SemaExprCXX.cpp revision 239462
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/DeclSpec.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Sema/Scope.h"
22#include "clang/Sema/TemplateDeduction.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/CXXInheritance.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExprObjC.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Preprocessor.h"
33#include "TypeLocBuilder.h"
34#include "llvm/ADT/APInt.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Support/ErrorHandling.h"
37using namespace clang;
38using namespace sema;
39
40ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
41                                   IdentifierInfo &II,
42                                   SourceLocation NameLoc,
43                                   Scope *S, CXXScopeSpec &SS,
44                                   ParsedType ObjectTypePtr,
45                                   bool EnteringContext) {
46  // Determine where to perform name lookup.
47
48  // FIXME: This area of the standard is very messy, and the current
49  // wording is rather unclear about which scopes we search for the
50  // destructor name; see core issues 399 and 555. Issue 399 in
51  // particular shows where the current description of destructor name
52  // lookup is completely out of line with existing practice, e.g.,
53  // this appears to be ill-formed:
54  //
55  //   namespace N {
56  //     template <typename T> struct S {
57  //       ~S();
58  //     };
59  //   }
60  //
61  //   void f(N::S<int>* s) {
62  //     s->N::S<int>::~S();
63  //   }
64  //
65  // See also PR6358 and PR6359.
66  // For this reason, we're currently only doing the C++03 version of this
67  // code; the C++0x version has to wait until we get a proper spec.
68  QualType SearchType;
69  DeclContext *LookupCtx = 0;
70  bool isDependent = false;
71  bool LookInScope = false;
72
73  // If we have an object type, it's because we are in a
74  // pseudo-destructor-expression or a member access expression, and
75  // we know what type we're looking for.
76  if (ObjectTypePtr)
77    SearchType = GetTypeFromParser(ObjectTypePtr);
78
79  if (SS.isSet()) {
80    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
81
82    bool AlreadySearched = false;
83    bool LookAtPrefix = true;
84    // C++ [basic.lookup.qual]p6:
85    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
86    //   the type-names are looked up as types in the scope designated by the
87    //   nested-name-specifier. In a qualified-id of the form:
88    //
89    //     ::[opt] nested-name-specifier  ~ class-name
90    //
91    //   where the nested-name-specifier designates a namespace scope, and in
92    //   a qualified-id of the form:
93    //
94    //     ::opt nested-name-specifier class-name ::  ~ class-name
95    //
96    //   the class-names are looked up as types in the scope designated by
97    //   the nested-name-specifier.
98    //
99    // Here, we check the first case (completely) and determine whether the
100    // code below is permitted to look at the prefix of the
101    // nested-name-specifier.
102    DeclContext *DC = computeDeclContext(SS, EnteringContext);
103    if (DC && DC->isFileContext()) {
104      AlreadySearched = true;
105      LookupCtx = DC;
106      isDependent = false;
107    } else if (DC && isa<CXXRecordDecl>(DC))
108      LookAtPrefix = false;
109
110    // The second case from the C++03 rules quoted further above.
111    NestedNameSpecifier *Prefix = 0;
112    if (AlreadySearched) {
113      // Nothing left to do.
114    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
115      CXXScopeSpec PrefixSS;
116      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
117      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
118      isDependent = isDependentScopeSpecifier(PrefixSS);
119    } else if (ObjectTypePtr) {
120      LookupCtx = computeDeclContext(SearchType);
121      isDependent = SearchType->isDependentType();
122    } else {
123      LookupCtx = computeDeclContext(SS, EnteringContext);
124      isDependent = LookupCtx && LookupCtx->isDependentContext();
125    }
126
127    LookInScope = false;
128  } else if (ObjectTypePtr) {
129    // C++ [basic.lookup.classref]p3:
130    //   If the unqualified-id is ~type-name, the type-name is looked up
131    //   in the context of the entire postfix-expression. If the type T
132    //   of the object expression is of a class type C, the type-name is
133    //   also looked up in the scope of class C. At least one of the
134    //   lookups shall find a name that refers to (possibly
135    //   cv-qualified) T.
136    LookupCtx = computeDeclContext(SearchType);
137    isDependent = SearchType->isDependentType();
138    assert((isDependent || !SearchType->isIncompleteType()) &&
139           "Caller should have completed object type");
140
141    LookInScope = true;
142  } else {
143    // Perform lookup into the current scope (only).
144    LookInScope = true;
145  }
146
147  TypeDecl *NonMatchingTypeDecl = 0;
148  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
149  for (unsigned Step = 0; Step != 2; ++Step) {
150    // Look for the name first in the computed lookup context (if we
151    // have one) and, if that fails to find a match, in the scope (if
152    // we're allowed to look there).
153    Found.clear();
154    if (Step == 0 && LookupCtx)
155      LookupQualifiedName(Found, LookupCtx);
156    else if (Step == 1 && LookInScope && S)
157      LookupName(Found, S);
158    else
159      continue;
160
161    // FIXME: Should we be suppressing ambiguities here?
162    if (Found.isAmbiguous())
163      return ParsedType();
164
165    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
166      QualType T = Context.getTypeDeclType(Type);
167
168      if (SearchType.isNull() || SearchType->isDependentType() ||
169          Context.hasSameUnqualifiedType(T, SearchType)) {
170        // We found our type!
171
172        return ParsedType::make(T);
173      }
174
175      if (!SearchType.isNull())
176        NonMatchingTypeDecl = Type;
177    }
178
179    // If the name that we found is a class template name, and it is
180    // the same name as the template name in the last part of the
181    // nested-name-specifier (if present) or the object type, then
182    // this is the destructor for that class.
183    // FIXME: This is a workaround until we get real drafting for core
184    // issue 399, for which there isn't even an obvious direction.
185    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
186      QualType MemberOfType;
187      if (SS.isSet()) {
188        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
189          // Figure out the type of the context, if it has one.
190          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
191            MemberOfType = Context.getTypeDeclType(Record);
192        }
193      }
194      if (MemberOfType.isNull())
195        MemberOfType = SearchType;
196
197      if (MemberOfType.isNull())
198        continue;
199
200      // We're referring into a class template specialization. If the
201      // class template we found is the same as the template being
202      // specialized, we found what we are looking for.
203      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
204        if (ClassTemplateSpecializationDecl *Spec
205              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
206          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
207                Template->getCanonicalDecl())
208            return ParsedType::make(MemberOfType);
209        }
210
211        continue;
212      }
213
214      // We're referring to an unresolved class template
215      // specialization. Determine whether we class template we found
216      // is the same as the template being specialized or, if we don't
217      // know which template is being specialized, that it at least
218      // has the same name.
219      if (const TemplateSpecializationType *SpecType
220            = MemberOfType->getAs<TemplateSpecializationType>()) {
221        TemplateName SpecName = SpecType->getTemplateName();
222
223        // The class template we found is the same template being
224        // specialized.
225        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
226          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231
232        // The class template we found has the same name as the
233        // (dependent) template name being specialized.
234        if (DependentTemplateName *DepTemplate
235                                    = SpecName.getAsDependentTemplateName()) {
236          if (DepTemplate->isIdentifier() &&
237              DepTemplate->getIdentifier() == Template->getIdentifier())
238            return ParsedType::make(MemberOfType);
239
240          continue;
241        }
242      }
243    }
244  }
245
246  if (isDependent) {
247    // We didn't find our type, but that's okay: it's dependent
248    // anyway.
249
250    // FIXME: What if we have no nested-name-specifier?
251    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
252                                   SS.getWithLocInContext(Context),
253                                   II, NameLoc);
254    return ParsedType::make(T);
255  }
256
257  if (NonMatchingTypeDecl) {
258    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
259    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
260      << T << SearchType;
261    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
262      << T;
263  } else if (ObjectTypePtr)
264    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
265      << &II;
266  else
267    Diag(NameLoc, diag::err_destructor_class_name);
268
269  return ParsedType();
270}
271
272ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
273    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
274      return ParsedType();
275    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
276           && "only get destructor types from declspecs");
277    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
278    QualType SearchType = GetTypeFromParser(ObjectType);
279    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
280      return ParsedType::make(T);
281    }
282
283    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
284      << T << SearchType;
285    return ParsedType();
286}
287
288/// \brief Build a C++ typeid expression with a type operand.
289ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
290                                SourceLocation TypeidLoc,
291                                TypeSourceInfo *Operand,
292                                SourceLocation RParenLoc) {
293  // C++ [expr.typeid]p4:
294  //   The top-level cv-qualifiers of the lvalue expression or the type-id
295  //   that is the operand of typeid are always ignored.
296  //   If the type of the type-id is a class type or a reference to a class
297  //   type, the class shall be completely-defined.
298  Qualifiers Quals;
299  QualType T
300    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
301                                      Quals);
302  if (T->getAs<RecordType>() &&
303      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
304    return ExprError();
305
306  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
307                                           Operand,
308                                           SourceRange(TypeidLoc, RParenLoc)));
309}
310
311/// \brief Build a C++ typeid expression with an expression operand.
312ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
313                                SourceLocation TypeidLoc,
314                                Expr *E,
315                                SourceLocation RParenLoc) {
316  if (E && !E->isTypeDependent()) {
317    if (E->getType()->isPlaceholderType()) {
318      ExprResult result = CheckPlaceholderExpr(E);
319      if (result.isInvalid()) return ExprError();
320      E = result.take();
321    }
322
323    QualType T = E->getType();
324    if (const RecordType *RecordT = T->getAs<RecordType>()) {
325      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
326      // C++ [expr.typeid]p3:
327      //   [...] If the type of the expression is a class type, the class
328      //   shall be completely-defined.
329      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
330        return ExprError();
331
332      // C++ [expr.typeid]p3:
333      //   When typeid is applied to an expression other than an glvalue of a
334      //   polymorphic class type [...] [the] expression is an unevaluated
335      //   operand. [...]
336      if (RecordD->isPolymorphic() && E->isGLValue()) {
337        // The subexpression is potentially evaluated; switch the context
338        // and recheck the subexpression.
339        ExprResult Result = TranformToPotentiallyEvaluated(E);
340        if (Result.isInvalid()) return ExprError();
341        E = Result.take();
342
343        // We require a vtable to query the type at run time.
344        MarkVTableUsed(TypeidLoc, RecordD);
345      }
346    }
347
348    // C++ [expr.typeid]p4:
349    //   [...] If the type of the type-id is a reference to a possibly
350    //   cv-qualified type, the result of the typeid expression refers to a
351    //   std::type_info object representing the cv-unqualified referenced
352    //   type.
353    Qualifiers Quals;
354    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
355    if (!Context.hasSameType(T, UnqualT)) {
356      T = UnqualT;
357      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
358    }
359  }
360
361  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
362                                           E,
363                                           SourceRange(TypeidLoc, RParenLoc)));
364}
365
366/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
367ExprResult
368Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
369                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
370  // Find the std::type_info type.
371  if (!getStdNamespace())
372    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
373
374  if (!CXXTypeInfoDecl) {
375    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
376    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
377    LookupQualifiedName(R, getStdNamespace());
378    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
379    // Microsoft's typeinfo doesn't have type_info in std but in the global
380    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
381    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
382      LookupQualifiedName(R, Context.getTranslationUnitDecl());
383      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
384    }
385    if (!CXXTypeInfoDecl)
386      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
387  }
388
389  if (!getLangOpts().RTTI) {
390    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
391  }
392
393  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
394
395  if (isType) {
396    // The operand is a type; handle it as such.
397    TypeSourceInfo *TInfo = 0;
398    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
399                                   &TInfo);
400    if (T.isNull())
401      return ExprError();
402
403    if (!TInfo)
404      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
405
406    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
407  }
408
409  // The operand is an expression.
410  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
411}
412
413/// Retrieve the UuidAttr associated with QT.
414static UuidAttr *GetUuidAttrOfType(QualType QT) {
415  // Optionally remove one level of pointer, reference or array indirection.
416  const Type *Ty = QT.getTypePtr();;
417  if (QT->isPointerType() || QT->isReferenceType())
418    Ty = QT->getPointeeType().getTypePtr();
419  else if (QT->isArrayType())
420    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
421
422  // Loop all record redeclaration looking for an uuid attribute.
423  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
424  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
425       E = RD->redecls_end(); I != E; ++I) {
426    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
427      return Uuid;
428  }
429
430  return 0;
431}
432
433/// \brief Build a Microsoft __uuidof expression with a type operand.
434ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
435                                SourceLocation TypeidLoc,
436                                TypeSourceInfo *Operand,
437                                SourceLocation RParenLoc) {
438  if (!Operand->getType()->isDependentType()) {
439    if (!GetUuidAttrOfType(Operand->getType()))
440      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
441  }
442
443  // FIXME: add __uuidof semantic analysis for type operand.
444  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
445                                           Operand,
446                                           SourceRange(TypeidLoc, RParenLoc)));
447}
448
449/// \brief Build a Microsoft __uuidof expression with an expression operand.
450ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
451                                SourceLocation TypeidLoc,
452                                Expr *E,
453                                SourceLocation RParenLoc) {
454  if (!E->getType()->isDependentType()) {
455    if (!GetUuidAttrOfType(E->getType()) &&
456        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
457      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
458  }
459  // FIXME: add __uuidof semantic analysis for type operand.
460  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
461                                           E,
462                                           SourceRange(TypeidLoc, RParenLoc)));
463}
464
465/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
466ExprResult
467Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
468                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
469  // If MSVCGuidDecl has not been cached, do the lookup.
470  if (!MSVCGuidDecl) {
471    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
472    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
473    LookupQualifiedName(R, Context.getTranslationUnitDecl());
474    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
475    if (!MSVCGuidDecl)
476      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
477  }
478
479  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
480
481  if (isType) {
482    // The operand is a type; handle it as such.
483    TypeSourceInfo *TInfo = 0;
484    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
485                                   &TInfo);
486    if (T.isNull())
487      return ExprError();
488
489    if (!TInfo)
490      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
491
492    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
493  }
494
495  // The operand is an expression.
496  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
497}
498
499/// ActOnCXXBoolLiteral - Parse {true,false} literals.
500ExprResult
501Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
502  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
503         "Unknown C++ Boolean value!");
504  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
505                                                Context.BoolTy, OpLoc));
506}
507
508/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
509ExprResult
510Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
511  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
512}
513
514/// ActOnCXXThrow - Parse throw expressions.
515ExprResult
516Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
517  bool IsThrownVarInScope = false;
518  if (Ex) {
519    // C++0x [class.copymove]p31:
520    //   When certain criteria are met, an implementation is allowed to omit the
521    //   copy/move construction of a class object [...]
522    //
523    //     - in a throw-expression, when the operand is the name of a
524    //       non-volatile automatic object (other than a function or catch-
525    //       clause parameter) whose scope does not extend beyond the end of the
526    //       innermost enclosing try-block (if there is one), the copy/move
527    //       operation from the operand to the exception object (15.1) can be
528    //       omitted by constructing the automatic object directly into the
529    //       exception object
530    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
531      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
532        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
533          for( ; S; S = S->getParent()) {
534            if (S->isDeclScope(Var)) {
535              IsThrownVarInScope = true;
536              break;
537            }
538
539            if (S->getFlags() &
540                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
541                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
542                 Scope::TryScope))
543              break;
544          }
545        }
546      }
547  }
548
549  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
550}
551
552ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
553                               bool IsThrownVarInScope) {
554  // Don't report an error if 'throw' is used in system headers.
555  if (!getLangOpts().CXXExceptions &&
556      !getSourceManager().isInSystemHeader(OpLoc))
557    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
558
559  if (Ex && !Ex->isTypeDependent()) {
560    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
561    if (ExRes.isInvalid())
562      return ExprError();
563    Ex = ExRes.take();
564  }
565
566  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
567                                          IsThrownVarInScope));
568}
569
570/// CheckCXXThrowOperand - Validate the operand of a throw.
571ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
572                                      bool IsThrownVarInScope) {
573  // C++ [except.throw]p3:
574  //   A throw-expression initializes a temporary object, called the exception
575  //   object, the type of which is determined by removing any top-level
576  //   cv-qualifiers from the static type of the operand of throw and adjusting
577  //   the type from "array of T" or "function returning T" to "pointer to T"
578  //   or "pointer to function returning T", [...]
579  if (E->getType().hasQualifiers())
580    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
581                          E->getValueKind()).take();
582
583  ExprResult Res = DefaultFunctionArrayConversion(E);
584  if (Res.isInvalid())
585    return ExprError();
586  E = Res.take();
587
588  //   If the type of the exception would be an incomplete type or a pointer
589  //   to an incomplete type other than (cv) void the program is ill-formed.
590  QualType Ty = E->getType();
591  bool isPointer = false;
592  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
593    Ty = Ptr->getPointeeType();
594    isPointer = true;
595  }
596  if (!isPointer || !Ty->isVoidType()) {
597    if (RequireCompleteType(ThrowLoc, Ty,
598                            isPointer? diag::err_throw_incomplete_ptr
599                                     : diag::err_throw_incomplete,
600                            E->getSourceRange()))
601      return ExprError();
602
603    if (RequireNonAbstractType(ThrowLoc, E->getType(),
604                               diag::err_throw_abstract_type, E))
605      return ExprError();
606  }
607
608  // Initialize the exception result.  This implicitly weeds out
609  // abstract types or types with inaccessible copy constructors.
610
611  // C++0x [class.copymove]p31:
612  //   When certain criteria are met, an implementation is allowed to omit the
613  //   copy/move construction of a class object [...]
614  //
615  //     - in a throw-expression, when the operand is the name of a
616  //       non-volatile automatic object (other than a function or catch-clause
617  //       parameter) whose scope does not extend beyond the end of the
618  //       innermost enclosing try-block (if there is one), the copy/move
619  //       operation from the operand to the exception object (15.1) can be
620  //       omitted by constructing the automatic object directly into the
621  //       exception object
622  const VarDecl *NRVOVariable = 0;
623  if (IsThrownVarInScope)
624    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
625
626  InitializedEntity Entity =
627      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
628                                             /*NRVO=*/NRVOVariable != 0);
629  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
630                                        QualType(), E,
631                                        IsThrownVarInScope);
632  if (Res.isInvalid())
633    return ExprError();
634  E = Res.take();
635
636  // If the exception has class type, we need additional handling.
637  const RecordType *RecordTy = Ty->getAs<RecordType>();
638  if (!RecordTy)
639    return Owned(E);
640  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
641
642  // If we are throwing a polymorphic class type or pointer thereof,
643  // exception handling will make use of the vtable.
644  MarkVTableUsed(ThrowLoc, RD);
645
646  // If a pointer is thrown, the referenced object will not be destroyed.
647  if (isPointer)
648    return Owned(E);
649
650  // If the class has a destructor, we must be able to call it.
651  if (RD->hasIrrelevantDestructor())
652    return Owned(E);
653
654  CXXDestructorDecl *Destructor = LookupDestructor(RD);
655  if (!Destructor)
656    return Owned(E);
657
658  MarkFunctionReferenced(E->getExprLoc(), Destructor);
659  CheckDestructorAccess(E->getExprLoc(), Destructor,
660                        PDiag(diag::err_access_dtor_exception) << Ty);
661  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
662  return Owned(E);
663}
664
665QualType Sema::getCurrentThisType() {
666  DeclContext *DC = getFunctionLevelDeclContext();
667  QualType ThisTy = CXXThisTypeOverride;
668  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
669    if (method && method->isInstance())
670      ThisTy = method->getThisType(Context);
671  }
672
673  return ThisTy;
674}
675
676Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
677                                         Decl *ContextDecl,
678                                         unsigned CXXThisTypeQuals,
679                                         bool Enabled)
680  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
681{
682  if (!Enabled || !ContextDecl)
683    return;
684
685  CXXRecordDecl *Record = 0;
686  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
687    Record = Template->getTemplatedDecl();
688  else
689    Record = cast<CXXRecordDecl>(ContextDecl);
690
691  S.CXXThisTypeOverride
692    = S.Context.getPointerType(
693        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
694
695  this->Enabled = true;
696}
697
698
699Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
700  if (Enabled) {
701    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
702  }
703}
704
705void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
706  // We don't need to capture this in an unevaluated context.
707  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
708    return;
709
710  // Otherwise, check that we can capture 'this'.
711  unsigned NumClosures = 0;
712  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
713    if (CapturingScopeInfo *CSI =
714            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
715      if (CSI->CXXThisCaptureIndex != 0) {
716        // 'this' is already being captured; there isn't anything more to do.
717        break;
718      }
719
720      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
721          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
722          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
723          Explicit) {
724        // This closure can capture 'this'; continue looking upwards.
725        NumClosures++;
726        Explicit = false;
727        continue;
728      }
729      // This context can't implicitly capture 'this'; fail out.
730      Diag(Loc, diag::err_this_capture) << Explicit;
731      return;
732    }
733    break;
734  }
735
736  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
737  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
738  // contexts.
739  for (unsigned idx = FunctionScopes.size() - 1;
740       NumClosures; --idx, --NumClosures) {
741    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
742    Expr *ThisExpr = 0;
743    QualType ThisTy = getCurrentThisType();
744    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
745      // For lambda expressions, build a field and an initializing expression.
746      CXXRecordDecl *Lambda = LSI->Lambda;
747      FieldDecl *Field
748        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
749                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
750                            0, false, ICIS_NoInit);
751      Field->setImplicit(true);
752      Field->setAccess(AS_private);
753      Lambda->addDecl(Field);
754      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
755    }
756    bool isNested = NumClosures > 1;
757    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
758  }
759}
760
761ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
762  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
763  /// is a non-lvalue expression whose value is the address of the object for
764  /// which the function is called.
765
766  QualType ThisTy = getCurrentThisType();
767  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
768
769  CheckCXXThisCapture(Loc);
770  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
771}
772
773bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
774  // If we're outside the body of a member function, then we'll have a specified
775  // type for 'this'.
776  if (CXXThisTypeOverride.isNull())
777    return false;
778
779  // Determine whether we're looking into a class that's currently being
780  // defined.
781  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
782  return Class && Class->isBeingDefined();
783}
784
785ExprResult
786Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
787                                SourceLocation LParenLoc,
788                                MultiExprArg exprs,
789                                SourceLocation RParenLoc) {
790  if (!TypeRep)
791    return ExprError();
792
793  TypeSourceInfo *TInfo;
794  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
795  if (!TInfo)
796    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
797
798  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
799}
800
801/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
802/// Can be interpreted either as function-style casting ("int(x)")
803/// or class type construction ("ClassType(x,y,z)")
804/// or creation of a value-initialized type ("int()").
805ExprResult
806Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
807                                SourceLocation LParenLoc,
808                                MultiExprArg exprs,
809                                SourceLocation RParenLoc) {
810  QualType Ty = TInfo->getType();
811  unsigned NumExprs = exprs.size();
812  Expr **Exprs = (Expr**)exprs.get();
813  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
814
815  if (Ty->isDependentType() ||
816      CallExpr::hasAnyTypeDependentArguments(
817        llvm::makeArrayRef(Exprs, NumExprs))) {
818    exprs.release();
819
820    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
821                                                    LParenLoc,
822                                                    Exprs, NumExprs,
823                                                    RParenLoc));
824  }
825
826  bool ListInitialization = LParenLoc.isInvalid();
827  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
828         && "List initialization must have initializer list as expression.");
829  SourceRange FullRange = SourceRange(TyBeginLoc,
830      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
831
832  // C++ [expr.type.conv]p1:
833  // If the expression list is a single expression, the type conversion
834  // expression is equivalent (in definedness, and if defined in meaning) to the
835  // corresponding cast expression.
836  if (NumExprs == 1 && !ListInitialization) {
837    Expr *Arg = Exprs[0];
838    exprs.release();
839    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
840  }
841
842  QualType ElemTy = Ty;
843  if (Ty->isArrayType()) {
844    if (!ListInitialization)
845      return ExprError(Diag(TyBeginLoc,
846                            diag::err_value_init_for_array_type) << FullRange);
847    ElemTy = Context.getBaseElementType(Ty);
848  }
849
850  if (!Ty->isVoidType() &&
851      RequireCompleteType(TyBeginLoc, ElemTy,
852                          diag::err_invalid_incomplete_type_use, FullRange))
853    return ExprError();
854
855  if (RequireNonAbstractType(TyBeginLoc, Ty,
856                             diag::err_allocation_of_abstract_type))
857    return ExprError();
858
859  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
860  InitializationKind Kind
861    = NumExprs ? ListInitialization
862                    ? InitializationKind::CreateDirectList(TyBeginLoc)
863                    : InitializationKind::CreateDirect(TyBeginLoc,
864                                                       LParenLoc, RParenLoc)
865               : InitializationKind::CreateValue(TyBeginLoc,
866                                                 LParenLoc, RParenLoc);
867  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
868  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
869
870  if (!Result.isInvalid() && ListInitialization &&
871      isa<InitListExpr>(Result.get())) {
872    // If the list-initialization doesn't involve a constructor call, we'll get
873    // the initializer-list (with corrected type) back, but that's not what we
874    // want, since it will be treated as an initializer list in further
875    // processing. Explicitly insert a cast here.
876    InitListExpr *List = cast<InitListExpr>(Result.take());
877    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
878                                    Expr::getValueKindForType(TInfo->getType()),
879                                                 TInfo, TyBeginLoc, CK_NoOp,
880                                                 List, /*Path=*/0, RParenLoc));
881  }
882
883  // FIXME: Improve AST representation?
884  return move(Result);
885}
886
887/// doesUsualArrayDeleteWantSize - Answers whether the usual
888/// operator delete[] for the given type has a size_t parameter.
889static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
890                                         QualType allocType) {
891  const RecordType *record =
892    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
893  if (!record) return false;
894
895  // Try to find an operator delete[] in class scope.
896
897  DeclarationName deleteName =
898    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
899  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
900  S.LookupQualifiedName(ops, record->getDecl());
901
902  // We're just doing this for information.
903  ops.suppressDiagnostics();
904
905  // Very likely: there's no operator delete[].
906  if (ops.empty()) return false;
907
908  // If it's ambiguous, it should be illegal to call operator delete[]
909  // on this thing, so it doesn't matter if we allocate extra space or not.
910  if (ops.isAmbiguous()) return false;
911
912  LookupResult::Filter filter = ops.makeFilter();
913  while (filter.hasNext()) {
914    NamedDecl *del = filter.next()->getUnderlyingDecl();
915
916    // C++0x [basic.stc.dynamic.deallocation]p2:
917    //   A template instance is never a usual deallocation function,
918    //   regardless of its signature.
919    if (isa<FunctionTemplateDecl>(del)) {
920      filter.erase();
921      continue;
922    }
923
924    // C++0x [basic.stc.dynamic.deallocation]p2:
925    //   If class T does not declare [an operator delete[] with one
926    //   parameter] but does declare a member deallocation function
927    //   named operator delete[] with exactly two parameters, the
928    //   second of which has type std::size_t, then this function
929    //   is a usual deallocation function.
930    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
931      filter.erase();
932      continue;
933    }
934  }
935  filter.done();
936
937  if (!ops.isSingleResult()) return false;
938
939  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
940  return (del->getNumParams() == 2);
941}
942
943/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
944///
945/// E.g.:
946/// @code new (memory) int[size][4] @endcode
947/// or
948/// @code ::new Foo(23, "hello") @endcode
949///
950/// \param StartLoc The first location of the expression.
951/// \param UseGlobal True if 'new' was prefixed with '::'.
952/// \param PlacementLParen Opening paren of the placement arguments.
953/// \param PlacementArgs Placement new arguments.
954/// \param PlacementRParen Closing paren of the placement arguments.
955/// \param TypeIdParens If the type is in parens, the source range.
956/// \param D The type to be allocated, as well as array dimensions.
957/// \param Initializer The initializing expression or initializer-list, or null
958///   if there is none.
959ExprResult
960Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
961                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
962                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
963                  Declarator &D, Expr *Initializer) {
964  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
965
966  Expr *ArraySize = 0;
967  // If the specified type is an array, unwrap it and save the expression.
968  if (D.getNumTypeObjects() > 0 &&
969      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
970     DeclaratorChunk &Chunk = D.getTypeObject(0);
971    if (TypeContainsAuto)
972      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
973        << D.getSourceRange());
974    if (Chunk.Arr.hasStatic)
975      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
976        << D.getSourceRange());
977    if (!Chunk.Arr.NumElts)
978      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
979        << D.getSourceRange());
980
981    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
982    D.DropFirstTypeObject();
983  }
984
985  // Every dimension shall be of constant size.
986  if (ArraySize) {
987    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
988      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
989        break;
990
991      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
992      if (Expr *NumElts = (Expr *)Array.NumElts) {
993        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
994          Array.NumElts
995            = VerifyIntegerConstantExpression(NumElts, 0,
996                                              diag::err_new_array_nonconst)
997                .take();
998          if (!Array.NumElts)
999            return ExprError();
1000        }
1001      }
1002    }
1003  }
1004
1005  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1006  QualType AllocType = TInfo->getType();
1007  if (D.isInvalidType())
1008    return ExprError();
1009
1010  SourceRange DirectInitRange;
1011  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1012    DirectInitRange = List->getSourceRange();
1013
1014  return BuildCXXNew(StartLoc, UseGlobal,
1015                     PlacementLParen,
1016                     move(PlacementArgs),
1017                     PlacementRParen,
1018                     TypeIdParens,
1019                     AllocType,
1020                     TInfo,
1021                     ArraySize,
1022                     DirectInitRange,
1023                     Initializer,
1024                     TypeContainsAuto);
1025}
1026
1027static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1028                                       Expr *Init) {
1029  if (!Init)
1030    return true;
1031  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1032    return PLE->getNumExprs() == 0;
1033  if (isa<ImplicitValueInitExpr>(Init))
1034    return true;
1035  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1036    return !CCE->isListInitialization() &&
1037           CCE->getConstructor()->isDefaultConstructor();
1038  else if (Style == CXXNewExpr::ListInit) {
1039    assert(isa<InitListExpr>(Init) &&
1040           "Shouldn't create list CXXConstructExprs for arrays.");
1041    return true;
1042  }
1043  return false;
1044}
1045
1046ExprResult
1047Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1048                  SourceLocation PlacementLParen,
1049                  MultiExprArg PlacementArgs,
1050                  SourceLocation PlacementRParen,
1051                  SourceRange TypeIdParens,
1052                  QualType AllocType,
1053                  TypeSourceInfo *AllocTypeInfo,
1054                  Expr *ArraySize,
1055                  SourceRange DirectInitRange,
1056                  Expr *Initializer,
1057                  bool TypeMayContainAuto) {
1058  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1059
1060  CXXNewExpr::InitializationStyle initStyle;
1061  if (DirectInitRange.isValid()) {
1062    assert(Initializer && "Have parens but no initializer.");
1063    initStyle = CXXNewExpr::CallInit;
1064  } else if (Initializer && isa<InitListExpr>(Initializer))
1065    initStyle = CXXNewExpr::ListInit;
1066  else {
1067    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1068    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1069    // particularly sane way we can handle this (especially since it can even
1070    // occur for array new), so we throw the initializer away and have it be
1071    // rebuilt.
1072    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1073      Initializer = 0;
1074    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1075            isa<CXXConstructExpr>(Initializer)) &&
1076           "Initializer expression that cannot have been implicitly created.");
1077    initStyle = CXXNewExpr::NoInit;
1078  }
1079
1080  Expr **Inits = &Initializer;
1081  unsigned NumInits = Initializer ? 1 : 0;
1082  if (initStyle == CXXNewExpr::CallInit) {
1083    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1084      Inits = List->getExprs();
1085      NumInits = List->getNumExprs();
1086    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1087      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1088        // Can happen in template instantiation. Since this is just an implicit
1089        // construction, we just take it apart and rebuild it.
1090        Inits = CCE->getArgs();
1091        NumInits = CCE->getNumArgs();
1092      }
1093    }
1094  }
1095
1096  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1097  AutoType *AT = 0;
1098  if (TypeMayContainAuto &&
1099      (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1100    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1101      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1102                       << AllocType << TypeRange);
1103    if (initStyle == CXXNewExpr::ListInit)
1104      return ExprError(Diag(Inits[0]->getLocStart(),
1105                            diag::err_auto_new_requires_parens)
1106                       << AllocType << TypeRange);
1107    if (NumInits > 1) {
1108      Expr *FirstBad = Inits[1];
1109      return ExprError(Diag(FirstBad->getLocStart(),
1110                            diag::err_auto_new_ctor_multiple_expressions)
1111                       << AllocType << TypeRange);
1112    }
1113    Expr *Deduce = Inits[0];
1114    TypeSourceInfo *DeducedType = 0;
1115    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1116      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1117                       << AllocType << Deduce->getType()
1118                       << TypeRange << Deduce->getSourceRange());
1119    if (!DeducedType)
1120      return ExprError();
1121
1122    AllocTypeInfo = DeducedType;
1123    AllocType = AllocTypeInfo->getType();
1124  }
1125
1126  // Per C++0x [expr.new]p5, the type being constructed may be a
1127  // typedef of an array type.
1128  if (!ArraySize) {
1129    if (const ConstantArrayType *Array
1130                              = Context.getAsConstantArrayType(AllocType)) {
1131      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1132                                         Context.getSizeType(),
1133                                         TypeRange.getEnd());
1134      AllocType = Array->getElementType();
1135    }
1136  }
1137
1138  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1139    return ExprError();
1140
1141  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1142    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1143         diag::warn_dangling_std_initializer_list)
1144        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1145  }
1146
1147  // In ARC, infer 'retaining' for the allocated
1148  if (getLangOpts().ObjCAutoRefCount &&
1149      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1150      AllocType->isObjCLifetimeType()) {
1151    AllocType = Context.getLifetimeQualifiedType(AllocType,
1152                                    AllocType->getObjCARCImplicitLifetime());
1153  }
1154
1155  QualType ResultType = Context.getPointerType(AllocType);
1156
1157  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1158  //   integral or enumeration type with a non-negative value."
1159  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1160  //   enumeration type, or a class type for which a single non-explicit
1161  //   conversion function to integral or unscoped enumeration type exists.
1162  if (ArraySize && !ArraySize->isTypeDependent()) {
1163    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1164      Expr *ArraySize;
1165
1166    public:
1167      SizeConvertDiagnoser(Expr *ArraySize)
1168        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1169
1170      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1171                                               QualType T) {
1172        return S.Diag(Loc, diag::err_array_size_not_integral)
1173                 << S.getLangOpts().CPlusPlus0x << T;
1174      }
1175
1176      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1177                                                   QualType T) {
1178        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1179                 << T << ArraySize->getSourceRange();
1180      }
1181
1182      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1183                                                     SourceLocation Loc,
1184                                                     QualType T,
1185                                                     QualType ConvTy) {
1186        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1187      }
1188
1189      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1190                                                 CXXConversionDecl *Conv,
1191                                                 QualType ConvTy) {
1192        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1193                 << ConvTy->isEnumeralType() << ConvTy;
1194      }
1195
1196      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1197                                                  QualType T) {
1198        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1199      }
1200
1201      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1202                                              QualType ConvTy) {
1203        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1204                 << ConvTy->isEnumeralType() << ConvTy;
1205      }
1206
1207      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1208                                                   QualType T,
1209                                                   QualType ConvTy) {
1210        return S.Diag(Loc,
1211                      S.getLangOpts().CPlusPlus0x
1212                        ? diag::warn_cxx98_compat_array_size_conversion
1213                        : diag::ext_array_size_conversion)
1214                 << T << ConvTy->isEnumeralType() << ConvTy;
1215      }
1216    } SizeDiagnoser(ArraySize);
1217
1218    ExprResult ConvertedSize
1219      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1220                                           /*AllowScopedEnumerations*/ false);
1221    if (ConvertedSize.isInvalid())
1222      return ExprError();
1223
1224    ArraySize = ConvertedSize.take();
1225    QualType SizeType = ArraySize->getType();
1226    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1227      return ExprError();
1228
1229    // C++98 [expr.new]p7:
1230    //   The expression in a direct-new-declarator shall have integral type
1231    //   with a non-negative value.
1232    //
1233    // Let's see if this is a constant < 0. If so, we reject it out of
1234    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1235    // array type.
1236    //
1237    // Note: such a construct has well-defined semantics in C++11: it throws
1238    // std::bad_array_new_length.
1239    if (!ArraySize->isValueDependent()) {
1240      llvm::APSInt Value;
1241      // We've already performed any required implicit conversion to integer or
1242      // unscoped enumeration type.
1243      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1244        if (Value < llvm::APSInt(
1245                        llvm::APInt::getNullValue(Value.getBitWidth()),
1246                                 Value.isUnsigned())) {
1247          if (getLangOpts().CPlusPlus0x)
1248            Diag(ArraySize->getLocStart(),
1249                 diag::warn_typecheck_negative_array_new_size)
1250              << ArraySize->getSourceRange();
1251          else
1252            return ExprError(Diag(ArraySize->getLocStart(),
1253                                  diag::err_typecheck_negative_array_size)
1254                             << ArraySize->getSourceRange());
1255        } else if (!AllocType->isDependentType()) {
1256          unsigned ActiveSizeBits =
1257            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1258          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1259            if (getLangOpts().CPlusPlus0x)
1260              Diag(ArraySize->getLocStart(),
1261                   diag::warn_array_new_too_large)
1262                << Value.toString(10)
1263                << ArraySize->getSourceRange();
1264            else
1265              return ExprError(Diag(ArraySize->getLocStart(),
1266                                    diag::err_array_too_large)
1267                               << Value.toString(10)
1268                               << ArraySize->getSourceRange());
1269          }
1270        }
1271      } else if (TypeIdParens.isValid()) {
1272        // Can't have dynamic array size when the type-id is in parentheses.
1273        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1274          << ArraySize->getSourceRange()
1275          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1276          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1277
1278        TypeIdParens = SourceRange();
1279      }
1280    }
1281
1282    // ARC: warn about ABI issues.
1283    if (getLangOpts().ObjCAutoRefCount) {
1284      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1285      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1286        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1287          << 0 << BaseAllocType;
1288    }
1289
1290    // Note that we do *not* convert the argument in any way.  It can
1291    // be signed, larger than size_t, whatever.
1292  }
1293
1294  FunctionDecl *OperatorNew = 0;
1295  FunctionDecl *OperatorDelete = 0;
1296  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1297  unsigned NumPlaceArgs = PlacementArgs.size();
1298
1299  if (!AllocType->isDependentType() &&
1300      !Expr::hasAnyTypeDependentArguments(
1301        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1302      FindAllocationFunctions(StartLoc,
1303                              SourceRange(PlacementLParen, PlacementRParen),
1304                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1305                              NumPlaceArgs, OperatorNew, OperatorDelete))
1306    return ExprError();
1307
1308  // If this is an array allocation, compute whether the usual array
1309  // deallocation function for the type has a size_t parameter.
1310  bool UsualArrayDeleteWantsSize = false;
1311  if (ArraySize && !AllocType->isDependentType())
1312    UsualArrayDeleteWantsSize
1313      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1314
1315  SmallVector<Expr *, 8> AllPlaceArgs;
1316  if (OperatorNew) {
1317    // Add default arguments, if any.
1318    const FunctionProtoType *Proto =
1319      OperatorNew->getType()->getAs<FunctionProtoType>();
1320    VariadicCallType CallType =
1321      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1322
1323    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1324                               Proto, 1, PlaceArgs, NumPlaceArgs,
1325                               AllPlaceArgs, CallType))
1326      return ExprError();
1327
1328    NumPlaceArgs = AllPlaceArgs.size();
1329    if (NumPlaceArgs > 0)
1330      PlaceArgs = &AllPlaceArgs[0];
1331
1332    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1333                          PlaceArgs, NumPlaceArgs);
1334
1335    // FIXME: Missing call to CheckFunctionCall or equivalent
1336  }
1337
1338  // Warn if the type is over-aligned and is being allocated by global operator
1339  // new.
1340  if (NumPlaceArgs == 0 && OperatorNew &&
1341      (OperatorNew->isImplicit() ||
1342       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1343    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1344      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1345      if (Align > SuitableAlign)
1346        Diag(StartLoc, diag::warn_overaligned_type)
1347            << AllocType
1348            << unsigned(Align / Context.getCharWidth())
1349            << unsigned(SuitableAlign / Context.getCharWidth());
1350    }
1351  }
1352
1353  QualType InitType = AllocType;
1354  // Array 'new' can't have any initializers except empty parentheses.
1355  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1356  // dialect distinction.
1357  if (ResultType->isArrayType() || ArraySize) {
1358    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1359      SourceRange InitRange(Inits[0]->getLocStart(),
1360                            Inits[NumInits - 1]->getLocEnd());
1361      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1362      return ExprError();
1363    }
1364    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1365      // We do the initialization typechecking against the array type
1366      // corresponding to the number of initializers + 1 (to also check
1367      // default-initialization).
1368      unsigned NumElements = ILE->getNumInits() + 1;
1369      InitType = Context.getConstantArrayType(AllocType,
1370          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1371                                              ArrayType::Normal, 0);
1372    }
1373  }
1374
1375  if (!AllocType->isDependentType() &&
1376      !Expr::hasAnyTypeDependentArguments(
1377        llvm::makeArrayRef(Inits, NumInits))) {
1378    // C++11 [expr.new]p15:
1379    //   A new-expression that creates an object of type T initializes that
1380    //   object as follows:
1381    InitializationKind Kind
1382    //     - If the new-initializer is omitted, the object is default-
1383    //       initialized (8.5); if no initialization is performed,
1384    //       the object has indeterminate value
1385      = initStyle == CXXNewExpr::NoInit
1386          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1387    //     - Otherwise, the new-initializer is interpreted according to the
1388    //       initialization rules of 8.5 for direct-initialization.
1389          : initStyle == CXXNewExpr::ListInit
1390              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1391              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1392                                                 DirectInitRange.getBegin(),
1393                                                 DirectInitRange.getEnd());
1394
1395    InitializedEntity Entity
1396      = InitializedEntity::InitializeNew(StartLoc, InitType);
1397    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1398    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1399                                          MultiExprArg(Inits, NumInits));
1400    if (FullInit.isInvalid())
1401      return ExprError();
1402
1403    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1404    // we don't want the initialized object to be destructed.
1405    if (CXXBindTemporaryExpr *Binder =
1406            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1407      FullInit = Owned(Binder->getSubExpr());
1408
1409    Initializer = FullInit.take();
1410  }
1411
1412  // Mark the new and delete operators as referenced.
1413  if (OperatorNew)
1414    MarkFunctionReferenced(StartLoc, OperatorNew);
1415  if (OperatorDelete)
1416    MarkFunctionReferenced(StartLoc, OperatorDelete);
1417
1418  // C++0x [expr.new]p17:
1419  //   If the new expression creates an array of objects of class type,
1420  //   access and ambiguity control are done for the destructor.
1421  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1422  if (ArraySize && !BaseAllocType->isDependentType()) {
1423    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1424      if (CXXDestructorDecl *dtor = LookupDestructor(
1425              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1426        MarkFunctionReferenced(StartLoc, dtor);
1427        CheckDestructorAccess(StartLoc, dtor,
1428                              PDiag(diag::err_access_dtor)
1429                                << BaseAllocType);
1430        DiagnoseUseOfDecl(dtor, StartLoc);
1431      }
1432    }
1433  }
1434
1435  PlacementArgs.release();
1436
1437  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1438                                        OperatorDelete,
1439                                        UsualArrayDeleteWantsSize,
1440                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1441                                        ArraySize, initStyle, Initializer,
1442                                        ResultType, AllocTypeInfo,
1443                                        StartLoc, DirectInitRange));
1444}
1445
1446/// \brief Checks that a type is suitable as the allocated type
1447/// in a new-expression.
1448bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1449                              SourceRange R) {
1450  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1451  //   abstract class type or array thereof.
1452  if (AllocType->isFunctionType())
1453    return Diag(Loc, diag::err_bad_new_type)
1454      << AllocType << 0 << R;
1455  else if (AllocType->isReferenceType())
1456    return Diag(Loc, diag::err_bad_new_type)
1457      << AllocType << 1 << R;
1458  else if (!AllocType->isDependentType() &&
1459           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1460    return true;
1461  else if (RequireNonAbstractType(Loc, AllocType,
1462                                  diag::err_allocation_of_abstract_type))
1463    return true;
1464  else if (AllocType->isVariablyModifiedType())
1465    return Diag(Loc, diag::err_variably_modified_new_type)
1466             << AllocType;
1467  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1468    return Diag(Loc, diag::err_address_space_qualified_new)
1469      << AllocType.getUnqualifiedType() << AddressSpace;
1470  else if (getLangOpts().ObjCAutoRefCount) {
1471    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1472      QualType BaseAllocType = Context.getBaseElementType(AT);
1473      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1474          BaseAllocType->isObjCLifetimeType())
1475        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1476          << BaseAllocType;
1477    }
1478  }
1479
1480  return false;
1481}
1482
1483/// \brief Determine whether the given function is a non-placement
1484/// deallocation function.
1485static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1486  if (FD->isInvalidDecl())
1487    return false;
1488
1489  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1490    return Method->isUsualDeallocationFunction();
1491
1492  return ((FD->getOverloadedOperator() == OO_Delete ||
1493           FD->getOverloadedOperator() == OO_Array_Delete) &&
1494          FD->getNumParams() == 1);
1495}
1496
1497/// FindAllocationFunctions - Finds the overloads of operator new and delete
1498/// that are appropriate for the allocation.
1499bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1500                                   bool UseGlobal, QualType AllocType,
1501                                   bool IsArray, Expr **PlaceArgs,
1502                                   unsigned NumPlaceArgs,
1503                                   FunctionDecl *&OperatorNew,
1504                                   FunctionDecl *&OperatorDelete) {
1505  // --- Choosing an allocation function ---
1506  // C++ 5.3.4p8 - 14 & 18
1507  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1508  //   in the scope of the allocated class.
1509  // 2) If an array size is given, look for operator new[], else look for
1510  //   operator new.
1511  // 3) The first argument is always size_t. Append the arguments from the
1512  //   placement form.
1513
1514  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1515  // We don't care about the actual value of this argument.
1516  // FIXME: Should the Sema create the expression and embed it in the syntax
1517  // tree? Or should the consumer just recalculate the value?
1518  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1519                      Context.getTargetInfo().getPointerWidth(0)),
1520                      Context.getSizeType(),
1521                      SourceLocation());
1522  AllocArgs[0] = &Size;
1523  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1524
1525  // C++ [expr.new]p8:
1526  //   If the allocated type is a non-array type, the allocation
1527  //   function's name is operator new and the deallocation function's
1528  //   name is operator delete. If the allocated type is an array
1529  //   type, the allocation function's name is operator new[] and the
1530  //   deallocation function's name is operator delete[].
1531  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1532                                        IsArray ? OO_Array_New : OO_New);
1533  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1534                                        IsArray ? OO_Array_Delete : OO_Delete);
1535
1536  QualType AllocElemType = Context.getBaseElementType(AllocType);
1537
1538  if (AllocElemType->isRecordType() && !UseGlobal) {
1539    CXXRecordDecl *Record
1540      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1541    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1542                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1543                          OperatorNew))
1544      return true;
1545  }
1546  if (!OperatorNew) {
1547    // Didn't find a member overload. Look for a global one.
1548    DeclareGlobalNewDelete();
1549    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1550    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1551                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1552                          OperatorNew))
1553      return true;
1554  }
1555
1556  // We don't need an operator delete if we're running under
1557  // -fno-exceptions.
1558  if (!getLangOpts().Exceptions) {
1559    OperatorDelete = 0;
1560    return false;
1561  }
1562
1563  // FindAllocationOverload can change the passed in arguments, so we need to
1564  // copy them back.
1565  if (NumPlaceArgs > 0)
1566    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1567
1568  // C++ [expr.new]p19:
1569  //
1570  //   If the new-expression begins with a unary :: operator, the
1571  //   deallocation function's name is looked up in the global
1572  //   scope. Otherwise, if the allocated type is a class type T or an
1573  //   array thereof, the deallocation function's name is looked up in
1574  //   the scope of T. If this lookup fails to find the name, or if
1575  //   the allocated type is not a class type or array thereof, the
1576  //   deallocation function's name is looked up in the global scope.
1577  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1578  if (AllocElemType->isRecordType() && !UseGlobal) {
1579    CXXRecordDecl *RD
1580      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1581    LookupQualifiedName(FoundDelete, RD);
1582  }
1583  if (FoundDelete.isAmbiguous())
1584    return true; // FIXME: clean up expressions?
1585
1586  if (FoundDelete.empty()) {
1587    DeclareGlobalNewDelete();
1588    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1589  }
1590
1591  FoundDelete.suppressDiagnostics();
1592
1593  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1594
1595  // Whether we're looking for a placement operator delete is dictated
1596  // by whether we selected a placement operator new, not by whether
1597  // we had explicit placement arguments.  This matters for things like
1598  //   struct A { void *operator new(size_t, int = 0); ... };
1599  //   A *a = new A()
1600  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1601
1602  if (isPlacementNew) {
1603    // C++ [expr.new]p20:
1604    //   A declaration of a placement deallocation function matches the
1605    //   declaration of a placement allocation function if it has the
1606    //   same number of parameters and, after parameter transformations
1607    //   (8.3.5), all parameter types except the first are
1608    //   identical. [...]
1609    //
1610    // To perform this comparison, we compute the function type that
1611    // the deallocation function should have, and use that type both
1612    // for template argument deduction and for comparison purposes.
1613    //
1614    // FIXME: this comparison should ignore CC and the like.
1615    QualType ExpectedFunctionType;
1616    {
1617      const FunctionProtoType *Proto
1618        = OperatorNew->getType()->getAs<FunctionProtoType>();
1619
1620      SmallVector<QualType, 4> ArgTypes;
1621      ArgTypes.push_back(Context.VoidPtrTy);
1622      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1623        ArgTypes.push_back(Proto->getArgType(I));
1624
1625      FunctionProtoType::ExtProtoInfo EPI;
1626      EPI.Variadic = Proto->isVariadic();
1627
1628      ExpectedFunctionType
1629        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1630                                  ArgTypes.size(), EPI);
1631    }
1632
1633    for (LookupResult::iterator D = FoundDelete.begin(),
1634                             DEnd = FoundDelete.end();
1635         D != DEnd; ++D) {
1636      FunctionDecl *Fn = 0;
1637      if (FunctionTemplateDecl *FnTmpl
1638            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1639        // Perform template argument deduction to try to match the
1640        // expected function type.
1641        TemplateDeductionInfo Info(Context, StartLoc);
1642        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1643          continue;
1644      } else
1645        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1646
1647      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1648        Matches.push_back(std::make_pair(D.getPair(), Fn));
1649    }
1650  } else {
1651    // C++ [expr.new]p20:
1652    //   [...] Any non-placement deallocation function matches a
1653    //   non-placement allocation function. [...]
1654    for (LookupResult::iterator D = FoundDelete.begin(),
1655                             DEnd = FoundDelete.end();
1656         D != DEnd; ++D) {
1657      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1658        if (isNonPlacementDeallocationFunction(Fn))
1659          Matches.push_back(std::make_pair(D.getPair(), Fn));
1660    }
1661  }
1662
1663  // C++ [expr.new]p20:
1664  //   [...] If the lookup finds a single matching deallocation
1665  //   function, that function will be called; otherwise, no
1666  //   deallocation function will be called.
1667  if (Matches.size() == 1) {
1668    OperatorDelete = Matches[0].second;
1669
1670    // C++0x [expr.new]p20:
1671    //   If the lookup finds the two-parameter form of a usual
1672    //   deallocation function (3.7.4.2) and that function, considered
1673    //   as a placement deallocation function, would have been
1674    //   selected as a match for the allocation function, the program
1675    //   is ill-formed.
1676    if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1677        isNonPlacementDeallocationFunction(OperatorDelete)) {
1678      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1679        << SourceRange(PlaceArgs[0]->getLocStart(),
1680                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1681      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1682        << DeleteName;
1683    } else {
1684      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1685                            Matches[0].first);
1686    }
1687  }
1688
1689  return false;
1690}
1691
1692/// FindAllocationOverload - Find an fitting overload for the allocation
1693/// function in the specified scope.
1694bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1695                                  DeclarationName Name, Expr** Args,
1696                                  unsigned NumArgs, DeclContext *Ctx,
1697                                  bool AllowMissing, FunctionDecl *&Operator,
1698                                  bool Diagnose) {
1699  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1700  LookupQualifiedName(R, Ctx);
1701  if (R.empty()) {
1702    if (AllowMissing || !Diagnose)
1703      return false;
1704    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1705      << Name << Range;
1706  }
1707
1708  if (R.isAmbiguous())
1709    return true;
1710
1711  R.suppressDiagnostics();
1712
1713  OverloadCandidateSet Candidates(StartLoc);
1714  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1715       Alloc != AllocEnd; ++Alloc) {
1716    // Even member operator new/delete are implicitly treated as
1717    // static, so don't use AddMemberCandidate.
1718    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1719
1720    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1721      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1722                                   /*ExplicitTemplateArgs=*/0,
1723                                   llvm::makeArrayRef(Args, NumArgs),
1724                                   Candidates,
1725                                   /*SuppressUserConversions=*/false);
1726      continue;
1727    }
1728
1729    FunctionDecl *Fn = cast<FunctionDecl>(D);
1730    AddOverloadCandidate(Fn, Alloc.getPair(),
1731                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1732                         /*SuppressUserConversions=*/false);
1733  }
1734
1735  // Do the resolution.
1736  OverloadCandidateSet::iterator Best;
1737  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1738  case OR_Success: {
1739    // Got one!
1740    FunctionDecl *FnDecl = Best->Function;
1741    MarkFunctionReferenced(StartLoc, FnDecl);
1742    // The first argument is size_t, and the first parameter must be size_t,
1743    // too. This is checked on declaration and can be assumed. (It can't be
1744    // asserted on, though, since invalid decls are left in there.)
1745    // Watch out for variadic allocator function.
1746    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1747    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1748      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1749                                                       FnDecl->getParamDecl(i));
1750
1751      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1752        return true;
1753
1754      ExprResult Result
1755        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1756      if (Result.isInvalid())
1757        return true;
1758
1759      Args[i] = Result.takeAs<Expr>();
1760    }
1761
1762    Operator = FnDecl;
1763
1764    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1765                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1766      return true;
1767
1768    return false;
1769  }
1770
1771  case OR_No_Viable_Function:
1772    if (Diagnose) {
1773      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1774        << Name << Range;
1775      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1776                                llvm::makeArrayRef(Args, NumArgs));
1777    }
1778    return true;
1779
1780  case OR_Ambiguous:
1781    if (Diagnose) {
1782      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1783        << Name << Range;
1784      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1785                                llvm::makeArrayRef(Args, NumArgs));
1786    }
1787    return true;
1788
1789  case OR_Deleted: {
1790    if (Diagnose) {
1791      Diag(StartLoc, diag::err_ovl_deleted_call)
1792        << Best->Function->isDeleted()
1793        << Name
1794        << getDeletedOrUnavailableSuffix(Best->Function)
1795        << Range;
1796      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1797                                llvm::makeArrayRef(Args, NumArgs));
1798    }
1799    return true;
1800  }
1801  }
1802  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1803}
1804
1805
1806/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1807/// delete. These are:
1808/// @code
1809///   // C++03:
1810///   void* operator new(std::size_t) throw(std::bad_alloc);
1811///   void* operator new[](std::size_t) throw(std::bad_alloc);
1812///   void operator delete(void *) throw();
1813///   void operator delete[](void *) throw();
1814///   // C++0x:
1815///   void* operator new(std::size_t);
1816///   void* operator new[](std::size_t);
1817///   void operator delete(void *);
1818///   void operator delete[](void *);
1819/// @endcode
1820/// C++0x operator delete is implicitly noexcept.
1821/// Note that the placement and nothrow forms of new are *not* implicitly
1822/// declared. Their use requires including \<new\>.
1823void Sema::DeclareGlobalNewDelete() {
1824  if (GlobalNewDeleteDeclared)
1825    return;
1826
1827  // C++ [basic.std.dynamic]p2:
1828  //   [...] The following allocation and deallocation functions (18.4) are
1829  //   implicitly declared in global scope in each translation unit of a
1830  //   program
1831  //
1832  //     C++03:
1833  //     void* operator new(std::size_t) throw(std::bad_alloc);
1834  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1835  //     void  operator delete(void*) throw();
1836  //     void  operator delete[](void*) throw();
1837  //     C++0x:
1838  //     void* operator new(std::size_t);
1839  //     void* operator new[](std::size_t);
1840  //     void  operator delete(void*);
1841  //     void  operator delete[](void*);
1842  //
1843  //   These implicit declarations introduce only the function names operator
1844  //   new, operator new[], operator delete, operator delete[].
1845  //
1846  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1847  // "std" or "bad_alloc" as necessary to form the exception specification.
1848  // However, we do not make these implicit declarations visible to name
1849  // lookup.
1850  // Note that the C++0x versions of operator delete are deallocation functions,
1851  // and thus are implicitly noexcept.
1852  if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1853    // The "std::bad_alloc" class has not yet been declared, so build it
1854    // implicitly.
1855    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1856                                        getOrCreateStdNamespace(),
1857                                        SourceLocation(), SourceLocation(),
1858                                      &PP.getIdentifierTable().get("bad_alloc"),
1859                                        0);
1860    getStdBadAlloc()->setImplicit(true);
1861  }
1862
1863  GlobalNewDeleteDeclared = true;
1864
1865  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1866  QualType SizeT = Context.getSizeType();
1867  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1868
1869  DeclareGlobalAllocationFunction(
1870      Context.DeclarationNames.getCXXOperatorName(OO_New),
1871      VoidPtr, SizeT, AssumeSaneOperatorNew);
1872  DeclareGlobalAllocationFunction(
1873      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1874      VoidPtr, SizeT, AssumeSaneOperatorNew);
1875  DeclareGlobalAllocationFunction(
1876      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1877      Context.VoidTy, VoidPtr);
1878  DeclareGlobalAllocationFunction(
1879      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1880      Context.VoidTy, VoidPtr);
1881}
1882
1883/// DeclareGlobalAllocationFunction - Declares a single implicit global
1884/// allocation function if it doesn't already exist.
1885void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1886                                           QualType Return, QualType Argument,
1887                                           bool AddMallocAttr) {
1888  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1889
1890  // Check if this function is already declared.
1891  {
1892    DeclContext::lookup_iterator Alloc, AllocEnd;
1893    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1894         Alloc != AllocEnd; ++Alloc) {
1895      // Only look at non-template functions, as it is the predefined,
1896      // non-templated allocation function we are trying to declare here.
1897      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1898        QualType InitialParamType =
1899          Context.getCanonicalType(
1900            Func->getParamDecl(0)->getType().getUnqualifiedType());
1901        // FIXME: Do we need to check for default arguments here?
1902        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1903          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1904            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1905          return;
1906        }
1907      }
1908    }
1909  }
1910
1911  QualType BadAllocType;
1912  bool HasBadAllocExceptionSpec
1913    = (Name.getCXXOverloadedOperator() == OO_New ||
1914       Name.getCXXOverloadedOperator() == OO_Array_New);
1915  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1916    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1917    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1918  }
1919
1920  FunctionProtoType::ExtProtoInfo EPI;
1921  if (HasBadAllocExceptionSpec) {
1922    if (!getLangOpts().CPlusPlus0x) {
1923      EPI.ExceptionSpecType = EST_Dynamic;
1924      EPI.NumExceptions = 1;
1925      EPI.Exceptions = &BadAllocType;
1926    }
1927  } else {
1928    EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1929                                EST_BasicNoexcept : EST_DynamicNone;
1930  }
1931
1932  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1933  FunctionDecl *Alloc =
1934    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1935                         SourceLocation(), Name,
1936                         FnType, /*TInfo=*/0, SC_None,
1937                         SC_None, false, true);
1938  Alloc->setImplicit();
1939
1940  if (AddMallocAttr)
1941    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1942
1943  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1944                                           SourceLocation(), 0,
1945                                           Argument, /*TInfo=*/0,
1946                                           SC_None, SC_None, 0);
1947  Alloc->setParams(Param);
1948
1949  // FIXME: Also add this declaration to the IdentifierResolver, but
1950  // make sure it is at the end of the chain to coincide with the
1951  // global scope.
1952  Context.getTranslationUnitDecl()->addDecl(Alloc);
1953}
1954
1955bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1956                                    DeclarationName Name,
1957                                    FunctionDecl* &Operator, bool Diagnose) {
1958  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1959  // Try to find operator delete/operator delete[] in class scope.
1960  LookupQualifiedName(Found, RD);
1961
1962  if (Found.isAmbiguous())
1963    return true;
1964
1965  Found.suppressDiagnostics();
1966
1967  SmallVector<DeclAccessPair,4> Matches;
1968  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1969       F != FEnd; ++F) {
1970    NamedDecl *ND = (*F)->getUnderlyingDecl();
1971
1972    // Ignore template operator delete members from the check for a usual
1973    // deallocation function.
1974    if (isa<FunctionTemplateDecl>(ND))
1975      continue;
1976
1977    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1978      Matches.push_back(F.getPair());
1979  }
1980
1981  // There's exactly one suitable operator;  pick it.
1982  if (Matches.size() == 1) {
1983    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1984
1985    if (Operator->isDeleted()) {
1986      if (Diagnose) {
1987        Diag(StartLoc, diag::err_deleted_function_use);
1988        NoteDeletedFunction(Operator);
1989      }
1990      return true;
1991    }
1992
1993    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1994                              Matches[0], Diagnose) == AR_inaccessible)
1995      return true;
1996
1997    return false;
1998
1999  // We found multiple suitable operators;  complain about the ambiguity.
2000  } else if (!Matches.empty()) {
2001    if (Diagnose) {
2002      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2003        << Name << RD;
2004
2005      for (SmallVectorImpl<DeclAccessPair>::iterator
2006             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2007        Diag((*F)->getUnderlyingDecl()->getLocation(),
2008             diag::note_member_declared_here) << Name;
2009    }
2010    return true;
2011  }
2012
2013  // We did find operator delete/operator delete[] declarations, but
2014  // none of them were suitable.
2015  if (!Found.empty()) {
2016    if (Diagnose) {
2017      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2018        << Name << RD;
2019
2020      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2021           F != FEnd; ++F)
2022        Diag((*F)->getUnderlyingDecl()->getLocation(),
2023             diag::note_member_declared_here) << Name;
2024    }
2025    return true;
2026  }
2027
2028  // Look for a global declaration.
2029  DeclareGlobalNewDelete();
2030  DeclContext *TUDecl = Context.getTranslationUnitDecl();
2031
2032  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2033  Expr* DeallocArgs[1];
2034  DeallocArgs[0] = &Null;
2035  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2036                             DeallocArgs, 1, TUDecl, !Diagnose,
2037                             Operator, Diagnose))
2038    return true;
2039
2040  assert(Operator && "Did not find a deallocation function!");
2041  return false;
2042}
2043
2044/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2045/// @code ::delete ptr; @endcode
2046/// or
2047/// @code delete [] ptr; @endcode
2048ExprResult
2049Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2050                     bool ArrayForm, Expr *ExE) {
2051  // C++ [expr.delete]p1:
2052  //   The operand shall have a pointer type, or a class type having a single
2053  //   conversion function to a pointer type. The result has type void.
2054  //
2055  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2056
2057  ExprResult Ex = Owned(ExE);
2058  FunctionDecl *OperatorDelete = 0;
2059  bool ArrayFormAsWritten = ArrayForm;
2060  bool UsualArrayDeleteWantsSize = false;
2061
2062  if (!Ex.get()->isTypeDependent()) {
2063    // Perform lvalue-to-rvalue cast, if needed.
2064    Ex = DefaultLvalueConversion(Ex.take());
2065
2066    QualType Type = Ex.get()->getType();
2067
2068    if (const RecordType *Record = Type->getAs<RecordType>()) {
2069      if (RequireCompleteType(StartLoc, Type,
2070                              diag::err_delete_incomplete_class_type))
2071        return ExprError();
2072
2073      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2074
2075      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2076      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2077      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2078             E = Conversions->end(); I != E; ++I) {
2079        NamedDecl *D = I.getDecl();
2080        if (isa<UsingShadowDecl>(D))
2081          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2082
2083        // Skip over templated conversion functions; they aren't considered.
2084        if (isa<FunctionTemplateDecl>(D))
2085          continue;
2086
2087        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2088
2089        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2090        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2091          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2092            ObjectPtrConversions.push_back(Conv);
2093      }
2094      if (ObjectPtrConversions.size() == 1) {
2095        // We have a single conversion to a pointer-to-object type. Perform
2096        // that conversion.
2097        // TODO: don't redo the conversion calculation.
2098        ExprResult Res =
2099          PerformImplicitConversion(Ex.get(),
2100                            ObjectPtrConversions.front()->getConversionType(),
2101                                    AA_Converting);
2102        if (Res.isUsable()) {
2103          Ex = move(Res);
2104          Type = Ex.get()->getType();
2105        }
2106      }
2107      else if (ObjectPtrConversions.size() > 1) {
2108        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2109              << Type << Ex.get()->getSourceRange();
2110        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2111          NoteOverloadCandidate(ObjectPtrConversions[i]);
2112        return ExprError();
2113      }
2114    }
2115
2116    if (!Type->isPointerType())
2117      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2118        << Type << Ex.get()->getSourceRange());
2119
2120    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2121    QualType PointeeElem = Context.getBaseElementType(Pointee);
2122
2123    if (unsigned AddressSpace = Pointee.getAddressSpace())
2124      return Diag(Ex.get()->getLocStart(),
2125                  diag::err_address_space_qualified_delete)
2126               << Pointee.getUnqualifiedType() << AddressSpace;
2127
2128    CXXRecordDecl *PointeeRD = 0;
2129    if (Pointee->isVoidType() && !isSFINAEContext()) {
2130      // The C++ standard bans deleting a pointer to a non-object type, which
2131      // effectively bans deletion of "void*". However, most compilers support
2132      // this, so we treat it as a warning unless we're in a SFINAE context.
2133      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2134        << Type << Ex.get()->getSourceRange();
2135    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2136      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2137        << Type << Ex.get()->getSourceRange());
2138    } else if (!Pointee->isDependentType()) {
2139      if (!RequireCompleteType(StartLoc, Pointee,
2140                               diag::warn_delete_incomplete, Ex.get())) {
2141        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2142          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2143      }
2144    }
2145
2146    // C++ [expr.delete]p2:
2147    //   [Note: a pointer to a const type can be the operand of a
2148    //   delete-expression; it is not necessary to cast away the constness
2149    //   (5.2.11) of the pointer expression before it is used as the operand
2150    //   of the delete-expression. ]
2151
2152    if (Pointee->isArrayType() && !ArrayForm) {
2153      Diag(StartLoc, diag::warn_delete_array_type)
2154          << Type << Ex.get()->getSourceRange()
2155          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2156      ArrayForm = true;
2157    }
2158
2159    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2160                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2161
2162    if (PointeeRD) {
2163      if (!UseGlobal &&
2164          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2165                                   OperatorDelete))
2166        return ExprError();
2167
2168      // If we're allocating an array of records, check whether the
2169      // usual operator delete[] has a size_t parameter.
2170      if (ArrayForm) {
2171        // If the user specifically asked to use the global allocator,
2172        // we'll need to do the lookup into the class.
2173        if (UseGlobal)
2174          UsualArrayDeleteWantsSize =
2175            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2176
2177        // Otherwise, the usual operator delete[] should be the
2178        // function we just found.
2179        else if (isa<CXXMethodDecl>(OperatorDelete))
2180          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2181      }
2182
2183      if (!PointeeRD->hasIrrelevantDestructor())
2184        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2185          MarkFunctionReferenced(StartLoc,
2186                                    const_cast<CXXDestructorDecl*>(Dtor));
2187          DiagnoseUseOfDecl(Dtor, StartLoc);
2188        }
2189
2190      // C++ [expr.delete]p3:
2191      //   In the first alternative (delete object), if the static type of the
2192      //   object to be deleted is different from its dynamic type, the static
2193      //   type shall be a base class of the dynamic type of the object to be
2194      //   deleted and the static type shall have a virtual destructor or the
2195      //   behavior is undefined.
2196      //
2197      // Note: a final class cannot be derived from, no issue there
2198      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2199        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2200        if (dtor && !dtor->isVirtual()) {
2201          if (PointeeRD->isAbstract()) {
2202            // If the class is abstract, we warn by default, because we're
2203            // sure the code has undefined behavior.
2204            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2205                << PointeeElem;
2206          } else if (!ArrayForm) {
2207            // Otherwise, if this is not an array delete, it's a bit suspect,
2208            // but not necessarily wrong.
2209            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2210          }
2211        }
2212      }
2213
2214    } else if (getLangOpts().ObjCAutoRefCount &&
2215               PointeeElem->isObjCLifetimeType() &&
2216               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2217                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2218               ArrayForm) {
2219      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2220        << 1 << PointeeElem;
2221    }
2222
2223    if (!OperatorDelete) {
2224      // Look for a global declaration.
2225      DeclareGlobalNewDelete();
2226      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2227      Expr *Arg = Ex.get();
2228      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2229        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2230                                       CK_BitCast, Arg, 0, VK_RValue);
2231      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2232                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2233                                 OperatorDelete))
2234        return ExprError();
2235    }
2236
2237    MarkFunctionReferenced(StartLoc, OperatorDelete);
2238
2239    // Check access and ambiguity of operator delete and destructor.
2240    if (PointeeRD) {
2241      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2242          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2243                      PDiag(diag::err_access_dtor) << PointeeElem);
2244      }
2245    }
2246
2247  }
2248
2249  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2250                                           ArrayFormAsWritten,
2251                                           UsualArrayDeleteWantsSize,
2252                                           OperatorDelete, Ex.take(), StartLoc));
2253}
2254
2255/// \brief Check the use of the given variable as a C++ condition in an if,
2256/// while, do-while, or switch statement.
2257ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2258                                        SourceLocation StmtLoc,
2259                                        bool ConvertToBoolean) {
2260  QualType T = ConditionVar->getType();
2261
2262  // C++ [stmt.select]p2:
2263  //   The declarator shall not specify a function or an array.
2264  if (T->isFunctionType())
2265    return ExprError(Diag(ConditionVar->getLocation(),
2266                          diag::err_invalid_use_of_function_type)
2267                       << ConditionVar->getSourceRange());
2268  else if (T->isArrayType())
2269    return ExprError(Diag(ConditionVar->getLocation(),
2270                          diag::err_invalid_use_of_array_type)
2271                     << ConditionVar->getSourceRange());
2272
2273  ExprResult Condition =
2274    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2275                              SourceLocation(),
2276                              ConditionVar,
2277                              /*enclosing*/ false,
2278                              ConditionVar->getLocation(),
2279                              ConditionVar->getType().getNonReferenceType(),
2280                              VK_LValue));
2281
2282  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2283
2284  if (ConvertToBoolean) {
2285    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2286    if (Condition.isInvalid())
2287      return ExprError();
2288  }
2289
2290  return move(Condition);
2291}
2292
2293/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2294ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2295  // C++ 6.4p4:
2296  // The value of a condition that is an initialized declaration in a statement
2297  // other than a switch statement is the value of the declared variable
2298  // implicitly converted to type bool. If that conversion is ill-formed, the
2299  // program is ill-formed.
2300  // The value of a condition that is an expression is the value of the
2301  // expression, implicitly converted to bool.
2302  //
2303  return PerformContextuallyConvertToBool(CondExpr);
2304}
2305
2306/// Helper function to determine whether this is the (deprecated) C++
2307/// conversion from a string literal to a pointer to non-const char or
2308/// non-const wchar_t (for narrow and wide string literals,
2309/// respectively).
2310bool
2311Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2312  // Look inside the implicit cast, if it exists.
2313  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2314    From = Cast->getSubExpr();
2315
2316  // A string literal (2.13.4) that is not a wide string literal can
2317  // be converted to an rvalue of type "pointer to char"; a wide
2318  // string literal can be converted to an rvalue of type "pointer
2319  // to wchar_t" (C++ 4.2p2).
2320  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2321    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2322      if (const BuiltinType *ToPointeeType
2323          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2324        // This conversion is considered only when there is an
2325        // explicit appropriate pointer target type (C++ 4.2p2).
2326        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2327          switch (StrLit->getKind()) {
2328            case StringLiteral::UTF8:
2329            case StringLiteral::UTF16:
2330            case StringLiteral::UTF32:
2331              // We don't allow UTF literals to be implicitly converted
2332              break;
2333            case StringLiteral::Ascii:
2334              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2335                      ToPointeeType->getKind() == BuiltinType::Char_S);
2336            case StringLiteral::Wide:
2337              return ToPointeeType->isWideCharType();
2338          }
2339        }
2340      }
2341
2342  return false;
2343}
2344
2345static ExprResult BuildCXXCastArgument(Sema &S,
2346                                       SourceLocation CastLoc,
2347                                       QualType Ty,
2348                                       CastKind Kind,
2349                                       CXXMethodDecl *Method,
2350                                       DeclAccessPair FoundDecl,
2351                                       bool HadMultipleCandidates,
2352                                       Expr *From) {
2353  switch (Kind) {
2354  default: llvm_unreachable("Unhandled cast kind!");
2355  case CK_ConstructorConversion: {
2356    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2357    ASTOwningVector<Expr*> ConstructorArgs(S);
2358
2359    if (S.CompleteConstructorCall(Constructor,
2360                                  MultiExprArg(&From, 1),
2361                                  CastLoc, ConstructorArgs))
2362      return ExprError();
2363
2364    S.CheckConstructorAccess(CastLoc, Constructor,
2365                             InitializedEntity::InitializeTemporary(Ty),
2366                             Constructor->getAccess());
2367
2368    ExprResult Result
2369      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2370                                move_arg(ConstructorArgs),
2371                                HadMultipleCandidates, /*ZeroInit*/ false,
2372                                CXXConstructExpr::CK_Complete, SourceRange());
2373    if (Result.isInvalid())
2374      return ExprError();
2375
2376    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2377  }
2378
2379  case CK_UserDefinedConversion: {
2380    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2381
2382    // Create an implicit call expr that calls it.
2383    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2384    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2385                                                 HadMultipleCandidates);
2386    if (Result.isInvalid())
2387      return ExprError();
2388    // Record usage of conversion in an implicit cast.
2389    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2390                                              Result.get()->getType(),
2391                                              CK_UserDefinedConversion,
2392                                              Result.get(), 0,
2393                                              Result.get()->getValueKind()));
2394
2395    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2396
2397    return S.MaybeBindToTemporary(Result.get());
2398  }
2399  }
2400}
2401
2402/// PerformImplicitConversion - Perform an implicit conversion of the
2403/// expression From to the type ToType using the pre-computed implicit
2404/// conversion sequence ICS. Returns the converted
2405/// expression. Action is the kind of conversion we're performing,
2406/// used in the error message.
2407ExprResult
2408Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2409                                const ImplicitConversionSequence &ICS,
2410                                AssignmentAction Action,
2411                                CheckedConversionKind CCK) {
2412  switch (ICS.getKind()) {
2413  case ImplicitConversionSequence::StandardConversion: {
2414    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2415                                               Action, CCK);
2416    if (Res.isInvalid())
2417      return ExprError();
2418    From = Res.take();
2419    break;
2420  }
2421
2422  case ImplicitConversionSequence::UserDefinedConversion: {
2423
2424      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2425      CastKind CastKind;
2426      QualType BeforeToType;
2427      assert(FD && "FIXME: aggregate initialization from init list");
2428      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2429        CastKind = CK_UserDefinedConversion;
2430
2431        // If the user-defined conversion is specified by a conversion function,
2432        // the initial standard conversion sequence converts the source type to
2433        // the implicit object parameter of the conversion function.
2434        BeforeToType = Context.getTagDeclType(Conv->getParent());
2435      } else {
2436        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2437        CastKind = CK_ConstructorConversion;
2438        // Do no conversion if dealing with ... for the first conversion.
2439        if (!ICS.UserDefined.EllipsisConversion) {
2440          // If the user-defined conversion is specified by a constructor, the
2441          // initial standard conversion sequence converts the source type to the
2442          // type required by the argument of the constructor
2443          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2444        }
2445      }
2446      // Watch out for elipsis conversion.
2447      if (!ICS.UserDefined.EllipsisConversion) {
2448        ExprResult Res =
2449          PerformImplicitConversion(From, BeforeToType,
2450                                    ICS.UserDefined.Before, AA_Converting,
2451                                    CCK);
2452        if (Res.isInvalid())
2453          return ExprError();
2454        From = Res.take();
2455      }
2456
2457      ExprResult CastArg
2458        = BuildCXXCastArgument(*this,
2459                               From->getLocStart(),
2460                               ToType.getNonReferenceType(),
2461                               CastKind, cast<CXXMethodDecl>(FD),
2462                               ICS.UserDefined.FoundConversionFunction,
2463                               ICS.UserDefined.HadMultipleCandidates,
2464                               From);
2465
2466      if (CastArg.isInvalid())
2467        return ExprError();
2468
2469      From = CastArg.take();
2470
2471      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2472                                       AA_Converting, CCK);
2473  }
2474
2475  case ImplicitConversionSequence::AmbiguousConversion:
2476    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2477                          PDiag(diag::err_typecheck_ambiguous_condition)
2478                            << From->getSourceRange());
2479     return ExprError();
2480
2481  case ImplicitConversionSequence::EllipsisConversion:
2482    llvm_unreachable("Cannot perform an ellipsis conversion");
2483
2484  case ImplicitConversionSequence::BadConversion:
2485    return ExprError();
2486  }
2487
2488  // Everything went well.
2489  return Owned(From);
2490}
2491
2492/// PerformImplicitConversion - Perform an implicit conversion of the
2493/// expression From to the type ToType by following the standard
2494/// conversion sequence SCS. Returns the converted
2495/// expression. Flavor is the context in which we're performing this
2496/// conversion, for use in error messages.
2497ExprResult
2498Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2499                                const StandardConversionSequence& SCS,
2500                                AssignmentAction Action,
2501                                CheckedConversionKind CCK) {
2502  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2503
2504  // Overall FIXME: we are recomputing too many types here and doing far too
2505  // much extra work. What this means is that we need to keep track of more
2506  // information that is computed when we try the implicit conversion initially,
2507  // so that we don't need to recompute anything here.
2508  QualType FromType = From->getType();
2509
2510  if (SCS.CopyConstructor) {
2511    // FIXME: When can ToType be a reference type?
2512    assert(!ToType->isReferenceType());
2513    if (SCS.Second == ICK_Derived_To_Base) {
2514      ASTOwningVector<Expr*> ConstructorArgs(*this);
2515      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2516                                  MultiExprArg(*this, &From, 1),
2517                                  /*FIXME:ConstructLoc*/SourceLocation(),
2518                                  ConstructorArgs))
2519        return ExprError();
2520      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2521                                   ToType, SCS.CopyConstructor,
2522                                   move_arg(ConstructorArgs),
2523                                   /*HadMultipleCandidates*/ false,
2524                                   /*ZeroInit*/ false,
2525                                   CXXConstructExpr::CK_Complete,
2526                                   SourceRange());
2527    }
2528    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2529                                 ToType, SCS.CopyConstructor,
2530                                 MultiExprArg(*this, &From, 1),
2531                                 /*HadMultipleCandidates*/ false,
2532                                 /*ZeroInit*/ false,
2533                                 CXXConstructExpr::CK_Complete,
2534                                 SourceRange());
2535  }
2536
2537  // Resolve overloaded function references.
2538  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2539    DeclAccessPair Found;
2540    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2541                                                          true, Found);
2542    if (!Fn)
2543      return ExprError();
2544
2545    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2546      return ExprError();
2547
2548    From = FixOverloadedFunctionReference(From, Found, Fn);
2549    FromType = From->getType();
2550  }
2551
2552  // Perform the first implicit conversion.
2553  switch (SCS.First) {
2554  case ICK_Identity:
2555    // Nothing to do.
2556    break;
2557
2558  case ICK_Lvalue_To_Rvalue: {
2559    assert(From->getObjectKind() != OK_ObjCProperty);
2560    FromType = FromType.getUnqualifiedType();
2561    ExprResult FromRes = DefaultLvalueConversion(From);
2562    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2563    From = FromRes.take();
2564    break;
2565  }
2566
2567  case ICK_Array_To_Pointer:
2568    FromType = Context.getArrayDecayedType(FromType);
2569    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2570                             VK_RValue, /*BasePath=*/0, CCK).take();
2571    break;
2572
2573  case ICK_Function_To_Pointer:
2574    FromType = Context.getPointerType(FromType);
2575    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2576                             VK_RValue, /*BasePath=*/0, CCK).take();
2577    break;
2578
2579  default:
2580    llvm_unreachable("Improper first standard conversion");
2581  }
2582
2583  // Perform the second implicit conversion
2584  switch (SCS.Second) {
2585  case ICK_Identity:
2586    // If both sides are functions (or pointers/references to them), there could
2587    // be incompatible exception declarations.
2588    if (CheckExceptionSpecCompatibility(From, ToType))
2589      return ExprError();
2590    // Nothing else to do.
2591    break;
2592
2593  case ICK_NoReturn_Adjustment:
2594    // If both sides are functions (or pointers/references to them), there could
2595    // be incompatible exception declarations.
2596    if (CheckExceptionSpecCompatibility(From, ToType))
2597      return ExprError();
2598
2599    From = ImpCastExprToType(From, ToType, CK_NoOp,
2600                             VK_RValue, /*BasePath=*/0, CCK).take();
2601    break;
2602
2603  case ICK_Integral_Promotion:
2604  case ICK_Integral_Conversion:
2605    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2606                             VK_RValue, /*BasePath=*/0, CCK).take();
2607    break;
2608
2609  case ICK_Floating_Promotion:
2610  case ICK_Floating_Conversion:
2611    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2612                             VK_RValue, /*BasePath=*/0, CCK).take();
2613    break;
2614
2615  case ICK_Complex_Promotion:
2616  case ICK_Complex_Conversion: {
2617    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2618    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2619    CastKind CK;
2620    if (FromEl->isRealFloatingType()) {
2621      if (ToEl->isRealFloatingType())
2622        CK = CK_FloatingComplexCast;
2623      else
2624        CK = CK_FloatingComplexToIntegralComplex;
2625    } else if (ToEl->isRealFloatingType()) {
2626      CK = CK_IntegralComplexToFloatingComplex;
2627    } else {
2628      CK = CK_IntegralComplexCast;
2629    }
2630    From = ImpCastExprToType(From, ToType, CK,
2631                             VK_RValue, /*BasePath=*/0, CCK).take();
2632    break;
2633  }
2634
2635  case ICK_Floating_Integral:
2636    if (ToType->isRealFloatingType())
2637      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2638                               VK_RValue, /*BasePath=*/0, CCK).take();
2639    else
2640      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2641                               VK_RValue, /*BasePath=*/0, CCK).take();
2642    break;
2643
2644  case ICK_Compatible_Conversion:
2645      From = ImpCastExprToType(From, ToType, CK_NoOp,
2646                               VK_RValue, /*BasePath=*/0, CCK).take();
2647    break;
2648
2649  case ICK_Writeback_Conversion:
2650  case ICK_Pointer_Conversion: {
2651    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2652      // Diagnose incompatible Objective-C conversions
2653      if (Action == AA_Initializing || Action == AA_Assigning)
2654        Diag(From->getLocStart(),
2655             diag::ext_typecheck_convert_incompatible_pointer)
2656          << ToType << From->getType() << Action
2657          << From->getSourceRange() << 0;
2658      else
2659        Diag(From->getLocStart(),
2660             diag::ext_typecheck_convert_incompatible_pointer)
2661          << From->getType() << ToType << Action
2662          << From->getSourceRange() << 0;
2663
2664      if (From->getType()->isObjCObjectPointerType() &&
2665          ToType->isObjCObjectPointerType())
2666        EmitRelatedResultTypeNote(From);
2667    }
2668    else if (getLangOpts().ObjCAutoRefCount &&
2669             !CheckObjCARCUnavailableWeakConversion(ToType,
2670                                                    From->getType())) {
2671      if (Action == AA_Initializing)
2672        Diag(From->getLocStart(),
2673             diag::err_arc_weak_unavailable_assign);
2674      else
2675        Diag(From->getLocStart(),
2676             diag::err_arc_convesion_of_weak_unavailable)
2677          << (Action == AA_Casting) << From->getType() << ToType
2678          << From->getSourceRange();
2679    }
2680
2681    CastKind Kind = CK_Invalid;
2682    CXXCastPath BasePath;
2683    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2684      return ExprError();
2685
2686    // Make sure we extend blocks if necessary.
2687    // FIXME: doing this here is really ugly.
2688    if (Kind == CK_BlockPointerToObjCPointerCast) {
2689      ExprResult E = From;
2690      (void) PrepareCastToObjCObjectPointer(E);
2691      From = E.take();
2692    }
2693
2694    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2695             .take();
2696    break;
2697  }
2698
2699  case ICK_Pointer_Member: {
2700    CastKind Kind = CK_Invalid;
2701    CXXCastPath BasePath;
2702    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2703      return ExprError();
2704    if (CheckExceptionSpecCompatibility(From, ToType))
2705      return ExprError();
2706    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2707             .take();
2708    break;
2709  }
2710
2711  case ICK_Boolean_Conversion:
2712    // Perform half-to-boolean conversion via float.
2713    if (From->getType()->isHalfType()) {
2714      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2715      FromType = Context.FloatTy;
2716    }
2717
2718    From = ImpCastExprToType(From, Context.BoolTy,
2719                             ScalarTypeToBooleanCastKind(FromType),
2720                             VK_RValue, /*BasePath=*/0, CCK).take();
2721    break;
2722
2723  case ICK_Derived_To_Base: {
2724    CXXCastPath BasePath;
2725    if (CheckDerivedToBaseConversion(From->getType(),
2726                                     ToType.getNonReferenceType(),
2727                                     From->getLocStart(),
2728                                     From->getSourceRange(),
2729                                     &BasePath,
2730                                     CStyle))
2731      return ExprError();
2732
2733    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2734                      CK_DerivedToBase, From->getValueKind(),
2735                      &BasePath, CCK).take();
2736    break;
2737  }
2738
2739  case ICK_Vector_Conversion:
2740    From = ImpCastExprToType(From, ToType, CK_BitCast,
2741                             VK_RValue, /*BasePath=*/0, CCK).take();
2742    break;
2743
2744  case ICK_Vector_Splat:
2745    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2746                             VK_RValue, /*BasePath=*/0, CCK).take();
2747    break;
2748
2749  case ICK_Complex_Real:
2750    // Case 1.  x -> _Complex y
2751    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2752      QualType ElType = ToComplex->getElementType();
2753      bool isFloatingComplex = ElType->isRealFloatingType();
2754
2755      // x -> y
2756      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2757        // do nothing
2758      } else if (From->getType()->isRealFloatingType()) {
2759        From = ImpCastExprToType(From, ElType,
2760                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2761      } else {
2762        assert(From->getType()->isIntegerType());
2763        From = ImpCastExprToType(From, ElType,
2764                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2765      }
2766      // y -> _Complex y
2767      From = ImpCastExprToType(From, ToType,
2768                   isFloatingComplex ? CK_FloatingRealToComplex
2769                                     : CK_IntegralRealToComplex).take();
2770
2771    // Case 2.  _Complex x -> y
2772    } else {
2773      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2774      assert(FromComplex);
2775
2776      QualType ElType = FromComplex->getElementType();
2777      bool isFloatingComplex = ElType->isRealFloatingType();
2778
2779      // _Complex x -> x
2780      From = ImpCastExprToType(From, ElType,
2781                   isFloatingComplex ? CK_FloatingComplexToReal
2782                                     : CK_IntegralComplexToReal,
2783                               VK_RValue, /*BasePath=*/0, CCK).take();
2784
2785      // x -> y
2786      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2787        // do nothing
2788      } else if (ToType->isRealFloatingType()) {
2789        From = ImpCastExprToType(From, ToType,
2790                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2791                                 VK_RValue, /*BasePath=*/0, CCK).take();
2792      } else {
2793        assert(ToType->isIntegerType());
2794        From = ImpCastExprToType(From, ToType,
2795                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2796                                 VK_RValue, /*BasePath=*/0, CCK).take();
2797      }
2798    }
2799    break;
2800
2801  case ICK_Block_Pointer_Conversion: {
2802    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2803                             VK_RValue, /*BasePath=*/0, CCK).take();
2804    break;
2805  }
2806
2807  case ICK_TransparentUnionConversion: {
2808    ExprResult FromRes = Owned(From);
2809    Sema::AssignConvertType ConvTy =
2810      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2811    if (FromRes.isInvalid())
2812      return ExprError();
2813    From = FromRes.take();
2814    assert ((ConvTy == Sema::Compatible) &&
2815            "Improper transparent union conversion");
2816    (void)ConvTy;
2817    break;
2818  }
2819
2820  case ICK_Lvalue_To_Rvalue:
2821  case ICK_Array_To_Pointer:
2822  case ICK_Function_To_Pointer:
2823  case ICK_Qualification:
2824  case ICK_Num_Conversion_Kinds:
2825    llvm_unreachable("Improper second standard conversion");
2826  }
2827
2828  switch (SCS.Third) {
2829  case ICK_Identity:
2830    // Nothing to do.
2831    break;
2832
2833  case ICK_Qualification: {
2834    // The qualification keeps the category of the inner expression, unless the
2835    // target type isn't a reference.
2836    ExprValueKind VK = ToType->isReferenceType() ?
2837                                  From->getValueKind() : VK_RValue;
2838    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2839                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2840
2841    if (SCS.DeprecatedStringLiteralToCharPtr &&
2842        !getLangOpts().WritableStrings)
2843      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2844        << ToType.getNonReferenceType();
2845
2846    break;
2847    }
2848
2849  default:
2850    llvm_unreachable("Improper third standard conversion");
2851  }
2852
2853  // If this conversion sequence involved a scalar -> atomic conversion, perform
2854  // that conversion now.
2855  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2856    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2857      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2858                               CCK).take();
2859
2860  return Owned(From);
2861}
2862
2863ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2864                                     SourceLocation KWLoc,
2865                                     ParsedType Ty,
2866                                     SourceLocation RParen) {
2867  TypeSourceInfo *TSInfo;
2868  QualType T = GetTypeFromParser(Ty, &TSInfo);
2869
2870  if (!TSInfo)
2871    TSInfo = Context.getTrivialTypeSourceInfo(T);
2872  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2873}
2874
2875/// \brief Check the completeness of a type in a unary type trait.
2876///
2877/// If the particular type trait requires a complete type, tries to complete
2878/// it. If completing the type fails, a diagnostic is emitted and false
2879/// returned. If completing the type succeeds or no completion was required,
2880/// returns true.
2881static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2882                                                UnaryTypeTrait UTT,
2883                                                SourceLocation Loc,
2884                                                QualType ArgTy) {
2885  // C++0x [meta.unary.prop]p3:
2886  //   For all of the class templates X declared in this Clause, instantiating
2887  //   that template with a template argument that is a class template
2888  //   specialization may result in the implicit instantiation of the template
2889  //   argument if and only if the semantics of X require that the argument
2890  //   must be a complete type.
2891  // We apply this rule to all the type trait expressions used to implement
2892  // these class templates. We also try to follow any GCC documented behavior
2893  // in these expressions to ensure portability of standard libraries.
2894  switch (UTT) {
2895    // is_complete_type somewhat obviously cannot require a complete type.
2896  case UTT_IsCompleteType:
2897    // Fall-through
2898
2899    // These traits are modeled on the type predicates in C++0x
2900    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2901    // requiring a complete type, as whether or not they return true cannot be
2902    // impacted by the completeness of the type.
2903  case UTT_IsVoid:
2904  case UTT_IsIntegral:
2905  case UTT_IsFloatingPoint:
2906  case UTT_IsArray:
2907  case UTT_IsPointer:
2908  case UTT_IsLvalueReference:
2909  case UTT_IsRvalueReference:
2910  case UTT_IsMemberFunctionPointer:
2911  case UTT_IsMemberObjectPointer:
2912  case UTT_IsEnum:
2913  case UTT_IsUnion:
2914  case UTT_IsClass:
2915  case UTT_IsFunction:
2916  case UTT_IsReference:
2917  case UTT_IsArithmetic:
2918  case UTT_IsFundamental:
2919  case UTT_IsObject:
2920  case UTT_IsScalar:
2921  case UTT_IsCompound:
2922  case UTT_IsMemberPointer:
2923    // Fall-through
2924
2925    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2926    // which requires some of its traits to have the complete type. However,
2927    // the completeness of the type cannot impact these traits' semantics, and
2928    // so they don't require it. This matches the comments on these traits in
2929    // Table 49.
2930  case UTT_IsConst:
2931  case UTT_IsVolatile:
2932  case UTT_IsSigned:
2933  case UTT_IsUnsigned:
2934    return true;
2935
2936    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2937    // applied to a complete type.
2938  case UTT_IsTrivial:
2939  case UTT_IsTriviallyCopyable:
2940  case UTT_IsStandardLayout:
2941  case UTT_IsPOD:
2942  case UTT_IsLiteral:
2943  case UTT_IsEmpty:
2944  case UTT_IsPolymorphic:
2945  case UTT_IsAbstract:
2946    // Fall-through
2947
2948  // These traits require a complete type.
2949  case UTT_IsFinal:
2950
2951    // These trait expressions are designed to help implement predicates in
2952    // [meta.unary.prop] despite not being named the same. They are specified
2953    // by both GCC and the Embarcadero C++ compiler, and require the complete
2954    // type due to the overarching C++0x type predicates being implemented
2955    // requiring the complete type.
2956  case UTT_HasNothrowAssign:
2957  case UTT_HasNothrowConstructor:
2958  case UTT_HasNothrowCopy:
2959  case UTT_HasTrivialAssign:
2960  case UTT_HasTrivialDefaultConstructor:
2961  case UTT_HasTrivialCopy:
2962  case UTT_HasTrivialDestructor:
2963  case UTT_HasVirtualDestructor:
2964    // Arrays of unknown bound are expressly allowed.
2965    QualType ElTy = ArgTy;
2966    if (ArgTy->isIncompleteArrayType())
2967      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2968
2969    // The void type is expressly allowed.
2970    if (ElTy->isVoidType())
2971      return true;
2972
2973    return !S.RequireCompleteType(
2974      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2975  }
2976  llvm_unreachable("Type trait not handled by switch");
2977}
2978
2979static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2980                                   SourceLocation KeyLoc, QualType T) {
2981  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2982
2983  ASTContext &C = Self.Context;
2984  switch(UTT) {
2985    // Type trait expressions corresponding to the primary type category
2986    // predicates in C++0x [meta.unary.cat].
2987  case UTT_IsVoid:
2988    return T->isVoidType();
2989  case UTT_IsIntegral:
2990    return T->isIntegralType(C);
2991  case UTT_IsFloatingPoint:
2992    return T->isFloatingType();
2993  case UTT_IsArray:
2994    return T->isArrayType();
2995  case UTT_IsPointer:
2996    return T->isPointerType();
2997  case UTT_IsLvalueReference:
2998    return T->isLValueReferenceType();
2999  case UTT_IsRvalueReference:
3000    return T->isRValueReferenceType();
3001  case UTT_IsMemberFunctionPointer:
3002    return T->isMemberFunctionPointerType();
3003  case UTT_IsMemberObjectPointer:
3004    return T->isMemberDataPointerType();
3005  case UTT_IsEnum:
3006    return T->isEnumeralType();
3007  case UTT_IsUnion:
3008    return T->isUnionType();
3009  case UTT_IsClass:
3010    return T->isClassType() || T->isStructureType();
3011  case UTT_IsFunction:
3012    return T->isFunctionType();
3013
3014    // Type trait expressions which correspond to the convenient composition
3015    // predicates in C++0x [meta.unary.comp].
3016  case UTT_IsReference:
3017    return T->isReferenceType();
3018  case UTT_IsArithmetic:
3019    return T->isArithmeticType() && !T->isEnumeralType();
3020  case UTT_IsFundamental:
3021    return T->isFundamentalType();
3022  case UTT_IsObject:
3023    return T->isObjectType();
3024  case UTT_IsScalar:
3025    // Note: semantic analysis depends on Objective-C lifetime types to be
3026    // considered scalar types. However, such types do not actually behave
3027    // like scalar types at run time (since they may require retain/release
3028    // operations), so we report them as non-scalar.
3029    if (T->isObjCLifetimeType()) {
3030      switch (T.getObjCLifetime()) {
3031      case Qualifiers::OCL_None:
3032      case Qualifiers::OCL_ExplicitNone:
3033        return true;
3034
3035      case Qualifiers::OCL_Strong:
3036      case Qualifiers::OCL_Weak:
3037      case Qualifiers::OCL_Autoreleasing:
3038        return false;
3039      }
3040    }
3041
3042    return T->isScalarType();
3043  case UTT_IsCompound:
3044    return T->isCompoundType();
3045  case UTT_IsMemberPointer:
3046    return T->isMemberPointerType();
3047
3048    // Type trait expressions which correspond to the type property predicates
3049    // in C++0x [meta.unary.prop].
3050  case UTT_IsConst:
3051    return T.isConstQualified();
3052  case UTT_IsVolatile:
3053    return T.isVolatileQualified();
3054  case UTT_IsTrivial:
3055    return T.isTrivialType(Self.Context);
3056  case UTT_IsTriviallyCopyable:
3057    return T.isTriviallyCopyableType(Self.Context);
3058  case UTT_IsStandardLayout:
3059    return T->isStandardLayoutType();
3060  case UTT_IsPOD:
3061    return T.isPODType(Self.Context);
3062  case UTT_IsLiteral:
3063    return T->isLiteralType();
3064  case UTT_IsEmpty:
3065    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3066      return !RD->isUnion() && RD->isEmpty();
3067    return false;
3068  case UTT_IsPolymorphic:
3069    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3070      return RD->isPolymorphic();
3071    return false;
3072  case UTT_IsAbstract:
3073    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3074      return RD->isAbstract();
3075    return false;
3076  case UTT_IsFinal:
3077    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3078      return RD->hasAttr<FinalAttr>();
3079    return false;
3080  case UTT_IsSigned:
3081    return T->isSignedIntegerType();
3082  case UTT_IsUnsigned:
3083    return T->isUnsignedIntegerType();
3084
3085    // Type trait expressions which query classes regarding their construction,
3086    // destruction, and copying. Rather than being based directly on the
3087    // related type predicates in the standard, they are specified by both
3088    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3089    // specifications.
3090    //
3091    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3092    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3093  case UTT_HasTrivialDefaultConstructor:
3094    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3095    //   If __is_pod (type) is true then the trait is true, else if type is
3096    //   a cv class or union type (or array thereof) with a trivial default
3097    //   constructor ([class.ctor]) then the trait is true, else it is false.
3098    if (T.isPODType(Self.Context))
3099      return true;
3100    if (const RecordType *RT =
3101          C.getBaseElementType(T)->getAs<RecordType>())
3102      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3103    return false;
3104  case UTT_HasTrivialCopy:
3105    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3106    //   If __is_pod (type) is true or type is a reference type then
3107    //   the trait is true, else if type is a cv class or union type
3108    //   with a trivial copy constructor ([class.copy]) then the trait
3109    //   is true, else it is false.
3110    if (T.isPODType(Self.Context) || T->isReferenceType())
3111      return true;
3112    if (const RecordType *RT = T->getAs<RecordType>())
3113      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3114    return false;
3115  case UTT_HasTrivialAssign:
3116    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3117    //   If type is const qualified or is a reference type then the
3118    //   trait is false. Otherwise if __is_pod (type) is true then the
3119    //   trait is true, else if type is a cv class or union type with
3120    //   a trivial copy assignment ([class.copy]) then the trait is
3121    //   true, else it is false.
3122    // Note: the const and reference restrictions are interesting,
3123    // given that const and reference members don't prevent a class
3124    // from having a trivial copy assignment operator (but do cause
3125    // errors if the copy assignment operator is actually used, q.v.
3126    // [class.copy]p12).
3127
3128    if (C.getBaseElementType(T).isConstQualified())
3129      return false;
3130    if (T.isPODType(Self.Context))
3131      return true;
3132    if (const RecordType *RT = T->getAs<RecordType>())
3133      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3134    return false;
3135  case UTT_HasTrivialDestructor:
3136    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3137    //   If __is_pod (type) is true or type is a reference type
3138    //   then the trait is true, else if type is a cv class or union
3139    //   type (or array thereof) with a trivial destructor
3140    //   ([class.dtor]) then the trait is true, else it is
3141    //   false.
3142    if (T.isPODType(Self.Context) || T->isReferenceType())
3143      return true;
3144
3145    // Objective-C++ ARC: autorelease types don't require destruction.
3146    if (T->isObjCLifetimeType() &&
3147        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3148      return true;
3149
3150    if (const RecordType *RT =
3151          C.getBaseElementType(T)->getAs<RecordType>())
3152      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3153    return false;
3154  // TODO: Propagate nothrowness for implicitly declared special members.
3155  case UTT_HasNothrowAssign:
3156    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3157    //   If type is const qualified or is a reference type then the
3158    //   trait is false. Otherwise if __has_trivial_assign (type)
3159    //   is true then the trait is true, else if type is a cv class
3160    //   or union type with copy assignment operators that are known
3161    //   not to throw an exception then the trait is true, else it is
3162    //   false.
3163    if (C.getBaseElementType(T).isConstQualified())
3164      return false;
3165    if (T->isReferenceType())
3166      return false;
3167    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3168      return true;
3169    if (const RecordType *RT = T->getAs<RecordType>()) {
3170      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3171      if (RD->hasTrivialCopyAssignment())
3172        return true;
3173
3174      bool FoundAssign = false;
3175      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3176      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3177                       Sema::LookupOrdinaryName);
3178      if (Self.LookupQualifiedName(Res, RD)) {
3179        Res.suppressDiagnostics();
3180        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3181             Op != OpEnd; ++Op) {
3182          if (isa<FunctionTemplateDecl>(*Op))
3183            continue;
3184
3185          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3186          if (Operator->isCopyAssignmentOperator()) {
3187            FoundAssign = true;
3188            const FunctionProtoType *CPT
3189                = Operator->getType()->getAs<FunctionProtoType>();
3190            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3191            if (!CPT)
3192              return false;
3193            if (!CPT->isNothrow(Self.Context))
3194              return false;
3195          }
3196        }
3197      }
3198
3199      return FoundAssign;
3200    }
3201    return false;
3202  case UTT_HasNothrowCopy:
3203    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3204    //   If __has_trivial_copy (type) is true then the trait is true, else
3205    //   if type is a cv class or union type with copy constructors that are
3206    //   known not to throw an exception then the trait is true, else it is
3207    //   false.
3208    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3209      return true;
3210    if (const RecordType *RT = T->getAs<RecordType>()) {
3211      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3212      if (RD->hasTrivialCopyConstructor())
3213        return true;
3214
3215      bool FoundConstructor = false;
3216      unsigned FoundTQs;
3217      DeclContext::lookup_const_iterator Con, ConEnd;
3218      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3219           Con != ConEnd; ++Con) {
3220        // A template constructor is never a copy constructor.
3221        // FIXME: However, it may actually be selected at the actual overload
3222        // resolution point.
3223        if (isa<FunctionTemplateDecl>(*Con))
3224          continue;
3225        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3226        if (Constructor->isCopyConstructor(FoundTQs)) {
3227          FoundConstructor = true;
3228          const FunctionProtoType *CPT
3229              = Constructor->getType()->getAs<FunctionProtoType>();
3230          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3231          if (!CPT)
3232            return false;
3233          // FIXME: check whether evaluating default arguments can throw.
3234          // For now, we'll be conservative and assume that they can throw.
3235          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3236            return false;
3237        }
3238      }
3239
3240      return FoundConstructor;
3241    }
3242    return false;
3243  case UTT_HasNothrowConstructor:
3244    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3245    //   If __has_trivial_constructor (type) is true then the trait is
3246    //   true, else if type is a cv class or union type (or array
3247    //   thereof) with a default constructor that is known not to
3248    //   throw an exception then the trait is true, else it is false.
3249    if (T.isPODType(C) || T->isObjCLifetimeType())
3250      return true;
3251    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3252      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3253      if (RD->hasTrivialDefaultConstructor())
3254        return true;
3255
3256      DeclContext::lookup_const_iterator Con, ConEnd;
3257      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3258           Con != ConEnd; ++Con) {
3259        // FIXME: In C++0x, a constructor template can be a default constructor.
3260        if (isa<FunctionTemplateDecl>(*Con))
3261          continue;
3262        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3263        if (Constructor->isDefaultConstructor()) {
3264          const FunctionProtoType *CPT
3265              = Constructor->getType()->getAs<FunctionProtoType>();
3266          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3267          if (!CPT)
3268            return false;
3269          // TODO: check whether evaluating default arguments can throw.
3270          // For now, we'll be conservative and assume that they can throw.
3271          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3272        }
3273      }
3274    }
3275    return false;
3276  case UTT_HasVirtualDestructor:
3277    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3278    //   If type is a class type with a virtual destructor ([class.dtor])
3279    //   then the trait is true, else it is false.
3280    if (const RecordType *Record = T->getAs<RecordType>()) {
3281      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3282      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3283        return Destructor->isVirtual();
3284    }
3285    return false;
3286
3287    // These type trait expressions are modeled on the specifications for the
3288    // Embarcadero C++0x type trait functions:
3289    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3290  case UTT_IsCompleteType:
3291    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3292    //   Returns True if and only if T is a complete type at the point of the
3293    //   function call.
3294    return !T->isIncompleteType();
3295  }
3296  llvm_unreachable("Type trait not covered by switch");
3297}
3298
3299ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3300                                     SourceLocation KWLoc,
3301                                     TypeSourceInfo *TSInfo,
3302                                     SourceLocation RParen) {
3303  QualType T = TSInfo->getType();
3304  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3305    return ExprError();
3306
3307  bool Value = false;
3308  if (!T->isDependentType())
3309    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3310
3311  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3312                                                RParen, Context.BoolTy));
3313}
3314
3315ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3316                                      SourceLocation KWLoc,
3317                                      ParsedType LhsTy,
3318                                      ParsedType RhsTy,
3319                                      SourceLocation RParen) {
3320  TypeSourceInfo *LhsTSInfo;
3321  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3322  if (!LhsTSInfo)
3323    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3324
3325  TypeSourceInfo *RhsTSInfo;
3326  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3327  if (!RhsTSInfo)
3328    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3329
3330  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3331}
3332
3333/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3334/// ARC mode.
3335static bool hasNontrivialObjCLifetime(QualType T) {
3336  switch (T.getObjCLifetime()) {
3337  case Qualifiers::OCL_ExplicitNone:
3338    return false;
3339
3340  case Qualifiers::OCL_Strong:
3341  case Qualifiers::OCL_Weak:
3342  case Qualifiers::OCL_Autoreleasing:
3343    return true;
3344
3345  case Qualifiers::OCL_None:
3346    return T->isObjCLifetimeType();
3347  }
3348
3349  llvm_unreachable("Unknown ObjC lifetime qualifier");
3350}
3351
3352static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3353                              ArrayRef<TypeSourceInfo *> Args,
3354                              SourceLocation RParenLoc) {
3355  switch (Kind) {
3356  case clang::TT_IsTriviallyConstructible: {
3357    // C++11 [meta.unary.prop]:
3358    //   is_trivially_constructible is defined as:
3359    //
3360    //     is_constructible<T, Args...>::value is true and the variable
3361    //     definition for is_constructible, as defined below, is known to call no
3362    //     operation that is not trivial.
3363    //
3364    //   The predicate condition for a template specialization
3365    //   is_constructible<T, Args...> shall be satisfied if and only if the
3366    //   following variable definition would be well-formed for some invented
3367    //   variable t:
3368    //
3369    //     T t(create<Args>()...);
3370    if (Args.empty()) {
3371      S.Diag(KWLoc, diag::err_type_trait_arity)
3372        << 1 << 1 << 1 << (int)Args.size();
3373      return false;
3374    }
3375
3376    bool SawVoid = false;
3377    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3378      if (Args[I]->getType()->isVoidType()) {
3379        SawVoid = true;
3380        continue;
3381      }
3382
3383      if (!Args[I]->getType()->isIncompleteType() &&
3384        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3385          diag::err_incomplete_type_used_in_type_trait_expr))
3386        return false;
3387    }
3388
3389    // If any argument was 'void', of course it won't type-check.
3390    if (SawVoid)
3391      return false;
3392
3393    llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3394    llvm::SmallVector<Expr *, 2> ArgExprs;
3395    ArgExprs.reserve(Args.size() - 1);
3396    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3397      QualType T = Args[I]->getType();
3398      if (T->isObjectType() || T->isFunctionType())
3399        T = S.Context.getRValueReferenceType(T);
3400      OpaqueArgExprs.push_back(
3401        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3402                        T.getNonLValueExprType(S.Context),
3403                        Expr::getValueKindForType(T)));
3404      ArgExprs.push_back(&OpaqueArgExprs.back());
3405    }
3406
3407    // Perform the initialization in an unevaluated context within a SFINAE
3408    // trap at translation unit scope.
3409    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3410    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3411    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3412    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3413    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3414                                                                 RParenLoc));
3415    InitializationSequence Init(S, To, InitKind,
3416                                ArgExprs.begin(), ArgExprs.size());
3417    if (Init.Failed())
3418      return false;
3419
3420    ExprResult Result = Init.Perform(S, To, InitKind,
3421                                     MultiExprArg(ArgExprs.data(),
3422                                                  ArgExprs.size()));
3423    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3424      return false;
3425
3426    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3427    // lifetime, this is a non-trivial construction.
3428    if (S.getLangOpts().ObjCAutoRefCount &&
3429        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3430      return false;
3431
3432    // The initialization succeeded; now make sure there are no non-trivial
3433    // calls.
3434    return !Result.get()->hasNonTrivialCall(S.Context);
3435  }
3436  }
3437
3438  return false;
3439}
3440
3441ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3442                                ArrayRef<TypeSourceInfo *> Args,
3443                                SourceLocation RParenLoc) {
3444  bool Dependent = false;
3445  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3446    if (Args[I]->getType()->isDependentType()) {
3447      Dependent = true;
3448      break;
3449    }
3450  }
3451
3452  bool Value = false;
3453  if (!Dependent)
3454    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3455
3456  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3457                               Args, RParenLoc, Value);
3458}
3459
3460ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3461                                ArrayRef<ParsedType> Args,
3462                                SourceLocation RParenLoc) {
3463  llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3464  ConvertedArgs.reserve(Args.size());
3465
3466  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3467    TypeSourceInfo *TInfo;
3468    QualType T = GetTypeFromParser(Args[I], &TInfo);
3469    if (!TInfo)
3470      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3471
3472    ConvertedArgs.push_back(TInfo);
3473  }
3474
3475  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3476}
3477
3478static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3479                                    QualType LhsT, QualType RhsT,
3480                                    SourceLocation KeyLoc) {
3481  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3482         "Cannot evaluate traits of dependent types");
3483
3484  switch(BTT) {
3485  case BTT_IsBaseOf: {
3486    // C++0x [meta.rel]p2
3487    // Base is a base class of Derived without regard to cv-qualifiers or
3488    // Base and Derived are not unions and name the same class type without
3489    // regard to cv-qualifiers.
3490
3491    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3492    if (!lhsRecord) return false;
3493
3494    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3495    if (!rhsRecord) return false;
3496
3497    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3498             == (lhsRecord == rhsRecord));
3499
3500    if (lhsRecord == rhsRecord)
3501      return !lhsRecord->getDecl()->isUnion();
3502
3503    // C++0x [meta.rel]p2:
3504    //   If Base and Derived are class types and are different types
3505    //   (ignoring possible cv-qualifiers) then Derived shall be a
3506    //   complete type.
3507    if (Self.RequireCompleteType(KeyLoc, RhsT,
3508                          diag::err_incomplete_type_used_in_type_trait_expr))
3509      return false;
3510
3511    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3512      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3513  }
3514  case BTT_IsSame:
3515    return Self.Context.hasSameType(LhsT, RhsT);
3516  case BTT_TypeCompatible:
3517    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3518                                           RhsT.getUnqualifiedType());
3519  case BTT_IsConvertible:
3520  case BTT_IsConvertibleTo: {
3521    // C++0x [meta.rel]p4:
3522    //   Given the following function prototype:
3523    //
3524    //     template <class T>
3525    //       typename add_rvalue_reference<T>::type create();
3526    //
3527    //   the predicate condition for a template specialization
3528    //   is_convertible<From, To> shall be satisfied if and only if
3529    //   the return expression in the following code would be
3530    //   well-formed, including any implicit conversions to the return
3531    //   type of the function:
3532    //
3533    //     To test() {
3534    //       return create<From>();
3535    //     }
3536    //
3537    //   Access checking is performed as if in a context unrelated to To and
3538    //   From. Only the validity of the immediate context of the expression
3539    //   of the return-statement (including conversions to the return type)
3540    //   is considered.
3541    //
3542    // We model the initialization as a copy-initialization of a temporary
3543    // of the appropriate type, which for this expression is identical to the
3544    // return statement (since NRVO doesn't apply).
3545
3546    // Functions aren't allowed to return function or array types.
3547    if (RhsT->isFunctionType() || RhsT->isArrayType())
3548      return false;
3549
3550    // A return statement in a void function must have void type.
3551    if (RhsT->isVoidType())
3552      return LhsT->isVoidType();
3553
3554    // A function definition requires a complete, non-abstract return type.
3555    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3556        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3557      return false;
3558
3559    // Compute the result of add_rvalue_reference.
3560    if (LhsT->isObjectType() || LhsT->isFunctionType())
3561      LhsT = Self.Context.getRValueReferenceType(LhsT);
3562
3563    // Build a fake source and destination for initialization.
3564    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3565    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3566                         Expr::getValueKindForType(LhsT));
3567    Expr *FromPtr = &From;
3568    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3569                                                           SourceLocation()));
3570
3571    // Perform the initialization in an unevaluated context within a SFINAE
3572    // trap at translation unit scope.
3573    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3574    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3575    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3576    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3577    if (Init.Failed())
3578      return false;
3579
3580    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3581    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3582  }
3583
3584  case BTT_IsTriviallyAssignable: {
3585    // C++11 [meta.unary.prop]p3:
3586    //   is_trivially_assignable is defined as:
3587    //     is_assignable<T, U>::value is true and the assignment, as defined by
3588    //     is_assignable, is known to call no operation that is not trivial
3589    //
3590    //   is_assignable is defined as:
3591    //     The expression declval<T>() = declval<U>() is well-formed when
3592    //     treated as an unevaluated operand (Clause 5).
3593    //
3594    //   For both, T and U shall be complete types, (possibly cv-qualified)
3595    //   void, or arrays of unknown bound.
3596    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3597        Self.RequireCompleteType(KeyLoc, LhsT,
3598          diag::err_incomplete_type_used_in_type_trait_expr))
3599      return false;
3600    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3601        Self.RequireCompleteType(KeyLoc, RhsT,
3602          diag::err_incomplete_type_used_in_type_trait_expr))
3603      return false;
3604
3605    // cv void is never assignable.
3606    if (LhsT->isVoidType() || RhsT->isVoidType())
3607      return false;
3608
3609    // Build expressions that emulate the effect of declval<T>() and
3610    // declval<U>().
3611    if (LhsT->isObjectType() || LhsT->isFunctionType())
3612      LhsT = Self.Context.getRValueReferenceType(LhsT);
3613    if (RhsT->isObjectType() || RhsT->isFunctionType())
3614      RhsT = Self.Context.getRValueReferenceType(RhsT);
3615    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3616                        Expr::getValueKindForType(LhsT));
3617    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3618                        Expr::getValueKindForType(RhsT));
3619
3620    // Attempt the assignment in an unevaluated context within a SFINAE
3621    // trap at translation unit scope.
3622    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3623    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3624    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3625    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3626    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3627      return false;
3628
3629    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3630    // lifetime, this is a non-trivial assignment.
3631    if (Self.getLangOpts().ObjCAutoRefCount &&
3632        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3633      return false;
3634
3635    return !Result.get()->hasNonTrivialCall(Self.Context);
3636  }
3637  }
3638  llvm_unreachable("Unknown type trait or not implemented");
3639}
3640
3641ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3642                                      SourceLocation KWLoc,
3643                                      TypeSourceInfo *LhsTSInfo,
3644                                      TypeSourceInfo *RhsTSInfo,
3645                                      SourceLocation RParen) {
3646  QualType LhsT = LhsTSInfo->getType();
3647  QualType RhsT = RhsTSInfo->getType();
3648
3649  if (BTT == BTT_TypeCompatible) {
3650    if (getLangOpts().CPlusPlus) {
3651      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3652        << SourceRange(KWLoc, RParen);
3653      return ExprError();
3654    }
3655  }
3656
3657  bool Value = false;
3658  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3659    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3660
3661  // Select trait result type.
3662  QualType ResultType;
3663  switch (BTT) {
3664  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3665  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3666  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3667  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3668  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3669  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3670  }
3671
3672  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3673                                                 RhsTSInfo, Value, RParen,
3674                                                 ResultType));
3675}
3676
3677ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3678                                     SourceLocation KWLoc,
3679                                     ParsedType Ty,
3680                                     Expr* DimExpr,
3681                                     SourceLocation RParen) {
3682  TypeSourceInfo *TSInfo;
3683  QualType T = GetTypeFromParser(Ty, &TSInfo);
3684  if (!TSInfo)
3685    TSInfo = Context.getTrivialTypeSourceInfo(T);
3686
3687  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3688}
3689
3690static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3691                                           QualType T, Expr *DimExpr,
3692                                           SourceLocation KeyLoc) {
3693  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3694
3695  switch(ATT) {
3696  case ATT_ArrayRank:
3697    if (T->isArrayType()) {
3698      unsigned Dim = 0;
3699      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3700        ++Dim;
3701        T = AT->getElementType();
3702      }
3703      return Dim;
3704    }
3705    return 0;
3706
3707  case ATT_ArrayExtent: {
3708    llvm::APSInt Value;
3709    uint64_t Dim;
3710    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3711          diag::err_dimension_expr_not_constant_integer,
3712          false).isInvalid())
3713      return 0;
3714    if (Value.isSigned() && Value.isNegative()) {
3715      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3716        << DimExpr->getSourceRange();
3717      return 0;
3718    }
3719    Dim = Value.getLimitedValue();
3720
3721    if (T->isArrayType()) {
3722      unsigned D = 0;
3723      bool Matched = false;
3724      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3725        if (Dim == D) {
3726          Matched = true;
3727          break;
3728        }
3729        ++D;
3730        T = AT->getElementType();
3731      }
3732
3733      if (Matched && T->isArrayType()) {
3734        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3735          return CAT->getSize().getLimitedValue();
3736      }
3737    }
3738    return 0;
3739  }
3740  }
3741  llvm_unreachable("Unknown type trait or not implemented");
3742}
3743
3744ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3745                                     SourceLocation KWLoc,
3746                                     TypeSourceInfo *TSInfo,
3747                                     Expr* DimExpr,
3748                                     SourceLocation RParen) {
3749  QualType T = TSInfo->getType();
3750
3751  // FIXME: This should likely be tracked as an APInt to remove any host
3752  // assumptions about the width of size_t on the target.
3753  uint64_t Value = 0;
3754  if (!T->isDependentType())
3755    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3756
3757  // While the specification for these traits from the Embarcadero C++
3758  // compiler's documentation says the return type is 'unsigned int', Clang
3759  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3760  // compiler, there is no difference. On several other platforms this is an
3761  // important distinction.
3762  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3763                                                DimExpr, RParen,
3764                                                Context.getSizeType()));
3765}
3766
3767ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3768                                      SourceLocation KWLoc,
3769                                      Expr *Queried,
3770                                      SourceLocation RParen) {
3771  // If error parsing the expression, ignore.
3772  if (!Queried)
3773    return ExprError();
3774
3775  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3776
3777  return move(Result);
3778}
3779
3780static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3781  switch (ET) {
3782  case ET_IsLValueExpr: return E->isLValue();
3783  case ET_IsRValueExpr: return E->isRValue();
3784  }
3785  llvm_unreachable("Expression trait not covered by switch");
3786}
3787
3788ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3789                                      SourceLocation KWLoc,
3790                                      Expr *Queried,
3791                                      SourceLocation RParen) {
3792  if (Queried->isTypeDependent()) {
3793    // Delay type-checking for type-dependent expressions.
3794  } else if (Queried->getType()->isPlaceholderType()) {
3795    ExprResult PE = CheckPlaceholderExpr(Queried);
3796    if (PE.isInvalid()) return ExprError();
3797    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3798  }
3799
3800  bool Value = EvaluateExpressionTrait(ET, Queried);
3801
3802  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3803                                                 RParen, Context.BoolTy));
3804}
3805
3806QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3807                                            ExprValueKind &VK,
3808                                            SourceLocation Loc,
3809                                            bool isIndirect) {
3810  assert(!LHS.get()->getType()->isPlaceholderType() &&
3811         !RHS.get()->getType()->isPlaceholderType() &&
3812         "placeholders should have been weeded out by now");
3813
3814  // The LHS undergoes lvalue conversions if this is ->*.
3815  if (isIndirect) {
3816    LHS = DefaultLvalueConversion(LHS.take());
3817    if (LHS.isInvalid()) return QualType();
3818  }
3819
3820  // The RHS always undergoes lvalue conversions.
3821  RHS = DefaultLvalueConversion(RHS.take());
3822  if (RHS.isInvalid()) return QualType();
3823
3824  const char *OpSpelling = isIndirect ? "->*" : ".*";
3825  // C++ 5.5p2
3826  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3827  //   be of type "pointer to member of T" (where T is a completely-defined
3828  //   class type) [...]
3829  QualType RHSType = RHS.get()->getType();
3830  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3831  if (!MemPtr) {
3832    Diag(Loc, diag::err_bad_memptr_rhs)
3833      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3834    return QualType();
3835  }
3836
3837  QualType Class(MemPtr->getClass(), 0);
3838
3839  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3840  // member pointer points must be completely-defined. However, there is no
3841  // reason for this semantic distinction, and the rule is not enforced by
3842  // other compilers. Therefore, we do not check this property, as it is
3843  // likely to be considered a defect.
3844
3845  // C++ 5.5p2
3846  //   [...] to its first operand, which shall be of class T or of a class of
3847  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3848  //   such a class]
3849  QualType LHSType = LHS.get()->getType();
3850  if (isIndirect) {
3851    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3852      LHSType = Ptr->getPointeeType();
3853    else {
3854      Diag(Loc, diag::err_bad_memptr_lhs)
3855        << OpSpelling << 1 << LHSType
3856        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3857      return QualType();
3858    }
3859  }
3860
3861  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3862    // If we want to check the hierarchy, we need a complete type.
3863    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3864                            OpSpelling, (int)isIndirect)) {
3865      return QualType();
3866    }
3867    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3868                       /*DetectVirtual=*/false);
3869    // FIXME: Would it be useful to print full ambiguity paths, or is that
3870    // overkill?
3871    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3872        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3873      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3874        << (int)isIndirect << LHS.get()->getType();
3875      return QualType();
3876    }
3877    // Cast LHS to type of use.
3878    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3879    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3880
3881    CXXCastPath BasePath;
3882    BuildBasePathArray(Paths, BasePath);
3883    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3884                            &BasePath);
3885  }
3886
3887  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3888    // Diagnose use of pointer-to-member type which when used as
3889    // the functional cast in a pointer-to-member expression.
3890    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3891     return QualType();
3892  }
3893
3894  // C++ 5.5p2
3895  //   The result is an object or a function of the type specified by the
3896  //   second operand.
3897  // The cv qualifiers are the union of those in the pointer and the left side,
3898  // in accordance with 5.5p5 and 5.2.5.
3899  QualType Result = MemPtr->getPointeeType();
3900  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3901
3902  // C++0x [expr.mptr.oper]p6:
3903  //   In a .* expression whose object expression is an rvalue, the program is
3904  //   ill-formed if the second operand is a pointer to member function with
3905  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3906  //   expression is an lvalue, the program is ill-formed if the second operand
3907  //   is a pointer to member function with ref-qualifier &&.
3908  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3909    switch (Proto->getRefQualifier()) {
3910    case RQ_None:
3911      // Do nothing
3912      break;
3913
3914    case RQ_LValue:
3915      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3916        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3917          << RHSType << 1 << LHS.get()->getSourceRange();
3918      break;
3919
3920    case RQ_RValue:
3921      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3922        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3923          << RHSType << 0 << LHS.get()->getSourceRange();
3924      break;
3925    }
3926  }
3927
3928  // C++ [expr.mptr.oper]p6:
3929  //   The result of a .* expression whose second operand is a pointer
3930  //   to a data member is of the same value category as its
3931  //   first operand. The result of a .* expression whose second
3932  //   operand is a pointer to a member function is a prvalue. The
3933  //   result of an ->* expression is an lvalue if its second operand
3934  //   is a pointer to data member and a prvalue otherwise.
3935  if (Result->isFunctionType()) {
3936    VK = VK_RValue;
3937    return Context.BoundMemberTy;
3938  } else if (isIndirect) {
3939    VK = VK_LValue;
3940  } else {
3941    VK = LHS.get()->getValueKind();
3942  }
3943
3944  return Result;
3945}
3946
3947/// \brief Try to convert a type to another according to C++0x 5.16p3.
3948///
3949/// This is part of the parameter validation for the ? operator. If either
3950/// value operand is a class type, the two operands are attempted to be
3951/// converted to each other. This function does the conversion in one direction.
3952/// It returns true if the program is ill-formed and has already been diagnosed
3953/// as such.
3954static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3955                                SourceLocation QuestionLoc,
3956                                bool &HaveConversion,
3957                                QualType &ToType) {
3958  HaveConversion = false;
3959  ToType = To->getType();
3960
3961  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3962                                                           SourceLocation());
3963  // C++0x 5.16p3
3964  //   The process for determining whether an operand expression E1 of type T1
3965  //   can be converted to match an operand expression E2 of type T2 is defined
3966  //   as follows:
3967  //   -- If E2 is an lvalue:
3968  bool ToIsLvalue = To->isLValue();
3969  if (ToIsLvalue) {
3970    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3971    //   type "lvalue reference to T2", subject to the constraint that in the
3972    //   conversion the reference must bind directly to E1.
3973    QualType T = Self.Context.getLValueReferenceType(ToType);
3974    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3975
3976    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3977    if (InitSeq.isDirectReferenceBinding()) {
3978      ToType = T;
3979      HaveConversion = true;
3980      return false;
3981    }
3982
3983    if (InitSeq.isAmbiguous())
3984      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3985  }
3986
3987  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3988  //      -- if E1 and E2 have class type, and the underlying class types are
3989  //         the same or one is a base class of the other:
3990  QualType FTy = From->getType();
3991  QualType TTy = To->getType();
3992  const RecordType *FRec = FTy->getAs<RecordType>();
3993  const RecordType *TRec = TTy->getAs<RecordType>();
3994  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3995                       Self.IsDerivedFrom(FTy, TTy);
3996  if (FRec && TRec &&
3997      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3998    //         E1 can be converted to match E2 if the class of T2 is the
3999    //         same type as, or a base class of, the class of T1, and
4000    //         [cv2 > cv1].
4001    if (FRec == TRec || FDerivedFromT) {
4002      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4003        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4004        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4005        if (InitSeq) {
4006          HaveConversion = true;
4007          return false;
4008        }
4009
4010        if (InitSeq.isAmbiguous())
4011          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4012      }
4013    }
4014
4015    return false;
4016  }
4017
4018  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4019  //        implicitly converted to the type that expression E2 would have
4020  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4021  //        an rvalue).
4022  //
4023  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4024  // to the array-to-pointer or function-to-pointer conversions.
4025  if (!TTy->getAs<TagType>())
4026    TTy = TTy.getUnqualifiedType();
4027
4028  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4029  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4030  HaveConversion = !InitSeq.Failed();
4031  ToType = TTy;
4032  if (InitSeq.isAmbiguous())
4033    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4034
4035  return false;
4036}
4037
4038/// \brief Try to find a common type for two according to C++0x 5.16p5.
4039///
4040/// This is part of the parameter validation for the ? operator. If either
4041/// value operand is a class type, overload resolution is used to find a
4042/// conversion to a common type.
4043static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4044                                    SourceLocation QuestionLoc) {
4045  Expr *Args[2] = { LHS.get(), RHS.get() };
4046  OverloadCandidateSet CandidateSet(QuestionLoc);
4047  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4048                                    CandidateSet);
4049
4050  OverloadCandidateSet::iterator Best;
4051  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4052    case OR_Success: {
4053      // We found a match. Perform the conversions on the arguments and move on.
4054      ExprResult LHSRes =
4055        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4056                                       Best->Conversions[0], Sema::AA_Converting);
4057      if (LHSRes.isInvalid())
4058        break;
4059      LHS = move(LHSRes);
4060
4061      ExprResult RHSRes =
4062        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4063                                       Best->Conversions[1], Sema::AA_Converting);
4064      if (RHSRes.isInvalid())
4065        break;
4066      RHS = move(RHSRes);
4067      if (Best->Function)
4068        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4069      return false;
4070    }
4071
4072    case OR_No_Viable_Function:
4073
4074      // Emit a better diagnostic if one of the expressions is a null pointer
4075      // constant and the other is a pointer type. In this case, the user most
4076      // likely forgot to take the address of the other expression.
4077      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4078        return true;
4079
4080      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4081        << LHS.get()->getType() << RHS.get()->getType()
4082        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4083      return true;
4084
4085    case OR_Ambiguous:
4086      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4087        << LHS.get()->getType() << RHS.get()->getType()
4088        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4089      // FIXME: Print the possible common types by printing the return types of
4090      // the viable candidates.
4091      break;
4092
4093    case OR_Deleted:
4094      llvm_unreachable("Conditional operator has only built-in overloads");
4095  }
4096  return true;
4097}
4098
4099/// \brief Perform an "extended" implicit conversion as returned by
4100/// TryClassUnification.
4101static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4102  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4103  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4104                                                           SourceLocation());
4105  Expr *Arg = E.take();
4106  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4107  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
4108  if (Result.isInvalid())
4109    return true;
4110
4111  E = Result;
4112  return false;
4113}
4114
4115/// \brief Check the operands of ?: under C++ semantics.
4116///
4117/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4118/// extension. In this case, LHS == Cond. (But they're not aliases.)
4119QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4120                                           ExprResult &RHS, ExprValueKind &VK,
4121                                           ExprObjectKind &OK,
4122                                           SourceLocation QuestionLoc) {
4123  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4124  // interface pointers.
4125
4126  // C++11 [expr.cond]p1
4127  //   The first expression is contextually converted to bool.
4128  if (!Cond.get()->isTypeDependent()) {
4129    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4130    if (CondRes.isInvalid())
4131      return QualType();
4132    Cond = move(CondRes);
4133  }
4134
4135  // Assume r-value.
4136  VK = VK_RValue;
4137  OK = OK_Ordinary;
4138
4139  // Either of the arguments dependent?
4140  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4141    return Context.DependentTy;
4142
4143  // C++11 [expr.cond]p2
4144  //   If either the second or the third operand has type (cv) void, ...
4145  QualType LTy = LHS.get()->getType();
4146  QualType RTy = RHS.get()->getType();
4147  bool LVoid = LTy->isVoidType();
4148  bool RVoid = RTy->isVoidType();
4149  if (LVoid || RVoid) {
4150    //   ... then the [l2r] conversions are performed on the second and third
4151    //   operands ...
4152    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4153    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4154    if (LHS.isInvalid() || RHS.isInvalid())
4155      return QualType();
4156
4157    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4158    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4159    // do this part for us.
4160    ExprResult &NonVoid = LVoid ? RHS : LHS;
4161    if (NonVoid.get()->getType()->isRecordType() &&
4162        NonVoid.get()->isGLValue()) {
4163      InitializedEntity Entity =
4164          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4165      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4166      if (NonVoid.isInvalid())
4167        return QualType();
4168    }
4169
4170    LTy = LHS.get()->getType();
4171    RTy = RHS.get()->getType();
4172
4173    //   ... and one of the following shall hold:
4174    //   -- The second or the third operand (but not both) is a throw-
4175    //      expression; the result is of the type of the other and is a prvalue.
4176    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4177    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4178    if (LThrow && !RThrow)
4179      return RTy;
4180    if (RThrow && !LThrow)
4181      return LTy;
4182
4183    //   -- Both the second and third operands have type void; the result is of
4184    //      type void and is a prvalue.
4185    if (LVoid && RVoid)
4186      return Context.VoidTy;
4187
4188    // Neither holds, error.
4189    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4190      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4191      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4192    return QualType();
4193  }
4194
4195  // Neither is void.
4196
4197  // C++11 [expr.cond]p3
4198  //   Otherwise, if the second and third operand have different types, and
4199  //   either has (cv) class type [...] an attempt is made to convert each of
4200  //   those operands to the type of the other.
4201  if (!Context.hasSameType(LTy, RTy) &&
4202      (LTy->isRecordType() || RTy->isRecordType())) {
4203    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4204    // These return true if a single direction is already ambiguous.
4205    QualType L2RType, R2LType;
4206    bool HaveL2R, HaveR2L;
4207    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4208      return QualType();
4209    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4210      return QualType();
4211
4212    //   If both can be converted, [...] the program is ill-formed.
4213    if (HaveL2R && HaveR2L) {
4214      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4215        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4216      return QualType();
4217    }
4218
4219    //   If exactly one conversion is possible, that conversion is applied to
4220    //   the chosen operand and the converted operands are used in place of the
4221    //   original operands for the remainder of this section.
4222    if (HaveL2R) {
4223      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4224        return QualType();
4225      LTy = LHS.get()->getType();
4226    } else if (HaveR2L) {
4227      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4228        return QualType();
4229      RTy = RHS.get()->getType();
4230    }
4231  }
4232
4233  // C++11 [expr.cond]p3
4234  //   if both are glvalues of the same value category and the same type except
4235  //   for cv-qualification, an attempt is made to convert each of those
4236  //   operands to the type of the other.
4237  ExprValueKind LVK = LHS.get()->getValueKind();
4238  ExprValueKind RVK = RHS.get()->getValueKind();
4239  if (!Context.hasSameType(LTy, RTy) &&
4240      Context.hasSameUnqualifiedType(LTy, RTy) &&
4241      LVK == RVK && LVK != VK_RValue) {
4242    // Since the unqualified types are reference-related and we require the
4243    // result to be as if a reference bound directly, the only conversion
4244    // we can perform is to add cv-qualifiers.
4245    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4246    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4247    if (RCVR.isStrictSupersetOf(LCVR)) {
4248      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4249      LTy = LHS.get()->getType();
4250    }
4251    else if (LCVR.isStrictSupersetOf(RCVR)) {
4252      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4253      RTy = RHS.get()->getType();
4254    }
4255  }
4256
4257  // C++11 [expr.cond]p4
4258  //   If the second and third operands are glvalues of the same value
4259  //   category and have the same type, the result is of that type and
4260  //   value category and it is a bit-field if the second or the third
4261  //   operand is a bit-field, or if both are bit-fields.
4262  // We only extend this to bitfields, not to the crazy other kinds of
4263  // l-values.
4264  bool Same = Context.hasSameType(LTy, RTy);
4265  if (Same && LVK == RVK && LVK != VK_RValue &&
4266      LHS.get()->isOrdinaryOrBitFieldObject() &&
4267      RHS.get()->isOrdinaryOrBitFieldObject()) {
4268    VK = LHS.get()->getValueKind();
4269    if (LHS.get()->getObjectKind() == OK_BitField ||
4270        RHS.get()->getObjectKind() == OK_BitField)
4271      OK = OK_BitField;
4272    return LTy;
4273  }
4274
4275  // C++11 [expr.cond]p5
4276  //   Otherwise, the result is a prvalue. If the second and third operands
4277  //   do not have the same type, and either has (cv) class type, ...
4278  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4279    //   ... overload resolution is used to determine the conversions (if any)
4280    //   to be applied to the operands. If the overload resolution fails, the
4281    //   program is ill-formed.
4282    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4283      return QualType();
4284  }
4285
4286  // C++11 [expr.cond]p6
4287  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4288  //   conversions are performed on the second and third operands.
4289  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4290  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4291  if (LHS.isInvalid() || RHS.isInvalid())
4292    return QualType();
4293  LTy = LHS.get()->getType();
4294  RTy = RHS.get()->getType();
4295
4296  //   After those conversions, one of the following shall hold:
4297  //   -- The second and third operands have the same type; the result
4298  //      is of that type. If the operands have class type, the result
4299  //      is a prvalue temporary of the result type, which is
4300  //      copy-initialized from either the second operand or the third
4301  //      operand depending on the value of the first operand.
4302  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4303    if (LTy->isRecordType()) {
4304      // The operands have class type. Make a temporary copy.
4305      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4306      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4307                                                     SourceLocation(),
4308                                                     LHS);
4309      if (LHSCopy.isInvalid())
4310        return QualType();
4311
4312      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4313                                                     SourceLocation(),
4314                                                     RHS);
4315      if (RHSCopy.isInvalid())
4316        return QualType();
4317
4318      LHS = LHSCopy;
4319      RHS = RHSCopy;
4320    }
4321
4322    return LTy;
4323  }
4324
4325  // Extension: conditional operator involving vector types.
4326  if (LTy->isVectorType() || RTy->isVectorType())
4327    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4328
4329  //   -- The second and third operands have arithmetic or enumeration type;
4330  //      the usual arithmetic conversions are performed to bring them to a
4331  //      common type, and the result is of that type.
4332  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4333    UsualArithmeticConversions(LHS, RHS);
4334    if (LHS.isInvalid() || RHS.isInvalid())
4335      return QualType();
4336    return LHS.get()->getType();
4337  }
4338
4339  //   -- The second and third operands have pointer type, or one has pointer
4340  //      type and the other is a null pointer constant, or both are null
4341  //      pointer constants, at least one of which is non-integral; pointer
4342  //      conversions and qualification conversions are performed to bring them
4343  //      to their composite pointer type. The result is of the composite
4344  //      pointer type.
4345  //   -- The second and third operands have pointer to member type, or one has
4346  //      pointer to member type and the other is a null pointer constant;
4347  //      pointer to member conversions and qualification conversions are
4348  //      performed to bring them to a common type, whose cv-qualification
4349  //      shall match the cv-qualification of either the second or the third
4350  //      operand. The result is of the common type.
4351  bool NonStandardCompositeType = false;
4352  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4353                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4354  if (!Composite.isNull()) {
4355    if (NonStandardCompositeType)
4356      Diag(QuestionLoc,
4357           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4358        << LTy << RTy << Composite
4359        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4360
4361    return Composite;
4362  }
4363
4364  // Similarly, attempt to find composite type of two objective-c pointers.
4365  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4366  if (!Composite.isNull())
4367    return Composite;
4368
4369  // Check if we are using a null with a non-pointer type.
4370  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4371    return QualType();
4372
4373  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4374    << LHS.get()->getType() << RHS.get()->getType()
4375    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4376  return QualType();
4377}
4378
4379/// \brief Find a merged pointer type and convert the two expressions to it.
4380///
4381/// This finds the composite pointer type (or member pointer type) for @p E1
4382/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4383/// type and returns it.
4384/// It does not emit diagnostics.
4385///
4386/// \param Loc The location of the operator requiring these two expressions to
4387/// be converted to the composite pointer type.
4388///
4389/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4390/// a non-standard (but still sane) composite type to which both expressions
4391/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4392/// will be set true.
4393QualType Sema::FindCompositePointerType(SourceLocation Loc,
4394                                        Expr *&E1, Expr *&E2,
4395                                        bool *NonStandardCompositeType) {
4396  if (NonStandardCompositeType)
4397    *NonStandardCompositeType = false;
4398
4399  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4400  QualType T1 = E1->getType(), T2 = E2->getType();
4401
4402  // C++11 5.9p2
4403  //   Pointer conversions and qualification conversions are performed on
4404  //   pointer operands to bring them to their composite pointer type. If
4405  //   one operand is a null pointer constant, the composite pointer type is
4406  //   std::nullptr_t if the other operand is also a null pointer constant or,
4407  //   if the other operand is a pointer, the type of the other operand.
4408  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4409      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4410    if (T1->isNullPtrType() &&
4411        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4412      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4413      return T1;
4414    }
4415    if (T2->isNullPtrType() &&
4416        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4417      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4418      return T2;
4419    }
4420    return QualType();
4421  }
4422
4423  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4424    if (T2->isMemberPointerType())
4425      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4426    else
4427      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4428    return T2;
4429  }
4430  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4431    if (T1->isMemberPointerType())
4432      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4433    else
4434      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4435    return T1;
4436  }
4437
4438  // Now both have to be pointers or member pointers.
4439  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4440      (!T2->isPointerType() && !T2->isMemberPointerType()))
4441    return QualType();
4442
4443  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4444  //   the other has type "pointer to cv2 T" and the composite pointer type is
4445  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4446  //   Otherwise, the composite pointer type is a pointer type similar to the
4447  //   type of one of the operands, with a cv-qualification signature that is
4448  //   the union of the cv-qualification signatures of the operand types.
4449  // In practice, the first part here is redundant; it's subsumed by the second.
4450  // What we do here is, we build the two possible composite types, and try the
4451  // conversions in both directions. If only one works, or if the two composite
4452  // types are the same, we have succeeded.
4453  // FIXME: extended qualifiers?
4454  typedef SmallVector<unsigned, 4> QualifierVector;
4455  QualifierVector QualifierUnion;
4456  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4457      ContainingClassVector;
4458  ContainingClassVector MemberOfClass;
4459  QualType Composite1 = Context.getCanonicalType(T1),
4460           Composite2 = Context.getCanonicalType(T2);
4461  unsigned NeedConstBefore = 0;
4462  do {
4463    const PointerType *Ptr1, *Ptr2;
4464    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4465        (Ptr2 = Composite2->getAs<PointerType>())) {
4466      Composite1 = Ptr1->getPointeeType();
4467      Composite2 = Ptr2->getPointeeType();
4468
4469      // If we're allowed to create a non-standard composite type, keep track
4470      // of where we need to fill in additional 'const' qualifiers.
4471      if (NonStandardCompositeType &&
4472          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4473        NeedConstBefore = QualifierUnion.size();
4474
4475      QualifierUnion.push_back(
4476                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4477      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4478      continue;
4479    }
4480
4481    const MemberPointerType *MemPtr1, *MemPtr2;
4482    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4483        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4484      Composite1 = MemPtr1->getPointeeType();
4485      Composite2 = MemPtr2->getPointeeType();
4486
4487      // If we're allowed to create a non-standard composite type, keep track
4488      // of where we need to fill in additional 'const' qualifiers.
4489      if (NonStandardCompositeType &&
4490          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4491        NeedConstBefore = QualifierUnion.size();
4492
4493      QualifierUnion.push_back(
4494                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4495      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4496                                             MemPtr2->getClass()));
4497      continue;
4498    }
4499
4500    // FIXME: block pointer types?
4501
4502    // Cannot unwrap any more types.
4503    break;
4504  } while (true);
4505
4506  if (NeedConstBefore && NonStandardCompositeType) {
4507    // Extension: Add 'const' to qualifiers that come before the first qualifier
4508    // mismatch, so that our (non-standard!) composite type meets the
4509    // requirements of C++ [conv.qual]p4 bullet 3.
4510    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4511      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4512        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4513        *NonStandardCompositeType = true;
4514      }
4515    }
4516  }
4517
4518  // Rewrap the composites as pointers or member pointers with the union CVRs.
4519  ContainingClassVector::reverse_iterator MOC
4520    = MemberOfClass.rbegin();
4521  for (QualifierVector::reverse_iterator
4522         I = QualifierUnion.rbegin(),
4523         E = QualifierUnion.rend();
4524       I != E; (void)++I, ++MOC) {
4525    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4526    if (MOC->first && MOC->second) {
4527      // Rebuild member pointer type
4528      Composite1 = Context.getMemberPointerType(
4529                                    Context.getQualifiedType(Composite1, Quals),
4530                                    MOC->first);
4531      Composite2 = Context.getMemberPointerType(
4532                                    Context.getQualifiedType(Composite2, Quals),
4533                                    MOC->second);
4534    } else {
4535      // Rebuild pointer type
4536      Composite1
4537        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4538      Composite2
4539        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4540    }
4541  }
4542
4543  // Try to convert to the first composite pointer type.
4544  InitializedEntity Entity1
4545    = InitializedEntity::InitializeTemporary(Composite1);
4546  InitializationKind Kind
4547    = InitializationKind::CreateCopy(Loc, SourceLocation());
4548  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4549  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4550
4551  if (E1ToC1 && E2ToC1) {
4552    // Conversion to Composite1 is viable.
4553    if (!Context.hasSameType(Composite1, Composite2)) {
4554      // Composite2 is a different type from Composite1. Check whether
4555      // Composite2 is also viable.
4556      InitializedEntity Entity2
4557        = InitializedEntity::InitializeTemporary(Composite2);
4558      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4559      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4560      if (E1ToC2 && E2ToC2) {
4561        // Both Composite1 and Composite2 are viable and are different;
4562        // this is an ambiguity.
4563        return QualType();
4564      }
4565    }
4566
4567    // Convert E1 to Composite1
4568    ExprResult E1Result
4569      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4570    if (E1Result.isInvalid())
4571      return QualType();
4572    E1 = E1Result.takeAs<Expr>();
4573
4574    // Convert E2 to Composite1
4575    ExprResult E2Result
4576      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4577    if (E2Result.isInvalid())
4578      return QualType();
4579    E2 = E2Result.takeAs<Expr>();
4580
4581    return Composite1;
4582  }
4583
4584  // Check whether Composite2 is viable.
4585  InitializedEntity Entity2
4586    = InitializedEntity::InitializeTemporary(Composite2);
4587  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4588  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4589  if (!E1ToC2 || !E2ToC2)
4590    return QualType();
4591
4592  // Convert E1 to Composite2
4593  ExprResult E1Result
4594    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4595  if (E1Result.isInvalid())
4596    return QualType();
4597  E1 = E1Result.takeAs<Expr>();
4598
4599  // Convert E2 to Composite2
4600  ExprResult E2Result
4601    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4602  if (E2Result.isInvalid())
4603    return QualType();
4604  E2 = E2Result.takeAs<Expr>();
4605
4606  return Composite2;
4607}
4608
4609ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4610  if (!E)
4611    return ExprError();
4612
4613  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4614
4615  // If the result is a glvalue, we shouldn't bind it.
4616  if (!E->isRValue())
4617    return Owned(E);
4618
4619  // In ARC, calls that return a retainable type can return retained,
4620  // in which case we have to insert a consuming cast.
4621  if (getLangOpts().ObjCAutoRefCount &&
4622      E->getType()->isObjCRetainableType()) {
4623
4624    bool ReturnsRetained;
4625
4626    // For actual calls, we compute this by examining the type of the
4627    // called value.
4628    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4629      Expr *Callee = Call->getCallee()->IgnoreParens();
4630      QualType T = Callee->getType();
4631
4632      if (T == Context.BoundMemberTy) {
4633        // Handle pointer-to-members.
4634        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4635          T = BinOp->getRHS()->getType();
4636        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4637          T = Mem->getMemberDecl()->getType();
4638      }
4639
4640      if (const PointerType *Ptr = T->getAs<PointerType>())
4641        T = Ptr->getPointeeType();
4642      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4643        T = Ptr->getPointeeType();
4644      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4645        T = MemPtr->getPointeeType();
4646
4647      const FunctionType *FTy = T->getAs<FunctionType>();
4648      assert(FTy && "call to value not of function type?");
4649      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4650
4651    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4652    // type always produce a +1 object.
4653    } else if (isa<StmtExpr>(E)) {
4654      ReturnsRetained = true;
4655
4656    // We hit this case with the lambda conversion-to-block optimization;
4657    // we don't want any extra casts here.
4658    } else if (isa<CastExpr>(E) &&
4659               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4660      return Owned(E);
4661
4662    // For message sends and property references, we try to find an
4663    // actual method.  FIXME: we should infer retention by selector in
4664    // cases where we don't have an actual method.
4665    } else {
4666      ObjCMethodDecl *D = 0;
4667      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4668        D = Send->getMethodDecl();
4669      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4670        D = BoxedExpr->getBoxingMethod();
4671      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4672        D = ArrayLit->getArrayWithObjectsMethod();
4673      } else if (ObjCDictionaryLiteral *DictLit
4674                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4675        D = DictLit->getDictWithObjectsMethod();
4676      }
4677
4678      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4679
4680      // Don't do reclaims on performSelector calls; despite their
4681      // return type, the invoked method doesn't necessarily actually
4682      // return an object.
4683      if (!ReturnsRetained &&
4684          D && D->getMethodFamily() == OMF_performSelector)
4685        return Owned(E);
4686    }
4687
4688    // Don't reclaim an object of Class type.
4689    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4690      return Owned(E);
4691
4692    ExprNeedsCleanups = true;
4693
4694    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4695                                   : CK_ARCReclaimReturnedObject);
4696    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4697                                          VK_RValue));
4698  }
4699
4700  if (!getLangOpts().CPlusPlus)
4701    return Owned(E);
4702
4703  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4704  // a fast path for the common case that the type is directly a RecordType.
4705  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4706  const RecordType *RT = 0;
4707  while (!RT) {
4708    switch (T->getTypeClass()) {
4709    case Type::Record:
4710      RT = cast<RecordType>(T);
4711      break;
4712    case Type::ConstantArray:
4713    case Type::IncompleteArray:
4714    case Type::VariableArray:
4715    case Type::DependentSizedArray:
4716      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4717      break;
4718    default:
4719      return Owned(E);
4720    }
4721  }
4722
4723  // That should be enough to guarantee that this type is complete, if we're
4724  // not processing a decltype expression.
4725  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4726  if (RD->isInvalidDecl() || RD->isDependentContext())
4727    return Owned(E);
4728
4729  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4730  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4731
4732  if (Destructor) {
4733    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4734    CheckDestructorAccess(E->getExprLoc(), Destructor,
4735                          PDiag(diag::err_access_dtor_temp)
4736                            << E->getType());
4737    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4738
4739    // If destructor is trivial, we can avoid the extra copy.
4740    if (Destructor->isTrivial())
4741      return Owned(E);
4742
4743    // We need a cleanup, but we don't need to remember the temporary.
4744    ExprNeedsCleanups = true;
4745  }
4746
4747  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4748  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4749
4750  if (IsDecltype)
4751    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4752
4753  return Owned(Bind);
4754}
4755
4756ExprResult
4757Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4758  if (SubExpr.isInvalid())
4759    return ExprError();
4760
4761  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4762}
4763
4764Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4765  assert(SubExpr && "sub expression can't be null!");
4766
4767  CleanupVarDeclMarking();
4768
4769  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4770  assert(ExprCleanupObjects.size() >= FirstCleanup);
4771  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4772  if (!ExprNeedsCleanups)
4773    return SubExpr;
4774
4775  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4776    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4777                         ExprCleanupObjects.size() - FirstCleanup);
4778
4779  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4780  DiscardCleanupsInEvaluationContext();
4781
4782  return E;
4783}
4784
4785Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4786  assert(SubStmt && "sub statement can't be null!");
4787
4788  CleanupVarDeclMarking();
4789
4790  if (!ExprNeedsCleanups)
4791    return SubStmt;
4792
4793  // FIXME: In order to attach the temporaries, wrap the statement into
4794  // a StmtExpr; currently this is only used for asm statements.
4795  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4796  // a new AsmStmtWithTemporaries.
4797  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4798                                                      SourceLocation(),
4799                                                      SourceLocation());
4800  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4801                                   SourceLocation());
4802  return MaybeCreateExprWithCleanups(E);
4803}
4804
4805/// Process the expression contained within a decltype. For such expressions,
4806/// certain semantic checks on temporaries are delayed until this point, and
4807/// are omitted for the 'topmost' call in the decltype expression. If the
4808/// topmost call bound a temporary, strip that temporary off the expression.
4809ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4810  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4811  assert(Rec.IsDecltype && "not in a decltype expression");
4812
4813  // C++11 [expr.call]p11:
4814  //   If a function call is a prvalue of object type,
4815  // -- if the function call is either
4816  //   -- the operand of a decltype-specifier, or
4817  //   -- the right operand of a comma operator that is the operand of a
4818  //      decltype-specifier,
4819  //   a temporary object is not introduced for the prvalue.
4820
4821  // Recursively rebuild ParenExprs and comma expressions to strip out the
4822  // outermost CXXBindTemporaryExpr, if any.
4823  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4824    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4825    if (SubExpr.isInvalid())
4826      return ExprError();
4827    if (SubExpr.get() == PE->getSubExpr())
4828      return Owned(E);
4829    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4830  }
4831  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4832    if (BO->getOpcode() == BO_Comma) {
4833      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4834      if (RHS.isInvalid())
4835        return ExprError();
4836      if (RHS.get() == BO->getRHS())
4837        return Owned(E);
4838      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4839                                                BO_Comma, BO->getType(),
4840                                                BO->getValueKind(),
4841                                                BO->getObjectKind(),
4842                                                BO->getOperatorLoc()));
4843    }
4844  }
4845
4846  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4847  if (TopBind)
4848    E = TopBind->getSubExpr();
4849
4850  // Disable the special decltype handling now.
4851  Rec.IsDecltype = false;
4852
4853  // In MS mode, don't perform any extra checking of call return types within a
4854  // decltype expression.
4855  if (getLangOpts().MicrosoftMode)
4856    return Owned(E);
4857
4858  // Perform the semantic checks we delayed until this point.
4859  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4860  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4861    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4862    if (Call == TopCall)
4863      continue;
4864
4865    if (CheckCallReturnType(Call->getCallReturnType(),
4866                            Call->getLocStart(),
4867                            Call, Call->getDirectCallee()))
4868      return ExprError();
4869  }
4870
4871  // Now all relevant types are complete, check the destructors are accessible
4872  // and non-deleted, and annotate them on the temporaries.
4873  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4874    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4875    if (Bind == TopBind)
4876      continue;
4877
4878    CXXTemporary *Temp = Bind->getTemporary();
4879
4880    CXXRecordDecl *RD =
4881      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4882    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4883    Temp->setDestructor(Destructor);
4884
4885    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4886    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4887                          PDiag(diag::err_access_dtor_temp)
4888                            << Bind->getType());
4889    DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4890
4891    // We need a cleanup, but we don't need to remember the temporary.
4892    ExprNeedsCleanups = true;
4893  }
4894
4895  // Possibly strip off the top CXXBindTemporaryExpr.
4896  return Owned(E);
4897}
4898
4899ExprResult
4900Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4901                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4902                                   bool &MayBePseudoDestructor) {
4903  // Since this might be a postfix expression, get rid of ParenListExprs.
4904  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4905  if (Result.isInvalid()) return ExprError();
4906  Base = Result.get();
4907
4908  Result = CheckPlaceholderExpr(Base);
4909  if (Result.isInvalid()) return ExprError();
4910  Base = Result.take();
4911
4912  QualType BaseType = Base->getType();
4913  MayBePseudoDestructor = false;
4914  if (BaseType->isDependentType()) {
4915    // If we have a pointer to a dependent type and are using the -> operator,
4916    // the object type is the type that the pointer points to. We might still
4917    // have enough information about that type to do something useful.
4918    if (OpKind == tok::arrow)
4919      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4920        BaseType = Ptr->getPointeeType();
4921
4922    ObjectType = ParsedType::make(BaseType);
4923    MayBePseudoDestructor = true;
4924    return Owned(Base);
4925  }
4926
4927  // C++ [over.match.oper]p8:
4928  //   [...] When operator->returns, the operator-> is applied  to the value
4929  //   returned, with the original second operand.
4930  if (OpKind == tok::arrow) {
4931    // The set of types we've considered so far.
4932    llvm::SmallPtrSet<CanQualType,8> CTypes;
4933    SmallVector<SourceLocation, 8> Locations;
4934    CTypes.insert(Context.getCanonicalType(BaseType));
4935
4936    while (BaseType->isRecordType()) {
4937      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4938      if (Result.isInvalid())
4939        return ExprError();
4940      Base = Result.get();
4941      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4942        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4943      BaseType = Base->getType();
4944      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4945      if (!CTypes.insert(CBaseType)) {
4946        Diag(OpLoc, diag::err_operator_arrow_circular);
4947        for (unsigned i = 0; i < Locations.size(); i++)
4948          Diag(Locations[i], diag::note_declared_at);
4949        return ExprError();
4950      }
4951    }
4952
4953    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4954      BaseType = BaseType->getPointeeType();
4955  }
4956
4957  // Objective-C properties allow "." access on Objective-C pointer types,
4958  // so adjust the base type to the object type itself.
4959  if (BaseType->isObjCObjectPointerType())
4960    BaseType = BaseType->getPointeeType();
4961
4962  // C++ [basic.lookup.classref]p2:
4963  //   [...] If the type of the object expression is of pointer to scalar
4964  //   type, the unqualified-id is looked up in the context of the complete
4965  //   postfix-expression.
4966  //
4967  // This also indicates that we could be parsing a pseudo-destructor-name.
4968  // Note that Objective-C class and object types can be pseudo-destructor
4969  // expressions or normal member (ivar or property) access expressions.
4970  if (BaseType->isObjCObjectOrInterfaceType()) {
4971    MayBePseudoDestructor = true;
4972  } else if (!BaseType->isRecordType()) {
4973    ObjectType = ParsedType();
4974    MayBePseudoDestructor = true;
4975    return Owned(Base);
4976  }
4977
4978  // The object type must be complete (or dependent), or
4979  // C++11 [expr.prim.general]p3:
4980  //   Unlike the object expression in other contexts, *this is not required to
4981  //   be of complete type for purposes of class member access (5.2.5) outside
4982  //   the member function body.
4983  if (!BaseType->isDependentType() &&
4984      !isThisOutsideMemberFunctionBody(BaseType) &&
4985      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4986    return ExprError();
4987
4988  // C++ [basic.lookup.classref]p2:
4989  //   If the id-expression in a class member access (5.2.5) is an
4990  //   unqualified-id, and the type of the object expression is of a class
4991  //   type C (or of pointer to a class type C), the unqualified-id is looked
4992  //   up in the scope of class C. [...]
4993  ObjectType = ParsedType::make(BaseType);
4994  return move(Base);
4995}
4996
4997ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4998                                                   Expr *MemExpr) {
4999  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5000  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5001    << isa<CXXPseudoDestructorExpr>(MemExpr)
5002    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5003
5004  return ActOnCallExpr(/*Scope*/ 0,
5005                       MemExpr,
5006                       /*LPLoc*/ ExpectedLParenLoc,
5007                       MultiExprArg(),
5008                       /*RPLoc*/ ExpectedLParenLoc);
5009}
5010
5011static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5012                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5013  if (Base->hasPlaceholderType()) {
5014    ExprResult result = S.CheckPlaceholderExpr(Base);
5015    if (result.isInvalid()) return true;
5016    Base = result.take();
5017  }
5018  ObjectType = Base->getType();
5019
5020  // C++ [expr.pseudo]p2:
5021  //   The left-hand side of the dot operator shall be of scalar type. The
5022  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5023  //   This scalar type is the object type.
5024  // Note that this is rather different from the normal handling for the
5025  // arrow operator.
5026  if (OpKind == tok::arrow) {
5027    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5028      ObjectType = Ptr->getPointeeType();
5029    } else if (!Base->isTypeDependent()) {
5030      // The user wrote "p->" when she probably meant "p."; fix it.
5031      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5032        << ObjectType << true
5033        << FixItHint::CreateReplacement(OpLoc, ".");
5034      if (S.isSFINAEContext())
5035        return true;
5036
5037      OpKind = tok::period;
5038    }
5039  }
5040
5041  return false;
5042}
5043
5044ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5045                                           SourceLocation OpLoc,
5046                                           tok::TokenKind OpKind,
5047                                           const CXXScopeSpec &SS,
5048                                           TypeSourceInfo *ScopeTypeInfo,
5049                                           SourceLocation CCLoc,
5050                                           SourceLocation TildeLoc,
5051                                         PseudoDestructorTypeStorage Destructed,
5052                                           bool HasTrailingLParen) {
5053  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5054
5055  QualType ObjectType;
5056  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5057    return ExprError();
5058
5059  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
5060    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5061      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5062    else
5063      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5064        << ObjectType << Base->getSourceRange();
5065    return ExprError();
5066  }
5067
5068  // C++ [expr.pseudo]p2:
5069  //   [...] The cv-unqualified versions of the object type and of the type
5070  //   designated by the pseudo-destructor-name shall be the same type.
5071  if (DestructedTypeInfo) {
5072    QualType DestructedType = DestructedTypeInfo->getType();
5073    SourceLocation DestructedTypeStart
5074      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5075    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5076      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5077        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5078          << ObjectType << DestructedType << Base->getSourceRange()
5079          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5080
5081        // Recover by setting the destructed type to the object type.
5082        DestructedType = ObjectType;
5083        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5084                                                           DestructedTypeStart);
5085        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5086      } else if (DestructedType.getObjCLifetime() !=
5087                                                ObjectType.getObjCLifetime()) {
5088
5089        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5090          // Okay: just pretend that the user provided the correctly-qualified
5091          // type.
5092        } else {
5093          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5094            << ObjectType << DestructedType << Base->getSourceRange()
5095            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5096        }
5097
5098        // Recover by setting the destructed type to the object type.
5099        DestructedType = ObjectType;
5100        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5101                                                           DestructedTypeStart);
5102        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5103      }
5104    }
5105  }
5106
5107  // C++ [expr.pseudo]p2:
5108  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5109  //   form
5110  //
5111  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5112  //
5113  //   shall designate the same scalar type.
5114  if (ScopeTypeInfo) {
5115    QualType ScopeType = ScopeTypeInfo->getType();
5116    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5117        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5118
5119      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5120           diag::err_pseudo_dtor_type_mismatch)
5121        << ObjectType << ScopeType << Base->getSourceRange()
5122        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5123
5124      ScopeType = QualType();
5125      ScopeTypeInfo = 0;
5126    }
5127  }
5128
5129  Expr *Result
5130    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5131                                            OpKind == tok::arrow, OpLoc,
5132                                            SS.getWithLocInContext(Context),
5133                                            ScopeTypeInfo,
5134                                            CCLoc,
5135                                            TildeLoc,
5136                                            Destructed);
5137
5138  if (HasTrailingLParen)
5139    return Owned(Result);
5140
5141  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5142}
5143
5144ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5145                                           SourceLocation OpLoc,
5146                                           tok::TokenKind OpKind,
5147                                           CXXScopeSpec &SS,
5148                                           UnqualifiedId &FirstTypeName,
5149                                           SourceLocation CCLoc,
5150                                           SourceLocation TildeLoc,
5151                                           UnqualifiedId &SecondTypeName,
5152                                           bool HasTrailingLParen) {
5153  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5154          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5155         "Invalid first type name in pseudo-destructor");
5156  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5157          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5158         "Invalid second type name in pseudo-destructor");
5159
5160  QualType ObjectType;
5161  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5162    return ExprError();
5163
5164  // Compute the object type that we should use for name lookup purposes. Only
5165  // record types and dependent types matter.
5166  ParsedType ObjectTypePtrForLookup;
5167  if (!SS.isSet()) {
5168    if (ObjectType->isRecordType())
5169      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5170    else if (ObjectType->isDependentType())
5171      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5172  }
5173
5174  // Convert the name of the type being destructed (following the ~) into a
5175  // type (with source-location information).
5176  QualType DestructedType;
5177  TypeSourceInfo *DestructedTypeInfo = 0;
5178  PseudoDestructorTypeStorage Destructed;
5179  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5180    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5181                               SecondTypeName.StartLocation,
5182                               S, &SS, true, false, ObjectTypePtrForLookup);
5183    if (!T &&
5184        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5185         (!SS.isSet() && ObjectType->isDependentType()))) {
5186      // The name of the type being destroyed is a dependent name, and we
5187      // couldn't find anything useful in scope. Just store the identifier and
5188      // it's location, and we'll perform (qualified) name lookup again at
5189      // template instantiation time.
5190      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5191                                               SecondTypeName.StartLocation);
5192    } else if (!T) {
5193      Diag(SecondTypeName.StartLocation,
5194           diag::err_pseudo_dtor_destructor_non_type)
5195        << SecondTypeName.Identifier << ObjectType;
5196      if (isSFINAEContext())
5197        return ExprError();
5198
5199      // Recover by assuming we had the right type all along.
5200      DestructedType = ObjectType;
5201    } else
5202      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5203  } else {
5204    // Resolve the template-id to a type.
5205    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5206    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5207                                       TemplateId->getTemplateArgs(),
5208                                       TemplateId->NumArgs);
5209    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5210                                       TemplateId->TemplateKWLoc,
5211                                       TemplateId->Template,
5212                                       TemplateId->TemplateNameLoc,
5213                                       TemplateId->LAngleLoc,
5214                                       TemplateArgsPtr,
5215                                       TemplateId->RAngleLoc);
5216    if (T.isInvalid() || !T.get()) {
5217      // Recover by assuming we had the right type all along.
5218      DestructedType = ObjectType;
5219    } else
5220      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5221  }
5222
5223  // If we've performed some kind of recovery, (re-)build the type source
5224  // information.
5225  if (!DestructedType.isNull()) {
5226    if (!DestructedTypeInfo)
5227      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5228                                                  SecondTypeName.StartLocation);
5229    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5230  }
5231
5232  // Convert the name of the scope type (the type prior to '::') into a type.
5233  TypeSourceInfo *ScopeTypeInfo = 0;
5234  QualType ScopeType;
5235  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5236      FirstTypeName.Identifier) {
5237    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5238      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5239                                 FirstTypeName.StartLocation,
5240                                 S, &SS, true, false, ObjectTypePtrForLookup);
5241      if (!T) {
5242        Diag(FirstTypeName.StartLocation,
5243             diag::err_pseudo_dtor_destructor_non_type)
5244          << FirstTypeName.Identifier << ObjectType;
5245
5246        if (isSFINAEContext())
5247          return ExprError();
5248
5249        // Just drop this type. It's unnecessary anyway.
5250        ScopeType = QualType();
5251      } else
5252        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5253    } else {
5254      // Resolve the template-id to a type.
5255      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5256      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5257                                         TemplateId->getTemplateArgs(),
5258                                         TemplateId->NumArgs);
5259      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5260                                         TemplateId->TemplateKWLoc,
5261                                         TemplateId->Template,
5262                                         TemplateId->TemplateNameLoc,
5263                                         TemplateId->LAngleLoc,
5264                                         TemplateArgsPtr,
5265                                         TemplateId->RAngleLoc);
5266      if (T.isInvalid() || !T.get()) {
5267        // Recover by dropping this type.
5268        ScopeType = QualType();
5269      } else
5270        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5271    }
5272  }
5273
5274  if (!ScopeType.isNull() && !ScopeTypeInfo)
5275    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5276                                                  FirstTypeName.StartLocation);
5277
5278
5279  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5280                                   ScopeTypeInfo, CCLoc, TildeLoc,
5281                                   Destructed, HasTrailingLParen);
5282}
5283
5284ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5285                                           SourceLocation OpLoc,
5286                                           tok::TokenKind OpKind,
5287                                           SourceLocation TildeLoc,
5288                                           const DeclSpec& DS,
5289                                           bool HasTrailingLParen) {
5290  QualType ObjectType;
5291  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5292    return ExprError();
5293
5294  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5295
5296  TypeLocBuilder TLB;
5297  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5298  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5299  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5300  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5301
5302  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5303                                   0, SourceLocation(), TildeLoc,
5304                                   Destructed, HasTrailingLParen);
5305}
5306
5307ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5308                                        CXXConversionDecl *Method,
5309                                        bool HadMultipleCandidates) {
5310  if (Method->getParent()->isLambda() &&
5311      Method->getConversionType()->isBlockPointerType()) {
5312    // This is a lambda coversion to block pointer; check if the argument
5313    // is a LambdaExpr.
5314    Expr *SubE = E;
5315    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5316    if (CE && CE->getCastKind() == CK_NoOp)
5317      SubE = CE->getSubExpr();
5318    SubE = SubE->IgnoreParens();
5319    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5320      SubE = BE->getSubExpr();
5321    if (isa<LambdaExpr>(SubE)) {
5322      // For the conversion to block pointer on a lambda expression, we
5323      // construct a special BlockLiteral instead; this doesn't really make
5324      // a difference in ARC, but outside of ARC the resulting block literal
5325      // follows the normal lifetime rules for block literals instead of being
5326      // autoreleased.
5327      DiagnosticErrorTrap Trap(Diags);
5328      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5329                                                     E->getExprLoc(),
5330                                                     Method, E);
5331      if (Exp.isInvalid())
5332        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5333      return Exp;
5334    }
5335  }
5336
5337
5338  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5339                                          FoundDecl, Method);
5340  if (Exp.isInvalid())
5341    return true;
5342
5343  MemberExpr *ME =
5344      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5345                               SourceLocation(), Context.BoundMemberTy,
5346                               VK_RValue, OK_Ordinary);
5347  if (HadMultipleCandidates)
5348    ME->setHadMultipleCandidates(true);
5349
5350  QualType ResultType = Method->getResultType();
5351  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5352  ResultType = ResultType.getNonLValueExprType(Context);
5353
5354  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5355  CXXMemberCallExpr *CE =
5356    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
5357                                    Exp.get()->getLocEnd());
5358  return CE;
5359}
5360
5361ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5362                                      SourceLocation RParen) {
5363  CanThrowResult CanThrow = canThrow(Operand);
5364  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5365                                             CanThrow, KeyLoc, RParen));
5366}
5367
5368ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5369                                   Expr *Operand, SourceLocation RParen) {
5370  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5371}
5372
5373static bool IsSpecialDiscardedValue(Expr *E) {
5374  // In C++11, discarded-value expressions of a certain form are special,
5375  // according to [expr]p10:
5376  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5377  //   expression is an lvalue of volatile-qualified type and it has
5378  //   one of the following forms:
5379  E = E->IgnoreParens();
5380
5381  //   - id-expression (5.1.1),
5382  if (isa<DeclRefExpr>(E))
5383    return true;
5384
5385  //   - subscripting (5.2.1),
5386  if (isa<ArraySubscriptExpr>(E))
5387    return true;
5388
5389  //   - class member access (5.2.5),
5390  if (isa<MemberExpr>(E))
5391    return true;
5392
5393  //   - indirection (5.3.1),
5394  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5395    if (UO->getOpcode() == UO_Deref)
5396      return true;
5397
5398  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5399    //   - pointer-to-member operation (5.5),
5400    if (BO->isPtrMemOp())
5401      return true;
5402
5403    //   - comma expression (5.18) where the right operand is one of the above.
5404    if (BO->getOpcode() == BO_Comma)
5405      return IsSpecialDiscardedValue(BO->getRHS());
5406  }
5407
5408  //   - conditional expression (5.16) where both the second and the third
5409  //     operands are one of the above, or
5410  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5411    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5412           IsSpecialDiscardedValue(CO->getFalseExpr());
5413  // The related edge case of "*x ?: *x".
5414  if (BinaryConditionalOperator *BCO =
5415          dyn_cast<BinaryConditionalOperator>(E)) {
5416    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5417      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5418             IsSpecialDiscardedValue(BCO->getFalseExpr());
5419  }
5420
5421  // Objective-C++ extensions to the rule.
5422  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5423    return true;
5424
5425  return false;
5426}
5427
5428/// Perform the conversions required for an expression used in a
5429/// context that ignores the result.
5430ExprResult Sema::IgnoredValueConversions(Expr *E) {
5431  if (E->hasPlaceholderType()) {
5432    ExprResult result = CheckPlaceholderExpr(E);
5433    if (result.isInvalid()) return Owned(E);
5434    E = result.take();
5435  }
5436
5437  // C99 6.3.2.1:
5438  //   [Except in specific positions,] an lvalue that does not have
5439  //   array type is converted to the value stored in the
5440  //   designated object (and is no longer an lvalue).
5441  if (E->isRValue()) {
5442    // In C, function designators (i.e. expressions of function type)
5443    // are r-values, but we still want to do function-to-pointer decay
5444    // on them.  This is both technically correct and convenient for
5445    // some clients.
5446    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5447      return DefaultFunctionArrayConversion(E);
5448
5449    return Owned(E);
5450  }
5451
5452  if (getLangOpts().CPlusPlus)  {
5453    // The C++11 standard defines the notion of a discarded-value expression;
5454    // normally, we don't need to do anything to handle it, but if it is a
5455    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5456    // conversion.
5457    if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
5458        E->getType().isVolatileQualified() &&
5459        IsSpecialDiscardedValue(E)) {
5460      ExprResult Res = DefaultLvalueConversion(E);
5461      if (Res.isInvalid())
5462        return Owned(E);
5463      E = Res.take();
5464    }
5465    return Owned(E);
5466  }
5467
5468  // GCC seems to also exclude expressions of incomplete enum type.
5469  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5470    if (!T->getDecl()->isComplete()) {
5471      // FIXME: stupid workaround for a codegen bug!
5472      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5473      return Owned(E);
5474    }
5475  }
5476
5477  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5478  if (Res.isInvalid())
5479    return Owned(E);
5480  E = Res.take();
5481
5482  if (!E->getType()->isVoidType())
5483    RequireCompleteType(E->getExprLoc(), E->getType(),
5484                        diag::err_incomplete_type);
5485  return Owned(E);
5486}
5487
5488ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
5489  ExprResult FullExpr = Owned(FE);
5490
5491  if (!FullExpr.get())
5492    return ExprError();
5493
5494  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5495    return ExprError();
5496
5497  // Top-level message sends default to 'id' when we're in a debugger.
5498  if (getLangOpts().DebuggerCastResultToId &&
5499      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5500      isa<ObjCMessageExpr>(FullExpr.get())) {
5501    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5502    if (FullExpr.isInvalid())
5503      return ExprError();
5504  }
5505
5506  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5507  if (FullExpr.isInvalid())
5508    return ExprError();
5509
5510  FullExpr = IgnoredValueConversions(FullExpr.take());
5511  if (FullExpr.isInvalid())
5512    return ExprError();
5513
5514  CheckImplicitConversions(FullExpr.get(), CC);
5515  return MaybeCreateExprWithCleanups(FullExpr);
5516}
5517
5518StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5519  if (!FullStmt) return StmtError();
5520
5521  return MaybeCreateStmtWithCleanups(FullStmt);
5522}
5523
5524Sema::IfExistsResult
5525Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5526                                   CXXScopeSpec &SS,
5527                                   const DeclarationNameInfo &TargetNameInfo) {
5528  DeclarationName TargetName = TargetNameInfo.getName();
5529  if (!TargetName)
5530    return IER_DoesNotExist;
5531
5532  // If the name itself is dependent, then the result is dependent.
5533  if (TargetName.isDependentName())
5534    return IER_Dependent;
5535
5536  // Do the redeclaration lookup in the current scope.
5537  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5538                 Sema::NotForRedeclaration);
5539  LookupParsedName(R, S, &SS);
5540  R.suppressDiagnostics();
5541
5542  switch (R.getResultKind()) {
5543  case LookupResult::Found:
5544  case LookupResult::FoundOverloaded:
5545  case LookupResult::FoundUnresolvedValue:
5546  case LookupResult::Ambiguous:
5547    return IER_Exists;
5548
5549  case LookupResult::NotFound:
5550    return IER_DoesNotExist;
5551
5552  case LookupResult::NotFoundInCurrentInstantiation:
5553    return IER_Dependent;
5554  }
5555
5556  llvm_unreachable("Invalid LookupResult Kind!");
5557}
5558
5559Sema::IfExistsResult
5560Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5561                                   bool IsIfExists, CXXScopeSpec &SS,
5562                                   UnqualifiedId &Name) {
5563  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5564
5565  // Check for unexpanded parameter packs.
5566  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5567  collectUnexpandedParameterPacks(SS, Unexpanded);
5568  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5569  if (!Unexpanded.empty()) {
5570    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5571                                     IsIfExists? UPPC_IfExists
5572                                               : UPPC_IfNotExists,
5573                                     Unexpanded);
5574    return IER_Error;
5575  }
5576
5577  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5578}
5579