#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1937#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1938#define ABSTRACT_TYPE(Class, Base)
1939#include "clang/AST/TypeNodes.def"
1940      // T is canonical.  We can also ignore dependent types because
1941      // we don't need to do ADL at the definition point, but if we
1942      // wanted to implement template export (or if we find some other
1943      // use for associated classes and namespaces...) this would be
1944      // wrong.
1945      break;
1946
1947    //    -- If T is a pointer to U or an array of U, its associated
1948    //       namespaces and classes are those associated with U.
1949    case Type::Pointer:
1950      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1951      continue;
1952    case Type::ConstantArray:
1953    case Type::IncompleteArray:
1954    case Type::VariableArray:
1955      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1956      continue;
1957
1958    //     -- If T is a fundamental type, its associated sets of
1959    //        namespaces and classes are both empty.
1960    case Type::Builtin:
1961      break;
1962
1963    //     -- If T is a class type (including unions), its associated
1964    //        classes are: the class itself; the class of which it is a
1965    //        member, if any; and its direct and indirect base
1966    //        classes. Its associated namespaces are the namespaces in
1967    //        which its associated classes are defined.
1968    case Type::Record: {
1969      CXXRecordDecl *Class
1970        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1971      addAssociatedClassesAndNamespaces(Result, Class);
1972      break;
1973    }
1974
1975    //     -- If T is an enumeration type, its associated namespace is
1976    //        the namespace in which it is defined. If it is class
1977    //        member, its associated class is the member's class; else
1978    //        it has no associated class.
1979    case Type::Enum: {
1980      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1981
1982      DeclContext *Ctx = Enum->getDeclContext();
1983      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1984        Result.Classes.insert(EnclosingClass);
1985
1986      // Add the associated namespace for this class.
1987      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1988
1989      break;
1990    }
1991
1992    //     -- If T is a function type, its associated namespaces and
1993    //        classes are those associated with the function parameter
1994    //        types and those associated with the return type.
1995    case Type::FunctionProto: {
1996      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1997      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1998                                             ArgEnd = Proto->arg_type_end();
1999             Arg != ArgEnd; ++Arg)
2000        Queue.push_back(Arg->getTypePtr());
2001      // fallthrough
2002    }
2003    case Type::FunctionNoProto: {
2004      const FunctionType *FnType = cast<FunctionType>(T);
2005      T = FnType->getResultType().getTypePtr();
2006      continue;
2007    }
2008
2009    //     -- If T is a pointer to a member function of a class X, its
2010    //        associated namespaces and classes are those associated
2011    //        with the function parameter types and return type,
2012    //        together with those associated with X.
2013    //
2014    //     -- If T is a pointer to a data member of class X, its
2015    //        associated namespaces and classes are those associated
2016    //        with the member type together with those associated with
2017    //        X.
2018    case Type::MemberPointer: {
2019      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2020
2021      // Queue up the class type into which this points.
2022      Queue.push_back(MemberPtr->getClass());
2023
2024      // And directly continue with the pointee type.
2025      T = MemberPtr->getPointeeType().getTypePtr();
2026      continue;
2027    }
2028
2029    // As an extension, treat this like a normal pointer.
2030    case Type::BlockPointer:
2031      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2032      continue;
2033
2034    // References aren't covered by the standard, but that's such an
2035    // obvious defect that we cover them anyway.
2036    case Type::LValueReference:
2037    case Type::RValueReference:
2038      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2039      continue;
2040
2041    // These are fundamental types.
2042    case Type::Vector:
2043    case Type::ExtVector:
2044    case Type::Complex:
2045      break;
2046
2047    // If T is an Objective-C object or interface type, or a pointer to an
2048    // object or interface type, the associated namespace is the global
2049    // namespace.
2050    case Type::ObjCObject:
2051    case Type::ObjCInterface:
2052    case Type::ObjCObjectPointer:
2053      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2054      break;
2055
2056    // Atomic types are just wrappers; use the associations of the
2057    // contained type.
2058    case Type::Atomic:
2059      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2060      continue;
2061    }
2062
2063    if (Queue.empty()) break;
2064    T = Queue.back();
2065    Queue.pop_back();
2066  }
2067}
2068
2069/// \brief Find the associated classes and namespaces for
2070/// argument-dependent lookup for a call with the given set of
2071/// arguments.
2072///
2073/// This routine computes the sets of associated classes and associated
2074/// namespaces searched by argument-dependent lookup
2075/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2076void
2077Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2078                                         llvm::ArrayRef<Expr *> Args,
2079                                 AssociatedNamespaceSet &AssociatedNamespaces,
2080                                 AssociatedClassSet &AssociatedClasses) {
2081  AssociatedNamespaces.clear();
2082  AssociatedClasses.clear();
2083
2084  AssociatedLookup Result(*this, InstantiationLoc,
2085                          AssociatedNamespaces, AssociatedClasses);
2086
2087  // C++ [basic.lookup.koenig]p2:
2088  //   For each argument type T in the function call, there is a set
2089  //   of zero or more associated namespaces and a set of zero or more
2090  //   associated classes to be considered. The sets of namespaces and
2091  //   classes is determined entirely by the types of the function
2092  //   arguments (and the namespace of any template template
2093  //   argument).
2094  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2095    Expr *Arg = Args[ArgIdx];
2096
2097    if (Arg->getType() != Context.OverloadTy) {
2098      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2099      continue;
2100    }
2101
2102    // [...] In addition, if the argument is the name or address of a
2103    // set of overloaded functions and/or function templates, its
2104    // associated classes and namespaces are the union of those
2105    // associated with each of the members of the set: the namespace
2106    // in which the function or function template is defined and the
2107    // classes and namespaces associated with its (non-dependent)
2108    // parameter types and return type.
2109    Arg = Arg->IgnoreParens();
2110    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2111      if (unaryOp->getOpcode() == UO_AddrOf)
2112        Arg = unaryOp->getSubExpr();
2113
2114    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2115    if (!ULE) continue;
2116
2117    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2118           I != E; ++I) {
2119      // Look through any using declarations to find the underlying function.
2120      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2121
2122      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2123      if (!FDecl)
2124        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2125
2126      // Add the classes and namespaces associated with the parameter
2127      // types and return type of this function.
2128      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2129    }
2130  }
2131}
2132
2133/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2134/// an acceptable non-member overloaded operator for a call whose
2135/// arguments have types T1 (and, if non-empty, T2). This routine
2136/// implements the check in C++ [over.match.oper]p3b2 concerning
2137/// enumeration types.
2138static bool
2139IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2140                                       QualType T1, QualType T2,
2141                                       ASTContext &Context) {
2142  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2143    return true;
2144
2145  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2146    return true;
2147
2148  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2149  if (Proto->getNumArgs() < 1)
2150    return false;
2151
2152  if (T1->isEnumeralType()) {
2153    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2154    if (Context.hasSameUnqualifiedType(T1, ArgType))
2155      return true;
2156  }
2157
2158  if (Proto->getNumArgs() < 2)
2159    return false;
2160
2161  if (!T2.isNull() && T2->isEnumeralType()) {
2162    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2163    if (Context.hasSameUnqualifiedType(T2, ArgType))
2164      return true;
2165  }
2166
2167  return false;
2168}
2169
2170NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2171                                  SourceLocation Loc,
2172                                  LookupNameKind NameKind,
2173                                  RedeclarationKind Redecl) {
2174  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2175  LookupName(R, S);
2176  return R.getAsSingle<NamedDecl>();
2177}
2178
2179/// \brief Find the protocol with the given name, if any.
2180ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2181                                       SourceLocation IdLoc,
2182                                       RedeclarationKind Redecl) {
2183  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2184                             LookupObjCProtocolName, Redecl);
2185  return cast_or_null<ObjCProtocolDecl>(D);
2186}
2187
2188void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2189                                        QualType T1, QualType T2,
2190                                        UnresolvedSetImpl &Functions) {
2191  // C++ [over.match.oper]p3:
2192  //     -- The set of non-member candidates is the result of the
2193  //        unqualified lookup of operator@ in the context of the
2194  //        expression according to the usual rules for name lookup in
2195  //        unqualified function calls (3.4.2) except that all member
2196  //        functions are ignored. However, if no operand has a class
2197  //        type, only those non-member functions in the lookup set
2198  //        that have a first parameter of type T1 or "reference to
2199  //        (possibly cv-qualified) T1", when T1 is an enumeration
2200  //        type, or (if there is a right operand) a second parameter
2201  //        of type T2 or "reference to (possibly cv-qualified) T2",
2202  //        when T2 is an enumeration type, are candidate functions.
2203  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2204  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2205  LookupName(Operators, S);
2206
2207  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2208
2209  if (Operators.empty())
2210    return;
2211
2212  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2213       Op != OpEnd; ++Op) {
2214    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2215    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2216      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2217        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2218    } else if (FunctionTemplateDecl *FunTmpl
2219                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2220      // FIXME: friend operators?
2221      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2222      // later?
2223      if (!FunTmpl->getDeclContext()->isRecord())
2224        Functions.addDecl(*Op, Op.getAccess());
2225    }
2226  }
2227}
2228
2229Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2230                                                            CXXSpecialMember SM,
2231                                                            bool ConstArg,
2232                                                            bool VolatileArg,
2233                                                            bool RValueThis,
2234                                                            bool ConstThis,
2235                                                            bool VolatileThis) {
2236  RD = RD->getDefinition();
2237  assert((RD && !RD->isBeingDefined()) &&
2238         "doing special member lookup into record that isn't fully complete");
2239  if (RValueThis || ConstThis || VolatileThis)
2240    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2241           "constructors and destructors always have unqualified lvalue this");
2242  if (ConstArg || VolatileArg)
2243    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2244           "parameter-less special members can't have qualified arguments");
2245
2246  llvm::FoldingSetNodeID ID;
2247  ID.AddPointer(RD);
2248  ID.AddInteger(SM);
2249  ID.AddInteger(ConstArg);
2250  ID.AddInteger(VolatileArg);
2251  ID.AddInteger(RValueThis);
2252  ID.AddInteger(ConstThis);
2253  ID.AddInteger(VolatileThis);
2254
2255  void *InsertPoint;
2256  SpecialMemberOverloadResult *Result =
2257    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2258
2259  // This was already cached
2260  if (Result)
2261    return Result;
2262
2263  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2264  Result = new (Result) SpecialMemberOverloadResult(ID);
2265  SpecialMemberCache.InsertNode(Result, InsertPoint);
2266
2267  if (SM == CXXDestructor) {
2268    if (!RD->hasDeclaredDestructor())
2269      DeclareImplicitDestructor(RD);
2270    CXXDestructorDecl *DD = RD->getDestructor();
2271    assert(DD && "record without a destructor");
2272    Result->setMethod(DD);
2273    Result->setKind(DD->isDeleted() ?
2274                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2275                    SpecialMemberOverloadResult::Success);
2276    return Result;
2277  }
2278
2279  // Prepare for overload resolution. Here we construct a synthetic argument
2280  // if necessary and make sure that implicit functions are declared.
2281  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2282  DeclarationName Name;
2283  Expr *Arg = 0;
2284  unsigned NumArgs;
2285
2286  QualType ArgType = CanTy;
2287  ExprValueKind VK = VK_LValue;
2288
2289  if (SM == CXXDefaultConstructor) {
2290    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2291    NumArgs = 0;
2292    if (RD->needsImplicitDefaultConstructor())
2293      DeclareImplicitDefaultConstructor(RD);
2294  } else {
2295    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2296      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2297      if (!RD->hasDeclaredCopyConstructor())
2298        DeclareImplicitCopyConstructor(RD);
2299      if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveConstructor())
2300        DeclareImplicitMoveConstructor(RD);
2301    } else {
2302      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2303      if (!RD->hasDeclaredCopyAssignment())
2304        DeclareImplicitCopyAssignment(RD);
2305      if (getLangOpts().CPlusPlus0x && RD->needsImplicitMoveAssignment())
2306        DeclareImplicitMoveAssignment(RD);
2307    }
2308
2309    if (ConstArg)
2310      ArgType.addConst();
2311    if (VolatileArg)
2312      ArgType.addVolatile();
2313
2314    // This isn't /really/ specified by the standard, but it's implied
2315    // we should be working from an RValue in the case of move to ensure
2316    // that we prefer to bind to rvalue references, and an LValue in the
2317    // case of copy to ensure we don't bind to rvalue references.
2318    // Possibly an XValue is actually correct in the case of move, but
2319    // there is no semantic difference for class types in this restricted
2320    // case.
2321    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2322      VK = VK_LValue;
2323    else
2324      VK = VK_RValue;
2325  }
2326
2327  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2328
2329  if (SM != CXXDefaultConstructor) {
2330    NumArgs = 1;
2331    Arg = &FakeArg;
2332  }
2333
2334  // Create the object argument
2335  QualType ThisTy = CanTy;
2336  if (ConstThis)
2337    ThisTy.addConst();
2338  if (VolatileThis)
2339    ThisTy.addVolatile();
2340  Expr::Classification Classification =
2341    OpaqueValueExpr(SourceLocation(), ThisTy,
2342                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2343
2344  // Now we perform lookup on the name we computed earlier and do overload
2345  // resolution. Lookup is only performed directly into the class since there
2346  // will always be a (possibly implicit) declaration to shadow any others.
2347  OverloadCandidateSet OCS((SourceLocation()));
2348  DeclContext::lookup_iterator I, E;
2349
2350  llvm::tie(I, E) = RD->lookup(Name);
2351  assert((I != E) &&
2352         "lookup for a constructor or assignment operator was empty");
2353  for ( ; I != E; ++I) {
2354    Decl *Cand = *I;
2355
2356    if (Cand->isInvalidDecl())
2357      continue;
2358
2359    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2360      // FIXME: [namespace.udecl]p15 says that we should only consider a
2361      // using declaration here if it does not match a declaration in the
2362      // derived class. We do not implement this correctly in other cases
2363      // either.
2364      Cand = U->getTargetDecl();
2365
2366      if (Cand->isInvalidDecl())
2367        continue;
2368    }
2369
2370    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2371      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2372        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2373                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2374                           OCS, true);
2375      else
2376        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2377                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2378    } else if (FunctionTemplateDecl *Tmpl =
2379                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2380      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2381        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2382                                   RD, 0, ThisTy, Classification,
2383                                   llvm::makeArrayRef(&Arg, NumArgs),
2384                                   OCS, true);
2385      else
2386        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2387                                     0, llvm::makeArrayRef(&Arg, NumArgs),
2388                                     OCS, true);
2389    } else {
2390      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2391    }
2392  }
2393
2394  OverloadCandidateSet::iterator Best;
2395  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2396    case OR_Success:
2397      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2398      Result->setKind(SpecialMemberOverloadResult::Success);
2399      break;
2400
2401    case OR_Deleted:
2402      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2403      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2404      break;
2405
2406    case OR_Ambiguous:
2407      Result->setMethod(0);
2408      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2409      break;
2410
2411    case OR_No_Viable_Function:
2412      Result->setMethod(0);
2413      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2414      break;
2415  }
2416
2417  return Result;
2418}
2419
2420/// \brief Look up the default constructor for the given class.
2421CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2422  SpecialMemberOverloadResult *Result =
2423    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2424                        false, false);
2425
2426  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2427}
2428
2429/// \brief Look up the copying constructor for the given class.
2430CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2431                                                   unsigned Quals) {
2432  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2433         "non-const, non-volatile qualifiers for copy ctor arg");
2434  SpecialMemberOverloadResult *Result =
2435    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2436                        Quals & Qualifiers::Volatile, false, false, false);
2437
2438  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2439}
2440
2441/// \brief Look up the moving constructor for the given class.
2442CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2443                                                  unsigned Quals) {
2444  SpecialMemberOverloadResult *Result =
2445    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2446                        Quals & Qualifiers::Volatile, false, false, false);
2447
2448  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2449}
2450
2451/// \brief Look up the constructors for the given class.
2452DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2453  // If the implicit constructors have not yet been declared, do so now.
2454  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2455    if (Class->needsImplicitDefaultConstructor())
2456      DeclareImplicitDefaultConstructor(Class);
2457    if (!Class->hasDeclaredCopyConstructor())
2458      DeclareImplicitCopyConstructor(Class);
2459    if (getLangOpts().CPlusPlus0x && Class->needsImplicitMoveConstructor())
2460      DeclareImplicitMoveConstructor(Class);
2461  }
2462
2463  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2464  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2465  return Class->lookup(Name);
2466}
2467
2468/// \brief Look up the copying assignment operator for the given class.
2469CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2470                                             unsigned Quals, bool RValueThis,
2471                                             unsigned ThisQuals) {
2472  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2473         "non-const, non-volatile qualifiers for copy assignment arg");
2474  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2475         "non-const, non-volatile qualifiers for copy assignment this");
2476  SpecialMemberOverloadResult *Result =
2477    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2478                        Quals & Qualifiers::Volatile, RValueThis,
2479                        ThisQuals & Qualifiers::Const,
2480                        ThisQuals & Qualifiers::Volatile);
2481
2482  return Result->getMethod();
2483}
2484
2485/// \brief Look up the moving assignment operator for the given class.
2486CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2487                                            unsigned Quals,
2488                                            bool RValueThis,
2489                                            unsigned ThisQuals) {
2490  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2491         "non-const, non-volatile qualifiers for copy assignment this");
2492  SpecialMemberOverloadResult *Result =
2493    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2494                        Quals & Qualifiers::Volatile, RValueThis,
2495                        ThisQuals & Qualifiers::Const,
2496                        ThisQuals & Qualifiers::Volatile);
2497
2498  return Result->getMethod();
2499}
2500
2501/// \brief Look for the destructor of the given class.
2502///
2503/// During semantic analysis, this routine should be used in lieu of
2504/// CXXRecordDecl::getDestructor().
2505///
2506/// \returns The destructor for this class.
2507CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2508  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2509                                                     false, false, false,
2510                                                     false, false)->getMethod());
2511}
2512
2513/// LookupLiteralOperator - Determine which literal operator should be used for
2514/// a user-defined literal, per C++11 [lex.ext].
2515///
2516/// Normal overload resolution is not used to select which literal operator to
2517/// call for a user-defined literal. Look up the provided literal operator name,
2518/// and filter the results to the appropriate set for the given argument types.
2519Sema::LiteralOperatorLookupResult
2520Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2521                            ArrayRef<QualType> ArgTys,
2522                            bool AllowRawAndTemplate) {
2523  LookupName(R, S);
2524  assert(R.getResultKind() != LookupResult::Ambiguous &&
2525         "literal operator lookup can't be ambiguous");
2526
2527  // Filter the lookup results appropriately.
2528  LookupResult::Filter F = R.makeFilter();
2529
2530  bool FoundTemplate = false;
2531  bool FoundRaw = false;
2532  bool FoundExactMatch = false;
2533
2534  while (F.hasNext()) {
2535    Decl *D = F.next();
2536    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2537      D = USD->getTargetDecl();
2538
2539    bool IsTemplate = isa<FunctionTemplateDecl>(D);
2540    bool IsRaw = false;
2541    bool IsExactMatch = false;
2542
2543    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2544      if (FD->getNumParams() == 1 &&
2545          FD->getParamDecl(0)->getType()->getAs<PointerType>())
2546        IsRaw = true;
2547      else {
2548        IsExactMatch = true;
2549        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2550          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2551          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2552            IsExactMatch = false;
2553            break;
2554          }
2555        }
2556      }
2557    }
2558
2559    if (IsExactMatch) {
2560      FoundExactMatch = true;
2561      AllowRawAndTemplate = false;
2562      if (FoundRaw || FoundTemplate) {
2563        // Go through again and remove the raw and template decls we've
2564        // already found.
2565        F.restart();
2566        FoundRaw = FoundTemplate = false;
2567      }
2568    } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2569      FoundTemplate |= IsTemplate;
2570      FoundRaw |= IsRaw;
2571    } else {
2572      F.erase();
2573    }
2574  }
2575
2576  F.done();
2577
2578  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2579  // parameter type, that is used in preference to a raw literal operator
2580  // or literal operator template.
2581  if (FoundExactMatch)
2582    return LOLR_Cooked;
2583
2584  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2585  // operator template, but not both.
2586  if (FoundRaw && FoundTemplate) {
2587    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2588    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2589      Decl *D = *I;
2590      if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2591        D = USD->getTargetDecl();
2592      if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2593        D = FunTmpl->getTemplatedDecl();
2594      NoteOverloadCandidate(cast<FunctionDecl>(D));
2595    }
2596    return LOLR_Error;
2597  }
2598
2599  if (FoundRaw)
2600    return LOLR_Raw;
2601
2602  if (FoundTemplate)
2603    return LOLR_Template;
2604
2605  // Didn't find anything we could use.
2606  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2607    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2608    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2609  return LOLR_Error;
2610}
2611
2612void ADLResult::insert(NamedDecl *New) {
2613  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2614
2615  // If we haven't yet seen a decl for this key, or the last decl
2616  // was exactly this one, we're done.
2617  if (Old == 0 || Old == New) {
2618    Old = New;
2619    return;
2620  }
2621
2622  // Otherwise, decide which is a more recent redeclaration.
2623  FunctionDecl *OldFD, *NewFD;
2624  if (isa<FunctionTemplateDecl>(New)) {
2625    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2626    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2627  } else {
2628    OldFD = cast<FunctionDecl>(Old);
2629    NewFD = cast<FunctionDecl>(New);
2630  }
2631
2632  FunctionDecl *Cursor = NewFD;
2633  while (true) {
2634    Cursor = Cursor->getPreviousDecl();
2635
2636    // If we got to the end without finding OldFD, OldFD is the newer
2637    // declaration;  leave things as they are.
2638    if (!Cursor) return;
2639
2640    // If we do find OldFD, then NewFD is newer.
2641    if (Cursor == OldFD) break;
2642
2643    // Otherwise, keep looking.
2644  }
2645
2646  Old = New;
2647}
2648
2649void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2650                                   SourceLocation Loc,
2651                                   llvm::ArrayRef<Expr *> Args,
2652                                   ADLResult &Result) {
2653  // Find all of the associated namespaces and classes based on the
2654  // arguments we have.
2655  AssociatedNamespaceSet AssociatedNamespaces;
2656  AssociatedClassSet AssociatedClasses;
2657  FindAssociatedClassesAndNamespaces(Loc, Args,
2658                                     AssociatedNamespaces,
2659                                     AssociatedClasses);
2660
2661  QualType T1, T2;
2662  if (Operator) {
2663    T1 = Args[0]->getType();
2664    if (Args.size() >= 2)
2665      T2 = Args[1]->getType();
2666  }
2667
2668  // C++ [basic.lookup.argdep]p3:
2669  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2670  //   and let Y be the lookup set produced by argument dependent
2671  //   lookup (defined as follows). If X contains [...] then Y is
2672  //   empty. Otherwise Y is the set of declarations found in the
2673  //   namespaces associated with the argument types as described
2674  //   below. The set of declarations found by the lookup of the name
2675  //   is the union of X and Y.
2676  //
2677  // Here, we compute Y and add its members to the overloaded
2678  // candidate set.
2679  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2680                                     NSEnd = AssociatedNamespaces.end();
2681       NS != NSEnd; ++NS) {
2682    //   When considering an associated namespace, the lookup is the
2683    //   same as the lookup performed when the associated namespace is
2684    //   used as a qualifier (3.4.3.2) except that:
2685    //
2686    //     -- Any using-directives in the associated namespace are
2687    //        ignored.
2688    //
2689    //     -- Any namespace-scope friend functions declared in
2690    //        associated classes are visible within their respective
2691    //        namespaces even if they are not visible during an ordinary
2692    //        lookup (11.4).
2693    DeclContext::lookup_iterator I, E;
2694    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2695      NamedDecl *D = *I;
2696      // If the only declaration here is an ordinary friend, consider
2697      // it only if it was declared in an associated classes.
2698      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2699        DeclContext *LexDC = D->getLexicalDeclContext();
2700        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2701          continue;
2702      }
2703
2704      if (isa<UsingShadowDecl>(D))
2705        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2706
2707      if (isa<FunctionDecl>(D)) {
2708        if (Operator &&
2709            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2710                                                    T1, T2, Context))
2711          continue;
2712      } else if (!isa<FunctionTemplateDecl>(D))
2713        continue;
2714
2715      Result.insert(D);
2716    }
2717  }
2718}
2719
2720//----------------------------------------------------------------------------
2721// Search for all visible declarations.
2722//----------------------------------------------------------------------------
2723VisibleDeclConsumer::~VisibleDeclConsumer() { }
2724
2725namespace {
2726
2727class ShadowContextRAII;
2728
2729class VisibleDeclsRecord {
2730public:
2731  /// \brief An entry in the shadow map, which is optimized to store a
2732  /// single declaration (the common case) but can also store a list
2733  /// of declarations.
2734  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2735
2736private:
2737  /// \brief A mapping from declaration names to the declarations that have
2738  /// this name within a particular scope.
2739  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2740
2741  /// \brief A list of shadow maps, which is used to model name hiding.
2742  std::list<ShadowMap> ShadowMaps;
2743
2744  /// \brief The declaration contexts we have already visited.
2745  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2746
2747  friend class ShadowContextRAII;
2748
2749public:
2750  /// \brief Determine whether we have already visited this context
2751  /// (and, if not, note that we are going to visit that context now).
2752  bool visitedContext(DeclContext *Ctx) {
2753    return !VisitedContexts.insert(Ctx);
2754  }
2755
2756  bool alreadyVisitedContext(DeclContext *Ctx) {
2757    return VisitedContexts.count(Ctx);
2758  }
2759
2760  /// \brief Determine whether the given declaration is hidden in the
2761  /// current scope.
2762  ///
2763  /// \returns the declaration that hides the given declaration, or
2764  /// NULL if no such declaration exists.
2765  NamedDecl *checkHidden(NamedDecl *ND);
2766
2767  /// \brief Add a declaration to the current shadow map.
2768  void add(NamedDecl *ND) {
2769    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2770  }
2771};
2772
2773/// \brief RAII object that records when we've entered a shadow context.
2774class ShadowContextRAII {
2775  VisibleDeclsRecord &Visible;
2776
2777  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2778
2779public:
2780  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2781    Visible.ShadowMaps.push_back(ShadowMap());
2782  }
2783
2784  ~ShadowContextRAII() {
2785    Visible.ShadowMaps.pop_back();
2786  }
2787};
2788
2789} // end anonymous namespace
2790
2791NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2792  // Look through using declarations.
2793  ND = ND->getUnderlyingDecl();
2794
2795  unsigned IDNS = ND->getIdentifierNamespace();
2796  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2797  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2798       SM != SMEnd; ++SM) {
2799    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2800    if (Pos == SM->end())
2801      continue;
2802
2803    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2804                               IEnd = Pos->second.end();
2805         I != IEnd; ++I) {
2806      // A tag declaration does not hide a non-tag declaration.
2807      if ((*I)->hasTagIdentifierNamespace() &&
2808          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2809                   Decl::IDNS_ObjCProtocol)))
2810        continue;
2811
2812      // Protocols are in distinct namespaces from everything else.
2813      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2814           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2815          (*I)->getIdentifierNamespace() != IDNS)
2816        continue;
2817
2818      // Functions and function templates in the same scope overload
2819      // rather than hide.  FIXME: Look for hiding based on function
2820      // signatures!
2821      if ((*I)->isFunctionOrFunctionTemplate() &&
2822          ND->isFunctionOrFunctionTemplate() &&
2823          SM == ShadowMaps.rbegin())
2824        continue;
2825
2826      // We've found a declaration that hides this one.
2827      return *I;
2828    }
2829  }
2830
2831  return 0;
2832}
2833
2834static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2835                               bool QualifiedNameLookup,
2836                               bool InBaseClass,
2837                               VisibleDeclConsumer &Consumer,
2838                               VisibleDeclsRecord &Visited) {
2839  if (!Ctx)
2840    return;
2841
2842  // Make sure we don't visit the same context twice.
2843  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2844    return;
2845
2846  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2847    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2848
2849  // Enumerate all of the results in this context.
2850  for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2851                                      LEnd = Ctx->lookups_end();
2852       L != LEnd; ++L) {
2853    for (DeclContext::lookup_result R = *L; R.first != R.second; ++R.first) {
2854      if (NamedDecl *ND = dyn_cast<NamedDecl>(*R.first)) {
2855        if ((ND = Result.getAcceptableDecl(ND))) {
2856          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2857          Visited.add(ND);
2858        }
2859      }
2860    }
2861  }
2862
2863  // Traverse using directives for qualified name lookup.
2864  if (QualifiedNameLookup) {
2865    ShadowContextRAII Shadow(Visited);
2866    DeclContext::udir_iterator I, E;
2867    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2868      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2869                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2870    }
2871  }
2872
2873  // Traverse the contexts of inherited C++ classes.
2874  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2875    if (!Record->hasDefinition())
2876      return;
2877
2878    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2879                                         BEnd = Record->bases_end();
2880         B != BEnd; ++B) {
2881      QualType BaseType = B->getType();
2882
2883      // Don't look into dependent bases, because name lookup can't look
2884      // there anyway.
2885      if (BaseType->isDependentType())
2886        continue;
2887
2888      const RecordType *Record = BaseType->getAs<RecordType>();
2889      if (!Record)
2890        continue;
2891
2892      // FIXME: It would be nice to be able to determine whether referencing
2893      // a particular member would be ambiguous. For example, given
2894      //
2895      //   struct A { int member; };
2896      //   struct B { int member; };
2897      //   struct C : A, B { };
2898      //
2899      //   void f(C *c) { c->### }
2900      //
2901      // accessing 'member' would result in an ambiguity. However, we
2902      // could be smart enough to qualify the member with the base
2903      // class, e.g.,
2904      //
2905      //   c->B::member
2906      //
2907      // or
2908      //
2909      //   c->A::member
2910
2911      // Find results in this base class (and its bases).
2912      ShadowContextRAII Shadow(Visited);
2913      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2914                         true, Consumer, Visited);
2915    }
2916  }
2917
2918  // Traverse the contexts of Objective-C classes.
2919  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2920    // Traverse categories.
2921    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2922         Category; Category = Category->getNextClassCategory()) {
2923      ShadowContextRAII Shadow(Visited);
2924      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2925                         Consumer, Visited);
2926    }
2927
2928    // Traverse protocols.
2929    for (ObjCInterfaceDecl::all_protocol_iterator
2930         I = IFace->all_referenced_protocol_begin(),
2931         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2932      ShadowContextRAII Shadow(Visited);
2933      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2934                         Visited);
2935    }
2936
2937    // Traverse the superclass.
2938    if (IFace->getSuperClass()) {
2939      ShadowContextRAII Shadow(Visited);
2940      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2941                         true, Consumer, Visited);
2942    }
2943
2944    // If there is an implementation, traverse it. We do this to find
2945    // synthesized ivars.
2946    if (IFace->getImplementation()) {
2947      ShadowContextRAII Shadow(Visited);
2948      LookupVisibleDecls(IFace->getImplementation(), Result,
2949                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2950    }
2951  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2952    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2953           E = Protocol->protocol_end(); I != E; ++I) {
2954      ShadowContextRAII Shadow(Visited);
2955      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2956                         Visited);
2957    }
2958  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2959    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2960           E = Category->protocol_end(); I != E; ++I) {
2961      ShadowContextRAII Shadow(Visited);
2962      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2963                         Visited);
2964    }
2965
2966    // If there is an implementation, traverse it.
2967    if (Category->getImplementation()) {
2968      ShadowContextRAII Shadow(Visited);
2969      LookupVisibleDecls(Category->getImplementation(), Result,
2970                         QualifiedNameLookup, true, Consumer, Visited);
2971    }
2972  }
2973}
2974
2975static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2976                               UnqualUsingDirectiveSet &UDirs,
2977                               VisibleDeclConsumer &Consumer,
2978                               VisibleDeclsRecord &Visited) {
2979  if (!S)
2980    return;
2981
2982  if (!S->getEntity() ||
2983      (!S->getParent() &&
2984       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2985      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2986    // Walk through the declarations in this Scope.
2987    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2988         D != DEnd; ++D) {
2989      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2990        if ((ND = Result.getAcceptableDecl(ND))) {
2991          Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
2992          Visited.add(ND);
2993        }
2994    }
2995  }
2996
2997  // FIXME: C++ [temp.local]p8
2998  DeclContext *Entity = 0;
2999  if (S->getEntity()) {
3000    // Look into this scope's declaration context, along with any of its
3001    // parent lookup contexts (e.g., enclosing classes), up to the point
3002    // where we hit the context stored in the next outer scope.
3003    Entity = (DeclContext *)S->getEntity();
3004    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3005
3006    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3007         Ctx = Ctx->getLookupParent()) {
3008      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3009        if (Method->isInstanceMethod()) {
3010          // For instance methods, look for ivars in the method's interface.
3011          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3012                                  Result.getNameLoc(), Sema::LookupMemberName);
3013          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3014            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3015                               /*InBaseClass=*/false, Consumer, Visited);
3016          }
3017        }
3018
3019        // We've already performed all of the name lookup that we need
3020        // to for Objective-C methods; the next context will be the
3021        // outer scope.
3022        break;
3023      }
3024
3025      if (Ctx->isFunctionOrMethod())
3026        continue;
3027
3028      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3029                         /*InBaseClass=*/false, Consumer, Visited);
3030    }
3031  } else if (!S->getParent()) {
3032    // Look into the translation unit scope. We walk through the translation
3033    // unit's declaration context, because the Scope itself won't have all of
3034    // the declarations if we loaded a precompiled header.
3035    // FIXME: We would like the translation unit's Scope object to point to the
3036    // translation unit, so we don't need this special "if" branch. However,
3037    // doing so would force the normal C++ name-lookup code to look into the
3038    // translation unit decl when the IdentifierInfo chains would suffice.
3039    // Once we fix that problem (which is part of a more general "don't look
3040    // in DeclContexts unless we have to" optimization), we can eliminate this.
3041    Entity = Result.getSema().Context.getTranslationUnitDecl();
3042    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3043                       /*InBaseClass=*/false, Consumer, Visited);
3044  }
3045
3046  if (Entity) {
3047    // Lookup visible declarations in any namespaces found by using
3048    // directives.
3049    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3050    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3051    for (; UI != UEnd; ++UI)
3052      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3053                         Result, /*QualifiedNameLookup=*/false,
3054                         /*InBaseClass=*/false, Consumer, Visited);
3055  }
3056
3057  // Lookup names in the parent scope.
3058  ShadowContextRAII Shadow(Visited);
3059  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3060}
3061
3062void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3063                              VisibleDeclConsumer &Consumer,
3064                              bool IncludeGlobalScope) {
3065  // Determine the set of using directives available during
3066  // unqualified name lookup.
3067  Scope *Initial = S;
3068  UnqualUsingDirectiveSet UDirs;
3069  if (getLangOpts().CPlusPlus) {
3070    // Find the first namespace or translation-unit scope.
3071    while (S && !isNamespaceOrTranslationUnitScope(S))
3072      S = S->getParent();
3073
3074    UDirs.visitScopeChain(Initial, S);
3075  }
3076  UDirs.done();
3077
3078  // Look for visible declarations.
3079  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3080  VisibleDeclsRecord Visited;
3081  if (!IncludeGlobalScope)
3082    Visited.visitedContext(Context.getTranslationUnitDecl());
3083  ShadowContextRAII Shadow(Visited);
3084  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3085}
3086
3087void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3088                              VisibleDeclConsumer &Consumer,
3089                              bool IncludeGlobalScope) {
3090  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3091  VisibleDeclsRecord Visited;
3092  if (!IncludeGlobalScope)
3093    Visited.visitedContext(Context.getTranslationUnitDecl());
3094  ShadowContextRAII Shadow(Visited);
3095  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3096                       /*InBaseClass=*/false, Consumer, Visited);
3097}
3098
3099/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3100/// If GnuLabelLoc is a valid source location, then this is a definition
3101/// of an __label__ label name, otherwise it is a normal label definition
3102/// or use.
3103LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3104                                     SourceLocation GnuLabelLoc) {
3105  // Do a lookup to see if we have a label with this name already.
3106  NamedDecl *Res = 0;
3107
3108  if (GnuLabelLoc.isValid()) {
3109    // Local label definitions always shadow existing labels.
3110    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3111    Scope *S = CurScope;
3112    PushOnScopeChains(Res, S, true);
3113    return cast<LabelDecl>(Res);
3114  }
3115
3116  // Not a GNU local label.
3117  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3118  // If we found a label, check to see if it is in the same context as us.
3119  // When in a Block, we don't want to reuse a label in an enclosing function.
3120  if (Res && Res->getDeclContext() != CurContext)
3121    Res = 0;
3122  if (Res == 0) {
3123    // If not forward referenced or defined already, create the backing decl.
3124    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3125    Scope *S = CurScope->getFnParent();
3126    assert(S && "Not in a function?");
3127    PushOnScopeChains(Res, S, true);
3128  }
3129  return cast<LabelDecl>(Res);
3130}
3131
3132//===----------------------------------------------------------------------===//
3133// Typo correction
3134//===----------------------------------------------------------------------===//
3135
3136namespace {
3137
3138typedef llvm::SmallVector<TypoCorrection, 1> TypoResultList;
3139typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3140typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3141
3142static const unsigned MaxTypoDistanceResultSets = 5;
3143
3144class TypoCorrectionConsumer : public VisibleDeclConsumer {
3145  /// \brief The name written that is a typo in the source.
3146  StringRef Typo;
3147
3148  /// \brief The results found that have the smallest edit distance
3149  /// found (so far) with the typo name.
3150  ///
3151  /// The pointer value being set to the current DeclContext indicates
3152  /// whether there is a keyword with this name.
3153  TypoEditDistanceMap CorrectionResults;
3154
3155  Sema &SemaRef;
3156
3157public:
3158  explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3159    : Typo(Typo->getName()),
3160      SemaRef(SemaRef) { }
3161
3162  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3163                         bool InBaseClass);
3164  void FoundName(StringRef Name);
3165  void addKeywordResult(StringRef Keyword);
3166  void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3167               NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3168  void addCorrection(TypoCorrection Correction);
3169
3170  typedef TypoResultsMap::iterator result_iterator;
3171  typedef TypoEditDistanceMap::iterator distance_iterator;
3172  distance_iterator begin() { return CorrectionResults.begin(); }
3173  distance_iterator end()  { return CorrectionResults.end(); }
3174  void erase(distance_iterator I) { CorrectionResults.erase(I); }
3175  unsigned size() const { return CorrectionResults.size(); }
3176  bool empty() const { return CorrectionResults.empty(); }
3177
3178  TypoResultList &operator[](StringRef Name) {
3179    return CorrectionResults.begin()->second[Name];
3180  }
3181
3182  unsigned getBestEditDistance(bool Normalized) {
3183    if (CorrectionResults.empty())
3184      return (std::numeric_limits<unsigned>::max)();
3185
3186    unsigned BestED = CorrectionResults.begin()->first;
3187    return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3188  }
3189
3190  TypoResultsMap &getBestResults() {
3191    return CorrectionResults.begin()->second;
3192  }
3193
3194};
3195
3196}
3197
3198void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3199                                       DeclContext *Ctx, bool InBaseClass) {
3200  // Don't consider hidden names for typo correction.
3201  if (Hiding)
3202    return;
3203
3204  // Only consider entities with identifiers for names, ignoring
3205  // special names (constructors, overloaded operators, selectors,
3206  // etc.).
3207  IdentifierInfo *Name = ND->getIdentifier();
3208  if (!Name)
3209    return;
3210
3211  FoundName(Name->getName());
3212}
3213
3214void TypoCorrectionConsumer::FoundName(StringRef Name) {
3215  // Use a simple length-based heuristic to determine the minimum possible
3216  // edit distance. If the minimum isn't good enough, bail out early.
3217  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3218  if (MinED && Typo.size() / MinED < 3)
3219    return;
3220
3221  // Compute an upper bound on the allowable edit distance, so that the
3222  // edit-distance algorithm can short-circuit.
3223  unsigned UpperBound = (Typo.size() + 2) / 3;
3224
3225  // Compute the edit distance between the typo and the name of this
3226  // entity, and add the identifier to the list of results.
3227  addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3228}
3229
3230void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3231  // Compute the edit distance between the typo and this keyword,
3232  // and add the keyword to the list of results.
3233  addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3234}
3235
3236void TypoCorrectionConsumer::addName(StringRef Name,
3237                                     NamedDecl *ND,
3238                                     unsigned Distance,
3239                                     NestedNameSpecifier *NNS,
3240                                     bool isKeyword) {
3241  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3242  if (isKeyword) TC.makeKeyword();
3243  addCorrection(TC);
3244}
3245
3246void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3247  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3248  TypoResultList &CList =
3249      CorrectionResults[Correction.getEditDistance(false)][Name];
3250
3251  if (!CList.empty() && !CList.back().isResolved())
3252    CList.pop_back();
3253  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3254    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3255    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3256         RI != RIEnd; ++RI) {
3257      // If the Correction refers to a decl already in the result list,
3258      // replace the existing result if the string representation of Correction
3259      // comes before the current result alphabetically, then stop as there is
3260      // nothing more to be done to add Correction to the candidate set.
3261      if (RI->getCorrectionDecl() == NewND) {
3262        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3263          *RI = Correction;
3264        return;
3265      }
3266    }
3267  }
3268  if (CList.empty() || Correction.isResolved())
3269    CList.push_back(Correction);
3270
3271  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3272    erase(llvm::prior(CorrectionResults.end()));
3273}
3274
3275// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3276// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3277// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3278static void getNestedNameSpecifierIdentifiers(
3279    NestedNameSpecifier *NNS,
3280    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3281  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3282    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3283  else
3284    Identifiers.clear();
3285
3286  const IdentifierInfo *II = NULL;
3287
3288  switch (NNS->getKind()) {
3289  case NestedNameSpecifier::Identifier:
3290    II = NNS->getAsIdentifier();
3291    break;
3292
3293  case NestedNameSpecifier::Namespace:
3294    if (NNS->getAsNamespace()->isAnonymousNamespace())
3295      return;
3296    II = NNS->getAsNamespace()->getIdentifier();
3297    break;
3298
3299  case NestedNameSpecifier::NamespaceAlias:
3300    II = NNS->getAsNamespaceAlias()->getIdentifier();
3301    break;
3302
3303  case NestedNameSpecifier::TypeSpecWithTemplate:
3304  case NestedNameSpecifier::TypeSpec:
3305    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3306    break;
3307
3308  case NestedNameSpecifier::Global:
3309    return;
3310  }
3311
3312  if (II)
3313    Identifiers.push_back(II);
3314}
3315
3316namespace {
3317
3318class SpecifierInfo {
3319 public:
3320  DeclContext* DeclCtx;
3321  NestedNameSpecifier* NameSpecifier;
3322  unsigned EditDistance;
3323
3324  SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3325      : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3326};
3327
3328typedef SmallVector<DeclContext*, 4> DeclContextList;
3329typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3330
3331class NamespaceSpecifierSet {
3332  ASTContext &Context;
3333  DeclContextList CurContextChain;
3334  SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3335  SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3336  bool isSorted;
3337
3338  SpecifierInfoList Specifiers;
3339  llvm::SmallSetVector<unsigned, 4> Distances;
3340  llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3341
3342  /// \brief Helper for building the list of DeclContexts between the current
3343  /// context and the top of the translation unit
3344  static DeclContextList BuildContextChain(DeclContext *Start);
3345
3346  void SortNamespaces();
3347
3348 public:
3349  NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3350                        CXXScopeSpec *CurScopeSpec)
3351      : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3352        isSorted(true) {
3353    if (CurScopeSpec && CurScopeSpec->getScopeRep())
3354      getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3355                                        CurNameSpecifierIdentifiers);
3356    // Build the list of identifiers that would be used for an absolute
3357    // (from the global context) NestedNameSpecifier referring to the current
3358    // context.
3359    for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3360                                        CEnd = CurContextChain.rend();
3361         C != CEnd; ++C) {
3362      if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3363        CurContextIdentifiers.push_back(ND->getIdentifier());
3364    }
3365  }
3366
3367  /// \brief Add the namespace to the set, computing the corresponding
3368  /// NestedNameSpecifier and its distance in the process.
3369  void AddNamespace(NamespaceDecl *ND);
3370
3371  typedef SpecifierInfoList::iterator iterator;
3372  iterator begin() {
3373    if (!isSorted) SortNamespaces();
3374    return Specifiers.begin();
3375  }
3376  iterator end() { return Specifiers.end(); }
3377};
3378
3379}
3380
3381DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3382  assert(Start && "Bulding a context chain from a null context");
3383  DeclContextList Chain;
3384  for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3385       DC = DC->getLookupParent()) {
3386    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3387    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3388        !(ND && ND->isAnonymousNamespace()))
3389      Chain.push_back(DC->getPrimaryContext());
3390  }
3391  return Chain;
3392}
3393
3394void NamespaceSpecifierSet::SortNamespaces() {
3395  SmallVector<unsigned, 4> sortedDistances;
3396  sortedDistances.append(Distances.begin(), Distances.end());
3397
3398  if (sortedDistances.size() > 1)
3399    std::sort(sortedDistances.begin(), sortedDistances.end());
3400
3401  Specifiers.clear();
3402  for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3403                                       DIEnd = sortedDistances.end();
3404       DI != DIEnd; ++DI) {
3405    SpecifierInfoList &SpecList = DistanceMap[*DI];
3406    Specifiers.append(SpecList.begin(), SpecList.end());
3407  }
3408
3409  isSorted = true;
3410}
3411
3412void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3413  DeclContext *Ctx = cast<DeclContext>(ND);
3414  NestedNameSpecifier *NNS = NULL;
3415  unsigned NumSpecifiers = 0;
3416  DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3417  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3418
3419  // Eliminate common elements from the two DeclContext chains.
3420  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3421                                      CEnd = CurContextChain.rend();
3422       C != CEnd && !NamespaceDeclChain.empty() &&
3423       NamespaceDeclChain.back() == *C; ++C) {
3424    NamespaceDeclChain.pop_back();
3425  }
3426
3427  // Add an explicit leading '::' specifier if needed.
3428  if (NamespaceDecl *ND =
3429        NamespaceDeclChain.empty() ? NULL :
3430          dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3431    IdentifierInfo *Name = ND->getIdentifier();
3432    if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3433                  Name) != CurContextIdentifiers.end() ||
3434        std::find(CurNameSpecifierIdentifiers.begin(),
3435                  CurNameSpecifierIdentifiers.end(),
3436                  Name) != CurNameSpecifierIdentifiers.end()) {
3437      NamespaceDeclChain = FullNamespaceDeclChain;
3438      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3439    }
3440  }
3441
3442  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3443  for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3444                                      CEnd = NamespaceDeclChain.rend();
3445       C != CEnd; ++C) {
3446    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3447    if (ND) {
3448      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3449      ++NumSpecifiers;
3450    }
3451  }
3452
3453  // If the built NestedNameSpecifier would be replacing an existing
3454  // NestedNameSpecifier, use the number of component identifiers that
3455  // would need to be changed as the edit distance instead of the number
3456  // of components in the built NestedNameSpecifier.
3457  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3458    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3459    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3460    NumSpecifiers = llvm::ComputeEditDistance(
3461      llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3462      llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3463  }
3464
3465  isSorted = false;
3466  Distances.insert(NumSpecifiers);
3467  DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3468}
3469
3470/// \brief Perform name lookup for a possible result for typo correction.
3471static void LookupPotentialTypoResult(Sema &SemaRef,
3472                                      LookupResult &Res,
3473                                      IdentifierInfo *Name,
3474                                      Scope *S, CXXScopeSpec *SS,
3475                                      DeclContext *MemberContext,
3476                                      bool EnteringContext,
3477                                      bool isObjCIvarLookup) {
3478  Res.suppressDiagnostics();
3479  Res.clear();
3480  Res.setLookupName(Name);
3481  if (MemberContext) {
3482    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3483      if (isObjCIvarLookup) {
3484        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3485          Res.addDecl(Ivar);
3486          Res.resolveKind();
3487          return;
3488        }
3489      }
3490
3491      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3492        Res.addDecl(Prop);
3493        Res.resolveKind();
3494        return;
3495      }
3496    }
3497
3498    SemaRef.LookupQualifiedName(Res, MemberContext);
3499    return;
3500  }
3501
3502  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3503                           EnteringContext);
3504
3505  // Fake ivar lookup; this should really be part of
3506  // LookupParsedName.
3507  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3508    if (Method->isInstanceMethod() && Method->getClassInterface() &&
3509        (Res.empty() ||
3510         (Res.isSingleResult() &&
3511          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3512       if (ObjCIvarDecl *IV
3513             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3514         Res.addDecl(IV);
3515         Res.resolveKind();
3516       }
3517     }
3518  }
3519}
3520
3521/// \brief Add keywords to the consumer as possible typo corrections.
3522static void AddKeywordsToConsumer(Sema &SemaRef,
3523                                  TypoCorrectionConsumer &Consumer,
3524                                  Scope *S, CorrectionCandidateCallback &CCC,
3525                                  bool AfterNestedNameSpecifier) {
3526  if (AfterNestedNameSpecifier) {
3527    // For 'X::', we know exactly which keywords can appear next.
3528    Consumer.addKeywordResult("template");
3529    if (CCC.WantExpressionKeywords)
3530      Consumer.addKeywordResult("operator");
3531    return;
3532  }
3533
3534  if (CCC.WantObjCSuper)
3535    Consumer.addKeywordResult("super");
3536
3537  if (CCC.WantTypeSpecifiers) {
3538    // Add type-specifier keywords to the set of results.
3539    const char *CTypeSpecs[] = {
3540      "char", "const", "double", "enum", "float", "int", "long", "short",
3541      "signed", "struct", "union", "unsigned", "void", "volatile",
3542      "_Complex", "_Imaginary",
3543      // storage-specifiers as well
3544      "extern", "inline", "static", "typedef"
3545    };
3546
3547    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3548    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3549      Consumer.addKeywordResult(CTypeSpecs[I]);
3550
3551    if (SemaRef.getLangOpts().C99)
3552      Consumer.addKeywordResult("restrict");
3553    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3554      Consumer.addKeywordResult("bool");
3555    else if (SemaRef.getLangOpts().C99)
3556      Consumer.addKeywordResult("_Bool");
3557
3558    if (SemaRef.getLangOpts().CPlusPlus) {
3559      Consumer.addKeywordResult("class");
3560      Consumer.addKeywordResult("typename");
3561      Consumer.addKeywordResult("wchar_t");
3562
3563      if (SemaRef.getLangOpts().CPlusPlus0x) {
3564        Consumer.addKeywordResult("char16_t");
3565        Consumer.addKeywordResult("char32_t");
3566        Consumer.addKeywordResult("constexpr");
3567        Consumer.addKeywordResult("decltype");
3568        Consumer.addKeywordResult("thread_local");
3569      }
3570    }
3571
3572    if (SemaRef.getLangOpts().GNUMode)
3573      Consumer.addKeywordResult("typeof");
3574  }
3575
3576  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3577    Consumer.addKeywordResult("const_cast");
3578    Consumer.addKeywordResult("dynamic_cast");
3579    Consumer.addKeywordResult("reinterpret_cast");
3580    Consumer.addKeywordResult("static_cast");
3581  }
3582
3583  if (CCC.WantExpressionKeywords) {
3584    Consumer.addKeywordResult("sizeof");
3585    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3586      Consumer.addKeywordResult("false");
3587      Consumer.addKeywordResult("true");
3588    }
3589
3590    if (SemaRef.getLangOpts().CPlusPlus) {
3591      const char *CXXExprs[] = {
3592        "delete", "new", "operator", "throw", "typeid"
3593      };
3594      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3595      for (unsigned I = 0; I != NumCXXExprs; ++I)
3596        Consumer.addKeywordResult(CXXExprs[I]);
3597
3598      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3599          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3600        Consumer.addKeywordResult("this");
3601
3602      if (SemaRef.getLangOpts().CPlusPlus0x) {
3603        Consumer.addKeywordResult("alignof");
3604        Consumer.addKeywordResult("nullptr");
3605      }
3606    }
3607
3608    if (SemaRef.getLangOpts().C11) {
3609      // FIXME: We should not suggest _Alignof if the alignof macro
3610      // is present.
3611      Consumer.addKeywordResult("_Alignof");
3612    }
3613  }
3614
3615  if (CCC.WantRemainingKeywords) {
3616    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3617      // Statements.
3618      const char *CStmts[] = {
3619        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3620      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3621      for (unsigned I = 0; I != NumCStmts; ++I)
3622        Consumer.addKeywordResult(CStmts[I]);
3623
3624      if (SemaRef.getLangOpts().CPlusPlus) {
3625        Consumer.addKeywordResult("catch");
3626        Consumer.addKeywordResult("try");
3627      }
3628
3629      if (S && S->getBreakParent())
3630        Consumer.addKeywordResult("break");
3631
3632      if (S && S->getContinueParent())
3633        Consumer.addKeywordResult("continue");
3634
3635      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3636        Consumer.addKeywordResult("case");
3637        Consumer.addKeywordResult("default");
3638      }
3639    } else {
3640      if (SemaRef.getLangOpts().CPlusPlus) {
3641        Consumer.addKeywordResult("namespace");
3642        Consumer.addKeywordResult("template");
3643      }
3644
3645      if (S && S->isClassScope()) {
3646        Consumer.addKeywordResult("explicit");
3647        Consumer.addKeywordResult("friend");
3648        Consumer.addKeywordResult("mutable");
3649        Consumer.addKeywordResult("private");
3650        Consumer.addKeywordResult("protected");
3651        Consumer.addKeywordResult("public");
3652        Consumer.addKeywordResult("virtual");
3653      }
3654    }
3655
3656    if (SemaRef.getLangOpts().CPlusPlus) {
3657      Consumer.addKeywordResult("using");
3658
3659      if (SemaRef.getLangOpts().CPlusPlus0x)
3660        Consumer.addKeywordResult("static_assert");
3661    }
3662  }
3663}
3664
3665static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3666                              TypoCorrection &Candidate) {
3667  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3668  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3669}
3670
3671/// \brief Try to "correct" a typo in the source code by finding
3672/// visible declarations whose names are similar to the name that was
3673/// present in the source code.
3674///
3675/// \param TypoName the \c DeclarationNameInfo structure that contains
3676/// the name that was present in the source code along with its location.
3677///
3678/// \param LookupKind the name-lookup criteria used to search for the name.
3679///
3680/// \param S the scope in which name lookup occurs.
3681///
3682/// \param SS the nested-name-specifier that precedes the name we're
3683/// looking for, if present.
3684///
3685/// \param CCC A CorrectionCandidateCallback object that provides further
3686/// validation of typo correction candidates. It also provides flags for
3687/// determining the set of keywords permitted.
3688///
3689/// \param MemberContext if non-NULL, the context in which to look for
3690/// a member access expression.
3691///
3692/// \param EnteringContext whether we're entering the context described by
3693/// the nested-name-specifier SS.
3694///
3695/// \param OPT when non-NULL, the search for visible declarations will
3696/// also walk the protocols in the qualified interfaces of \p OPT.
3697///
3698/// \returns a \c TypoCorrection containing the corrected name if the typo
3699/// along with information such as the \c NamedDecl where the corrected name
3700/// was declared, and any additional \c NestedNameSpecifier needed to access
3701/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
3702TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3703                                 Sema::LookupNameKind LookupKind,
3704                                 Scope *S, CXXScopeSpec *SS,
3705                                 CorrectionCandidateCallback &CCC,
3706                                 DeclContext *MemberContext,
3707                                 bool EnteringContext,
3708                                 const ObjCObjectPointerType *OPT) {
3709  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3710    return TypoCorrection();
3711
3712  // In Microsoft mode, don't perform typo correction in a template member
3713  // function dependent context because it interferes with the "lookup into
3714  // dependent bases of class templates" feature.
3715  if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3716      isa<CXXMethodDecl>(CurContext))
3717    return TypoCorrection();
3718
3719  // We only attempt to correct typos for identifiers.
3720  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3721  if (!Typo)
3722    return TypoCorrection();
3723
3724  // If the scope specifier itself was invalid, don't try to correct
3725  // typos.
3726  if (SS && SS->isInvalid())
3727    return TypoCorrection();
3728
3729  // Never try to correct typos during template deduction or
3730  // instantiation.
3731  if (!ActiveTemplateInstantiations.empty())
3732    return TypoCorrection();
3733
3734  NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3735
3736  TypoCorrectionConsumer Consumer(*this, Typo);
3737
3738  // If a callback object considers an empty typo correction candidate to be
3739  // viable, assume it does not do any actual validation of the candidates.
3740  TypoCorrection EmptyCorrection;
3741  bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3742
3743  // Perform name lookup to find visible, similarly-named entities.
3744  bool IsUnqualifiedLookup = false;
3745  DeclContext *QualifiedDC = MemberContext;
3746  if (MemberContext) {
3747    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3748
3749    // Look in qualified interfaces.
3750    if (OPT) {
3751      for (ObjCObjectPointerType::qual_iterator
3752             I = OPT->qual_begin(), E = OPT->qual_end();
3753           I != E; ++I)
3754        LookupVisibleDecls(*I, LookupKind, Consumer);
3755    }
3756  } else if (SS && SS->isSet()) {
3757    QualifiedDC = computeDeclContext(*SS, EnteringContext);
3758    if (!QualifiedDC)
3759      return TypoCorrection();
3760
3761    // Provide a stop gap for files that are just seriously broken.  Trying
3762    // to correct all typos can turn into a HUGE performance penalty, causing
3763    // some files to take minutes to get rejected by the parser.
3764    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3765      return TypoCorrection();
3766    ++TyposCorrected;
3767
3768    LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3769  } else {
3770    IsUnqualifiedLookup = true;
3771    UnqualifiedTyposCorrectedMap::iterator Cached
3772      = UnqualifiedTyposCorrected.find(Typo);
3773    if (Cached != UnqualifiedTyposCorrected.end()) {
3774      // Add the cached value, unless it's a keyword or fails validation. In the
3775      // keyword case, we'll end up adding the keyword below.
3776      if (Cached->second) {
3777        if (!Cached->second.isKeyword() &&
3778            isCandidateViable(CCC, Cached->second))
3779          Consumer.addCorrection(Cached->second);
3780      } else {
3781        // Only honor no-correction cache hits when a callback that will validate
3782        // correction candidates is not being used.
3783        if (!ValidatingCallback)
3784          return TypoCorrection();
3785      }
3786    }
3787    if (Cached == UnqualifiedTyposCorrected.end()) {
3788      // Provide a stop gap for files that are just seriously broken.  Trying
3789      // to correct all typos can turn into a HUGE performance penalty, causing
3790      // some files to take minutes to get rejected by the parser.
3791      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3792        return TypoCorrection();
3793    }
3794  }
3795
3796  // Determine whether we are going to search in the various namespaces for
3797  // corrections.
3798  bool SearchNamespaces
3799    = getLangOpts().CPlusPlus &&
3800      (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3801  // In a few cases we *only* want to search for corrections bases on just
3802  // adding or changing the nested name specifier.
3803  bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3804
3805  if (IsUnqualifiedLookup || SearchNamespaces) {
3806    // For unqualified lookup, look through all of the names that we have
3807    // seen in this translation unit.
3808    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3809    for (IdentifierTable::iterator I = Context.Idents.begin(),
3810                                IEnd = Context.Idents.end();
3811         I != IEnd; ++I)
3812      Consumer.FoundName(I->getKey());
3813
3814    // Walk through identifiers in external identifier sources.
3815    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3816    if (IdentifierInfoLookup *External
3817                            = Context.Idents.getExternalIdentifierLookup()) {
3818      OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3819      do {
3820        StringRef Name = Iter->Next();
3821        if (Name.empty())
3822          break;
3823
3824        Consumer.FoundName(Name);
3825      } while (true);
3826    }
3827  }
3828
3829  AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3830
3831  // If we haven't found anything, we're done.
3832  if (Consumer.empty()) {
3833    // If this was an unqualified lookup, note that no correction was found.
3834    if (IsUnqualifiedLookup)
3835      (void)UnqualifiedTyposCorrected[Typo];
3836
3837    return TypoCorrection();
3838  }
3839
3840  // Make sure the best edit distance (prior to adding any namespace qualifiers)
3841  // is not more that about a third of the length of the typo's identifier.
3842  unsigned ED = Consumer.getBestEditDistance(true);
3843  if (ED > 0 && Typo->getName().size() / ED < 3) {
3844    // If this was an unqualified lookup, note that no correction was found.
3845    if (IsUnqualifiedLookup)
3846      (void)UnqualifiedTyposCorrected[Typo];
3847
3848    return TypoCorrection();
3849  }
3850
3851  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3852  // to search those namespaces.
3853  if (SearchNamespaces) {
3854    // Load any externally-known namespaces.
3855    if (ExternalSource && !LoadedExternalKnownNamespaces) {
3856      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3857      LoadedExternalKnownNamespaces = true;
3858      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3859      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3860        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3861    }
3862
3863    for (llvm::DenseMap<NamespaceDecl*, bool>::iterator
3864           KNI = KnownNamespaces.begin(),
3865           KNIEnd = KnownNamespaces.end();
3866         KNI != KNIEnd; ++KNI)
3867      Namespaces.AddNamespace(KNI->first);
3868  }
3869
3870  // Weed out any names that could not be found by name lookup or, if a
3871  // CorrectionCandidateCallback object was provided, failed validation.
3872  llvm::SmallVector<TypoCorrection, 16> QualifiedResults;
3873  LookupResult TmpRes(*this, TypoName, LookupKind);
3874  TmpRes.suppressDiagnostics();
3875  while (!Consumer.empty()) {
3876    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3877    unsigned ED = DI->first;
3878    for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3879                                              IEnd = DI->second.end();
3880         I != IEnd; /* Increment in loop. */) {
3881      // If we only want nested name specifier corrections, ignore potential
3882      // corrections that have a different base identifier from the typo.
3883      if (AllowOnlyNNSChanges &&
3884          I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3885        TypoCorrectionConsumer::result_iterator Prev = I;
3886        ++I;
3887        DI->second.erase(Prev);
3888        continue;
3889      }
3890
3891      // If the item already has been looked up or is a keyword, keep it.
3892      // If a validator callback object was given, drop the correction
3893      // unless it passes validation.
3894      bool Viable = false;
3895      for (TypoResultList::iterator RI = I->second.begin();
3896           RI != I->second.end(); /* Increment in loop. */) {
3897        TypoResultList::iterator Prev = RI;
3898        ++RI;
3899        if (Prev->isResolved()) {
3900          if (!isCandidateViable(CCC, *Prev))
3901            RI = I->second.erase(Prev);
3902          else
3903            Viable = true;
3904        }
3905      }
3906      if (Viable || I->second.empty()) {
3907        TypoCorrectionConsumer::result_iterator Prev = I;
3908        ++I;
3909        if (!Viable)
3910          DI->second.erase(Prev);
3911        continue;
3912      }
3913      assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3914
3915      // Perform name lookup on this name.
3916      TypoCorrection &Candidate = I->second.front();
3917      IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3918      LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3919                                EnteringContext, CCC.IsObjCIvarLookup);
3920
3921      switch (TmpRes.getResultKind()) {
3922      case LookupResult::NotFound:
3923      case LookupResult::NotFoundInCurrentInstantiation:
3924      case LookupResult::FoundUnresolvedValue:
3925        QualifiedResults.push_back(Candidate);
3926        // We didn't find this name in our scope, or didn't like what we found;
3927        // ignore it.
3928        {
3929          TypoCorrectionConsumer::result_iterator Next = I;
3930          ++Next;
3931          DI->second.erase(I);
3932          I = Next;
3933        }
3934        break;
3935
3936      case LookupResult::Ambiguous:
3937        // We don't deal with ambiguities.
3938        return TypoCorrection();
3939
3940      case LookupResult::FoundOverloaded: {
3941        TypoCorrectionConsumer::result_iterator Prev = I;
3942        // Store all of the Decls for overloaded symbols
3943        for (LookupResult::iterator TRD = TmpRes.begin(),
3944                                 TRDEnd = TmpRes.end();
3945             TRD != TRDEnd; ++TRD)
3946          Candidate.addCorrectionDecl(*TRD);
3947        ++I;
3948        if (!isCandidateViable(CCC, Candidate))
3949          DI->second.erase(Prev);
3950        break;
3951      }
3952
3953      case LookupResult::Found: {
3954        TypoCorrectionConsumer::result_iterator Prev = I;
3955        Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3956        ++I;
3957        if (!isCandidateViable(CCC, Candidate))
3958          DI->second.erase(Prev);
3959        break;
3960      }
3961
3962      }
3963    }
3964
3965    if (DI->second.empty())
3966      Consumer.erase(DI);
3967    else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3968      // If there are results in the closest possible bucket, stop
3969      break;
3970
3971    // Only perform the qualified lookups for C++
3972    if (SearchNamespaces) {
3973      TmpRes.suppressDiagnostics();
3974      for (llvm::SmallVector<TypoCorrection,
3975                             16>::iterator QRI = QualifiedResults.begin(),
3976                                        QRIEnd = QualifiedResults.end();
3977           QRI != QRIEnd; ++QRI) {
3978        for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3979                                          NIEnd = Namespaces.end();
3980             NI != NIEnd; ++NI) {
3981          DeclContext *Ctx = NI->DeclCtx;
3982
3983          // FIXME: Stop searching once the namespaces are too far away to create
3984          // acceptable corrections for this identifier (since the namespaces
3985          // are sorted in ascending order by edit distance).
3986
3987          TmpRes.clear();
3988          TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
3989          if (!LookupQualifiedName(TmpRes, Ctx)) continue;
3990
3991          // Any corrections added below will be validated in subsequent
3992          // iterations of the main while() loop over the Consumer's contents.
3993          switch (TmpRes.getResultKind()) {
3994          case LookupResult::Found: {
3995            TypoCorrection TC(*QRI);
3996            TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3997            TC.setCorrectionSpecifier(NI->NameSpecifier);
3998            TC.setQualifierDistance(NI->EditDistance);
3999            Consumer.addCorrection(TC);
4000            break;
4001          }
4002          case LookupResult::FoundOverloaded: {
4003            TypoCorrection TC(*QRI);
4004            TC.setCorrectionSpecifier(NI->NameSpecifier);
4005            TC.setQualifierDistance(NI->EditDistance);
4006            for (LookupResult::iterator TRD = TmpRes.begin(),
4007                                     TRDEnd = TmpRes.end();
4008                 TRD != TRDEnd; ++TRD)
4009              TC.addCorrectionDecl(*TRD);
4010            Consumer.addCorrection(TC);
4011            break;
4012          }
4013          case LookupResult::NotFound:
4014          case LookupResult::NotFoundInCurrentInstantiation:
4015          case LookupResult::Ambiguous:
4016          case LookupResult::FoundUnresolvedValue:
4017            break;
4018          }
4019        }
4020      }
4021    }
4022
4023    QualifiedResults.clear();
4024  }
4025
4026  // No corrections remain...
4027  if (Consumer.empty()) return TypoCorrection();
4028
4029  TypoResultsMap &BestResults = Consumer.getBestResults();
4030  ED = Consumer.getBestEditDistance(true);
4031
4032  if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4033    // If this was an unqualified lookup and we believe the callback
4034    // object wouldn't have filtered out possible corrections, note
4035    // that no correction was found.
4036    if (IsUnqualifiedLookup && !ValidatingCallback)
4037      (void)UnqualifiedTyposCorrected[Typo];
4038
4039    return TypoCorrection();
4040  }
4041
4042  // If only a single name remains, return that result.
4043  if (BestResults.size() == 1) {
4044    const TypoResultList &CorrectionList = BestResults.begin()->second;
4045    const TypoCorrection &Result = CorrectionList.front();
4046    if (CorrectionList.size() != 1) return TypoCorrection();
4047
4048    // Don't correct to a keyword that's the same as the typo; the keyword
4049    // wasn't actually in scope.
4050    if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4051
4052    // Record the correction for unqualified lookup.
4053    if (IsUnqualifiedLookup)
4054      UnqualifiedTyposCorrected[Typo] = Result;
4055
4056    TypoCorrection TC = Result;
4057    TC.setCorrectionRange(SS, TypoName);
4058    return TC;
4059  }
4060  else if (BestResults.size() > 1
4061           // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4062           // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4063           // some instances of CTC_Unknown, while WantRemainingKeywords is true
4064           // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4065           && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4066           && BestResults["super"].front().isKeyword()) {
4067    // Prefer 'super' when we're completing in a message-receiver
4068    // context.
4069
4070    // Don't correct to a keyword that's the same as the typo; the keyword
4071    // wasn't actually in scope.
4072    if (ED == 0) return TypoCorrection();
4073
4074    // Record the correction for unqualified lookup.
4075    if (IsUnqualifiedLookup)
4076      UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4077
4078    TypoCorrection TC = BestResults["super"].front();
4079    TC.setCorrectionRange(SS, TypoName);
4080    return TC;
4081  }
4082
4083  // If this was an unqualified lookup and we believe the callback object did
4084  // not filter out possible corrections, note that no correction was found.
4085  if (IsUnqualifiedLookup && !ValidatingCallback)
4086    (void)UnqualifiedTyposCorrected[Typo];
4087
4088  return TypoCorrection();
4089}
4090
4091void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4092  if (!CDecl) return;
4093
4094  if (isKeyword())
4095    CorrectionDecls.clear();
4096
4097  CorrectionDecls.push_back(CDecl);
4098
4099  if (!CorrectionName)
4100    CorrectionName = CDecl->getDeclName();
4101}
4102
4103std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4104  if (CorrectionNameSpec) {
4105    std::string tmpBuffer;
4106    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4107    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4108    CorrectionName.printName(PrefixOStream);
4109    return PrefixOStream.str();
4110  }
4111
4112  return CorrectionName.getAsString();
4113}
4114