SemaLookup.cpp revision 296417
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclLookups.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "clang/Lex/ModuleLoader.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ExternalSemaSource.h"
33#include "clang/Sema/Overload.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/Sema.h"
37#include "clang/Sema/SemaInternal.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "clang/Sema/TypoCorrection.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/StringMap.h"
44#include "llvm/ADT/TinyPtrVector.h"
45#include "llvm/ADT/edit_distance.h"
46#include "llvm/Support/ErrorHandling.h"
47#include <algorithm>
48#include <iterator>
49#include <limits>
50#include <list>
51#include <map>
52#include <set>
53#include <utility>
54#include <vector>
55
56using namespace clang;
57using namespace sema;
58
59namespace {
60  class UnqualUsingEntry {
61    const DeclContext *Nominated;
62    const DeclContext *CommonAncestor;
63
64  public:
65    UnqualUsingEntry(const DeclContext *Nominated,
66                     const DeclContext *CommonAncestor)
67      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
68    }
69
70    const DeclContext *getCommonAncestor() const {
71      return CommonAncestor;
72    }
73
74    const DeclContext *getNominatedNamespace() const {
75      return Nominated;
76    }
77
78    // Sort by the pointer value of the common ancestor.
79    struct Comparator {
80      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
81        return L.getCommonAncestor() < R.getCommonAncestor();
82      }
83
84      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
85        return E.getCommonAncestor() < DC;
86      }
87
88      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
89        return DC < E.getCommonAncestor();
90      }
91    };
92  };
93
94  /// A collection of using directives, as used by C++ unqualified
95  /// lookup.
96  class UnqualUsingDirectiveSet {
97    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
98
99    ListTy list;
100    llvm::SmallPtrSet<DeclContext*, 8> visited;
101
102  public:
103    UnqualUsingDirectiveSet() {}
104
105    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
106      // C++ [namespace.udir]p1:
107      //   During unqualified name lookup, the names appear as if they
108      //   were declared in the nearest enclosing namespace which contains
109      //   both the using-directive and the nominated namespace.
110      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
111      assert(InnermostFileDC && InnermostFileDC->isFileContext());
112
113      for (; S; S = S->getParent()) {
114        // C++ [namespace.udir]p1:
115        //   A using-directive shall not appear in class scope, but may
116        //   appear in namespace scope or in block scope.
117        DeclContext *Ctx = S->getEntity();
118        if (Ctx && Ctx->isFileContext()) {
119          visit(Ctx, Ctx);
120        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
121          for (auto *I : S->using_directives())
122            visit(I, InnermostFileDC);
123        }
124      }
125    }
126
127    // Visits a context and collect all of its using directives
128    // recursively.  Treats all using directives as if they were
129    // declared in the context.
130    //
131    // A given context is only every visited once, so it is important
132    // that contexts be visited from the inside out in order to get
133    // the effective DCs right.
134    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
135      if (!visited.insert(DC).second)
136        return;
137
138      addUsingDirectives(DC, EffectiveDC);
139    }
140
141    // Visits a using directive and collects all of its using
142    // directives recursively.  Treats all using directives as if they
143    // were declared in the effective DC.
144    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
145      DeclContext *NS = UD->getNominatedNamespace();
146      if (!visited.insert(NS).second)
147        return;
148
149      addUsingDirective(UD, EffectiveDC);
150      addUsingDirectives(NS, EffectiveDC);
151    }
152
153    // Adds all the using directives in a context (and those nominated
154    // by its using directives, transitively) as if they appeared in
155    // the given effective context.
156    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
157      SmallVector<DeclContext*, 4> queue;
158      while (true) {
159        for (auto UD : DC->using_directives()) {
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS).second) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.pop_back_val();
171      }
172    }
173
174    // Add a using directive as if it had been declared in the given
175    // context.  This helps implement C++ [namespace.udir]p3:
176    //   The using-directive is transitive: if a scope contains a
177    //   using-directive that nominates a second namespace that itself
178    //   contains using-directives, the effect is as if the
179    //   using-directives from the second namespace also appeared in
180    //   the first.
181    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
182      // Find the common ancestor between the effective context and
183      // the nominated namespace.
184      DeclContext *Common = UD->getNominatedNamespace();
185      while (!Common->Encloses(EffectiveDC))
186        Common = Common->getParent();
187      Common = Common->getPrimaryContext();
188
189      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
190    }
191
192    void done() {
193      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
194    }
195
196    typedef ListTy::const_iterator const_iterator;
197
198    const_iterator begin() const { return list.begin(); }
199    const_iterator end() const { return list.end(); }
200
201    llvm::iterator_range<const_iterator>
202    getNamespacesFor(DeclContext *DC) const {
203      return llvm::make_range(std::equal_range(begin(), end(),
204                                               DC->getPrimaryContext(),
205                                               UnqualUsingEntry::Comparator()));
206    }
207  };
208} // end anonymous namespace
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220  case Sema::LookupLocalFriendName:
221    IDNS = Decl::IDNS_Ordinary;
222    if (CPlusPlus) {
223      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
224      if (Redeclaration)
225        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
226    }
227    if (Redeclaration)
228      IDNS |= Decl::IDNS_LocalExtern;
229    break;
230
231  case Sema::LookupOperatorName:
232    // Operator lookup is its own crazy thing;  it is not the same
233    // as (e.g.) looking up an operator name for redeclaration.
234    assert(!Redeclaration && "cannot do redeclaration operator lookup");
235    IDNS = Decl::IDNS_NonMemberOperator;
236    break;
237
238  case Sema::LookupTagName:
239    if (CPlusPlus) {
240      IDNS = Decl::IDNS_Type;
241
242      // When looking for a redeclaration of a tag name, we add:
243      // 1) TagFriend to find undeclared friend decls
244      // 2) Namespace because they can't "overload" with tag decls.
245      // 3) Tag because it includes class templates, which can't
246      //    "overload" with tag decls.
247      if (Redeclaration)
248        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
249    } else {
250      IDNS = Decl::IDNS_Tag;
251    }
252    break;
253
254  case Sema::LookupLabel:
255    IDNS = Decl::IDNS_Label;
256    break;
257
258  case Sema::LookupMemberName:
259    IDNS = Decl::IDNS_Member;
260    if (CPlusPlus)
261      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
262    break;
263
264  case Sema::LookupNestedNameSpecifierName:
265    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupNamespaceName:
269    IDNS = Decl::IDNS_Namespace;
270    break;
271
272  case Sema::LookupUsingDeclName:
273    assert(Redeclaration && "should only be used for redecl lookup");
274    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
275           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
276           Decl::IDNS_LocalExtern;
277    break;
278
279  case Sema::LookupObjCProtocolName:
280    IDNS = Decl::IDNS_ObjCProtocol;
281    break;
282
283  case Sema::LookupAnyName:
284    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
285      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
286      | Decl::IDNS_Type;
287    break;
288  }
289  return IDNS;
290}
291
292void LookupResult::configure() {
293  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
294                 isForRedeclaration());
295
296  // If we're looking for one of the allocation or deallocation
297  // operators, make sure that the implicitly-declared new and delete
298  // operators can be found.
299  switch (NameInfo.getName().getCXXOverloadedOperator()) {
300  case OO_New:
301  case OO_Delete:
302  case OO_Array_New:
303  case OO_Array_Delete:
304    getSema().DeclareGlobalNewDelete();
305    break;
306
307  default:
308    break;
309  }
310
311  // Compiler builtins are always visible, regardless of where they end
312  // up being declared.
313  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
314    if (unsigned BuiltinID = Id->getBuiltinID()) {
315      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
316        AllowHidden = true;
317    }
318  }
319}
320
321bool LookupResult::sanity() const {
322  // This function is never called by NDEBUG builds.
323  assert(ResultKind != NotFound || Decls.size() == 0);
324  assert(ResultKind != Found || Decls.size() == 1);
325  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
326         (Decls.size() == 1 &&
327          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
328  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
329  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
330         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
331                                Ambiguity == AmbiguousBaseSubobjectTypes)));
332  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
333                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
334                                 Ambiguity == AmbiguousBaseSubobjects)));
335  return true;
336}
337
338// Necessary because CXXBasePaths is not complete in Sema.h
339void LookupResult::deletePaths(CXXBasePaths *Paths) {
340  delete Paths;
341}
342
343/// Get a representative context for a declaration such that two declarations
344/// will have the same context if they were found within the same scope.
345static DeclContext *getContextForScopeMatching(Decl *D) {
346  // For function-local declarations, use that function as the context. This
347  // doesn't account for scopes within the function; the caller must deal with
348  // those.
349  DeclContext *DC = D->getLexicalDeclContext();
350  if (DC->isFunctionOrMethod())
351    return DC;
352
353  // Otherwise, look at the semantic context of the declaration. The
354  // declaration must have been found there.
355  return D->getDeclContext()->getRedeclContext();
356}
357
358/// \brief Determine whether \p D is a better lookup result than \p Existing,
359/// given that they declare the same entity.
360static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
361                                    NamedDecl *D, NamedDecl *Existing) {
362  // When looking up redeclarations of a using declaration, prefer a using
363  // shadow declaration over any other declaration of the same entity.
364  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
365      !isa<UsingShadowDecl>(Existing))
366    return true;
367
368  auto *DUnderlying = D->getUnderlyingDecl();
369  auto *EUnderlying = Existing->getUnderlyingDecl();
370
371  // If they have different underlying declarations, prefer a typedef over the
372  // original type (this happens when two type declarations denote the same
373  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
374  // might carry additional semantic information, such as an alignment override.
375  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
376  // declaration over a typedef.
377  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
378    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
379    bool HaveTag = isa<TagDecl>(EUnderlying);
380    bool WantTag = Kind == Sema::LookupTagName;
381    return HaveTag != WantTag;
382  }
383
384  // Pick the function with more default arguments.
385  // FIXME: In the presence of ambiguous default arguments, we should keep both,
386  //        so we can diagnose the ambiguity if the default argument is needed.
387  //        See C++ [over.match.best]p3.
388  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
389    auto *EFD = cast<FunctionDecl>(EUnderlying);
390    unsigned DMin = DFD->getMinRequiredArguments();
391    unsigned EMin = EFD->getMinRequiredArguments();
392    // If D has more default arguments, it is preferred.
393    if (DMin != EMin)
394      return DMin < EMin;
395    // FIXME: When we track visibility for default function arguments, check
396    // that we pick the declaration with more visible default arguments.
397  }
398
399  // Pick the template with more default template arguments.
400  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
401    auto *ETD = cast<TemplateDecl>(EUnderlying);
402    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
403    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
404    // If D has more default arguments, it is preferred. Note that default
405    // arguments (and their visibility) is monotonically increasing across the
406    // redeclaration chain, so this is a quick proxy for "is more recent".
407    if (DMin != EMin)
408      return DMin < EMin;
409    // If D has more *visible* default arguments, it is preferred. Note, an
410    // earlier default argument being visible does not imply that a later
411    // default argument is visible, so we can't just check the first one.
412    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
413        I != N; ++I) {
414      if (!S.hasVisibleDefaultArgument(
415              ETD->getTemplateParameters()->getParam(I)) &&
416          S.hasVisibleDefaultArgument(
417              DTD->getTemplateParameters()->getParam(I)))
418        return true;
419    }
420  }
421
422  // For most kinds of declaration, it doesn't really matter which one we pick.
423  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
424    // If the existing declaration is hidden, prefer the new one. Otherwise,
425    // keep what we've got.
426    return !S.isVisible(Existing);
427  }
428
429  // Pick the newer declaration; it might have a more precise type.
430  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
431       Prev = Prev->getPreviousDecl())
432    if (Prev == EUnderlying)
433      return true;
434  return false;
435
436  // If the existing declaration is hidden, prefer the new one. Otherwise,
437  // keep what we've got.
438  return !S.isVisible(Existing);
439}
440
441/// Determine whether \p D can hide a tag declaration.
442static bool canHideTag(NamedDecl *D) {
443  // C++ [basic.scope.declarative]p4:
444  //   Given a set of declarations in a single declarative region [...]
445  //   exactly one declaration shall declare a class name or enumeration name
446  //   that is not a typedef name and the other declarations shall all refer to
447  //   the same variable or enumerator, or all refer to functions and function
448  //   templates; in this case the class name or enumeration name is hidden.
449  // C++ [basic.scope.hiding]p2:
450  //   A class name or enumeration name can be hidden by the name of a
451  //   variable, data member, function, or enumerator declared in the same
452  //   scope.
453  D = D->getUnderlyingDecl();
454  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
455         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D);
456}
457
458/// Resolves the result kind of this lookup.
459void LookupResult::resolveKind() {
460  unsigned N = Decls.size();
461
462  // Fast case: no possible ambiguity.
463  if (N == 0) {
464    assert(ResultKind == NotFound ||
465           ResultKind == NotFoundInCurrentInstantiation);
466    return;
467  }
468
469  // If there's a single decl, we need to examine it to decide what
470  // kind of lookup this is.
471  if (N == 1) {
472    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
473    if (isa<FunctionTemplateDecl>(D))
474      ResultKind = FoundOverloaded;
475    else if (isa<UnresolvedUsingValueDecl>(D))
476      ResultKind = FoundUnresolvedValue;
477    return;
478  }
479
480  // Don't do any extra resolution if we've already resolved as ambiguous.
481  if (ResultKind == Ambiguous) return;
482
483  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
484  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
485
486  bool Ambiguous = false;
487  bool HasTag = false, HasFunction = false;
488  bool HasFunctionTemplate = false, HasUnresolved = false;
489  NamedDecl *HasNonFunction = nullptr;
490
491  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
492
493  unsigned UniqueTagIndex = 0;
494
495  unsigned I = 0;
496  while (I < N) {
497    NamedDecl *D = Decls[I]->getUnderlyingDecl();
498    D = cast<NamedDecl>(D->getCanonicalDecl());
499
500    // Ignore an invalid declaration unless it's the only one left.
501    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
502      Decls[I] = Decls[--N];
503      continue;
504    }
505
506    llvm::Optional<unsigned> ExistingI;
507
508    // Redeclarations of types via typedef can occur both within a scope
509    // and, through using declarations and directives, across scopes. There is
510    // no ambiguity if they all refer to the same type, so unique based on the
511    // canonical type.
512    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
513      QualType T = getSema().Context.getTypeDeclType(TD);
514      auto UniqueResult = UniqueTypes.insert(
515          std::make_pair(getSema().Context.getCanonicalType(T), I));
516      if (!UniqueResult.second) {
517        // The type is not unique.
518        ExistingI = UniqueResult.first->second;
519      }
520    }
521
522    // For non-type declarations, check for a prior lookup result naming this
523    // canonical declaration.
524    if (!ExistingI) {
525      auto UniqueResult = Unique.insert(std::make_pair(D, I));
526      if (!UniqueResult.second) {
527        // We've seen this entity before.
528        ExistingI = UniqueResult.first->second;
529      }
530    }
531
532    if (ExistingI) {
533      // This is not a unique lookup result. Pick one of the results and
534      // discard the other.
535      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
536                                  Decls[*ExistingI]))
537        Decls[*ExistingI] = Decls[I];
538      Decls[I] = Decls[--N];
539      continue;
540    }
541
542    // Otherwise, do some decl type analysis and then continue.
543
544    if (isa<UnresolvedUsingValueDecl>(D)) {
545      HasUnresolved = true;
546    } else if (isa<TagDecl>(D)) {
547      if (HasTag)
548        Ambiguous = true;
549      UniqueTagIndex = I;
550      HasTag = true;
551    } else if (isa<FunctionTemplateDecl>(D)) {
552      HasFunction = true;
553      HasFunctionTemplate = true;
554    } else if (isa<FunctionDecl>(D)) {
555      HasFunction = true;
556    } else {
557      if (HasNonFunction) {
558        // If we're about to create an ambiguity between two declarations that
559        // are equivalent, but one is an internal linkage declaration from one
560        // module and the other is an internal linkage declaration from another
561        // module, just skip it.
562        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
563                                                             D)) {
564          EquivalentNonFunctions.push_back(D);
565          Decls[I] = Decls[--N];
566          continue;
567        }
568
569        Ambiguous = true;
570      }
571      HasNonFunction = D;
572    }
573    I++;
574  }
575
576  // C++ [basic.scope.hiding]p2:
577  //   A class name or enumeration name can be hidden by the name of
578  //   an object, function, or enumerator declared in the same
579  //   scope. If a class or enumeration name and an object, function,
580  //   or enumerator are declared in the same scope (in any order)
581  //   with the same name, the class or enumeration name is hidden
582  //   wherever the object, function, or enumerator name is visible.
583  // But it's still an error if there are distinct tag types found,
584  // even if they're not visible. (ref?)
585  if (N > 1 && HideTags && HasTag && !Ambiguous &&
586      (HasFunction || HasNonFunction || HasUnresolved)) {
587    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
588    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
589        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
590            getContextForScopeMatching(OtherDecl)) &&
591        canHideTag(OtherDecl))
592      Decls[UniqueTagIndex] = Decls[--N];
593    else
594      Ambiguous = true;
595  }
596
597  // FIXME: This diagnostic should really be delayed until we're done with
598  // the lookup result, in case the ambiguity is resolved by the caller.
599  if (!EquivalentNonFunctions.empty() && !Ambiguous)
600    getSema().diagnoseEquivalentInternalLinkageDeclarations(
601        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
602
603  Decls.set_size(N);
604
605  if (HasNonFunction && (HasFunction || HasUnresolved))
606    Ambiguous = true;
607
608  if (Ambiguous)
609    setAmbiguous(LookupResult::AmbiguousReference);
610  else if (HasUnresolved)
611    ResultKind = LookupResult::FoundUnresolvedValue;
612  else if (N > 1 || HasFunctionTemplate)
613    ResultKind = LookupResult::FoundOverloaded;
614  else
615    ResultKind = LookupResult::Found;
616}
617
618void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
619  CXXBasePaths::const_paths_iterator I, E;
620  for (I = P.begin(), E = P.end(); I != E; ++I)
621    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
622         DE = I->Decls.end(); DI != DE; ++DI)
623      addDecl(*DI);
624}
625
626void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
627  Paths = new CXXBasePaths;
628  Paths->swap(P);
629  addDeclsFromBasePaths(*Paths);
630  resolveKind();
631  setAmbiguous(AmbiguousBaseSubobjects);
632}
633
634void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
635  Paths = new CXXBasePaths;
636  Paths->swap(P);
637  addDeclsFromBasePaths(*Paths);
638  resolveKind();
639  setAmbiguous(AmbiguousBaseSubobjectTypes);
640}
641
642void LookupResult::print(raw_ostream &Out) {
643  Out << Decls.size() << " result(s)";
644  if (isAmbiguous()) Out << ", ambiguous";
645  if (Paths) Out << ", base paths present";
646
647  for (iterator I = begin(), E = end(); I != E; ++I) {
648    Out << "\n";
649    (*I)->print(Out, 2);
650  }
651}
652
653LLVM_DUMP_METHOD void LookupResult::dump() {
654  llvm::errs() << "lookup results for " << getLookupName().getAsString()
655               << ":\n";
656  for (NamedDecl *D : *this)
657    D->dump();
658}
659
660/// \brief Lookup a builtin function, when name lookup would otherwise
661/// fail.
662static bool LookupBuiltin(Sema &S, LookupResult &R) {
663  Sema::LookupNameKind NameKind = R.getLookupKind();
664
665  // If we didn't find a use of this identifier, and if the identifier
666  // corresponds to a compiler builtin, create the decl object for the builtin
667  // now, injecting it into translation unit scope, and return it.
668  if (NameKind == Sema::LookupOrdinaryName ||
669      NameKind == Sema::LookupRedeclarationWithLinkage) {
670    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
671    if (II) {
672      if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
673          II == S.getFloat128Identifier()) {
674        // libstdc++4.7's type_traits expects type __float128 to exist, so
675        // insert a dummy type to make that header build in gnu++11 mode.
676        R.addDecl(S.getASTContext().getFloat128StubType());
677        return true;
678      }
679      if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName &&
680          II == S.getASTContext().getMakeIntegerSeqName()) {
681        R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
682        return true;
683      }
684
685      // If this is a builtin on this (or all) targets, create the decl.
686      if (unsigned BuiltinID = II->getBuiltinID()) {
687        // In C++, we don't have any predefined library functions like
688        // 'malloc'. Instead, we'll just error.
689        if (S.getLangOpts().CPlusPlus &&
690            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
691          return false;
692
693        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
694                                                 BuiltinID, S.TUScope,
695                                                 R.isForRedeclaration(),
696                                                 R.getNameLoc())) {
697          R.addDecl(D);
698          return true;
699        }
700      }
701    }
702  }
703
704  return false;
705}
706
707/// \brief Determine whether we can declare a special member function within
708/// the class at this point.
709static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
710  // We need to have a definition for the class.
711  if (!Class->getDefinition() || Class->isDependentContext())
712    return false;
713
714  // We can't be in the middle of defining the class.
715  return !Class->isBeingDefined();
716}
717
718void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
719  if (!CanDeclareSpecialMemberFunction(Class))
720    return;
721
722  // If the default constructor has not yet been declared, do so now.
723  if (Class->needsImplicitDefaultConstructor())
724    DeclareImplicitDefaultConstructor(Class);
725
726  // If the copy constructor has not yet been declared, do so now.
727  if (Class->needsImplicitCopyConstructor())
728    DeclareImplicitCopyConstructor(Class);
729
730  // If the copy assignment operator has not yet been declared, do so now.
731  if (Class->needsImplicitCopyAssignment())
732    DeclareImplicitCopyAssignment(Class);
733
734  if (getLangOpts().CPlusPlus11) {
735    // If the move constructor has not yet been declared, do so now.
736    if (Class->needsImplicitMoveConstructor())
737      DeclareImplicitMoveConstructor(Class); // might not actually do it
738
739    // If the move assignment operator has not yet been declared, do so now.
740    if (Class->needsImplicitMoveAssignment())
741      DeclareImplicitMoveAssignment(Class); // might not actually do it
742  }
743
744  // If the destructor has not yet been declared, do so now.
745  if (Class->needsImplicitDestructor())
746    DeclareImplicitDestructor(Class);
747}
748
749/// \brief Determine whether this is the name of an implicitly-declared
750/// special member function.
751static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
752  switch (Name.getNameKind()) {
753  case DeclarationName::CXXConstructorName:
754  case DeclarationName::CXXDestructorName:
755    return true;
756
757  case DeclarationName::CXXOperatorName:
758    return Name.getCXXOverloadedOperator() == OO_Equal;
759
760  default:
761    break;
762  }
763
764  return false;
765}
766
767/// \brief If there are any implicit member functions with the given name
768/// that need to be declared in the given declaration context, do so.
769static void DeclareImplicitMemberFunctionsWithName(Sema &S,
770                                                   DeclarationName Name,
771                                                   const DeclContext *DC) {
772  if (!DC)
773    return;
774
775  switch (Name.getNameKind()) {
776  case DeclarationName::CXXConstructorName:
777    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
778      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
779        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
780        if (Record->needsImplicitDefaultConstructor())
781          S.DeclareImplicitDefaultConstructor(Class);
782        if (Record->needsImplicitCopyConstructor())
783          S.DeclareImplicitCopyConstructor(Class);
784        if (S.getLangOpts().CPlusPlus11 &&
785            Record->needsImplicitMoveConstructor())
786          S.DeclareImplicitMoveConstructor(Class);
787      }
788    break;
789
790  case DeclarationName::CXXDestructorName:
791    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
792      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
793          CanDeclareSpecialMemberFunction(Record))
794        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
795    break;
796
797  case DeclarationName::CXXOperatorName:
798    if (Name.getCXXOverloadedOperator() != OO_Equal)
799      break;
800
801    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
802      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
803        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
804        if (Record->needsImplicitCopyAssignment())
805          S.DeclareImplicitCopyAssignment(Class);
806        if (S.getLangOpts().CPlusPlus11 &&
807            Record->needsImplicitMoveAssignment())
808          S.DeclareImplicitMoveAssignment(Class);
809      }
810    }
811    break;
812
813  default:
814    break;
815  }
816}
817
818// Adds all qualifying matches for a name within a decl context to the
819// given lookup result.  Returns true if any matches were found.
820static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
821  bool Found = false;
822
823  // Lazily declare C++ special member functions.
824  if (S.getLangOpts().CPlusPlus)
825    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
826
827  // Perform lookup into this declaration context.
828  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
829  for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
830       ++I) {
831    NamedDecl *D = *I;
832    if ((D = R.getAcceptableDecl(D))) {
833      R.addDecl(D);
834      Found = true;
835    }
836  }
837
838  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
839    return true;
840
841  if (R.getLookupName().getNameKind()
842        != DeclarationName::CXXConversionFunctionName ||
843      R.getLookupName().getCXXNameType()->isDependentType() ||
844      !isa<CXXRecordDecl>(DC))
845    return Found;
846
847  // C++ [temp.mem]p6:
848  //   A specialization of a conversion function template is not found by
849  //   name lookup. Instead, any conversion function templates visible in the
850  //   context of the use are considered. [...]
851  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
852  if (!Record->isCompleteDefinition())
853    return Found;
854
855  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
856         UEnd = Record->conversion_end(); U != UEnd; ++U) {
857    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
858    if (!ConvTemplate)
859      continue;
860
861    // When we're performing lookup for the purposes of redeclaration, just
862    // add the conversion function template. When we deduce template
863    // arguments for specializations, we'll end up unifying the return
864    // type of the new declaration with the type of the function template.
865    if (R.isForRedeclaration()) {
866      R.addDecl(ConvTemplate);
867      Found = true;
868      continue;
869    }
870
871    // C++ [temp.mem]p6:
872    //   [...] For each such operator, if argument deduction succeeds
873    //   (14.9.2.3), the resulting specialization is used as if found by
874    //   name lookup.
875    //
876    // When referencing a conversion function for any purpose other than
877    // a redeclaration (such that we'll be building an expression with the
878    // result), perform template argument deduction and place the
879    // specialization into the result set. We do this to avoid forcing all
880    // callers to perform special deduction for conversion functions.
881    TemplateDeductionInfo Info(R.getNameLoc());
882    FunctionDecl *Specialization = nullptr;
883
884    const FunctionProtoType *ConvProto
885      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
886    assert(ConvProto && "Nonsensical conversion function template type");
887
888    // Compute the type of the function that we would expect the conversion
889    // function to have, if it were to match the name given.
890    // FIXME: Calling convention!
891    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
892    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
893    EPI.ExceptionSpec = EST_None;
894    QualType ExpectedType
895      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
896                                            None, EPI);
897
898    // Perform template argument deduction against the type that we would
899    // expect the function to have.
900    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
901                                            Specialization, Info)
902          == Sema::TDK_Success) {
903      R.addDecl(Specialization);
904      Found = true;
905    }
906  }
907
908  return Found;
909}
910
911// Performs C++ unqualified lookup into the given file context.
912static bool
913CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
914                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
915
916  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
917
918  // Perform direct name lookup into the LookupCtx.
919  bool Found = LookupDirect(S, R, NS);
920
921  // Perform direct name lookup into the namespaces nominated by the
922  // using directives whose common ancestor is this namespace.
923  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
924    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
925      Found = true;
926
927  R.resolveKind();
928
929  return Found;
930}
931
932static bool isNamespaceOrTranslationUnitScope(Scope *S) {
933  if (DeclContext *Ctx = S->getEntity())
934    return Ctx->isFileContext();
935  return false;
936}
937
938// Find the next outer declaration context from this scope. This
939// routine actually returns the semantic outer context, which may
940// differ from the lexical context (encoded directly in the Scope
941// stack) when we are parsing a member of a class template. In this
942// case, the second element of the pair will be true, to indicate that
943// name lookup should continue searching in this semantic context when
944// it leaves the current template parameter scope.
945static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
946  DeclContext *DC = S->getEntity();
947  DeclContext *Lexical = nullptr;
948  for (Scope *OuterS = S->getParent(); OuterS;
949       OuterS = OuterS->getParent()) {
950    if (OuterS->getEntity()) {
951      Lexical = OuterS->getEntity();
952      break;
953    }
954  }
955
956  // C++ [temp.local]p8:
957  //   In the definition of a member of a class template that appears
958  //   outside of the namespace containing the class template
959  //   definition, the name of a template-parameter hides the name of
960  //   a member of this namespace.
961  //
962  // Example:
963  //
964  //   namespace N {
965  //     class C { };
966  //
967  //     template<class T> class B {
968  //       void f(T);
969  //     };
970  //   }
971  //
972  //   template<class C> void N::B<C>::f(C) {
973  //     C b;  // C is the template parameter, not N::C
974  //   }
975  //
976  // In this example, the lexical context we return is the
977  // TranslationUnit, while the semantic context is the namespace N.
978  if (!Lexical || !DC || !S->getParent() ||
979      !S->getParent()->isTemplateParamScope())
980    return std::make_pair(Lexical, false);
981
982  // Find the outermost template parameter scope.
983  // For the example, this is the scope for the template parameters of
984  // template<class C>.
985  Scope *OutermostTemplateScope = S->getParent();
986  while (OutermostTemplateScope->getParent() &&
987         OutermostTemplateScope->getParent()->isTemplateParamScope())
988    OutermostTemplateScope = OutermostTemplateScope->getParent();
989
990  // Find the namespace context in which the original scope occurs. In
991  // the example, this is namespace N.
992  DeclContext *Semantic = DC;
993  while (!Semantic->isFileContext())
994    Semantic = Semantic->getParent();
995
996  // Find the declaration context just outside of the template
997  // parameter scope. This is the context in which the template is
998  // being lexically declaration (a namespace context). In the
999  // example, this is the global scope.
1000  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1001      Lexical->Encloses(Semantic))
1002    return std::make_pair(Semantic, true);
1003
1004  return std::make_pair(Lexical, false);
1005}
1006
1007namespace {
1008/// An RAII object to specify that we want to find block scope extern
1009/// declarations.
1010struct FindLocalExternScope {
1011  FindLocalExternScope(LookupResult &R)
1012      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1013                                 Decl::IDNS_LocalExtern) {
1014    R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
1015  }
1016  void restore() {
1017    R.setFindLocalExtern(OldFindLocalExtern);
1018  }
1019  ~FindLocalExternScope() {
1020    restore();
1021  }
1022  LookupResult &R;
1023  bool OldFindLocalExtern;
1024};
1025} // end anonymous namespace
1026
1027bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1028  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1029
1030  DeclarationName Name = R.getLookupName();
1031  Sema::LookupNameKind NameKind = R.getLookupKind();
1032
1033  // If this is the name of an implicitly-declared special member function,
1034  // go through the scope stack to implicitly declare
1035  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1036    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1037      if (DeclContext *DC = PreS->getEntity())
1038        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
1039  }
1040
1041  // Implicitly declare member functions with the name we're looking for, if in
1042  // fact we are in a scope where it matters.
1043
1044  Scope *Initial = S;
1045  IdentifierResolver::iterator
1046    I = IdResolver.begin(Name),
1047    IEnd = IdResolver.end();
1048
1049  // First we lookup local scope.
1050  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1051  // ...During unqualified name lookup (3.4.1), the names appear as if
1052  // they were declared in the nearest enclosing namespace which contains
1053  // both the using-directive and the nominated namespace.
1054  // [Note: in this context, "contains" means "contains directly or
1055  // indirectly".
1056  //
1057  // For example:
1058  // namespace A { int i; }
1059  // void foo() {
1060  //   int i;
1061  //   {
1062  //     using namespace A;
1063  //     ++i; // finds local 'i', A::i appears at global scope
1064  //   }
1065  // }
1066  //
1067  UnqualUsingDirectiveSet UDirs;
1068  bool VisitedUsingDirectives = false;
1069  bool LeftStartingScope = false;
1070  DeclContext *OutsideOfTemplateParamDC = nullptr;
1071
1072  // When performing a scope lookup, we want to find local extern decls.
1073  FindLocalExternScope FindLocals(R);
1074
1075  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1076    DeclContext *Ctx = S->getEntity();
1077
1078    // Check whether the IdResolver has anything in this scope.
1079    bool Found = false;
1080    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1081      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1082        if (NameKind == LookupRedeclarationWithLinkage) {
1083          // Determine whether this (or a previous) declaration is
1084          // out-of-scope.
1085          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1086            LeftStartingScope = true;
1087
1088          // If we found something outside of our starting scope that
1089          // does not have linkage, skip it. If it's a template parameter,
1090          // we still find it, so we can diagnose the invalid redeclaration.
1091          if (LeftStartingScope && !((*I)->hasLinkage()) &&
1092              !(*I)->isTemplateParameter()) {
1093            R.setShadowed();
1094            continue;
1095          }
1096        }
1097
1098        Found = true;
1099        R.addDecl(ND);
1100      }
1101    }
1102    if (Found) {
1103      R.resolveKind();
1104      if (S->isClassScope())
1105        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1106          R.setNamingClass(Record);
1107      return true;
1108    }
1109
1110    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1111      // C++11 [class.friend]p11:
1112      //   If a friend declaration appears in a local class and the name
1113      //   specified is an unqualified name, a prior declaration is
1114      //   looked up without considering scopes that are outside the
1115      //   innermost enclosing non-class scope.
1116      return false;
1117    }
1118
1119    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1120        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1121      // We've just searched the last template parameter scope and
1122      // found nothing, so look into the contexts between the
1123      // lexical and semantic declaration contexts returned by
1124      // findOuterContext(). This implements the name lookup behavior
1125      // of C++ [temp.local]p8.
1126      Ctx = OutsideOfTemplateParamDC;
1127      OutsideOfTemplateParamDC = nullptr;
1128    }
1129
1130    if (Ctx) {
1131      DeclContext *OuterCtx;
1132      bool SearchAfterTemplateScope;
1133      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1134      if (SearchAfterTemplateScope)
1135        OutsideOfTemplateParamDC = OuterCtx;
1136
1137      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1138        // We do not directly look into transparent contexts, since
1139        // those entities will be found in the nearest enclosing
1140        // non-transparent context.
1141        if (Ctx->isTransparentContext())
1142          continue;
1143
1144        // We do not look directly into function or method contexts,
1145        // since all of the local variables and parameters of the
1146        // function/method are present within the Scope.
1147        if (Ctx->isFunctionOrMethod()) {
1148          // If we have an Objective-C instance method, look for ivars
1149          // in the corresponding interface.
1150          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1151            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1152              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1153                ObjCInterfaceDecl *ClassDeclared;
1154                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1155                                                 Name.getAsIdentifierInfo(),
1156                                                             ClassDeclared)) {
1157                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1158                    R.addDecl(ND);
1159                    R.resolveKind();
1160                    return true;
1161                  }
1162                }
1163              }
1164          }
1165
1166          continue;
1167        }
1168
1169        // If this is a file context, we need to perform unqualified name
1170        // lookup considering using directives.
1171        if (Ctx->isFileContext()) {
1172          // If we haven't handled using directives yet, do so now.
1173          if (!VisitedUsingDirectives) {
1174            // Add using directives from this context up to the top level.
1175            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1176              if (UCtx->isTransparentContext())
1177                continue;
1178
1179              UDirs.visit(UCtx, UCtx);
1180            }
1181
1182            // Find the innermost file scope, so we can add using directives
1183            // from local scopes.
1184            Scope *InnermostFileScope = S;
1185            while (InnermostFileScope &&
1186                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1187              InnermostFileScope = InnermostFileScope->getParent();
1188            UDirs.visitScopeChain(Initial, InnermostFileScope);
1189
1190            UDirs.done();
1191
1192            VisitedUsingDirectives = true;
1193          }
1194
1195          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1196            R.resolveKind();
1197            return true;
1198          }
1199
1200          continue;
1201        }
1202
1203        // Perform qualified name lookup into this context.
1204        // FIXME: In some cases, we know that every name that could be found by
1205        // this qualified name lookup will also be on the identifier chain. For
1206        // example, inside a class without any base classes, we never need to
1207        // perform qualified lookup because all of the members are on top of the
1208        // identifier chain.
1209        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1210          return true;
1211      }
1212    }
1213  }
1214
1215  // Stop if we ran out of scopes.
1216  // FIXME:  This really, really shouldn't be happening.
1217  if (!S) return false;
1218
1219  // If we are looking for members, no need to look into global/namespace scope.
1220  if (NameKind == LookupMemberName)
1221    return false;
1222
1223  // Collect UsingDirectiveDecls in all scopes, and recursively all
1224  // nominated namespaces by those using-directives.
1225  //
1226  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1227  // don't build it for each lookup!
1228  if (!VisitedUsingDirectives) {
1229    UDirs.visitScopeChain(Initial, S);
1230    UDirs.done();
1231  }
1232
1233  // If we're not performing redeclaration lookup, do not look for local
1234  // extern declarations outside of a function scope.
1235  if (!R.isForRedeclaration())
1236    FindLocals.restore();
1237
1238  // Lookup namespace scope, and global scope.
1239  // Unqualified name lookup in C++ requires looking into scopes
1240  // that aren't strictly lexical, and therefore we walk through the
1241  // context as well as walking through the scopes.
1242  for (; S; S = S->getParent()) {
1243    // Check whether the IdResolver has anything in this scope.
1244    bool Found = false;
1245    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1246      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1247        // We found something.  Look for anything else in our scope
1248        // with this same name and in an acceptable identifier
1249        // namespace, so that we can construct an overload set if we
1250        // need to.
1251        Found = true;
1252        R.addDecl(ND);
1253      }
1254    }
1255
1256    if (Found && S->isTemplateParamScope()) {
1257      R.resolveKind();
1258      return true;
1259    }
1260
1261    DeclContext *Ctx = S->getEntity();
1262    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1263        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1264      // We've just searched the last template parameter scope and
1265      // found nothing, so look into the contexts between the
1266      // lexical and semantic declaration contexts returned by
1267      // findOuterContext(). This implements the name lookup behavior
1268      // of C++ [temp.local]p8.
1269      Ctx = OutsideOfTemplateParamDC;
1270      OutsideOfTemplateParamDC = nullptr;
1271    }
1272
1273    if (Ctx) {
1274      DeclContext *OuterCtx;
1275      bool SearchAfterTemplateScope;
1276      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1277      if (SearchAfterTemplateScope)
1278        OutsideOfTemplateParamDC = OuterCtx;
1279
1280      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1281        // We do not directly look into transparent contexts, since
1282        // those entities will be found in the nearest enclosing
1283        // non-transparent context.
1284        if (Ctx->isTransparentContext())
1285          continue;
1286
1287        // If we have a context, and it's not a context stashed in the
1288        // template parameter scope for an out-of-line definition, also
1289        // look into that context.
1290        if (!(Found && S && S->isTemplateParamScope())) {
1291          assert(Ctx->isFileContext() &&
1292              "We should have been looking only at file context here already.");
1293
1294          // Look into context considering using-directives.
1295          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1296            Found = true;
1297        }
1298
1299        if (Found) {
1300          R.resolveKind();
1301          return true;
1302        }
1303
1304        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1305          return false;
1306      }
1307    }
1308
1309    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1310      return false;
1311  }
1312
1313  return !R.empty();
1314}
1315
1316/// \brief Find the declaration that a class temploid member specialization was
1317/// instantiated from, or the member itself if it is an explicit specialization.
1318static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1319  return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1320}
1321
1322Module *Sema::getOwningModule(Decl *Entity) {
1323  // If it's imported, grab its owning module.
1324  Module *M = Entity->getImportedOwningModule();
1325  if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
1326    return M;
1327  assert(!Entity->isFromASTFile() &&
1328         "hidden entity from AST file has no owning module");
1329
1330  if (!getLangOpts().ModulesLocalVisibility) {
1331    // If we're not tracking visibility locally, the only way a declaration
1332    // can be hidden and local is if it's hidden because it's parent is (for
1333    // instance, maybe this is a lazily-declared special member of an imported
1334    // class).
1335    auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
1336    assert(Parent->isHidden() && "unexpectedly hidden decl");
1337    return getOwningModule(Parent);
1338  }
1339
1340  // It's local and hidden; grab or compute its owning module.
1341  M = Entity->getLocalOwningModule();
1342  if (M)
1343    return M;
1344
1345  if (auto *Containing =
1346          PP.getModuleContainingLocation(Entity->getLocation())) {
1347    M = Containing;
1348  } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
1349    // Don't bother tracking visibility for invalid declarations with broken
1350    // locations.
1351    cast<NamedDecl>(Entity)->setHidden(false);
1352  } else {
1353    // We need to assign a module to an entity that exists outside of any
1354    // module, so that we can hide it from modules that we textually enter.
1355    // Invent a fake module for all such entities.
1356    if (!CachedFakeTopLevelModule) {
1357      CachedFakeTopLevelModule =
1358          PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
1359              "<top-level>", nullptr, false, false).first;
1360
1361      auto &SrcMgr = PP.getSourceManager();
1362      SourceLocation StartLoc =
1363          SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
1364      auto &TopLevel =
1365          VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
1366      TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
1367    }
1368
1369    M = CachedFakeTopLevelModule;
1370  }
1371
1372  if (M)
1373    Entity->setLocalOwningModule(M);
1374  return M;
1375}
1376
1377void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
1378  if (auto *M = PP.getModuleContainingLocation(Loc))
1379    Context.mergeDefinitionIntoModule(ND, M);
1380  else
1381    // We're not building a module; just make the definition visible.
1382    ND->setHidden(false);
1383
1384  // If ND is a template declaration, make the template parameters
1385  // visible too. They're not (necessarily) within a mergeable DeclContext.
1386  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1387    for (auto *Param : *TD->getTemplateParameters())
1388      makeMergedDefinitionVisible(Param, Loc);
1389}
1390
1391/// \brief Find the module in which the given declaration was defined.
1392static Module *getDefiningModule(Sema &S, Decl *Entity) {
1393  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1394    // If this function was instantiated from a template, the defining module is
1395    // the module containing the pattern.
1396    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1397      Entity = Pattern;
1398  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1399    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1400      Entity = Pattern;
1401  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1402    if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1403      Entity = getInstantiatedFrom(ED, MSInfo);
1404  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1405    // FIXME: Map from variable template specializations back to the template.
1406    if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1407      Entity = getInstantiatedFrom(VD, MSInfo);
1408  }
1409
1410  // Walk up to the containing context. That might also have been instantiated
1411  // from a template.
1412  DeclContext *Context = Entity->getDeclContext();
1413  if (Context->isFileContext())
1414    return S.getOwningModule(Entity);
1415  return getDefiningModule(S, cast<Decl>(Context));
1416}
1417
1418llvm::DenseSet<Module*> &Sema::getLookupModules() {
1419  unsigned N = ActiveTemplateInstantiations.size();
1420  for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1421       I != N; ++I) {
1422    Module *M =
1423        getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
1424    if (M && !LookupModulesCache.insert(M).second)
1425      M = nullptr;
1426    ActiveTemplateInstantiationLookupModules.push_back(M);
1427  }
1428  return LookupModulesCache;
1429}
1430
1431bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1432  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1433    if (isModuleVisible(Merged))
1434      return true;
1435  return false;
1436}
1437
1438template<typename ParmDecl>
1439static bool
1440hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1441                          llvm::SmallVectorImpl<Module *> *Modules) {
1442  if (!D->hasDefaultArgument())
1443    return false;
1444
1445  while (D) {
1446    auto &DefaultArg = D->getDefaultArgStorage();
1447    if (!DefaultArg.isInherited() && S.isVisible(D))
1448      return true;
1449
1450    if (!DefaultArg.isInherited() && Modules) {
1451      auto *NonConstD = const_cast<ParmDecl*>(D);
1452      Modules->push_back(S.getOwningModule(NonConstD));
1453      const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1454      Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1455    }
1456
1457    // If there was a previous default argument, maybe its parameter is visible.
1458    D = DefaultArg.getInheritedFrom();
1459  }
1460  return false;
1461}
1462
1463bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1464                                     llvm::SmallVectorImpl<Module *> *Modules) {
1465  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1466    return ::hasVisibleDefaultArgument(*this, P, Modules);
1467  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1468    return ::hasVisibleDefaultArgument(*this, P, Modules);
1469  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1470                                     Modules);
1471}
1472
1473/// \brief Determine whether a declaration is visible to name lookup.
1474///
1475/// This routine determines whether the declaration D is visible in the current
1476/// lookup context, taking into account the current template instantiation
1477/// stack. During template instantiation, a declaration is visible if it is
1478/// visible from a module containing any entity on the template instantiation
1479/// path (by instantiating a template, you allow it to see the declarations that
1480/// your module can see, including those later on in your module).
1481bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1482  assert(D->isHidden() && "should not call this: not in slow case");
1483  Module *DeclModule = nullptr;
1484
1485  if (SemaRef.getLangOpts().ModulesLocalVisibility) {
1486    DeclModule = SemaRef.getOwningModule(D);
1487    if (!DeclModule) {
1488      // getOwningModule() may have decided the declaration should not be hidden.
1489      assert(!D->isHidden() && "hidden decl not from a module");
1490      return true;
1491    }
1492
1493    // If the owning module is visible, and the decl is not module private,
1494    // then the decl is visible too. (Module private is ignored within the same
1495    // top-level module.)
1496    if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
1497        (SemaRef.isModuleVisible(DeclModule) ||
1498         SemaRef.hasVisibleMergedDefinition(D)))
1499      return true;
1500  }
1501
1502  // If this declaration is not at namespace scope nor module-private,
1503  // then it is visible if its lexical parent has a visible definition.
1504  DeclContext *DC = D->getLexicalDeclContext();
1505  if (!D->isModulePrivate() &&
1506      DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
1507    // For a parameter, check whether our current template declaration's
1508    // lexical context is visible, not whether there's some other visible
1509    // definition of it, because parameters aren't "within" the definition.
1510    if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
1511            ? isVisible(SemaRef, cast<NamedDecl>(DC))
1512            : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1513      if (SemaRef.ActiveTemplateInstantiations.empty() &&
1514          // FIXME: Do something better in this case.
1515          !SemaRef.getLangOpts().ModulesLocalVisibility) {
1516        // Cache the fact that this declaration is implicitly visible because
1517        // its parent has a visible definition.
1518        D->setHidden(false);
1519      }
1520      return true;
1521    }
1522    return false;
1523  }
1524
1525  // Find the extra places where we need to look.
1526  llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1527  if (LookupModules.empty())
1528    return false;
1529
1530  if (!DeclModule) {
1531    DeclModule = SemaRef.getOwningModule(D);
1532    assert(DeclModule && "hidden decl not from a module");
1533  }
1534
1535  // If our lookup set contains the decl's module, it's visible.
1536  if (LookupModules.count(DeclModule))
1537    return true;
1538
1539  // If the declaration isn't exported, it's not visible in any other module.
1540  if (D->isModulePrivate())
1541    return false;
1542
1543  // Check whether DeclModule is transitively exported to an import of
1544  // the lookup set.
1545  return std::any_of(LookupModules.begin(), LookupModules.end(),
1546                     [&](Module *M) { return M->isModuleVisible(DeclModule); });
1547}
1548
1549bool Sema::isVisibleSlow(const NamedDecl *D) {
1550  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1551}
1552
1553bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1554  for (auto *D : R) {
1555    if (isVisible(D))
1556      return true;
1557  }
1558  return New->isExternallyVisible();
1559}
1560
1561/// \brief Retrieve the visible declaration corresponding to D, if any.
1562///
1563/// This routine determines whether the declaration D is visible in the current
1564/// module, with the current imports. If not, it checks whether any
1565/// redeclaration of D is visible, and if so, returns that declaration.
1566///
1567/// \returns D, or a visible previous declaration of D, whichever is more recent
1568/// and visible. If no declaration of D is visible, returns null.
1569static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1570  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1571
1572  for (auto RD : D->redecls()) {
1573    if (auto ND = dyn_cast<NamedDecl>(RD)) {
1574      // FIXME: This is wrong in the case where the previous declaration is not
1575      // visible in the same scope as D. This needs to be done much more
1576      // carefully.
1577      if (LookupResult::isVisible(SemaRef, ND))
1578        return ND;
1579    }
1580  }
1581
1582  return nullptr;
1583}
1584
1585NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1586  return findAcceptableDecl(getSema(), D);
1587}
1588
1589/// @brief Perform unqualified name lookup starting from a given
1590/// scope.
1591///
1592/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1593/// used to find names within the current scope. For example, 'x' in
1594/// @code
1595/// int x;
1596/// int f() {
1597///   return x; // unqualified name look finds 'x' in the global scope
1598/// }
1599/// @endcode
1600///
1601/// Different lookup criteria can find different names. For example, a
1602/// particular scope can have both a struct and a function of the same
1603/// name, and each can be found by certain lookup criteria. For more
1604/// information about lookup criteria, see the documentation for the
1605/// class LookupCriteria.
1606///
1607/// @param S        The scope from which unqualified name lookup will
1608/// begin. If the lookup criteria permits, name lookup may also search
1609/// in the parent scopes.
1610///
1611/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1612/// look up and the lookup kind), and is updated with the results of lookup
1613/// including zero or more declarations and possibly additional information
1614/// used to diagnose ambiguities.
1615///
1616/// @returns \c true if lookup succeeded and false otherwise.
1617bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1618  DeclarationName Name = R.getLookupName();
1619  if (!Name) return false;
1620
1621  LookupNameKind NameKind = R.getLookupKind();
1622
1623  if (!getLangOpts().CPlusPlus) {
1624    // Unqualified name lookup in C/Objective-C is purely lexical, so
1625    // search in the declarations attached to the name.
1626    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1627      // Find the nearest non-transparent declaration scope.
1628      while (!(S->getFlags() & Scope::DeclScope) ||
1629             (S->getEntity() && S->getEntity()->isTransparentContext()))
1630        S = S->getParent();
1631    }
1632
1633    // When performing a scope lookup, we want to find local extern decls.
1634    FindLocalExternScope FindLocals(R);
1635
1636    // Scan up the scope chain looking for a decl that matches this
1637    // identifier that is in the appropriate namespace.  This search
1638    // should not take long, as shadowing of names is uncommon, and
1639    // deep shadowing is extremely uncommon.
1640    bool LeftStartingScope = false;
1641
1642    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1643                                   IEnd = IdResolver.end();
1644         I != IEnd; ++I)
1645      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1646        if (NameKind == LookupRedeclarationWithLinkage) {
1647          // Determine whether this (or a previous) declaration is
1648          // out-of-scope.
1649          if (!LeftStartingScope && !S->isDeclScope(*I))
1650            LeftStartingScope = true;
1651
1652          // If we found something outside of our starting scope that
1653          // does not have linkage, skip it.
1654          if (LeftStartingScope && !((*I)->hasLinkage())) {
1655            R.setShadowed();
1656            continue;
1657          }
1658        }
1659        else if (NameKind == LookupObjCImplicitSelfParam &&
1660                 !isa<ImplicitParamDecl>(*I))
1661          continue;
1662
1663        R.addDecl(D);
1664
1665        // Check whether there are any other declarations with the same name
1666        // and in the same scope.
1667        if (I != IEnd) {
1668          // Find the scope in which this declaration was declared (if it
1669          // actually exists in a Scope).
1670          while (S && !S->isDeclScope(D))
1671            S = S->getParent();
1672
1673          // If the scope containing the declaration is the translation unit,
1674          // then we'll need to perform our checks based on the matching
1675          // DeclContexts rather than matching scopes.
1676          if (S && isNamespaceOrTranslationUnitScope(S))
1677            S = nullptr;
1678
1679          // Compute the DeclContext, if we need it.
1680          DeclContext *DC = nullptr;
1681          if (!S)
1682            DC = (*I)->getDeclContext()->getRedeclContext();
1683
1684          IdentifierResolver::iterator LastI = I;
1685          for (++LastI; LastI != IEnd; ++LastI) {
1686            if (S) {
1687              // Match based on scope.
1688              if (!S->isDeclScope(*LastI))
1689                break;
1690            } else {
1691              // Match based on DeclContext.
1692              DeclContext *LastDC
1693                = (*LastI)->getDeclContext()->getRedeclContext();
1694              if (!LastDC->Equals(DC))
1695                break;
1696            }
1697
1698            // If the declaration is in the right namespace and visible, add it.
1699            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1700              R.addDecl(LastD);
1701          }
1702
1703          R.resolveKind();
1704        }
1705
1706        return true;
1707      }
1708  } else {
1709    // Perform C++ unqualified name lookup.
1710    if (CppLookupName(R, S))
1711      return true;
1712  }
1713
1714  // If we didn't find a use of this identifier, and if the identifier
1715  // corresponds to a compiler builtin, create the decl object for the builtin
1716  // now, injecting it into translation unit scope, and return it.
1717  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1718    return true;
1719
1720  // If we didn't find a use of this identifier, the ExternalSource
1721  // may be able to handle the situation.
1722  // Note: some lookup failures are expected!
1723  // See e.g. R.isForRedeclaration().
1724  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1725}
1726
1727/// @brief Perform qualified name lookup in the namespaces nominated by
1728/// using directives by the given context.
1729///
1730/// C++98 [namespace.qual]p2:
1731///   Given X::m (where X is a user-declared namespace), or given \::m
1732///   (where X is the global namespace), let S be the set of all
1733///   declarations of m in X and in the transitive closure of all
1734///   namespaces nominated by using-directives in X and its used
1735///   namespaces, except that using-directives are ignored in any
1736///   namespace, including X, directly containing one or more
1737///   declarations of m. No namespace is searched more than once in
1738///   the lookup of a name. If S is the empty set, the program is
1739///   ill-formed. Otherwise, if S has exactly one member, or if the
1740///   context of the reference is a using-declaration
1741///   (namespace.udecl), S is the required set of declarations of
1742///   m. Otherwise if the use of m is not one that allows a unique
1743///   declaration to be chosen from S, the program is ill-formed.
1744///
1745/// C++98 [namespace.qual]p5:
1746///   During the lookup of a qualified namespace member name, if the
1747///   lookup finds more than one declaration of the member, and if one
1748///   declaration introduces a class name or enumeration name and the
1749///   other declarations either introduce the same object, the same
1750///   enumerator or a set of functions, the non-type name hides the
1751///   class or enumeration name if and only if the declarations are
1752///   from the same namespace; otherwise (the declarations are from
1753///   different namespaces), the program is ill-formed.
1754static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1755                                                 DeclContext *StartDC) {
1756  assert(StartDC->isFileContext() && "start context is not a file context");
1757
1758  DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1759  if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1760
1761  // We have at least added all these contexts to the queue.
1762  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1763  Visited.insert(StartDC);
1764
1765  // We have not yet looked into these namespaces, much less added
1766  // their "using-children" to the queue.
1767  SmallVector<NamespaceDecl*, 8> Queue;
1768
1769  // We have already looked into the initial namespace; seed the queue
1770  // with its using-children.
1771  for (auto *I : UsingDirectives) {
1772    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1773    if (Visited.insert(ND).second)
1774      Queue.push_back(ND);
1775  }
1776
1777  // The easiest way to implement the restriction in [namespace.qual]p5
1778  // is to check whether any of the individual results found a tag
1779  // and, if so, to declare an ambiguity if the final result is not
1780  // a tag.
1781  bool FoundTag = false;
1782  bool FoundNonTag = false;
1783
1784  LookupResult LocalR(LookupResult::Temporary, R);
1785
1786  bool Found = false;
1787  while (!Queue.empty()) {
1788    NamespaceDecl *ND = Queue.pop_back_val();
1789
1790    // We go through some convolutions here to avoid copying results
1791    // between LookupResults.
1792    bool UseLocal = !R.empty();
1793    LookupResult &DirectR = UseLocal ? LocalR : R;
1794    bool FoundDirect = LookupDirect(S, DirectR, ND);
1795
1796    if (FoundDirect) {
1797      // First do any local hiding.
1798      DirectR.resolveKind();
1799
1800      // If the local result is a tag, remember that.
1801      if (DirectR.isSingleTagDecl())
1802        FoundTag = true;
1803      else
1804        FoundNonTag = true;
1805
1806      // Append the local results to the total results if necessary.
1807      if (UseLocal) {
1808        R.addAllDecls(LocalR);
1809        LocalR.clear();
1810      }
1811    }
1812
1813    // If we find names in this namespace, ignore its using directives.
1814    if (FoundDirect) {
1815      Found = true;
1816      continue;
1817    }
1818
1819    for (auto I : ND->using_directives()) {
1820      NamespaceDecl *Nom = I->getNominatedNamespace();
1821      if (Visited.insert(Nom).second)
1822        Queue.push_back(Nom);
1823    }
1824  }
1825
1826  if (Found) {
1827    if (FoundTag && FoundNonTag)
1828      R.setAmbiguousQualifiedTagHiding();
1829    else
1830      R.resolveKind();
1831  }
1832
1833  return Found;
1834}
1835
1836/// \brief Callback that looks for any member of a class with the given name.
1837static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1838                            CXXBasePath &Path, DeclarationName Name) {
1839  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1840
1841  Path.Decls = BaseRecord->lookup(Name);
1842  return !Path.Decls.empty();
1843}
1844
1845/// \brief Determine whether the given set of member declarations contains only
1846/// static members, nested types, and enumerators.
1847template<typename InputIterator>
1848static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1849  Decl *D = (*First)->getUnderlyingDecl();
1850  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1851    return true;
1852
1853  if (isa<CXXMethodDecl>(D)) {
1854    // Determine whether all of the methods are static.
1855    bool AllMethodsAreStatic = true;
1856    for(; First != Last; ++First) {
1857      D = (*First)->getUnderlyingDecl();
1858
1859      if (!isa<CXXMethodDecl>(D)) {
1860        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1861        break;
1862      }
1863
1864      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1865        AllMethodsAreStatic = false;
1866        break;
1867      }
1868    }
1869
1870    if (AllMethodsAreStatic)
1871      return true;
1872  }
1873
1874  return false;
1875}
1876
1877/// \brief Perform qualified name lookup into a given context.
1878///
1879/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1880/// names when the context of those names is explicit specified, e.g.,
1881/// "std::vector" or "x->member", or as part of unqualified name lookup.
1882///
1883/// Different lookup criteria can find different names. For example, a
1884/// particular scope can have both a struct and a function of the same
1885/// name, and each can be found by certain lookup criteria. For more
1886/// information about lookup criteria, see the documentation for the
1887/// class LookupCriteria.
1888///
1889/// \param R captures both the lookup criteria and any lookup results found.
1890///
1891/// \param LookupCtx The context in which qualified name lookup will
1892/// search. If the lookup criteria permits, name lookup may also search
1893/// in the parent contexts or (for C++ classes) base classes.
1894///
1895/// \param InUnqualifiedLookup true if this is qualified name lookup that
1896/// occurs as part of unqualified name lookup.
1897///
1898/// \returns true if lookup succeeded, false if it failed.
1899bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1900                               bool InUnqualifiedLookup) {
1901  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1902
1903  if (!R.getLookupName())
1904    return false;
1905
1906  // Make sure that the declaration context is complete.
1907  assert((!isa<TagDecl>(LookupCtx) ||
1908          LookupCtx->isDependentContext() ||
1909          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1910          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1911         "Declaration context must already be complete!");
1912
1913  struct QualifiedLookupInScope {
1914    bool oldVal;
1915    DeclContext *Context;
1916    // Set flag in DeclContext informing debugger that we're looking for qualified name
1917    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
1918      oldVal = ctx->setUseQualifiedLookup();
1919    }
1920    ~QualifiedLookupInScope() {
1921      Context->setUseQualifiedLookup(oldVal);
1922    }
1923  } QL(LookupCtx);
1924
1925  if (LookupDirect(*this, R, LookupCtx)) {
1926    R.resolveKind();
1927    if (isa<CXXRecordDecl>(LookupCtx))
1928      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1929    return true;
1930  }
1931
1932  // Don't descend into implied contexts for redeclarations.
1933  // C++98 [namespace.qual]p6:
1934  //   In a declaration for a namespace member in which the
1935  //   declarator-id is a qualified-id, given that the qualified-id
1936  //   for the namespace member has the form
1937  //     nested-name-specifier unqualified-id
1938  //   the unqualified-id shall name a member of the namespace
1939  //   designated by the nested-name-specifier.
1940  // See also [class.mfct]p5 and [class.static.data]p2.
1941  if (R.isForRedeclaration())
1942    return false;
1943
1944  // If this is a namespace, look it up in the implied namespaces.
1945  if (LookupCtx->isFileContext())
1946    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1947
1948  // If this isn't a C++ class, we aren't allowed to look into base
1949  // classes, we're done.
1950  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1951  if (!LookupRec || !LookupRec->getDefinition())
1952    return false;
1953
1954  // If we're performing qualified name lookup into a dependent class,
1955  // then we are actually looking into a current instantiation. If we have any
1956  // dependent base classes, then we either have to delay lookup until
1957  // template instantiation time (at which point all bases will be available)
1958  // or we have to fail.
1959  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1960      LookupRec->hasAnyDependentBases()) {
1961    R.setNotFoundInCurrentInstantiation();
1962    return false;
1963  }
1964
1965  // Perform lookup into our base classes.
1966  CXXBasePaths Paths;
1967  Paths.setOrigin(LookupRec);
1968
1969  // Look for this member in our base classes
1970  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
1971                       DeclarationName Name) = nullptr;
1972  switch (R.getLookupKind()) {
1973    case LookupObjCImplicitSelfParam:
1974    case LookupOrdinaryName:
1975    case LookupMemberName:
1976    case LookupRedeclarationWithLinkage:
1977    case LookupLocalFriendName:
1978      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1979      break;
1980
1981    case LookupTagName:
1982      BaseCallback = &CXXRecordDecl::FindTagMember;
1983      break;
1984
1985    case LookupAnyName:
1986      BaseCallback = &LookupAnyMember;
1987      break;
1988
1989    case LookupUsingDeclName:
1990      // This lookup is for redeclarations only.
1991
1992    case LookupOperatorName:
1993    case LookupNamespaceName:
1994    case LookupObjCProtocolName:
1995    case LookupLabel:
1996      // These lookups will never find a member in a C++ class (or base class).
1997      return false;
1998
1999    case LookupNestedNameSpecifierName:
2000      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2001      break;
2002  }
2003
2004  DeclarationName Name = R.getLookupName();
2005  if (!LookupRec->lookupInBases(
2006          [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2007            return BaseCallback(Specifier, Path, Name);
2008          },
2009          Paths))
2010    return false;
2011
2012  R.setNamingClass(LookupRec);
2013
2014  // C++ [class.member.lookup]p2:
2015  //   [...] If the resulting set of declarations are not all from
2016  //   sub-objects of the same type, or the set has a nonstatic member
2017  //   and includes members from distinct sub-objects, there is an
2018  //   ambiguity and the program is ill-formed. Otherwise that set is
2019  //   the result of the lookup.
2020  QualType SubobjectType;
2021  int SubobjectNumber = 0;
2022  AccessSpecifier SubobjectAccess = AS_none;
2023
2024  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2025       Path != PathEnd; ++Path) {
2026    const CXXBasePathElement &PathElement = Path->back();
2027
2028    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2029    // across all paths.
2030    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2031
2032    // Determine whether we're looking at a distinct sub-object or not.
2033    if (SubobjectType.isNull()) {
2034      // This is the first subobject we've looked at. Record its type.
2035      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2036      SubobjectNumber = PathElement.SubobjectNumber;
2037      continue;
2038    }
2039
2040    if (SubobjectType
2041                 != Context.getCanonicalType(PathElement.Base->getType())) {
2042      // We found members of the given name in two subobjects of
2043      // different types. If the declaration sets aren't the same, this
2044      // lookup is ambiguous.
2045      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2046        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2047        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2048        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2049
2050        while (FirstD != FirstPath->Decls.end() &&
2051               CurrentD != Path->Decls.end()) {
2052         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2053             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2054           break;
2055
2056          ++FirstD;
2057          ++CurrentD;
2058        }
2059
2060        if (FirstD == FirstPath->Decls.end() &&
2061            CurrentD == Path->Decls.end())
2062          continue;
2063      }
2064
2065      R.setAmbiguousBaseSubobjectTypes(Paths);
2066      return true;
2067    }
2068
2069    if (SubobjectNumber != PathElement.SubobjectNumber) {
2070      // We have a different subobject of the same type.
2071
2072      // C++ [class.member.lookup]p5:
2073      //   A static member, a nested type or an enumerator defined in
2074      //   a base class T can unambiguously be found even if an object
2075      //   has more than one base class subobject of type T.
2076      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2077        continue;
2078
2079      // We have found a nonstatic member name in multiple, distinct
2080      // subobjects. Name lookup is ambiguous.
2081      R.setAmbiguousBaseSubobjects(Paths);
2082      return true;
2083    }
2084  }
2085
2086  // Lookup in a base class succeeded; return these results.
2087
2088  for (auto *D : Paths.front().Decls) {
2089    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2090                                                    D->getAccess());
2091    R.addDecl(D, AS);
2092  }
2093  R.resolveKind();
2094  return true;
2095}
2096
2097/// \brief Performs qualified name lookup or special type of lookup for
2098/// "__super::" scope specifier.
2099///
2100/// This routine is a convenience overload meant to be called from contexts
2101/// that need to perform a qualified name lookup with an optional C++ scope
2102/// specifier that might require special kind of lookup.
2103///
2104/// \param R captures both the lookup criteria and any lookup results found.
2105///
2106/// \param LookupCtx The context in which qualified name lookup will
2107/// search.
2108///
2109/// \param SS An optional C++ scope-specifier.
2110///
2111/// \returns true if lookup succeeded, false if it failed.
2112bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2113                               CXXScopeSpec &SS) {
2114  auto *NNS = SS.getScopeRep();
2115  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2116    return LookupInSuper(R, NNS->getAsRecordDecl());
2117  else
2118
2119    return LookupQualifiedName(R, LookupCtx);
2120}
2121
2122/// @brief Performs name lookup for a name that was parsed in the
2123/// source code, and may contain a C++ scope specifier.
2124///
2125/// This routine is a convenience routine meant to be called from
2126/// contexts that receive a name and an optional C++ scope specifier
2127/// (e.g., "N::M::x"). It will then perform either qualified or
2128/// unqualified name lookup (with LookupQualifiedName or LookupName,
2129/// respectively) on the given name and return those results. It will
2130/// perform a special type of lookup for "__super::" scope specifier.
2131///
2132/// @param S        The scope from which unqualified name lookup will
2133/// begin.
2134///
2135/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2136///
2137/// @param EnteringContext Indicates whether we are going to enter the
2138/// context of the scope-specifier SS (if present).
2139///
2140/// @returns True if any decls were found (but possibly ambiguous)
2141bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2142                            bool AllowBuiltinCreation, bool EnteringContext) {
2143  if (SS && SS->isInvalid()) {
2144    // When the scope specifier is invalid, don't even look for
2145    // anything.
2146    return false;
2147  }
2148
2149  if (SS && SS->isSet()) {
2150    NestedNameSpecifier *NNS = SS->getScopeRep();
2151    if (NNS->getKind() == NestedNameSpecifier::Super)
2152      return LookupInSuper(R, NNS->getAsRecordDecl());
2153
2154    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2155      // We have resolved the scope specifier to a particular declaration
2156      // contex, and will perform name lookup in that context.
2157      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2158        return false;
2159
2160      R.setContextRange(SS->getRange());
2161      return LookupQualifiedName(R, DC);
2162    }
2163
2164    // We could not resolve the scope specified to a specific declaration
2165    // context, which means that SS refers to an unknown specialization.
2166    // Name lookup can't find anything in this case.
2167    R.setNotFoundInCurrentInstantiation();
2168    R.setContextRange(SS->getRange());
2169    return false;
2170  }
2171
2172  // Perform unqualified name lookup starting in the given scope.
2173  return LookupName(R, S, AllowBuiltinCreation);
2174}
2175
2176/// \brief Perform qualified name lookup into all base classes of the given
2177/// class.
2178///
2179/// \param R captures both the lookup criteria and any lookup results found.
2180///
2181/// \param Class The context in which qualified name lookup will
2182/// search. Name lookup will search in all base classes merging the results.
2183///
2184/// @returns True if any decls were found (but possibly ambiguous)
2185bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2186  // The access-control rules we use here are essentially the rules for
2187  // doing a lookup in Class that just magically skipped the direct
2188  // members of Class itself.  That is, the naming class is Class, and the
2189  // access includes the access of the base.
2190  for (const auto &BaseSpec : Class->bases()) {
2191    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2192        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2193    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2194	Result.setBaseObjectType(Context.getRecordType(Class));
2195    LookupQualifiedName(Result, RD);
2196
2197    // Copy the lookup results into the target, merging the base's access into
2198    // the path access.
2199    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2200      R.addDecl(I.getDecl(),
2201                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2202                                           I.getAccess()));
2203    }
2204
2205    Result.suppressDiagnostics();
2206  }
2207
2208  R.resolveKind();
2209  R.setNamingClass(Class);
2210
2211  return !R.empty();
2212}
2213
2214/// \brief Produce a diagnostic describing the ambiguity that resulted
2215/// from name lookup.
2216///
2217/// \param Result The result of the ambiguous lookup to be diagnosed.
2218void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2219  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2220
2221  DeclarationName Name = Result.getLookupName();
2222  SourceLocation NameLoc = Result.getNameLoc();
2223  SourceRange LookupRange = Result.getContextRange();
2224
2225  switch (Result.getAmbiguityKind()) {
2226  case LookupResult::AmbiguousBaseSubobjects: {
2227    CXXBasePaths *Paths = Result.getBasePaths();
2228    QualType SubobjectType = Paths->front().back().Base->getType();
2229    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2230      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2231      << LookupRange;
2232
2233    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2234    while (isa<CXXMethodDecl>(*Found) &&
2235           cast<CXXMethodDecl>(*Found)->isStatic())
2236      ++Found;
2237
2238    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2239    break;
2240  }
2241
2242  case LookupResult::AmbiguousBaseSubobjectTypes: {
2243    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2244      << Name << LookupRange;
2245
2246    CXXBasePaths *Paths = Result.getBasePaths();
2247    std::set<Decl *> DeclsPrinted;
2248    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2249                                      PathEnd = Paths->end();
2250         Path != PathEnd; ++Path) {
2251      Decl *D = Path->Decls.front();
2252      if (DeclsPrinted.insert(D).second)
2253        Diag(D->getLocation(), diag::note_ambiguous_member_found);
2254    }
2255    break;
2256  }
2257
2258  case LookupResult::AmbiguousTagHiding: {
2259    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2260
2261    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2262
2263    for (auto *D : Result)
2264      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2265        TagDecls.insert(TD);
2266        Diag(TD->getLocation(), diag::note_hidden_tag);
2267      }
2268
2269    for (auto *D : Result)
2270      if (!isa<TagDecl>(D))
2271        Diag(D->getLocation(), diag::note_hiding_object);
2272
2273    // For recovery purposes, go ahead and implement the hiding.
2274    LookupResult::Filter F = Result.makeFilter();
2275    while (F.hasNext()) {
2276      if (TagDecls.count(F.next()))
2277        F.erase();
2278    }
2279    F.done();
2280    break;
2281  }
2282
2283  case LookupResult::AmbiguousReference: {
2284    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2285
2286    for (auto *D : Result)
2287      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2288    break;
2289  }
2290  }
2291}
2292
2293namespace {
2294  struct AssociatedLookup {
2295    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2296                     Sema::AssociatedNamespaceSet &Namespaces,
2297                     Sema::AssociatedClassSet &Classes)
2298      : S(S), Namespaces(Namespaces), Classes(Classes),
2299        InstantiationLoc(InstantiationLoc) {
2300    }
2301
2302    Sema &S;
2303    Sema::AssociatedNamespaceSet &Namespaces;
2304    Sema::AssociatedClassSet &Classes;
2305    SourceLocation InstantiationLoc;
2306  };
2307} // end anonymous namespace
2308
2309static void
2310addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2311
2312static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2313                                      DeclContext *Ctx) {
2314  // Add the associated namespace for this class.
2315
2316  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2317  // be a locally scoped record.
2318
2319  // We skip out of inline namespaces. The innermost non-inline namespace
2320  // contains all names of all its nested inline namespaces anyway, so we can
2321  // replace the entire inline namespace tree with its root.
2322  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2323         Ctx->isInlineNamespace())
2324    Ctx = Ctx->getParent();
2325
2326  if (Ctx->isFileContext())
2327    Namespaces.insert(Ctx->getPrimaryContext());
2328}
2329
2330// \brief Add the associated classes and namespaces for argument-dependent
2331// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2332static void
2333addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2334                                  const TemplateArgument &Arg) {
2335  // C++ [basic.lookup.koenig]p2, last bullet:
2336  //   -- [...] ;
2337  switch (Arg.getKind()) {
2338    case TemplateArgument::Null:
2339      break;
2340
2341    case TemplateArgument::Type:
2342      // [...] the namespaces and classes associated with the types of the
2343      // template arguments provided for template type parameters (excluding
2344      // template template parameters)
2345      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2346      break;
2347
2348    case TemplateArgument::Template:
2349    case TemplateArgument::TemplateExpansion: {
2350      // [...] the namespaces in which any template template arguments are
2351      // defined; and the classes in which any member templates used as
2352      // template template arguments are defined.
2353      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2354      if (ClassTemplateDecl *ClassTemplate
2355                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2356        DeclContext *Ctx = ClassTemplate->getDeclContext();
2357        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2358          Result.Classes.insert(EnclosingClass);
2359        // Add the associated namespace for this class.
2360        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2361      }
2362      break;
2363    }
2364
2365    case TemplateArgument::Declaration:
2366    case TemplateArgument::Integral:
2367    case TemplateArgument::Expression:
2368    case TemplateArgument::NullPtr:
2369      // [Note: non-type template arguments do not contribute to the set of
2370      //  associated namespaces. ]
2371      break;
2372
2373    case TemplateArgument::Pack:
2374      for (const auto &P : Arg.pack_elements())
2375        addAssociatedClassesAndNamespaces(Result, P);
2376      break;
2377  }
2378}
2379
2380// \brief Add the associated classes and namespaces for
2381// argument-dependent lookup with an argument of class type
2382// (C++ [basic.lookup.koenig]p2).
2383static void
2384addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2385                                  CXXRecordDecl *Class) {
2386
2387  // Just silently ignore anything whose name is __va_list_tag.
2388  if (Class->getDeclName() == Result.S.VAListTagName)
2389    return;
2390
2391  // C++ [basic.lookup.koenig]p2:
2392  //   [...]
2393  //     -- If T is a class type (including unions), its associated
2394  //        classes are: the class itself; the class of which it is a
2395  //        member, if any; and its direct and indirect base
2396  //        classes. Its associated namespaces are the namespaces in
2397  //        which its associated classes are defined.
2398
2399  // Add the class of which it is a member, if any.
2400  DeclContext *Ctx = Class->getDeclContext();
2401  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2402    Result.Classes.insert(EnclosingClass);
2403  // Add the associated namespace for this class.
2404  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2405
2406  // Add the class itself. If we've already seen this class, we don't
2407  // need to visit base classes.
2408  //
2409  // FIXME: That's not correct, we may have added this class only because it
2410  // was the enclosing class of another class, and in that case we won't have
2411  // added its base classes yet.
2412  if (!Result.Classes.insert(Class).second)
2413    return;
2414
2415  // -- If T is a template-id, its associated namespaces and classes are
2416  //    the namespace in which the template is defined; for member
2417  //    templates, the member template's class; the namespaces and classes
2418  //    associated with the types of the template arguments provided for
2419  //    template type parameters (excluding template template parameters); the
2420  //    namespaces in which any template template arguments are defined; and
2421  //    the classes in which any member templates used as template template
2422  //    arguments are defined. [Note: non-type template arguments do not
2423  //    contribute to the set of associated namespaces. ]
2424  if (ClassTemplateSpecializationDecl *Spec
2425        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2426    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2427    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2428      Result.Classes.insert(EnclosingClass);
2429    // Add the associated namespace for this class.
2430    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2431
2432    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2433    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2434      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2435  }
2436
2437  // Only recurse into base classes for complete types.
2438  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2439                               Result.S.Context.getRecordType(Class)))
2440    return;
2441
2442  // Add direct and indirect base classes along with their associated
2443  // namespaces.
2444  SmallVector<CXXRecordDecl *, 32> Bases;
2445  Bases.push_back(Class);
2446  while (!Bases.empty()) {
2447    // Pop this class off the stack.
2448    Class = Bases.pop_back_val();
2449
2450    // Visit the base classes.
2451    for (const auto &Base : Class->bases()) {
2452      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2453      // In dependent contexts, we do ADL twice, and the first time around,
2454      // the base type might be a dependent TemplateSpecializationType, or a
2455      // TemplateTypeParmType. If that happens, simply ignore it.
2456      // FIXME: If we want to support export, we probably need to add the
2457      // namespace of the template in a TemplateSpecializationType, or even
2458      // the classes and namespaces of known non-dependent arguments.
2459      if (!BaseType)
2460        continue;
2461      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2462      if (Result.Classes.insert(BaseDecl).second) {
2463        // Find the associated namespace for this base class.
2464        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2465        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2466
2467        // Make sure we visit the bases of this base class.
2468        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2469          Bases.push_back(BaseDecl);
2470      }
2471    }
2472  }
2473}
2474
2475// \brief Add the associated classes and namespaces for
2476// argument-dependent lookup with an argument of type T
2477// (C++ [basic.lookup.koenig]p2).
2478static void
2479addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2480  // C++ [basic.lookup.koenig]p2:
2481  //
2482  //   For each argument type T in the function call, there is a set
2483  //   of zero or more associated namespaces and a set of zero or more
2484  //   associated classes to be considered. The sets of namespaces and
2485  //   classes is determined entirely by the types of the function
2486  //   arguments (and the namespace of any template template
2487  //   argument). Typedef names and using-declarations used to specify
2488  //   the types do not contribute to this set. The sets of namespaces
2489  //   and classes are determined in the following way:
2490
2491  SmallVector<const Type *, 16> Queue;
2492  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2493
2494  while (true) {
2495    switch (T->getTypeClass()) {
2496
2497#define TYPE(Class, Base)
2498#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2499#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2500#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2501#define ABSTRACT_TYPE(Class, Base)
2502#include "clang/AST/TypeNodes.def"
2503      // T is canonical.  We can also ignore dependent types because
2504      // we don't need to do ADL at the definition point, but if we
2505      // wanted to implement template export (or if we find some other
2506      // use for associated classes and namespaces...) this would be
2507      // wrong.
2508      break;
2509
2510    //    -- If T is a pointer to U or an array of U, its associated
2511    //       namespaces and classes are those associated with U.
2512    case Type::Pointer:
2513      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2514      continue;
2515    case Type::ConstantArray:
2516    case Type::IncompleteArray:
2517    case Type::VariableArray:
2518      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2519      continue;
2520
2521    //     -- If T is a fundamental type, its associated sets of
2522    //        namespaces and classes are both empty.
2523    case Type::Builtin:
2524      break;
2525
2526    //     -- If T is a class type (including unions), its associated
2527    //        classes are: the class itself; the class of which it is a
2528    //        member, if any; and its direct and indirect base
2529    //        classes. Its associated namespaces are the namespaces in
2530    //        which its associated classes are defined.
2531    case Type::Record: {
2532      CXXRecordDecl *Class =
2533          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2534      addAssociatedClassesAndNamespaces(Result, Class);
2535      break;
2536    }
2537
2538    //     -- If T is an enumeration type, its associated namespace is
2539    //        the namespace in which it is defined. If it is class
2540    //        member, its associated class is the member's class; else
2541    //        it has no associated class.
2542    case Type::Enum: {
2543      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2544
2545      DeclContext *Ctx = Enum->getDeclContext();
2546      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2547        Result.Classes.insert(EnclosingClass);
2548
2549      // Add the associated namespace for this class.
2550      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2551
2552      break;
2553    }
2554
2555    //     -- If T is a function type, its associated namespaces and
2556    //        classes are those associated with the function parameter
2557    //        types and those associated with the return type.
2558    case Type::FunctionProto: {
2559      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2560      for (const auto &Arg : Proto->param_types())
2561        Queue.push_back(Arg.getTypePtr());
2562      // fallthrough
2563    }
2564    case Type::FunctionNoProto: {
2565      const FunctionType *FnType = cast<FunctionType>(T);
2566      T = FnType->getReturnType().getTypePtr();
2567      continue;
2568    }
2569
2570    //     -- If T is a pointer to a member function of a class X, its
2571    //        associated namespaces and classes are those associated
2572    //        with the function parameter types and return type,
2573    //        together with those associated with X.
2574    //
2575    //     -- If T is a pointer to a data member of class X, its
2576    //        associated namespaces and classes are those associated
2577    //        with the member type together with those associated with
2578    //        X.
2579    case Type::MemberPointer: {
2580      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2581
2582      // Queue up the class type into which this points.
2583      Queue.push_back(MemberPtr->getClass());
2584
2585      // And directly continue with the pointee type.
2586      T = MemberPtr->getPointeeType().getTypePtr();
2587      continue;
2588    }
2589
2590    // As an extension, treat this like a normal pointer.
2591    case Type::BlockPointer:
2592      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2593      continue;
2594
2595    // References aren't covered by the standard, but that's such an
2596    // obvious defect that we cover them anyway.
2597    case Type::LValueReference:
2598    case Type::RValueReference:
2599      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2600      continue;
2601
2602    // These are fundamental types.
2603    case Type::Vector:
2604    case Type::ExtVector:
2605    case Type::Complex:
2606      break;
2607
2608    // Non-deduced auto types only get here for error cases.
2609    case Type::Auto:
2610      break;
2611
2612    // If T is an Objective-C object or interface type, or a pointer to an
2613    // object or interface type, the associated namespace is the global
2614    // namespace.
2615    case Type::ObjCObject:
2616    case Type::ObjCInterface:
2617    case Type::ObjCObjectPointer:
2618      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2619      break;
2620
2621    // Atomic types are just wrappers; use the associations of the
2622    // contained type.
2623    case Type::Atomic:
2624      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2625      continue;
2626    case Type::Pipe:
2627      T = cast<PipeType>(T)->getElementType().getTypePtr();
2628      continue;
2629    }
2630
2631    if (Queue.empty())
2632      break;
2633    T = Queue.pop_back_val();
2634  }
2635}
2636
2637/// \brief Find the associated classes and namespaces for
2638/// argument-dependent lookup for a call with the given set of
2639/// arguments.
2640///
2641/// This routine computes the sets of associated classes and associated
2642/// namespaces searched by argument-dependent lookup
2643/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2644void Sema::FindAssociatedClassesAndNamespaces(
2645    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2646    AssociatedNamespaceSet &AssociatedNamespaces,
2647    AssociatedClassSet &AssociatedClasses) {
2648  AssociatedNamespaces.clear();
2649  AssociatedClasses.clear();
2650
2651  AssociatedLookup Result(*this, InstantiationLoc,
2652                          AssociatedNamespaces, AssociatedClasses);
2653
2654  // C++ [basic.lookup.koenig]p2:
2655  //   For each argument type T in the function call, there is a set
2656  //   of zero or more associated namespaces and a set of zero or more
2657  //   associated classes to be considered. The sets of namespaces and
2658  //   classes is determined entirely by the types of the function
2659  //   arguments (and the namespace of any template template
2660  //   argument).
2661  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2662    Expr *Arg = Args[ArgIdx];
2663
2664    if (Arg->getType() != Context.OverloadTy) {
2665      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2666      continue;
2667    }
2668
2669    // [...] In addition, if the argument is the name or address of a
2670    // set of overloaded functions and/or function templates, its
2671    // associated classes and namespaces are the union of those
2672    // associated with each of the members of the set: the namespace
2673    // in which the function or function template is defined and the
2674    // classes and namespaces associated with its (non-dependent)
2675    // parameter types and return type.
2676    Arg = Arg->IgnoreParens();
2677    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2678      if (unaryOp->getOpcode() == UO_AddrOf)
2679        Arg = unaryOp->getSubExpr();
2680
2681    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2682    if (!ULE) continue;
2683
2684    for (const auto *D : ULE->decls()) {
2685      // Look through any using declarations to find the underlying function.
2686      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2687
2688      // Add the classes and namespaces associated with the parameter
2689      // types and return type of this function.
2690      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2691    }
2692  }
2693}
2694
2695NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2696                                  SourceLocation Loc,
2697                                  LookupNameKind NameKind,
2698                                  RedeclarationKind Redecl) {
2699  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2700  LookupName(R, S);
2701  return R.getAsSingle<NamedDecl>();
2702}
2703
2704/// \brief Find the protocol with the given name, if any.
2705ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2706                                       SourceLocation IdLoc,
2707                                       RedeclarationKind Redecl) {
2708  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2709                             LookupObjCProtocolName, Redecl);
2710  return cast_or_null<ObjCProtocolDecl>(D);
2711}
2712
2713void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2714                                        QualType T1, QualType T2,
2715                                        UnresolvedSetImpl &Functions) {
2716  // C++ [over.match.oper]p3:
2717  //     -- The set of non-member candidates is the result of the
2718  //        unqualified lookup of operator@ in the context of the
2719  //        expression according to the usual rules for name lookup in
2720  //        unqualified function calls (3.4.2) except that all member
2721  //        functions are ignored.
2722  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2723  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2724  LookupName(Operators, S);
2725
2726  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2727  Functions.append(Operators.begin(), Operators.end());
2728}
2729
2730Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2731                                                            CXXSpecialMember SM,
2732                                                            bool ConstArg,
2733                                                            bool VolatileArg,
2734                                                            bool RValueThis,
2735                                                            bool ConstThis,
2736                                                            bool VolatileThis) {
2737  assert(CanDeclareSpecialMemberFunction(RD) &&
2738         "doing special member lookup into record that isn't fully complete");
2739  RD = RD->getDefinition();
2740  if (RValueThis || ConstThis || VolatileThis)
2741    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2742           "constructors and destructors always have unqualified lvalue this");
2743  if (ConstArg || VolatileArg)
2744    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2745           "parameter-less special members can't have qualified arguments");
2746
2747  llvm::FoldingSetNodeID ID;
2748  ID.AddPointer(RD);
2749  ID.AddInteger(SM);
2750  ID.AddInteger(ConstArg);
2751  ID.AddInteger(VolatileArg);
2752  ID.AddInteger(RValueThis);
2753  ID.AddInteger(ConstThis);
2754  ID.AddInteger(VolatileThis);
2755
2756  void *InsertPoint;
2757  SpecialMemberOverloadResult *Result =
2758    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2759
2760  // This was already cached
2761  if (Result)
2762    return Result;
2763
2764  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2765  Result = new (Result) SpecialMemberOverloadResult(ID);
2766  SpecialMemberCache.InsertNode(Result, InsertPoint);
2767
2768  if (SM == CXXDestructor) {
2769    if (RD->needsImplicitDestructor())
2770      DeclareImplicitDestructor(RD);
2771    CXXDestructorDecl *DD = RD->getDestructor();
2772    assert(DD && "record without a destructor");
2773    Result->setMethod(DD);
2774    Result->setKind(DD->isDeleted() ?
2775                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2776                    SpecialMemberOverloadResult::Success);
2777    return Result;
2778  }
2779
2780  // Prepare for overload resolution. Here we construct a synthetic argument
2781  // if necessary and make sure that implicit functions are declared.
2782  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2783  DeclarationName Name;
2784  Expr *Arg = nullptr;
2785  unsigned NumArgs;
2786
2787  QualType ArgType = CanTy;
2788  ExprValueKind VK = VK_LValue;
2789
2790  if (SM == CXXDefaultConstructor) {
2791    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2792    NumArgs = 0;
2793    if (RD->needsImplicitDefaultConstructor())
2794      DeclareImplicitDefaultConstructor(RD);
2795  } else {
2796    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2797      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2798      if (RD->needsImplicitCopyConstructor())
2799        DeclareImplicitCopyConstructor(RD);
2800      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2801        DeclareImplicitMoveConstructor(RD);
2802    } else {
2803      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2804      if (RD->needsImplicitCopyAssignment())
2805        DeclareImplicitCopyAssignment(RD);
2806      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2807        DeclareImplicitMoveAssignment(RD);
2808    }
2809
2810    if (ConstArg)
2811      ArgType.addConst();
2812    if (VolatileArg)
2813      ArgType.addVolatile();
2814
2815    // This isn't /really/ specified by the standard, but it's implied
2816    // we should be working from an RValue in the case of move to ensure
2817    // that we prefer to bind to rvalue references, and an LValue in the
2818    // case of copy to ensure we don't bind to rvalue references.
2819    // Possibly an XValue is actually correct in the case of move, but
2820    // there is no semantic difference for class types in this restricted
2821    // case.
2822    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2823      VK = VK_LValue;
2824    else
2825      VK = VK_RValue;
2826  }
2827
2828  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2829
2830  if (SM != CXXDefaultConstructor) {
2831    NumArgs = 1;
2832    Arg = &FakeArg;
2833  }
2834
2835  // Create the object argument
2836  QualType ThisTy = CanTy;
2837  if (ConstThis)
2838    ThisTy.addConst();
2839  if (VolatileThis)
2840    ThisTy.addVolatile();
2841  Expr::Classification Classification =
2842    OpaqueValueExpr(SourceLocation(), ThisTy,
2843                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2844
2845  // Now we perform lookup on the name we computed earlier and do overload
2846  // resolution. Lookup is only performed directly into the class since there
2847  // will always be a (possibly implicit) declaration to shadow any others.
2848  OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2849  DeclContext::lookup_result R = RD->lookup(Name);
2850
2851  if (R.empty()) {
2852    // We might have no default constructor because we have a lambda's closure
2853    // type, rather than because there's some other declared constructor.
2854    // Every class has a copy/move constructor, copy/move assignment, and
2855    // destructor.
2856    assert(SM == CXXDefaultConstructor &&
2857           "lookup for a constructor or assignment operator was empty");
2858    Result->setMethod(nullptr);
2859    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2860    return Result;
2861  }
2862
2863  // Copy the candidates as our processing of them may load new declarations
2864  // from an external source and invalidate lookup_result.
2865  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2866
2867  for (auto *Cand : Candidates) {
2868    if (Cand->isInvalidDecl())
2869      continue;
2870
2871    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2872      // FIXME: [namespace.udecl]p15 says that we should only consider a
2873      // using declaration here if it does not match a declaration in the
2874      // derived class. We do not implement this correctly in other cases
2875      // either.
2876      Cand = U->getTargetDecl();
2877
2878      if (Cand->isInvalidDecl())
2879        continue;
2880    }
2881
2882    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2883      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2884        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2885                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2886                           OCS, true);
2887      else
2888        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2889                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2890    } else if (FunctionTemplateDecl *Tmpl =
2891                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2892      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2893        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2894                                   RD, nullptr, ThisTy, Classification,
2895                                   llvm::makeArrayRef(&Arg, NumArgs),
2896                                   OCS, true);
2897      else
2898        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2899                                     nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2900                                     OCS, true);
2901    } else {
2902      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2903    }
2904  }
2905
2906  OverloadCandidateSet::iterator Best;
2907  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2908    case OR_Success:
2909      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2910      Result->setKind(SpecialMemberOverloadResult::Success);
2911      break;
2912
2913    case OR_Deleted:
2914      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2915      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2916      break;
2917
2918    case OR_Ambiguous:
2919      Result->setMethod(nullptr);
2920      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2921      break;
2922
2923    case OR_No_Viable_Function:
2924      Result->setMethod(nullptr);
2925      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2926      break;
2927  }
2928
2929  return Result;
2930}
2931
2932/// \brief Look up the default constructor for the given class.
2933CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2934  SpecialMemberOverloadResult *Result =
2935    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2936                        false, false);
2937
2938  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2939}
2940
2941/// \brief Look up the copying constructor for the given class.
2942CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2943                                                   unsigned Quals) {
2944  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2945         "non-const, non-volatile qualifiers for copy ctor arg");
2946  SpecialMemberOverloadResult *Result =
2947    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2948                        Quals & Qualifiers::Volatile, false, false, false);
2949
2950  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2951}
2952
2953/// \brief Look up the moving constructor for the given class.
2954CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2955                                                  unsigned Quals) {
2956  SpecialMemberOverloadResult *Result =
2957    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2958                        Quals & Qualifiers::Volatile, false, false, false);
2959
2960  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2961}
2962
2963/// \brief Look up the constructors for the given class.
2964DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2965  // If the implicit constructors have not yet been declared, do so now.
2966  if (CanDeclareSpecialMemberFunction(Class)) {
2967    if (Class->needsImplicitDefaultConstructor())
2968      DeclareImplicitDefaultConstructor(Class);
2969    if (Class->needsImplicitCopyConstructor())
2970      DeclareImplicitCopyConstructor(Class);
2971    if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2972      DeclareImplicitMoveConstructor(Class);
2973  }
2974
2975  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2976  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2977  return Class->lookup(Name);
2978}
2979
2980/// \brief Look up the copying assignment operator for the given class.
2981CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2982                                             unsigned Quals, bool RValueThis,
2983                                             unsigned ThisQuals) {
2984  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2985         "non-const, non-volatile qualifiers for copy assignment arg");
2986  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2987         "non-const, non-volatile qualifiers for copy assignment this");
2988  SpecialMemberOverloadResult *Result =
2989    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2990                        Quals & Qualifiers::Volatile, RValueThis,
2991                        ThisQuals & Qualifiers::Const,
2992                        ThisQuals & Qualifiers::Volatile);
2993
2994  return Result->getMethod();
2995}
2996
2997/// \brief Look up the moving assignment operator for the given class.
2998CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2999                                            unsigned Quals,
3000                                            bool RValueThis,
3001                                            unsigned ThisQuals) {
3002  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3003         "non-const, non-volatile qualifiers for copy assignment this");
3004  SpecialMemberOverloadResult *Result =
3005    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3006                        Quals & Qualifiers::Volatile, RValueThis,
3007                        ThisQuals & Qualifiers::Const,
3008                        ThisQuals & Qualifiers::Volatile);
3009
3010  return Result->getMethod();
3011}
3012
3013/// \brief Look for the destructor of the given class.
3014///
3015/// During semantic analysis, this routine should be used in lieu of
3016/// CXXRecordDecl::getDestructor().
3017///
3018/// \returns The destructor for this class.
3019CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3020  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3021                                                     false, false, false,
3022                                                     false, false)->getMethod());
3023}
3024
3025/// LookupLiteralOperator - Determine which literal operator should be used for
3026/// a user-defined literal, per C++11 [lex.ext].
3027///
3028/// Normal overload resolution is not used to select which literal operator to
3029/// call for a user-defined literal. Look up the provided literal operator name,
3030/// and filter the results to the appropriate set for the given argument types.
3031Sema::LiteralOperatorLookupResult
3032Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3033                            ArrayRef<QualType> ArgTys,
3034                            bool AllowRaw, bool AllowTemplate,
3035                            bool AllowStringTemplate) {
3036  LookupName(R, S);
3037  assert(R.getResultKind() != LookupResult::Ambiguous &&
3038         "literal operator lookup can't be ambiguous");
3039
3040  // Filter the lookup results appropriately.
3041  LookupResult::Filter F = R.makeFilter();
3042
3043  bool FoundRaw = false;
3044  bool FoundTemplate = false;
3045  bool FoundStringTemplate = false;
3046  bool FoundExactMatch = false;
3047
3048  while (F.hasNext()) {
3049    Decl *D = F.next();
3050    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3051      D = USD->getTargetDecl();
3052
3053    // If the declaration we found is invalid, skip it.
3054    if (D->isInvalidDecl()) {
3055      F.erase();
3056      continue;
3057    }
3058
3059    bool IsRaw = false;
3060    bool IsTemplate = false;
3061    bool IsStringTemplate = false;
3062    bool IsExactMatch = false;
3063
3064    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3065      if (FD->getNumParams() == 1 &&
3066          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3067        IsRaw = true;
3068      else if (FD->getNumParams() == ArgTys.size()) {
3069        IsExactMatch = true;
3070        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3071          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3072          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3073            IsExactMatch = false;
3074            break;
3075          }
3076        }
3077      }
3078    }
3079    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3080      TemplateParameterList *Params = FD->getTemplateParameters();
3081      if (Params->size() == 1)
3082        IsTemplate = true;
3083      else
3084        IsStringTemplate = true;
3085    }
3086
3087    if (IsExactMatch) {
3088      FoundExactMatch = true;
3089      AllowRaw = false;
3090      AllowTemplate = false;
3091      AllowStringTemplate = false;
3092      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3093        // Go through again and remove the raw and template decls we've
3094        // already found.
3095        F.restart();
3096        FoundRaw = FoundTemplate = FoundStringTemplate = false;
3097      }
3098    } else if (AllowRaw && IsRaw) {
3099      FoundRaw = true;
3100    } else if (AllowTemplate && IsTemplate) {
3101      FoundTemplate = true;
3102    } else if (AllowStringTemplate && IsStringTemplate) {
3103      FoundStringTemplate = true;
3104    } else {
3105      F.erase();
3106    }
3107  }
3108
3109  F.done();
3110
3111  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3112  // parameter type, that is used in preference to a raw literal operator
3113  // or literal operator template.
3114  if (FoundExactMatch)
3115    return LOLR_Cooked;
3116
3117  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3118  // operator template, but not both.
3119  if (FoundRaw && FoundTemplate) {
3120    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3121    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3122      NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
3123    return LOLR_Error;
3124  }
3125
3126  if (FoundRaw)
3127    return LOLR_Raw;
3128
3129  if (FoundTemplate)
3130    return LOLR_Template;
3131
3132  if (FoundStringTemplate)
3133    return LOLR_StringTemplate;
3134
3135  // Didn't find anything we could use.
3136  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3137    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3138    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3139    << (AllowTemplate || AllowStringTemplate);
3140  return LOLR_Error;
3141}
3142
3143void ADLResult::insert(NamedDecl *New) {
3144  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3145
3146  // If we haven't yet seen a decl for this key, or the last decl
3147  // was exactly this one, we're done.
3148  if (Old == nullptr || Old == New) {
3149    Old = New;
3150    return;
3151  }
3152
3153  // Otherwise, decide which is a more recent redeclaration.
3154  FunctionDecl *OldFD = Old->getAsFunction();
3155  FunctionDecl *NewFD = New->getAsFunction();
3156
3157  FunctionDecl *Cursor = NewFD;
3158  while (true) {
3159    Cursor = Cursor->getPreviousDecl();
3160
3161    // If we got to the end without finding OldFD, OldFD is the newer
3162    // declaration;  leave things as they are.
3163    if (!Cursor) return;
3164
3165    // If we do find OldFD, then NewFD is newer.
3166    if (Cursor == OldFD) break;
3167
3168    // Otherwise, keep looking.
3169  }
3170
3171  Old = New;
3172}
3173
3174void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3175                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3176  // Find all of the associated namespaces and classes based on the
3177  // arguments we have.
3178  AssociatedNamespaceSet AssociatedNamespaces;
3179  AssociatedClassSet AssociatedClasses;
3180  FindAssociatedClassesAndNamespaces(Loc, Args,
3181                                     AssociatedNamespaces,
3182                                     AssociatedClasses);
3183
3184  // C++ [basic.lookup.argdep]p3:
3185  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3186  //   and let Y be the lookup set produced by argument dependent
3187  //   lookup (defined as follows). If X contains [...] then Y is
3188  //   empty. Otherwise Y is the set of declarations found in the
3189  //   namespaces associated with the argument types as described
3190  //   below. The set of declarations found by the lookup of the name
3191  //   is the union of X and Y.
3192  //
3193  // Here, we compute Y and add its members to the overloaded
3194  // candidate set.
3195  for (auto *NS : AssociatedNamespaces) {
3196    //   When considering an associated namespace, the lookup is the
3197    //   same as the lookup performed when the associated namespace is
3198    //   used as a qualifier (3.4.3.2) except that:
3199    //
3200    //     -- Any using-directives in the associated namespace are
3201    //        ignored.
3202    //
3203    //     -- Any namespace-scope friend functions declared in
3204    //        associated classes are visible within their respective
3205    //        namespaces even if they are not visible during an ordinary
3206    //        lookup (11.4).
3207    DeclContext::lookup_result R = NS->lookup(Name);
3208    for (auto *D : R) {
3209      // If the only declaration here is an ordinary friend, consider
3210      // it only if it was declared in an associated classes.
3211      if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3212        // If it's neither ordinarily visible nor a friend, we can't find it.
3213        if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3214          continue;
3215
3216        bool DeclaredInAssociatedClass = false;
3217        for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3218          DeclContext *LexDC = DI->getLexicalDeclContext();
3219          if (isa<CXXRecordDecl>(LexDC) &&
3220              AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3221              isVisible(cast<NamedDecl>(DI))) {
3222            DeclaredInAssociatedClass = true;
3223            break;
3224          }
3225        }
3226        if (!DeclaredInAssociatedClass)
3227          continue;
3228      }
3229
3230      if (isa<UsingShadowDecl>(D))
3231        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3232
3233      if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
3234        continue;
3235
3236      if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
3237        continue;
3238
3239      Result.insert(D);
3240    }
3241  }
3242}
3243
3244//----------------------------------------------------------------------------
3245// Search for all visible declarations.
3246//----------------------------------------------------------------------------
3247VisibleDeclConsumer::~VisibleDeclConsumer() { }
3248
3249bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3250
3251namespace {
3252
3253class ShadowContextRAII;
3254
3255class VisibleDeclsRecord {
3256public:
3257  /// \brief An entry in the shadow map, which is optimized to store a
3258  /// single declaration (the common case) but can also store a list
3259  /// of declarations.
3260  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3261
3262private:
3263  /// \brief A mapping from declaration names to the declarations that have
3264  /// this name within a particular scope.
3265  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3266
3267  /// \brief A list of shadow maps, which is used to model name hiding.
3268  std::list<ShadowMap> ShadowMaps;
3269
3270  /// \brief The declaration contexts we have already visited.
3271  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3272
3273  friend class ShadowContextRAII;
3274
3275public:
3276  /// \brief Determine whether we have already visited this context
3277  /// (and, if not, note that we are going to visit that context now).
3278  bool visitedContext(DeclContext *Ctx) {
3279    return !VisitedContexts.insert(Ctx).second;
3280  }
3281
3282  bool alreadyVisitedContext(DeclContext *Ctx) {
3283    return VisitedContexts.count(Ctx);
3284  }
3285
3286  /// \brief Determine whether the given declaration is hidden in the
3287  /// current scope.
3288  ///
3289  /// \returns the declaration that hides the given declaration, or
3290  /// NULL if no such declaration exists.
3291  NamedDecl *checkHidden(NamedDecl *ND);
3292
3293  /// \brief Add a declaration to the current shadow map.
3294  void add(NamedDecl *ND) {
3295    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3296  }
3297};
3298
3299/// \brief RAII object that records when we've entered a shadow context.
3300class ShadowContextRAII {
3301  VisibleDeclsRecord &Visible;
3302
3303  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3304
3305public:
3306  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3307    Visible.ShadowMaps.emplace_back();
3308  }
3309
3310  ~ShadowContextRAII() {
3311    Visible.ShadowMaps.pop_back();
3312  }
3313};
3314
3315} // end anonymous namespace
3316
3317NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3318  unsigned IDNS = ND->getIdentifierNamespace();
3319  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3320  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3321       SM != SMEnd; ++SM) {
3322    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3323    if (Pos == SM->end())
3324      continue;
3325
3326    for (auto *D : Pos->second) {
3327      // A tag declaration does not hide a non-tag declaration.
3328      if (D->hasTagIdentifierNamespace() &&
3329          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3330                   Decl::IDNS_ObjCProtocol)))
3331        continue;
3332
3333      // Protocols are in distinct namespaces from everything else.
3334      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3335           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3336          D->getIdentifierNamespace() != IDNS)
3337        continue;
3338
3339      // Functions and function templates in the same scope overload
3340      // rather than hide.  FIXME: Look for hiding based on function
3341      // signatures!
3342      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3343          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3344          SM == ShadowMaps.rbegin())
3345        continue;
3346
3347      // We've found a declaration that hides this one.
3348      return D;
3349    }
3350  }
3351
3352  return nullptr;
3353}
3354
3355static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3356                               bool QualifiedNameLookup,
3357                               bool InBaseClass,
3358                               VisibleDeclConsumer &Consumer,
3359                               VisibleDeclsRecord &Visited) {
3360  if (!Ctx)
3361    return;
3362
3363  // Make sure we don't visit the same context twice.
3364  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3365    return;
3366
3367  // Outside C++, lookup results for the TU live on identifiers.
3368  if (isa<TranslationUnitDecl>(Ctx) &&
3369      !Result.getSema().getLangOpts().CPlusPlus) {
3370    auto &S = Result.getSema();
3371    auto &Idents = S.Context.Idents;
3372
3373    // Ensure all external identifiers are in the identifier table.
3374    if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3375      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3376      for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3377        Idents.get(Name);
3378    }
3379
3380    // Walk all lookup results in the TU for each identifier.
3381    for (const auto &Ident : Idents) {
3382      for (auto I = S.IdResolver.begin(Ident.getValue()),
3383                E = S.IdResolver.end();
3384           I != E; ++I) {
3385        if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3386          if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3387            Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3388            Visited.add(ND);
3389          }
3390        }
3391      }
3392    }
3393
3394    return;
3395  }
3396
3397  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3398    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3399
3400  // Enumerate all of the results in this context.
3401  for (DeclContextLookupResult R : Ctx->lookups()) {
3402    for (auto *D : R) {
3403      if (auto *ND = Result.getAcceptableDecl(D)) {
3404        Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3405        Visited.add(ND);
3406      }
3407    }
3408  }
3409
3410  // Traverse using directives for qualified name lookup.
3411  if (QualifiedNameLookup) {
3412    ShadowContextRAII Shadow(Visited);
3413    for (auto I : Ctx->using_directives()) {
3414      LookupVisibleDecls(I->getNominatedNamespace(), Result,
3415                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3416    }
3417  }
3418
3419  // Traverse the contexts of inherited C++ classes.
3420  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3421    if (!Record->hasDefinition())
3422      return;
3423
3424    for (const auto &B : Record->bases()) {
3425      QualType BaseType = B.getType();
3426
3427      // Don't look into dependent bases, because name lookup can't look
3428      // there anyway.
3429      if (BaseType->isDependentType())
3430        continue;
3431
3432      const RecordType *Record = BaseType->getAs<RecordType>();
3433      if (!Record)
3434        continue;
3435
3436      // FIXME: It would be nice to be able to determine whether referencing
3437      // a particular member would be ambiguous. For example, given
3438      //
3439      //   struct A { int member; };
3440      //   struct B { int member; };
3441      //   struct C : A, B { };
3442      //
3443      //   void f(C *c) { c->### }
3444      //
3445      // accessing 'member' would result in an ambiguity. However, we
3446      // could be smart enough to qualify the member with the base
3447      // class, e.g.,
3448      //
3449      //   c->B::member
3450      //
3451      // or
3452      //
3453      //   c->A::member
3454
3455      // Find results in this base class (and its bases).
3456      ShadowContextRAII Shadow(Visited);
3457      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3458                         true, Consumer, Visited);
3459    }
3460  }
3461
3462  // Traverse the contexts of Objective-C classes.
3463  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3464    // Traverse categories.
3465    for (auto *Cat : IFace->visible_categories()) {
3466      ShadowContextRAII Shadow(Visited);
3467      LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3468                         Consumer, Visited);
3469    }
3470
3471    // Traverse protocols.
3472    for (auto *I : IFace->all_referenced_protocols()) {
3473      ShadowContextRAII Shadow(Visited);
3474      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3475                         Visited);
3476    }
3477
3478    // Traverse the superclass.
3479    if (IFace->getSuperClass()) {
3480      ShadowContextRAII Shadow(Visited);
3481      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3482                         true, Consumer, Visited);
3483    }
3484
3485    // If there is an implementation, traverse it. We do this to find
3486    // synthesized ivars.
3487    if (IFace->getImplementation()) {
3488      ShadowContextRAII Shadow(Visited);
3489      LookupVisibleDecls(IFace->getImplementation(), Result,
3490                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3491    }
3492  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3493    for (auto *I : Protocol->protocols()) {
3494      ShadowContextRAII Shadow(Visited);
3495      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3496                         Visited);
3497    }
3498  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3499    for (auto *I : Category->protocols()) {
3500      ShadowContextRAII Shadow(Visited);
3501      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3502                         Visited);
3503    }
3504
3505    // If there is an implementation, traverse it.
3506    if (Category->getImplementation()) {
3507      ShadowContextRAII Shadow(Visited);
3508      LookupVisibleDecls(Category->getImplementation(), Result,
3509                         QualifiedNameLookup, true, Consumer, Visited);
3510    }
3511  }
3512}
3513
3514static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3515                               UnqualUsingDirectiveSet &UDirs,
3516                               VisibleDeclConsumer &Consumer,
3517                               VisibleDeclsRecord &Visited) {
3518  if (!S)
3519    return;
3520
3521  if (!S->getEntity() ||
3522      (!S->getParent() &&
3523       !Visited.alreadyVisitedContext(S->getEntity())) ||
3524      (S->getEntity())->isFunctionOrMethod()) {
3525    FindLocalExternScope FindLocals(Result);
3526    // Walk through the declarations in this Scope.
3527    for (auto *D : S->decls()) {
3528      if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3529        if ((ND = Result.getAcceptableDecl(ND))) {
3530          Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3531          Visited.add(ND);
3532        }
3533    }
3534  }
3535
3536  // FIXME: C++ [temp.local]p8
3537  DeclContext *Entity = nullptr;
3538  if (S->getEntity()) {
3539    // Look into this scope's declaration context, along with any of its
3540    // parent lookup contexts (e.g., enclosing classes), up to the point
3541    // where we hit the context stored in the next outer scope.
3542    Entity = S->getEntity();
3543    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3544
3545    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3546         Ctx = Ctx->getLookupParent()) {
3547      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3548        if (Method->isInstanceMethod()) {
3549          // For instance methods, look for ivars in the method's interface.
3550          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3551                                  Result.getNameLoc(), Sema::LookupMemberName);
3552          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3553            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3554                               /*InBaseClass=*/false, Consumer, Visited);
3555          }
3556        }
3557
3558        // We've already performed all of the name lookup that we need
3559        // to for Objective-C methods; the next context will be the
3560        // outer scope.
3561        break;
3562      }
3563
3564      if (Ctx->isFunctionOrMethod())
3565        continue;
3566
3567      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3568                         /*InBaseClass=*/false, Consumer, Visited);
3569    }
3570  } else if (!S->getParent()) {
3571    // Look into the translation unit scope. We walk through the translation
3572    // unit's declaration context, because the Scope itself won't have all of
3573    // the declarations if we loaded a precompiled header.
3574    // FIXME: We would like the translation unit's Scope object to point to the
3575    // translation unit, so we don't need this special "if" branch. However,
3576    // doing so would force the normal C++ name-lookup code to look into the
3577    // translation unit decl when the IdentifierInfo chains would suffice.
3578    // Once we fix that problem (which is part of a more general "don't look
3579    // in DeclContexts unless we have to" optimization), we can eliminate this.
3580    Entity = Result.getSema().Context.getTranslationUnitDecl();
3581    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3582                       /*InBaseClass=*/false, Consumer, Visited);
3583  }
3584
3585  if (Entity) {
3586    // Lookup visible declarations in any namespaces found by using
3587    // directives.
3588    for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3589      LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3590                         Result, /*QualifiedNameLookup=*/false,
3591                         /*InBaseClass=*/false, Consumer, Visited);
3592  }
3593
3594  // Lookup names in the parent scope.
3595  ShadowContextRAII Shadow(Visited);
3596  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3597}
3598
3599void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3600                              VisibleDeclConsumer &Consumer,
3601                              bool IncludeGlobalScope) {
3602  // Determine the set of using directives available during
3603  // unqualified name lookup.
3604  Scope *Initial = S;
3605  UnqualUsingDirectiveSet UDirs;
3606  if (getLangOpts().CPlusPlus) {
3607    // Find the first namespace or translation-unit scope.
3608    while (S && !isNamespaceOrTranslationUnitScope(S))
3609      S = S->getParent();
3610
3611    UDirs.visitScopeChain(Initial, S);
3612  }
3613  UDirs.done();
3614
3615  // Look for visible declarations.
3616  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3617  Result.setAllowHidden(Consumer.includeHiddenDecls());
3618  VisibleDeclsRecord Visited;
3619  if (!IncludeGlobalScope)
3620    Visited.visitedContext(Context.getTranslationUnitDecl());
3621  ShadowContextRAII Shadow(Visited);
3622  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3623}
3624
3625void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3626                              VisibleDeclConsumer &Consumer,
3627                              bool IncludeGlobalScope) {
3628  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3629  Result.setAllowHidden(Consumer.includeHiddenDecls());
3630  VisibleDeclsRecord Visited;
3631  if (!IncludeGlobalScope)
3632    Visited.visitedContext(Context.getTranslationUnitDecl());
3633  ShadowContextRAII Shadow(Visited);
3634  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3635                       /*InBaseClass=*/false, Consumer, Visited);
3636}
3637
3638/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3639/// If GnuLabelLoc is a valid source location, then this is a definition
3640/// of an __label__ label name, otherwise it is a normal label definition
3641/// or use.
3642LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3643                                     SourceLocation GnuLabelLoc) {
3644  // Do a lookup to see if we have a label with this name already.
3645  NamedDecl *Res = nullptr;
3646
3647  if (GnuLabelLoc.isValid()) {
3648    // Local label definitions always shadow existing labels.
3649    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3650    Scope *S = CurScope;
3651    PushOnScopeChains(Res, S, true);
3652    return cast<LabelDecl>(Res);
3653  }
3654
3655  // Not a GNU local label.
3656  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3657  // If we found a label, check to see if it is in the same context as us.
3658  // When in a Block, we don't want to reuse a label in an enclosing function.
3659  if (Res && Res->getDeclContext() != CurContext)
3660    Res = nullptr;
3661  if (!Res) {
3662    // If not forward referenced or defined already, create the backing decl.
3663    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3664    Scope *S = CurScope->getFnParent();
3665    assert(S && "Not in a function?");
3666    PushOnScopeChains(Res, S, true);
3667  }
3668  return cast<LabelDecl>(Res);
3669}
3670
3671//===----------------------------------------------------------------------===//
3672// Typo correction
3673//===----------------------------------------------------------------------===//
3674
3675static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3676                              TypoCorrection &Candidate) {
3677  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3678  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3679}
3680
3681static void LookupPotentialTypoResult(Sema &SemaRef,
3682                                      LookupResult &Res,
3683                                      IdentifierInfo *Name,
3684                                      Scope *S, CXXScopeSpec *SS,
3685                                      DeclContext *MemberContext,
3686                                      bool EnteringContext,
3687                                      bool isObjCIvarLookup,
3688                                      bool FindHidden);
3689
3690/// \brief Check whether the declarations found for a typo correction are
3691/// visible, and if none of them are, convert the correction to an 'import
3692/// a module' correction.
3693static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3694  if (TC.begin() == TC.end())
3695    return;
3696
3697  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3698
3699  for (/**/; DI != DE; ++DI)
3700    if (!LookupResult::isVisible(SemaRef, *DI))
3701      break;
3702  // Nothing to do if all decls are visible.
3703  if (DI == DE)
3704    return;
3705
3706  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3707  bool AnyVisibleDecls = !NewDecls.empty();
3708
3709  for (/**/; DI != DE; ++DI) {
3710    NamedDecl *VisibleDecl = *DI;
3711    if (!LookupResult::isVisible(SemaRef, *DI))
3712      VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3713
3714    if (VisibleDecl) {
3715      if (!AnyVisibleDecls) {
3716        // Found a visible decl, discard all hidden ones.
3717        AnyVisibleDecls = true;
3718        NewDecls.clear();
3719      }
3720      NewDecls.push_back(VisibleDecl);
3721    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3722      NewDecls.push_back(*DI);
3723  }
3724
3725  if (NewDecls.empty())
3726    TC = TypoCorrection();
3727  else {
3728    TC.setCorrectionDecls(NewDecls);
3729    TC.setRequiresImport(!AnyVisibleDecls);
3730  }
3731}
3732
3733// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3734// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3735// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3736static void getNestedNameSpecifierIdentifiers(
3737    NestedNameSpecifier *NNS,
3738    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3739  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3740    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3741  else
3742    Identifiers.clear();
3743
3744  const IdentifierInfo *II = nullptr;
3745
3746  switch (NNS->getKind()) {
3747  case NestedNameSpecifier::Identifier:
3748    II = NNS->getAsIdentifier();
3749    break;
3750
3751  case NestedNameSpecifier::Namespace:
3752    if (NNS->getAsNamespace()->isAnonymousNamespace())
3753      return;
3754    II = NNS->getAsNamespace()->getIdentifier();
3755    break;
3756
3757  case NestedNameSpecifier::NamespaceAlias:
3758    II = NNS->getAsNamespaceAlias()->getIdentifier();
3759    break;
3760
3761  case NestedNameSpecifier::TypeSpecWithTemplate:
3762  case NestedNameSpecifier::TypeSpec:
3763    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3764    break;
3765
3766  case NestedNameSpecifier::Global:
3767  case NestedNameSpecifier::Super:
3768    return;
3769  }
3770
3771  if (II)
3772    Identifiers.push_back(II);
3773}
3774
3775void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3776                                       DeclContext *Ctx, bool InBaseClass) {
3777  // Don't consider hidden names for typo correction.
3778  if (Hiding)
3779    return;
3780
3781  // Only consider entities with identifiers for names, ignoring
3782  // special names (constructors, overloaded operators, selectors,
3783  // etc.).
3784  IdentifierInfo *Name = ND->getIdentifier();
3785  if (!Name)
3786    return;
3787
3788  // Only consider visible declarations and declarations from modules with
3789  // names that exactly match.
3790  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3791      !findAcceptableDecl(SemaRef, ND))
3792    return;
3793
3794  FoundName(Name->getName());
3795}
3796
3797void TypoCorrectionConsumer::FoundName(StringRef Name) {
3798  // Compute the edit distance between the typo and the name of this
3799  // entity, and add the identifier to the list of results.
3800  addName(Name, nullptr);
3801}
3802
3803void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3804  // Compute the edit distance between the typo and this keyword,
3805  // and add the keyword to the list of results.
3806  addName(Keyword, nullptr, nullptr, true);
3807}
3808
3809void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3810                                     NestedNameSpecifier *NNS, bool isKeyword) {
3811  // Use a simple length-based heuristic to determine the minimum possible
3812  // edit distance. If the minimum isn't good enough, bail out early.
3813  StringRef TypoStr = Typo->getName();
3814  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3815  if (MinED && TypoStr.size() / MinED < 3)
3816    return;
3817
3818  // Compute an upper bound on the allowable edit distance, so that the
3819  // edit-distance algorithm can short-circuit.
3820  unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3821  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3822  if (ED >= UpperBound) return;
3823
3824  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3825  if (isKeyword) TC.makeKeyword();
3826  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3827  addCorrection(TC);
3828}
3829
3830static const unsigned MaxTypoDistanceResultSets = 5;
3831
3832void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3833  StringRef TypoStr = Typo->getName();
3834  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3835
3836  // For very short typos, ignore potential corrections that have a different
3837  // base identifier from the typo or which have a normalized edit distance
3838  // longer than the typo itself.
3839  if (TypoStr.size() < 3 &&
3840      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3841    return;
3842
3843  // If the correction is resolved but is not viable, ignore it.
3844  if (Correction.isResolved()) {
3845    checkCorrectionVisibility(SemaRef, Correction);
3846    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3847      return;
3848  }
3849
3850  TypoResultList &CList =
3851      CorrectionResults[Correction.getEditDistance(false)][Name];
3852
3853  if (!CList.empty() && !CList.back().isResolved())
3854    CList.pop_back();
3855  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3856    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3857    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3858         RI != RIEnd; ++RI) {
3859      // If the Correction refers to a decl already in the result list,
3860      // replace the existing result if the string representation of Correction
3861      // comes before the current result alphabetically, then stop as there is
3862      // nothing more to be done to add Correction to the candidate set.
3863      if (RI->getCorrectionDecl() == NewND) {
3864        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3865          *RI = Correction;
3866        return;
3867      }
3868    }
3869  }
3870  if (CList.empty() || Correction.isResolved())
3871    CList.push_back(Correction);
3872
3873  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3874    CorrectionResults.erase(std::prev(CorrectionResults.end()));
3875}
3876
3877void TypoCorrectionConsumer::addNamespaces(
3878    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3879  SearchNamespaces = true;
3880
3881  for (auto KNPair : KnownNamespaces)
3882    Namespaces.addNameSpecifier(KNPair.first);
3883
3884  bool SSIsTemplate = false;
3885  if (NestedNameSpecifier *NNS =
3886          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3887    if (const Type *T = NNS->getAsType())
3888      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3889  }
3890  // Do not transform this into an iterator-based loop. The loop body can
3891  // trigger the creation of further types (through lazy deserialization) and
3892  // invalide iterators into this list.
3893  auto &Types = SemaRef.getASTContext().getTypes();
3894  for (unsigned I = 0; I != Types.size(); ++I) {
3895    const auto *TI = Types[I];
3896    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3897      CD = CD->getCanonicalDecl();
3898      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3899          !CD->isUnion() && CD->getIdentifier() &&
3900          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3901          (CD->isBeingDefined() || CD->isCompleteDefinition()))
3902        Namespaces.addNameSpecifier(CD);
3903    }
3904  }
3905}
3906
3907const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3908  if (++CurrentTCIndex < ValidatedCorrections.size())
3909    return ValidatedCorrections[CurrentTCIndex];
3910
3911  CurrentTCIndex = ValidatedCorrections.size();
3912  while (!CorrectionResults.empty()) {
3913    auto DI = CorrectionResults.begin();
3914    if (DI->second.empty()) {
3915      CorrectionResults.erase(DI);
3916      continue;
3917    }
3918
3919    auto RI = DI->second.begin();
3920    if (RI->second.empty()) {
3921      DI->second.erase(RI);
3922      performQualifiedLookups();
3923      continue;
3924    }
3925
3926    TypoCorrection TC = RI->second.pop_back_val();
3927    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3928      ValidatedCorrections.push_back(TC);
3929      return ValidatedCorrections[CurrentTCIndex];
3930    }
3931  }
3932  return ValidatedCorrections[0];  // The empty correction.
3933}
3934
3935bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3936  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3937  DeclContext *TempMemberContext = MemberContext;
3938  CXXScopeSpec *TempSS = SS.get();
3939retry_lookup:
3940  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3941                            EnteringContext,
3942                            CorrectionValidator->IsObjCIvarLookup,
3943                            Name == Typo && !Candidate.WillReplaceSpecifier());
3944  switch (Result.getResultKind()) {
3945  case LookupResult::NotFound:
3946  case LookupResult::NotFoundInCurrentInstantiation:
3947  case LookupResult::FoundUnresolvedValue:
3948    if (TempSS) {
3949      // Immediately retry the lookup without the given CXXScopeSpec
3950      TempSS = nullptr;
3951      Candidate.WillReplaceSpecifier(true);
3952      goto retry_lookup;
3953    }
3954    if (TempMemberContext) {
3955      if (SS && !TempSS)
3956        TempSS = SS.get();
3957      TempMemberContext = nullptr;
3958      goto retry_lookup;
3959    }
3960    if (SearchNamespaces)
3961      QualifiedResults.push_back(Candidate);
3962    break;
3963
3964  case LookupResult::Ambiguous:
3965    // We don't deal with ambiguities.
3966    break;
3967
3968  case LookupResult::Found:
3969  case LookupResult::FoundOverloaded:
3970    // Store all of the Decls for overloaded symbols
3971    for (auto *TRD : Result)
3972      Candidate.addCorrectionDecl(TRD);
3973    checkCorrectionVisibility(SemaRef, Candidate);
3974    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
3975      if (SearchNamespaces)
3976        QualifiedResults.push_back(Candidate);
3977      break;
3978    }
3979    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3980    return true;
3981  }
3982  return false;
3983}
3984
3985void TypoCorrectionConsumer::performQualifiedLookups() {
3986  unsigned TypoLen = Typo->getName().size();
3987  for (auto QR : QualifiedResults) {
3988    for (auto NSI : Namespaces) {
3989      DeclContext *Ctx = NSI.DeclCtx;
3990      const Type *NSType = NSI.NameSpecifier->getAsType();
3991
3992      // If the current NestedNameSpecifier refers to a class and the
3993      // current correction candidate is the name of that class, then skip
3994      // it as it is unlikely a qualified version of the class' constructor
3995      // is an appropriate correction.
3996      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
3997                                           nullptr) {
3998        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3999          continue;
4000      }
4001
4002      TypoCorrection TC(QR);
4003      TC.ClearCorrectionDecls();
4004      TC.setCorrectionSpecifier(NSI.NameSpecifier);
4005      TC.setQualifierDistance(NSI.EditDistance);
4006      TC.setCallbackDistance(0); // Reset the callback distance
4007
4008      // If the current correction candidate and namespace combination are
4009      // too far away from the original typo based on the normalized edit
4010      // distance, then skip performing a qualified name lookup.
4011      unsigned TmpED = TC.getEditDistance(true);
4012      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4013          TypoLen / TmpED < 3)
4014        continue;
4015
4016      Result.clear();
4017      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4018      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4019        continue;
4020
4021      // Any corrections added below will be validated in subsequent
4022      // iterations of the main while() loop over the Consumer's contents.
4023      switch (Result.getResultKind()) {
4024      case LookupResult::Found:
4025      case LookupResult::FoundOverloaded: {
4026        if (SS && SS->isValid()) {
4027          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4028          std::string OldQualified;
4029          llvm::raw_string_ostream OldOStream(OldQualified);
4030          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4031          OldOStream << Typo->getName();
4032          // If correction candidate would be an identical written qualified
4033          // identifer, then the existing CXXScopeSpec probably included a
4034          // typedef that didn't get accounted for properly.
4035          if (OldOStream.str() == NewQualified)
4036            break;
4037        }
4038        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4039             TRD != TRDEnd; ++TRD) {
4040          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4041                                        NSType ? NSType->getAsCXXRecordDecl()
4042                                               : nullptr,
4043                                        TRD.getPair()) == Sema::AR_accessible)
4044            TC.addCorrectionDecl(*TRD);
4045        }
4046        if (TC.isResolved()) {
4047          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4048          addCorrection(TC);
4049        }
4050        break;
4051      }
4052      case LookupResult::NotFound:
4053      case LookupResult::NotFoundInCurrentInstantiation:
4054      case LookupResult::Ambiguous:
4055      case LookupResult::FoundUnresolvedValue:
4056        break;
4057      }
4058    }
4059  }
4060  QualifiedResults.clear();
4061}
4062
4063TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4064    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4065    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4066  if (NestedNameSpecifier *NNS =
4067          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4068    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4069    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4070
4071    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4072  }
4073  // Build the list of identifiers that would be used for an absolute
4074  // (from the global context) NestedNameSpecifier referring to the current
4075  // context.
4076  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
4077                                         CEnd = CurContextChain.rend();
4078       C != CEnd; ++C) {
4079    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
4080      CurContextIdentifiers.push_back(ND->getIdentifier());
4081  }
4082
4083  // Add the global context as a NestedNameSpecifier
4084  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4085                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4086  DistanceMap[1].push_back(SI);
4087}
4088
4089auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4090    DeclContext *Start) -> DeclContextList {
4091  assert(Start && "Building a context chain from a null context");
4092  DeclContextList Chain;
4093  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4094       DC = DC->getLookupParent()) {
4095    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4096    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4097        !(ND && ND->isAnonymousNamespace()))
4098      Chain.push_back(DC->getPrimaryContext());
4099  }
4100  return Chain;
4101}
4102
4103unsigned
4104TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4105    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4106  unsigned NumSpecifiers = 0;
4107  for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
4108                                      CEnd = DeclChain.rend();
4109       C != CEnd; ++C) {
4110    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
4111      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4112      ++NumSpecifiers;
4113    } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
4114      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4115                                        RD->getTypeForDecl());
4116      ++NumSpecifiers;
4117    }
4118  }
4119  return NumSpecifiers;
4120}
4121
4122void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4123    DeclContext *Ctx) {
4124  NestedNameSpecifier *NNS = nullptr;
4125  unsigned NumSpecifiers = 0;
4126  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4127  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4128
4129  // Eliminate common elements from the two DeclContext chains.
4130  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
4131                                      CEnd = CurContextChain.rend();
4132       C != CEnd && !NamespaceDeclChain.empty() &&
4133       NamespaceDeclChain.back() == *C; ++C) {
4134    NamespaceDeclChain.pop_back();
4135  }
4136
4137  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4138  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4139
4140  // Add an explicit leading '::' specifier if needed.
4141  if (NamespaceDeclChain.empty()) {
4142    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4143    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4144    NumSpecifiers =
4145        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4146  } else if (NamedDecl *ND =
4147                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4148    IdentifierInfo *Name = ND->getIdentifier();
4149    bool SameNameSpecifier = false;
4150    if (std::find(CurNameSpecifierIdentifiers.begin(),
4151                  CurNameSpecifierIdentifiers.end(),
4152                  Name) != CurNameSpecifierIdentifiers.end()) {
4153      std::string NewNameSpecifier;
4154      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4155      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4156      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4157      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4158      SpecifierOStream.flush();
4159      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4160    }
4161    if (SameNameSpecifier ||
4162        std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4163                  Name) != CurContextIdentifiers.end()) {
4164      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4165      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4166      NumSpecifiers =
4167          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4168    }
4169  }
4170
4171  // If the built NestedNameSpecifier would be replacing an existing
4172  // NestedNameSpecifier, use the number of component identifiers that
4173  // would need to be changed as the edit distance instead of the number
4174  // of components in the built NestedNameSpecifier.
4175  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4176    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4177    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4178    NumSpecifiers = llvm::ComputeEditDistance(
4179        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4180        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4181  }
4182
4183  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4184  DistanceMap[NumSpecifiers].push_back(SI);
4185}
4186
4187/// \brief Perform name lookup for a possible result for typo correction.
4188static void LookupPotentialTypoResult(Sema &SemaRef,
4189                                      LookupResult &Res,
4190                                      IdentifierInfo *Name,
4191                                      Scope *S, CXXScopeSpec *SS,
4192                                      DeclContext *MemberContext,
4193                                      bool EnteringContext,
4194                                      bool isObjCIvarLookup,
4195                                      bool FindHidden) {
4196  Res.suppressDiagnostics();
4197  Res.clear();
4198  Res.setLookupName(Name);
4199  Res.setAllowHidden(FindHidden);
4200  if (MemberContext) {
4201    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4202      if (isObjCIvarLookup) {
4203        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4204          Res.addDecl(Ivar);
4205          Res.resolveKind();
4206          return;
4207        }
4208      }
4209
4210      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
4211        Res.addDecl(Prop);
4212        Res.resolveKind();
4213        return;
4214      }
4215    }
4216
4217    SemaRef.LookupQualifiedName(Res, MemberContext);
4218    return;
4219  }
4220
4221  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4222                           EnteringContext);
4223
4224  // Fake ivar lookup; this should really be part of
4225  // LookupParsedName.
4226  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4227    if (Method->isInstanceMethod() && Method->getClassInterface() &&
4228        (Res.empty() ||
4229         (Res.isSingleResult() &&
4230          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4231       if (ObjCIvarDecl *IV
4232             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4233         Res.addDecl(IV);
4234         Res.resolveKind();
4235       }
4236     }
4237  }
4238}
4239
4240/// \brief Add keywords to the consumer as possible typo corrections.
4241static void AddKeywordsToConsumer(Sema &SemaRef,
4242                                  TypoCorrectionConsumer &Consumer,
4243                                  Scope *S, CorrectionCandidateCallback &CCC,
4244                                  bool AfterNestedNameSpecifier) {
4245  if (AfterNestedNameSpecifier) {
4246    // For 'X::', we know exactly which keywords can appear next.
4247    Consumer.addKeywordResult("template");
4248    if (CCC.WantExpressionKeywords)
4249      Consumer.addKeywordResult("operator");
4250    return;
4251  }
4252
4253  if (CCC.WantObjCSuper)
4254    Consumer.addKeywordResult("super");
4255
4256  if (CCC.WantTypeSpecifiers) {
4257    // Add type-specifier keywords to the set of results.
4258    static const char *const CTypeSpecs[] = {
4259      "char", "const", "double", "enum", "float", "int", "long", "short",
4260      "signed", "struct", "union", "unsigned", "void", "volatile",
4261      "_Complex", "_Imaginary",
4262      // storage-specifiers as well
4263      "extern", "inline", "static", "typedef"
4264    };
4265
4266    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4267    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4268      Consumer.addKeywordResult(CTypeSpecs[I]);
4269
4270    if (SemaRef.getLangOpts().C99)
4271      Consumer.addKeywordResult("restrict");
4272    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4273      Consumer.addKeywordResult("bool");
4274    else if (SemaRef.getLangOpts().C99)
4275      Consumer.addKeywordResult("_Bool");
4276
4277    if (SemaRef.getLangOpts().CPlusPlus) {
4278      Consumer.addKeywordResult("class");
4279      Consumer.addKeywordResult("typename");
4280      Consumer.addKeywordResult("wchar_t");
4281
4282      if (SemaRef.getLangOpts().CPlusPlus11) {
4283        Consumer.addKeywordResult("char16_t");
4284        Consumer.addKeywordResult("char32_t");
4285        Consumer.addKeywordResult("constexpr");
4286        Consumer.addKeywordResult("decltype");
4287        Consumer.addKeywordResult("thread_local");
4288      }
4289    }
4290
4291    if (SemaRef.getLangOpts().GNUMode)
4292      Consumer.addKeywordResult("typeof");
4293  } else if (CCC.WantFunctionLikeCasts) {
4294    static const char *const CastableTypeSpecs[] = {
4295      "char", "double", "float", "int", "long", "short",
4296      "signed", "unsigned", "void"
4297    };
4298    for (auto *kw : CastableTypeSpecs)
4299      Consumer.addKeywordResult(kw);
4300  }
4301
4302  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4303    Consumer.addKeywordResult("const_cast");
4304    Consumer.addKeywordResult("dynamic_cast");
4305    Consumer.addKeywordResult("reinterpret_cast");
4306    Consumer.addKeywordResult("static_cast");
4307  }
4308
4309  if (CCC.WantExpressionKeywords) {
4310    Consumer.addKeywordResult("sizeof");
4311    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4312      Consumer.addKeywordResult("false");
4313      Consumer.addKeywordResult("true");
4314    }
4315
4316    if (SemaRef.getLangOpts().CPlusPlus) {
4317      static const char *const CXXExprs[] = {
4318        "delete", "new", "operator", "throw", "typeid"
4319      };
4320      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4321      for (unsigned I = 0; I != NumCXXExprs; ++I)
4322        Consumer.addKeywordResult(CXXExprs[I]);
4323
4324      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4325          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4326        Consumer.addKeywordResult("this");
4327
4328      if (SemaRef.getLangOpts().CPlusPlus11) {
4329        Consumer.addKeywordResult("alignof");
4330        Consumer.addKeywordResult("nullptr");
4331      }
4332    }
4333
4334    if (SemaRef.getLangOpts().C11) {
4335      // FIXME: We should not suggest _Alignof if the alignof macro
4336      // is present.
4337      Consumer.addKeywordResult("_Alignof");
4338    }
4339  }
4340
4341  if (CCC.WantRemainingKeywords) {
4342    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4343      // Statements.
4344      static const char *const CStmts[] = {
4345        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4346      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4347      for (unsigned I = 0; I != NumCStmts; ++I)
4348        Consumer.addKeywordResult(CStmts[I]);
4349
4350      if (SemaRef.getLangOpts().CPlusPlus) {
4351        Consumer.addKeywordResult("catch");
4352        Consumer.addKeywordResult("try");
4353      }
4354
4355      if (S && S->getBreakParent())
4356        Consumer.addKeywordResult("break");
4357
4358      if (S && S->getContinueParent())
4359        Consumer.addKeywordResult("continue");
4360
4361      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4362        Consumer.addKeywordResult("case");
4363        Consumer.addKeywordResult("default");
4364      }
4365    } else {
4366      if (SemaRef.getLangOpts().CPlusPlus) {
4367        Consumer.addKeywordResult("namespace");
4368        Consumer.addKeywordResult("template");
4369      }
4370
4371      if (S && S->isClassScope()) {
4372        Consumer.addKeywordResult("explicit");
4373        Consumer.addKeywordResult("friend");
4374        Consumer.addKeywordResult("mutable");
4375        Consumer.addKeywordResult("private");
4376        Consumer.addKeywordResult("protected");
4377        Consumer.addKeywordResult("public");
4378        Consumer.addKeywordResult("virtual");
4379      }
4380    }
4381
4382    if (SemaRef.getLangOpts().CPlusPlus) {
4383      Consumer.addKeywordResult("using");
4384
4385      if (SemaRef.getLangOpts().CPlusPlus11)
4386        Consumer.addKeywordResult("static_assert");
4387    }
4388  }
4389}
4390
4391std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4392    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4393    Scope *S, CXXScopeSpec *SS,
4394    std::unique_ptr<CorrectionCandidateCallback> CCC,
4395    DeclContext *MemberContext, bool EnteringContext,
4396    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4397
4398  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4399      DisableTypoCorrection)
4400    return nullptr;
4401
4402  // In Microsoft mode, don't perform typo correction in a template member
4403  // function dependent context because it interferes with the "lookup into
4404  // dependent bases of class templates" feature.
4405  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4406      isa<CXXMethodDecl>(CurContext))
4407    return nullptr;
4408
4409  // We only attempt to correct typos for identifiers.
4410  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4411  if (!Typo)
4412    return nullptr;
4413
4414  // If the scope specifier itself was invalid, don't try to correct
4415  // typos.
4416  if (SS && SS->isInvalid())
4417    return nullptr;
4418
4419  // Never try to correct typos during template deduction or
4420  // instantiation.
4421  if (!ActiveTemplateInstantiations.empty())
4422    return nullptr;
4423
4424  // Don't try to correct 'super'.
4425  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4426    return nullptr;
4427
4428  // Abort if typo correction already failed for this specific typo.
4429  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4430  if (locs != TypoCorrectionFailures.end() &&
4431      locs->second.count(TypoName.getLoc()))
4432    return nullptr;
4433
4434  // Don't try to correct the identifier "vector" when in AltiVec mode.
4435  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4436  // remove this workaround.
4437  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4438    return nullptr;
4439
4440  // Provide a stop gap for files that are just seriously broken.  Trying
4441  // to correct all typos can turn into a HUGE performance penalty, causing
4442  // some files to take minutes to get rejected by the parser.
4443  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4444  if (Limit && TyposCorrected >= Limit)
4445    return nullptr;
4446  ++TyposCorrected;
4447
4448  // If we're handling a missing symbol error, using modules, and the
4449  // special search all modules option is used, look for a missing import.
4450  if (ErrorRecovery && getLangOpts().Modules &&
4451      getLangOpts().ModulesSearchAll) {
4452    // The following has the side effect of loading the missing module.
4453    getModuleLoader().lookupMissingImports(Typo->getName(),
4454                                           TypoName.getLocStart());
4455  }
4456
4457  CorrectionCandidateCallback &CCCRef = *CCC;
4458  auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4459      *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4460      EnteringContext);
4461
4462  // Perform name lookup to find visible, similarly-named entities.
4463  bool IsUnqualifiedLookup = false;
4464  DeclContext *QualifiedDC = MemberContext;
4465  if (MemberContext) {
4466    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4467
4468    // Look in qualified interfaces.
4469    if (OPT) {
4470      for (auto *I : OPT->quals())
4471        LookupVisibleDecls(I, LookupKind, *Consumer);
4472    }
4473  } else if (SS && SS->isSet()) {
4474    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4475    if (!QualifiedDC)
4476      return nullptr;
4477
4478    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4479  } else {
4480    IsUnqualifiedLookup = true;
4481  }
4482
4483  // Determine whether we are going to search in the various namespaces for
4484  // corrections.
4485  bool SearchNamespaces
4486    = getLangOpts().CPlusPlus &&
4487      (IsUnqualifiedLookup || (SS && SS->isSet()));
4488
4489  if (IsUnqualifiedLookup || SearchNamespaces) {
4490    // For unqualified lookup, look through all of the names that we have
4491    // seen in this translation unit.
4492    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4493    for (const auto &I : Context.Idents)
4494      Consumer->FoundName(I.getKey());
4495
4496    // Walk through identifiers in external identifier sources.
4497    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4498    if (IdentifierInfoLookup *External
4499                            = Context.Idents.getExternalIdentifierLookup()) {
4500      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4501      do {
4502        StringRef Name = Iter->Next();
4503        if (Name.empty())
4504          break;
4505
4506        Consumer->FoundName(Name);
4507      } while (true);
4508    }
4509  }
4510
4511  AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4512
4513  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4514  // to search those namespaces.
4515  if (SearchNamespaces) {
4516    // Load any externally-known namespaces.
4517    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4518      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4519      LoadedExternalKnownNamespaces = true;
4520      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4521      for (auto *N : ExternalKnownNamespaces)
4522        KnownNamespaces[N] = true;
4523    }
4524
4525    Consumer->addNamespaces(KnownNamespaces);
4526  }
4527
4528  return Consumer;
4529}
4530
4531/// \brief Try to "correct" a typo in the source code by finding
4532/// visible declarations whose names are similar to the name that was
4533/// present in the source code.
4534///
4535/// \param TypoName the \c DeclarationNameInfo structure that contains
4536/// the name that was present in the source code along with its location.
4537///
4538/// \param LookupKind the name-lookup criteria used to search for the name.
4539///
4540/// \param S the scope in which name lookup occurs.
4541///
4542/// \param SS the nested-name-specifier that precedes the name we're
4543/// looking for, if present.
4544///
4545/// \param CCC A CorrectionCandidateCallback object that provides further
4546/// validation of typo correction candidates. It also provides flags for
4547/// determining the set of keywords permitted.
4548///
4549/// \param MemberContext if non-NULL, the context in which to look for
4550/// a member access expression.
4551///
4552/// \param EnteringContext whether we're entering the context described by
4553/// the nested-name-specifier SS.
4554///
4555/// \param OPT when non-NULL, the search for visible declarations will
4556/// also walk the protocols in the qualified interfaces of \p OPT.
4557///
4558/// \returns a \c TypoCorrection containing the corrected name if the typo
4559/// along with information such as the \c NamedDecl where the corrected name
4560/// was declared, and any additional \c NestedNameSpecifier needed to access
4561/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4562TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4563                                 Sema::LookupNameKind LookupKind,
4564                                 Scope *S, CXXScopeSpec *SS,
4565                                 std::unique_ptr<CorrectionCandidateCallback> CCC,
4566                                 CorrectTypoKind Mode,
4567                                 DeclContext *MemberContext,
4568                                 bool EnteringContext,
4569                                 const ObjCObjectPointerType *OPT,
4570                                 bool RecordFailure) {
4571  assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4572
4573  // Always let the ExternalSource have the first chance at correction, even
4574  // if we would otherwise have given up.
4575  if (ExternalSource) {
4576    if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4577        TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4578      return Correction;
4579  }
4580
4581  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4582  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4583  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4584  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4585  bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4586
4587  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4588  auto Consumer = makeTypoCorrectionConsumer(
4589      TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4590      EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4591
4592  if (!Consumer)
4593    return TypoCorrection();
4594
4595  // If we haven't found anything, we're done.
4596  if (Consumer->empty())
4597    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4598
4599  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4600  // is not more that about a third of the length of the typo's identifier.
4601  unsigned ED = Consumer->getBestEditDistance(true);
4602  unsigned TypoLen = Typo->getName().size();
4603  if (ED > 0 && TypoLen / ED < 3)
4604    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4605
4606  TypoCorrection BestTC = Consumer->getNextCorrection();
4607  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4608  if (!BestTC)
4609    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4610
4611  ED = BestTC.getEditDistance();
4612
4613  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4614    // If this was an unqualified lookup and we believe the callback
4615    // object wouldn't have filtered out possible corrections, note
4616    // that no correction was found.
4617    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4618  }
4619
4620  // If only a single name remains, return that result.
4621  if (!SecondBestTC ||
4622      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4623    const TypoCorrection &Result = BestTC;
4624
4625    // Don't correct to a keyword that's the same as the typo; the keyword
4626    // wasn't actually in scope.
4627    if (ED == 0 && Result.isKeyword())
4628      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4629
4630    TypoCorrection TC = Result;
4631    TC.setCorrectionRange(SS, TypoName);
4632    checkCorrectionVisibility(*this, TC);
4633    return TC;
4634  } else if (SecondBestTC && ObjCMessageReceiver) {
4635    // Prefer 'super' when we're completing in a message-receiver
4636    // context.
4637
4638    if (BestTC.getCorrection().getAsString() != "super") {
4639      if (SecondBestTC.getCorrection().getAsString() == "super")
4640        BestTC = SecondBestTC;
4641      else if ((*Consumer)["super"].front().isKeyword())
4642        BestTC = (*Consumer)["super"].front();
4643    }
4644    // Don't correct to a keyword that's the same as the typo; the keyword
4645    // wasn't actually in scope.
4646    if (BestTC.getEditDistance() == 0 ||
4647        BestTC.getCorrection().getAsString() != "super")
4648      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4649
4650    BestTC.setCorrectionRange(SS, TypoName);
4651    return BestTC;
4652  }
4653
4654  // Record the failure's location if needed and return an empty correction. If
4655  // this was an unqualified lookup and we believe the callback object did not
4656  // filter out possible corrections, also cache the failure for the typo.
4657  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4658}
4659
4660/// \brief Try to "correct" a typo in the source code by finding
4661/// visible declarations whose names are similar to the name that was
4662/// present in the source code.
4663///
4664/// \param TypoName the \c DeclarationNameInfo structure that contains
4665/// the name that was present in the source code along with its location.
4666///
4667/// \param LookupKind the name-lookup criteria used to search for the name.
4668///
4669/// \param S the scope in which name lookup occurs.
4670///
4671/// \param SS the nested-name-specifier that precedes the name we're
4672/// looking for, if present.
4673///
4674/// \param CCC A CorrectionCandidateCallback object that provides further
4675/// validation of typo correction candidates. It also provides flags for
4676/// determining the set of keywords permitted.
4677///
4678/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4679/// diagnostics when the actual typo correction is attempted.
4680///
4681/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4682/// Expr from a typo correction candidate.
4683///
4684/// \param MemberContext if non-NULL, the context in which to look for
4685/// a member access expression.
4686///
4687/// \param EnteringContext whether we're entering the context described by
4688/// the nested-name-specifier SS.
4689///
4690/// \param OPT when non-NULL, the search for visible declarations will
4691/// also walk the protocols in the qualified interfaces of \p OPT.
4692///
4693/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4694/// Expr representing the result of performing typo correction, or nullptr if
4695/// typo correction is not possible. If nullptr is returned, no diagnostics will
4696/// be emitted and it is the responsibility of the caller to emit any that are
4697/// needed.
4698TypoExpr *Sema::CorrectTypoDelayed(
4699    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4700    Scope *S, CXXScopeSpec *SS,
4701    std::unique_ptr<CorrectionCandidateCallback> CCC,
4702    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4703    DeclContext *MemberContext, bool EnteringContext,
4704    const ObjCObjectPointerType *OPT) {
4705  assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4706
4707  TypoCorrection Empty;
4708  auto Consumer = makeTypoCorrectionConsumer(
4709      TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4710      EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4711
4712  if (!Consumer || Consumer->empty())
4713    return nullptr;
4714
4715  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4716  // is not more that about a third of the length of the typo's identifier.
4717  unsigned ED = Consumer->getBestEditDistance(true);
4718  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4719  if (ED > 0 && Typo->getName().size() / ED < 3)
4720    return nullptr;
4721
4722  ExprEvalContexts.back().NumTypos++;
4723  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4724}
4725
4726void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4727  if (!CDecl) return;
4728
4729  if (isKeyword())
4730    CorrectionDecls.clear();
4731
4732  CorrectionDecls.push_back(CDecl);
4733
4734  if (!CorrectionName)
4735    CorrectionName = CDecl->getDeclName();
4736}
4737
4738std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4739  if (CorrectionNameSpec) {
4740    std::string tmpBuffer;
4741    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4742    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4743    PrefixOStream << CorrectionName;
4744    return PrefixOStream.str();
4745  }
4746
4747  return CorrectionName.getAsString();
4748}
4749
4750bool CorrectionCandidateCallback::ValidateCandidate(
4751    const TypoCorrection &candidate) {
4752  if (!candidate.isResolved())
4753    return true;
4754
4755  if (candidate.isKeyword())
4756    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4757           WantRemainingKeywords || WantObjCSuper;
4758
4759  bool HasNonType = false;
4760  bool HasStaticMethod = false;
4761  bool HasNonStaticMethod = false;
4762  for (Decl *D : candidate) {
4763    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4764      D = FTD->getTemplatedDecl();
4765    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4766      if (Method->isStatic())
4767        HasStaticMethod = true;
4768      else
4769        HasNonStaticMethod = true;
4770    }
4771    if (!isa<TypeDecl>(D))
4772      HasNonType = true;
4773  }
4774
4775  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4776      !candidate.getCorrectionSpecifier())
4777    return false;
4778
4779  return WantTypeSpecifiers || HasNonType;
4780}
4781
4782FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4783                                             bool HasExplicitTemplateArgs,
4784                                             MemberExpr *ME)
4785    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4786      CurContext(SemaRef.CurContext), MemberFn(ME) {
4787  WantTypeSpecifiers = false;
4788  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4789  WantRemainingKeywords = false;
4790}
4791
4792bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4793  if (!candidate.getCorrectionDecl())
4794    return candidate.isKeyword();
4795
4796  for (auto *C : candidate) {
4797    FunctionDecl *FD = nullptr;
4798    NamedDecl *ND = C->getUnderlyingDecl();
4799    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4800      FD = FTD->getTemplatedDecl();
4801    if (!HasExplicitTemplateArgs && !FD) {
4802      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4803        // If the Decl is neither a function nor a template function,
4804        // determine if it is a pointer or reference to a function. If so,
4805        // check against the number of arguments expected for the pointee.
4806        QualType ValType = cast<ValueDecl>(ND)->getType();
4807        if (ValType->isAnyPointerType() || ValType->isReferenceType())
4808          ValType = ValType->getPointeeType();
4809        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4810          if (FPT->getNumParams() == NumArgs)
4811            return true;
4812      }
4813    }
4814
4815    // Skip the current candidate if it is not a FunctionDecl or does not accept
4816    // the current number of arguments.
4817    if (!FD || !(FD->getNumParams() >= NumArgs &&
4818                 FD->getMinRequiredArguments() <= NumArgs))
4819      continue;
4820
4821    // If the current candidate is a non-static C++ method, skip the candidate
4822    // unless the method being corrected--or the current DeclContext, if the
4823    // function being corrected is not a method--is a method in the same class
4824    // or a descendent class of the candidate's parent class.
4825    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4826      if (MemberFn || !MD->isStatic()) {
4827        CXXMethodDecl *CurMD =
4828            MemberFn
4829                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4830                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4831        CXXRecordDecl *CurRD =
4832            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4833        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4834        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4835          continue;
4836      }
4837    }
4838    return true;
4839  }
4840  return false;
4841}
4842
4843void Sema::diagnoseTypo(const TypoCorrection &Correction,
4844                        const PartialDiagnostic &TypoDiag,
4845                        bool ErrorRecovery) {
4846  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4847               ErrorRecovery);
4848}
4849
4850/// Find which declaration we should import to provide the definition of
4851/// the given declaration.
4852static NamedDecl *getDefinitionToImport(NamedDecl *D) {
4853  if (VarDecl *VD = dyn_cast<VarDecl>(D))
4854    return VD->getDefinition();
4855  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4856    return FD->isDefined(FD) ? const_cast<FunctionDecl*>(FD) : nullptr;
4857  if (TagDecl *TD = dyn_cast<TagDecl>(D))
4858    return TD->getDefinition();
4859  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4860    return ID->getDefinition();
4861  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4862    return PD->getDefinition();
4863  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4864    return getDefinitionToImport(TD->getTemplatedDecl());
4865  return nullptr;
4866}
4867
4868void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
4869                                 bool NeedDefinition, bool Recover) {
4870  assert(!isVisible(Decl) && "missing import for non-hidden decl?");
4871
4872  // Suggest importing a module providing the definition of this entity, if
4873  // possible.
4874  NamedDecl *Def = getDefinitionToImport(Decl);
4875  if (!Def)
4876    Def = Decl;
4877
4878  // FIXME: Add a Fix-It that imports the corresponding module or includes
4879  // the header.
4880  Module *Owner = getOwningModule(Decl);
4881  assert(Owner && "definition of hidden declaration is not in a module");
4882
4883  llvm::SmallVector<Module*, 8> OwningModules;
4884  OwningModules.push_back(Owner);
4885  auto Merged = Context.getModulesWithMergedDefinition(Decl);
4886  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
4887
4888  diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules,
4889                        NeedDefinition ? MissingImportKind::Definition
4890                                       : MissingImportKind::Declaration,
4891                        Recover);
4892}
4893
4894void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
4895                                 SourceLocation DeclLoc,
4896                                 ArrayRef<Module *> Modules,
4897                                 MissingImportKind MIK, bool Recover) {
4898  assert(!Modules.empty());
4899
4900  if (Modules.size() > 1) {
4901    std::string ModuleList;
4902    unsigned N = 0;
4903    for (Module *M : Modules) {
4904      ModuleList += "\n        ";
4905      if (++N == 5 && N != Modules.size()) {
4906        ModuleList += "[...]";
4907        break;
4908      }
4909      ModuleList += M->getFullModuleName();
4910    }
4911
4912    Diag(UseLoc, diag::err_module_unimported_use_multiple)
4913      << (int)MIK << Decl << ModuleList;
4914  } else {
4915    Diag(UseLoc, diag::err_module_unimported_use)
4916      << (int)MIK << Decl << Modules[0]->getFullModuleName();
4917  }
4918
4919  unsigned DiagID;
4920  switch (MIK) {
4921  case MissingImportKind::Declaration:
4922    DiagID = diag::note_previous_declaration;
4923    break;
4924  case MissingImportKind::Definition:
4925    DiagID = diag::note_previous_definition;
4926    break;
4927  case MissingImportKind::DefaultArgument:
4928    DiagID = diag::note_default_argument_declared_here;
4929    break;
4930  }
4931  Diag(DeclLoc, DiagID);
4932
4933  // Try to recover by implicitly importing this module.
4934  if (Recover)
4935    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
4936}
4937
4938/// \brief Diagnose a successfully-corrected typo. Separated from the correction
4939/// itself to allow external validation of the result, etc.
4940///
4941/// \param Correction The result of performing typo correction.
4942/// \param TypoDiag The diagnostic to produce. This will have the corrected
4943///        string added to it (and usually also a fixit).
4944/// \param PrevNote A note to use when indicating the location of the entity to
4945///        which we are correcting. Will have the correction string added to it.
4946/// \param ErrorRecovery If \c true (the default), the caller is going to
4947///        recover from the typo as if the corrected string had been typed.
4948///        In this case, \c PDiag must be an error, and we will attach a fixit
4949///        to it.
4950void Sema::diagnoseTypo(const TypoCorrection &Correction,
4951                        const PartialDiagnostic &TypoDiag,
4952                        const PartialDiagnostic &PrevNote,
4953                        bool ErrorRecovery) {
4954  std::string CorrectedStr = Correction.getAsString(getLangOpts());
4955  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4956  FixItHint FixTypo = FixItHint::CreateReplacement(
4957      Correction.getCorrectionRange(), CorrectedStr);
4958
4959  // Maybe we're just missing a module import.
4960  if (Correction.requiresImport()) {
4961    NamedDecl *Decl = Correction.getFoundDecl();
4962    assert(Decl && "import required but no declaration to import");
4963
4964    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
4965                          /*NeedDefinition*/ false, ErrorRecovery);
4966    return;
4967  }
4968
4969  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4970    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4971
4972  NamedDecl *ChosenDecl =
4973      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
4974  if (PrevNote.getDiagID() && ChosenDecl)
4975    Diag(ChosenDecl->getLocation(), PrevNote)
4976      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4977}
4978
4979TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4980                                  TypoDiagnosticGenerator TDG,
4981                                  TypoRecoveryCallback TRC) {
4982  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
4983  auto TE = new (Context) TypoExpr(Context.DependentTy);
4984  auto &State = DelayedTypos[TE];
4985  State.Consumer = std::move(TCC);
4986  State.DiagHandler = std::move(TDG);
4987  State.RecoveryHandler = std::move(TRC);
4988  return TE;
4989}
4990
4991const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
4992  auto Entry = DelayedTypos.find(TE);
4993  assert(Entry != DelayedTypos.end() &&
4994         "Failed to get the state for a TypoExpr!");
4995  return Entry->second;
4996}
4997
4998void Sema::clearDelayedTypo(TypoExpr *TE) {
4999  DelayedTypos.erase(TE);
5000}
5001
5002void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5003  DeclarationNameInfo Name(II, IILoc);
5004  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5005  R.suppressDiagnostics();
5006  R.setHideTags(false);
5007  LookupName(R, S);
5008  R.dump();
5009}
5010