SemaCXXScopeSpec.cpp revision 296417
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/Template.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27
28/// \brief Find the current instantiation that associated with the given type.
29static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                DeclContext *CurContext) {
31  if (T.isNull())
32    return nullptr;
33
34  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37    if (!Record->isDependentContext() ||
38        Record->isCurrentInstantiation(CurContext))
39      return Record;
40
41    return nullptr;
42  } else if (isa<InjectedClassNameType>(Ty))
43    return cast<InjectedClassNameType>(Ty)->getDecl();
44  else
45    return nullptr;
46}
47
48/// \brief Compute the DeclContext that is associated with the given type.
49///
50/// \param T the type for which we are attempting to find a DeclContext.
51///
52/// \returns the declaration context represented by the type T,
53/// or NULL if the declaration context cannot be computed (e.g., because it is
54/// dependent and not the current instantiation).
55DeclContext *Sema::computeDeclContext(QualType T) {
56  if (!T->isDependentType())
57    if (const TagType *Tag = T->getAs<TagType>())
58      return Tag->getDecl();
59
60  return ::getCurrentInstantiationOf(T, CurContext);
61}
62
63/// \brief Compute the DeclContext that is associated with the given
64/// scope specifier.
65///
66/// \param SS the C++ scope specifier as it appears in the source
67///
68/// \param EnteringContext when true, we will be entering the context of
69/// this scope specifier, so we can retrieve the declaration context of a
70/// class template or class template partial specialization even if it is
71/// not the current instantiation.
72///
73/// \returns the declaration context represented by the scope specifier @p SS,
74/// or NULL if the declaration context cannot be computed (e.g., because it is
75/// dependent and not the current instantiation).
76DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                      bool EnteringContext) {
78  if (!SS.isSet() || SS.isInvalid())
79    return nullptr;
80
81  NestedNameSpecifier *NNS = SS.getScopeRep();
82  if (NNS->isDependent()) {
83    // If this nested-name-specifier refers to the current
84    // instantiation, return its DeclContext.
85    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86      return Record;
87
88    if (EnteringContext) {
89      const Type *NNSType = NNS->getAsType();
90      if (!NNSType) {
91        return nullptr;
92      }
93
94      // Look through type alias templates, per C++0x [temp.dep.type]p1.
95      NNSType = Context.getCanonicalType(NNSType);
96      if (const TemplateSpecializationType *SpecType
97            = NNSType->getAs<TemplateSpecializationType>()) {
98        // We are entering the context of the nested name specifier, so try to
99        // match the nested name specifier to either a primary class template
100        // or a class template partial specialization.
101        if (ClassTemplateDecl *ClassTemplate
102              = dyn_cast_or_null<ClassTemplateDecl>(
103                            SpecType->getTemplateName().getAsTemplateDecl())) {
104          QualType ContextType
105            = Context.getCanonicalType(QualType(SpecType, 0));
106
107          // If the type of the nested name specifier is the same as the
108          // injected class name of the named class template, we're entering
109          // into that class template definition.
110          QualType Injected
111            = ClassTemplate->getInjectedClassNameSpecialization();
112          if (Context.hasSameType(Injected, ContextType))
113            return ClassTemplate->getTemplatedDecl();
114
115          // If the type of the nested name specifier is the same as the
116          // type of one of the class template's class template partial
117          // specializations, we're entering into the definition of that
118          // class template partial specialization.
119          if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                = ClassTemplate->findPartialSpecialization(ContextType))
121            return PartialSpec;
122        }
123      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
124        // The nested name specifier refers to a member of a class template.
125        return RecordT->getDecl();
126      }
127    }
128
129    return nullptr;
130  }
131
132  switch (NNS->getKind()) {
133  case NestedNameSpecifier::Identifier:
134    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
135
136  case NestedNameSpecifier::Namespace:
137    return NNS->getAsNamespace();
138
139  case NestedNameSpecifier::NamespaceAlias:
140    return NNS->getAsNamespaceAlias()->getNamespace();
141
142  case NestedNameSpecifier::TypeSpec:
143  case NestedNameSpecifier::TypeSpecWithTemplate: {
144    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
145    assert(Tag && "Non-tag type in nested-name-specifier");
146    return Tag->getDecl();
147  }
148
149  case NestedNameSpecifier::Global:
150    return Context.getTranslationUnitDecl();
151
152  case NestedNameSpecifier::Super:
153    return NNS->getAsRecordDecl();
154  }
155
156  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
157}
158
159bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
160  if (!SS.isSet() || SS.isInvalid())
161    return false;
162
163  return SS.getScopeRep()->isDependent();
164}
165
166/// \brief If the given nested name specifier refers to the current
167/// instantiation, return the declaration that corresponds to that
168/// current instantiation (C++0x [temp.dep.type]p1).
169///
170/// \param NNS a dependent nested name specifier.
171CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
172  assert(getLangOpts().CPlusPlus && "Only callable in C++");
173  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
174
175  if (!NNS->getAsType())
176    return nullptr;
177
178  QualType T = QualType(NNS->getAsType(), 0);
179  return ::getCurrentInstantiationOf(T, CurContext);
180}
181
182/// \brief Require that the context specified by SS be complete.
183///
184/// If SS refers to a type, this routine checks whether the type is
185/// complete enough (or can be made complete enough) for name lookup
186/// into the DeclContext. A type that is not yet completed can be
187/// considered "complete enough" if it is a class/struct/union/enum
188/// that is currently being defined. Or, if we have a type that names
189/// a class template specialization that is not a complete type, we
190/// will attempt to instantiate that class template.
191bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
192                                      DeclContext *DC) {
193  assert(DC && "given null context");
194
195  TagDecl *tag = dyn_cast<TagDecl>(DC);
196
197  // If this is a dependent type, then we consider it complete.
198  if (!tag || tag->isDependentContext())
199    return false;
200
201  // If we're currently defining this type, then lookup into the
202  // type is okay: don't complain that it isn't complete yet.
203  QualType type = Context.getTypeDeclType(tag);
204  const TagType *tagType = type->getAs<TagType>();
205  if (tagType && tagType->isBeingDefined())
206    return false;
207
208  SourceLocation loc = SS.getLastQualifierNameLoc();
209  if (loc.isInvalid()) loc = SS.getRange().getBegin();
210
211  // The type must be complete.
212  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
213                          SS.getRange())) {
214    SS.SetInvalid(SS.getRange());
215    return true;
216  }
217
218  // Fixed enum types are complete, but they aren't valid as scopes
219  // until we see a definition, so awkwardly pull out this special
220  // case.
221  // FIXME: The definition might not be visible; complain if it is not.
222  const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
223  if (!enumType || enumType->getDecl()->isCompleteDefinition())
224    return false;
225
226  // Try to instantiate the definition, if this is a specialization of an
227  // enumeration temploid.
228  EnumDecl *ED = enumType->getDecl();
229  if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
230    MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
231    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
232      if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
233                          TSK_ImplicitInstantiation)) {
234        SS.SetInvalid(SS.getRange());
235        return true;
236      }
237      return false;
238    }
239  }
240
241  Diag(loc, diag::err_incomplete_nested_name_spec)
242    << type << SS.getRange();
243  SS.SetInvalid(SS.getRange());
244  return true;
245}
246
247bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
248                                        CXXScopeSpec &SS) {
249  SS.MakeGlobal(Context, CCLoc);
250  return false;
251}
252
253bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
254                                    SourceLocation ColonColonLoc,
255                                    CXXScopeSpec &SS) {
256  CXXRecordDecl *RD = nullptr;
257  for (Scope *S = getCurScope(); S; S = S->getParent()) {
258    if (S->isFunctionScope()) {
259      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
260        RD = MD->getParent();
261      break;
262    }
263    if (S->isClassScope()) {
264      RD = cast<CXXRecordDecl>(S->getEntity());
265      break;
266    }
267  }
268
269  if (!RD) {
270    Diag(SuperLoc, diag::err_invalid_super_scope);
271    return true;
272  } else if (RD->isLambda()) {
273    Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
274    return true;
275  } else if (RD->getNumBases() == 0) {
276    Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
277    return true;
278  }
279
280  SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
281  return false;
282}
283
284/// \brief Determines whether the given declaration is an valid acceptable
285/// result for name lookup of a nested-name-specifier.
286/// \param SD Declaration checked for nested-name-specifier.
287/// \param IsExtension If not null and the declaration is accepted as an
288/// extension, the pointed variable is assigned true.
289bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
290                                           bool *IsExtension) {
291  if (!SD)
292    return false;
293
294  SD = SD->getUnderlyingDecl();
295
296  // Namespace and namespace aliases are fine.
297  if (isa<NamespaceDecl>(SD))
298    return true;
299
300  if (!isa<TypeDecl>(SD))
301    return false;
302
303  // Determine whether we have a class (or, in C++11, an enum) or
304  // a typedef thereof. If so, build the nested-name-specifier.
305  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
306  if (T->isDependentType())
307    return true;
308  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
309    if (TD->getUnderlyingType()->isRecordType())
310      return true;
311    if (TD->getUnderlyingType()->isEnumeralType()) {
312      if (Context.getLangOpts().CPlusPlus11)
313        return true;
314      if (IsExtension)
315        *IsExtension = true;
316    }
317  } else if (isa<RecordDecl>(SD)) {
318    return true;
319  } else if (isa<EnumDecl>(SD)) {
320    if (Context.getLangOpts().CPlusPlus11)
321      return true;
322    if (IsExtension)
323      *IsExtension = true;
324  }
325
326  return false;
327}
328
329/// \brief If the given nested-name-specifier begins with a bare identifier
330/// (e.g., Base::), perform name lookup for that identifier as a
331/// nested-name-specifier within the given scope, and return the result of that
332/// name lookup.
333NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
334  if (!S || !NNS)
335    return nullptr;
336
337  while (NNS->getPrefix())
338    NNS = NNS->getPrefix();
339
340  if (NNS->getKind() != NestedNameSpecifier::Identifier)
341    return nullptr;
342
343  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
344                     LookupNestedNameSpecifierName);
345  LookupName(Found, S);
346  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
347
348  if (!Found.isSingleResult())
349    return nullptr;
350
351  NamedDecl *Result = Found.getFoundDecl();
352  if (isAcceptableNestedNameSpecifier(Result))
353    return Result;
354
355  return nullptr;
356}
357
358bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
359                                        SourceLocation IdLoc,
360                                        IdentifierInfo &II,
361                                        ParsedType ObjectTypePtr) {
362  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
363  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
364
365  // Determine where to perform name lookup
366  DeclContext *LookupCtx = nullptr;
367  bool isDependent = false;
368  if (!ObjectType.isNull()) {
369    // This nested-name-specifier occurs in a member access expression, e.g.,
370    // x->B::f, and we are looking into the type of the object.
371    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
372    LookupCtx = computeDeclContext(ObjectType);
373    isDependent = ObjectType->isDependentType();
374  } else if (SS.isSet()) {
375    // This nested-name-specifier occurs after another nested-name-specifier,
376    // so long into the context associated with the prior nested-name-specifier.
377    LookupCtx = computeDeclContext(SS, false);
378    isDependent = isDependentScopeSpecifier(SS);
379    Found.setContextRange(SS.getRange());
380  }
381
382  if (LookupCtx) {
383    // Perform "qualified" name lookup into the declaration context we
384    // computed, which is either the type of the base of a member access
385    // expression or the declaration context associated with a prior
386    // nested-name-specifier.
387
388    // The declaration context must be complete.
389    if (!LookupCtx->isDependentContext() &&
390        RequireCompleteDeclContext(SS, LookupCtx))
391      return false;
392
393    LookupQualifiedName(Found, LookupCtx);
394  } else if (isDependent) {
395    return false;
396  } else {
397    LookupName(Found, S);
398  }
399  Found.suppressDiagnostics();
400
401  return Found.getAsSingle<NamespaceDecl>();
402}
403
404namespace {
405
406// Callback to only accept typo corrections that can be a valid C++ member
407// intializer: either a non-static field member or a base class.
408class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
409 public:
410  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
411      : SRef(SRef) {}
412
413  bool ValidateCandidate(const TypoCorrection &candidate) override {
414    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
415  }
416
417 private:
418  Sema &SRef;
419};
420
421}
422
423/// \brief Build a new nested-name-specifier for "identifier::", as described
424/// by ActOnCXXNestedNameSpecifier.
425///
426/// \param S Scope in which the nested-name-specifier occurs.
427/// \param Identifier Identifier in the sequence "identifier" "::".
428/// \param IdentifierLoc Location of the \p Identifier.
429/// \param CCLoc Location of "::" following Identifier.
430/// \param ObjectType Type of postfix expression if the nested-name-specifier
431///        occurs in construct like: <tt>ptr->nns::f</tt>.
432/// \param EnteringContext If true, enter the context specified by the
433///        nested-name-specifier.
434/// \param SS Optional nested name specifier preceding the identifier.
435/// \param ScopeLookupResult Provides the result of name lookup within the
436///        scope of the nested-name-specifier that was computed at template
437///        definition time.
438/// \param ErrorRecoveryLookup Specifies if the method is called to improve
439///        error recovery and what kind of recovery is performed.
440/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
441///        are allowed.  The bool value pointed by this parameter is set to
442///       'true' if the identifier is treated as if it was followed by ':',
443///        not '::'.
444///
445/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
446/// that it contains an extra parameter \p ScopeLookupResult, which provides
447/// the result of name lookup within the scope of the nested-name-specifier
448/// that was computed at template definition time.
449///
450/// If ErrorRecoveryLookup is true, then this call is used to improve error
451/// recovery.  This means that it should not emit diagnostics, it should
452/// just return true on failure.  It also means it should only return a valid
453/// scope if it *knows* that the result is correct.  It should not return in a
454/// dependent context, for example. Nor will it extend \p SS with the scope
455/// specifier.
456bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
457                                       IdentifierInfo &Identifier,
458                                       SourceLocation IdentifierLoc,
459                                       SourceLocation CCLoc,
460                                       QualType ObjectType,
461                                       bool EnteringContext,
462                                       CXXScopeSpec &SS,
463                                       NamedDecl *ScopeLookupResult,
464                                       bool ErrorRecoveryLookup,
465                                       bool *IsCorrectedToColon) {
466  LookupResult Found(*this, &Identifier, IdentifierLoc,
467                     LookupNestedNameSpecifierName);
468
469  // Determine where to perform name lookup
470  DeclContext *LookupCtx = nullptr;
471  bool isDependent = false;
472  if (IsCorrectedToColon)
473    *IsCorrectedToColon = false;
474  if (!ObjectType.isNull()) {
475    // This nested-name-specifier occurs in a member access expression, e.g.,
476    // x->B::f, and we are looking into the type of the object.
477    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
478    LookupCtx = computeDeclContext(ObjectType);
479    isDependent = ObjectType->isDependentType();
480  } else if (SS.isSet()) {
481    // This nested-name-specifier occurs after another nested-name-specifier,
482    // so look into the context associated with the prior nested-name-specifier.
483    LookupCtx = computeDeclContext(SS, EnteringContext);
484    isDependent = isDependentScopeSpecifier(SS);
485    Found.setContextRange(SS.getRange());
486  }
487
488  bool ObjectTypeSearchedInScope = false;
489  if (LookupCtx) {
490    // Perform "qualified" name lookup into the declaration context we
491    // computed, which is either the type of the base of a member access
492    // expression or the declaration context associated with a prior
493    // nested-name-specifier.
494
495    // The declaration context must be complete.
496    if (!LookupCtx->isDependentContext() &&
497        RequireCompleteDeclContext(SS, LookupCtx))
498      return true;
499
500    LookupQualifiedName(Found, LookupCtx);
501
502    if (!ObjectType.isNull() && Found.empty()) {
503      // C++ [basic.lookup.classref]p4:
504      //   If the id-expression in a class member access is a qualified-id of
505      //   the form
506      //
507      //        class-name-or-namespace-name::...
508      //
509      //   the class-name-or-namespace-name following the . or -> operator is
510      //   looked up both in the context of the entire postfix-expression and in
511      //   the scope of the class of the object expression. If the name is found
512      //   only in the scope of the class of the object expression, the name
513      //   shall refer to a class-name. If the name is found only in the
514      //   context of the entire postfix-expression, the name shall refer to a
515      //   class-name or namespace-name. [...]
516      //
517      // Qualified name lookup into a class will not find a namespace-name,
518      // so we do not need to diagnose that case specifically. However,
519      // this qualified name lookup may find nothing. In that case, perform
520      // unqualified name lookup in the given scope (if available) or
521      // reconstruct the result from when name lookup was performed at template
522      // definition time.
523      if (S)
524        LookupName(Found, S);
525      else if (ScopeLookupResult)
526        Found.addDecl(ScopeLookupResult);
527
528      ObjectTypeSearchedInScope = true;
529    }
530  } else if (!isDependent) {
531    // Perform unqualified name lookup in the current scope.
532    LookupName(Found, S);
533  }
534
535  if (Found.isAmbiguous())
536    return true;
537
538  // If we performed lookup into a dependent context and did not find anything,
539  // that's fine: just build a dependent nested-name-specifier.
540  if (Found.empty() && isDependent &&
541      !(LookupCtx && LookupCtx->isRecord() &&
542        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
543         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
544    // Don't speculate if we're just trying to improve error recovery.
545    if (ErrorRecoveryLookup)
546      return true;
547
548    // We were not able to compute the declaration context for a dependent
549    // base object type or prior nested-name-specifier, so this
550    // nested-name-specifier refers to an unknown specialization. Just build
551    // a dependent nested-name-specifier.
552    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
553    return false;
554  }
555
556  if (Found.empty() && !ErrorRecoveryLookup) {
557    // If identifier is not found as class-name-or-namespace-name, but is found
558    // as other entity, don't look for typos.
559    LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
560    if (LookupCtx)
561      LookupQualifiedName(R, LookupCtx);
562    else if (S && !isDependent)
563      LookupName(R, S);
564    if (!R.empty()) {
565      // Don't diagnose problems with this speculative lookup.
566      R.suppressDiagnostics();
567      // The identifier is found in ordinary lookup. If correction to colon is
568      // allowed, suggest replacement to ':'.
569      if (IsCorrectedToColon) {
570        *IsCorrectedToColon = true;
571        Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
572            << &Identifier << getLangOpts().CPlusPlus
573            << FixItHint::CreateReplacement(CCLoc, ":");
574        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
575          Diag(ND->getLocation(), diag::note_declared_at);
576        return true;
577      }
578      // Replacement '::' -> ':' is not allowed, just issue respective error.
579      Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
580          << &Identifier << getLangOpts().CPlusPlus;
581      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
582        Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
583      return true;
584    }
585  }
586
587  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
588    // We haven't found anything, and we're not recovering from a
589    // different kind of error, so look for typos.
590    DeclarationName Name = Found.getLookupName();
591    Found.clear();
592    if (TypoCorrection Corrected = CorrectTypo(
593            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
594            llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
595            CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
596      if (LookupCtx) {
597        bool DroppedSpecifier =
598            Corrected.WillReplaceSpecifier() &&
599            Name.getAsString() == Corrected.getAsString(getLangOpts());
600        if (DroppedSpecifier)
601          SS.clear();
602        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
603                                  << Name << LookupCtx << DroppedSpecifier
604                                  << SS.getRange());
605      } else
606        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
607                                  << Name);
608
609      if (NamedDecl *ND = Corrected.getFoundDecl())
610        Found.addDecl(ND);
611      Found.setLookupName(Corrected.getCorrection());
612    } else {
613      Found.setLookupName(&Identifier);
614    }
615  }
616
617  NamedDecl *SD =
618      Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
619  bool IsExtension = false;
620  bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
621  if (!AcceptSpec && IsExtension) {
622    AcceptSpec = true;
623    Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
624  }
625  if (AcceptSpec) {
626    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
627        !getLangOpts().CPlusPlus11) {
628      // C++03 [basic.lookup.classref]p4:
629      //   [...] If the name is found in both contexts, the
630      //   class-name-or-namespace-name shall refer to the same entity.
631      //
632      // We already found the name in the scope of the object. Now, look
633      // into the current scope (the scope of the postfix-expression) to
634      // see if we can find the same name there. As above, if there is no
635      // scope, reconstruct the result from the template instantiation itself.
636      //
637      // Note that C++11 does *not* perform this redundant lookup.
638      NamedDecl *OuterDecl;
639      if (S) {
640        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
641                                LookupNestedNameSpecifierName);
642        LookupName(FoundOuter, S);
643        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
644      } else
645        OuterDecl = ScopeLookupResult;
646
647      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
648          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
649          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
650           !Context.hasSameType(
651                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
652                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
653        if (ErrorRecoveryLookup)
654          return true;
655
656         Diag(IdentifierLoc,
657              diag::err_nested_name_member_ref_lookup_ambiguous)
658           << &Identifier;
659         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
660           << ObjectType;
661         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
662
663         // Fall through so that we'll pick the name we found in the object
664         // type, since that's probably what the user wanted anyway.
665       }
666    }
667
668    if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
669      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
670
671    // If we're just performing this lookup for error-recovery purposes,
672    // don't extend the nested-name-specifier. Just return now.
673    if (ErrorRecoveryLookup)
674      return false;
675
676    // The use of a nested name specifier may trigger deprecation warnings.
677    DiagnoseUseOfDecl(SD, CCLoc);
678
679
680    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
681      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
682      return false;
683    }
684
685    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
686      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
687      return false;
688    }
689
690    QualType T =
691        Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
692    TypeLocBuilder TLB;
693    if (isa<InjectedClassNameType>(T)) {
694      InjectedClassNameTypeLoc InjectedTL
695        = TLB.push<InjectedClassNameTypeLoc>(T);
696      InjectedTL.setNameLoc(IdentifierLoc);
697    } else if (isa<RecordType>(T)) {
698      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
699      RecordTL.setNameLoc(IdentifierLoc);
700    } else if (isa<TypedefType>(T)) {
701      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
702      TypedefTL.setNameLoc(IdentifierLoc);
703    } else if (isa<EnumType>(T)) {
704      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
705      EnumTL.setNameLoc(IdentifierLoc);
706    } else if (isa<TemplateTypeParmType>(T)) {
707      TemplateTypeParmTypeLoc TemplateTypeTL
708        = TLB.push<TemplateTypeParmTypeLoc>(T);
709      TemplateTypeTL.setNameLoc(IdentifierLoc);
710    } else if (isa<UnresolvedUsingType>(T)) {
711      UnresolvedUsingTypeLoc UnresolvedTL
712        = TLB.push<UnresolvedUsingTypeLoc>(T);
713      UnresolvedTL.setNameLoc(IdentifierLoc);
714    } else if (isa<SubstTemplateTypeParmType>(T)) {
715      SubstTemplateTypeParmTypeLoc TL
716        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
717      TL.setNameLoc(IdentifierLoc);
718    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
719      SubstTemplateTypeParmPackTypeLoc TL
720        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
721      TL.setNameLoc(IdentifierLoc);
722    } else {
723      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
724    }
725
726    if (T->isEnumeralType())
727      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
728
729    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
730              CCLoc);
731    return false;
732  }
733
734  // Otherwise, we have an error case.  If we don't want diagnostics, just
735  // return an error now.
736  if (ErrorRecoveryLookup)
737    return true;
738
739  // If we didn't find anything during our lookup, try again with
740  // ordinary name lookup, which can help us produce better error
741  // messages.
742  if (Found.empty()) {
743    Found.clear(LookupOrdinaryName);
744    LookupName(Found, S);
745  }
746
747  // In Microsoft mode, if we are within a templated function and we can't
748  // resolve Identifier, then extend the SS with Identifier. This will have
749  // the effect of resolving Identifier during template instantiation.
750  // The goal is to be able to resolve a function call whose
751  // nested-name-specifier is located inside a dependent base class.
752  // Example:
753  //
754  // class C {
755  // public:
756  //    static void foo2() {  }
757  // };
758  // template <class T> class A { public: typedef C D; };
759  //
760  // template <class T> class B : public A<T> {
761  // public:
762  //   void foo() { D::foo2(); }
763  // };
764  if (getLangOpts().MSVCCompat) {
765    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
766    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
767      CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
768      if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
769        Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
770            << &Identifier << ContainingClass;
771        SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
772        return false;
773      }
774    }
775  }
776
777  if (!Found.empty()) {
778    if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
779      Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
780          << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
781    else {
782      Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
783          << &Identifier << getLangOpts().CPlusPlus;
784      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
785        Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
786    }
787  } else if (SS.isSet())
788    Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
789                                             << SS.getRange();
790  else
791    Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
792
793  return true;
794}
795
796bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
797                                       IdentifierInfo &Identifier,
798                                       SourceLocation IdentifierLoc,
799                                       SourceLocation CCLoc,
800                                       ParsedType ObjectType,
801                                       bool EnteringContext,
802                                       CXXScopeSpec &SS,
803                                       bool ErrorRecoveryLookup,
804                                       bool *IsCorrectedToColon) {
805  if (SS.isInvalid())
806    return true;
807
808  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
809                                     GetTypeFromParser(ObjectType),
810                                     EnteringContext, SS,
811                                     /*ScopeLookupResult=*/nullptr, false,
812                                     IsCorrectedToColon);
813}
814
815bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
816                                               const DeclSpec &DS,
817                                               SourceLocation ColonColonLoc) {
818  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
819    return true;
820
821  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
822
823  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
824  if (!T->isDependentType() && !T->getAs<TagType>()) {
825    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
826      << T << getLangOpts().CPlusPlus;
827    return true;
828  }
829
830  TypeLocBuilder TLB;
831  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
832  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
833  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
834            ColonColonLoc);
835  return false;
836}
837
838/// IsInvalidUnlessNestedName - This method is used for error recovery
839/// purposes to determine whether the specified identifier is only valid as
840/// a nested name specifier, for example a namespace name.  It is
841/// conservatively correct to always return false from this method.
842///
843/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
844bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
845                                     IdentifierInfo &Identifier,
846                                     SourceLocation IdentifierLoc,
847                                     SourceLocation ColonLoc,
848                                     ParsedType ObjectType,
849                                     bool EnteringContext) {
850  if (SS.isInvalid())
851    return false;
852
853  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
854                                      GetTypeFromParser(ObjectType),
855                                      EnteringContext, SS,
856                                      /*ScopeLookupResult=*/nullptr, true);
857}
858
859bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
860                                       CXXScopeSpec &SS,
861                                       SourceLocation TemplateKWLoc,
862                                       TemplateTy Template,
863                                       SourceLocation TemplateNameLoc,
864                                       SourceLocation LAngleLoc,
865                                       ASTTemplateArgsPtr TemplateArgsIn,
866                                       SourceLocation RAngleLoc,
867                                       SourceLocation CCLoc,
868                                       bool EnteringContext) {
869  if (SS.isInvalid())
870    return true;
871
872  // Translate the parser's template argument list in our AST format.
873  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
874  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
875
876  DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
877  if (DTN && DTN->isIdentifier()) {
878    // Handle a dependent template specialization for which we cannot resolve
879    // the template name.
880    assert(DTN->getQualifier() == SS.getScopeRep());
881    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
882                                                          DTN->getQualifier(),
883                                                          DTN->getIdentifier(),
884                                                                TemplateArgs);
885
886    // Create source-location information for this type.
887    TypeLocBuilder Builder;
888    DependentTemplateSpecializationTypeLoc SpecTL
889      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
890    SpecTL.setElaboratedKeywordLoc(SourceLocation());
891    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
892    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
893    SpecTL.setTemplateNameLoc(TemplateNameLoc);
894    SpecTL.setLAngleLoc(LAngleLoc);
895    SpecTL.setRAngleLoc(RAngleLoc);
896    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
897      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
898
899    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
900              CCLoc);
901    return false;
902  }
903
904  TemplateDecl *TD = Template.get().getAsTemplateDecl();
905  if (Template.get().getAsOverloadedTemplate() || DTN ||
906      isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
907    SourceRange R(TemplateNameLoc, RAngleLoc);
908    if (SS.getRange().isValid())
909      R.setBegin(SS.getRange().getBegin());
910
911    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
912      << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
913    NoteAllFoundTemplates(Template.get());
914    return true;
915  }
916
917  // We were able to resolve the template name to an actual template.
918  // Build an appropriate nested-name-specifier.
919  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
920                                   TemplateArgs);
921  if (T.isNull())
922    return true;
923
924  // Alias template specializations can produce types which are not valid
925  // nested name specifiers.
926  if (!T->isDependentType() && !T->getAs<TagType>()) {
927    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
928    NoteAllFoundTemplates(Template.get());
929    return true;
930  }
931
932  // Provide source-location information for the template specialization type.
933  TypeLocBuilder Builder;
934  TemplateSpecializationTypeLoc SpecTL
935    = Builder.push<TemplateSpecializationTypeLoc>(T);
936  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
937  SpecTL.setTemplateNameLoc(TemplateNameLoc);
938  SpecTL.setLAngleLoc(LAngleLoc);
939  SpecTL.setRAngleLoc(RAngleLoc);
940  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
941    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
942
943
944  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
945            CCLoc);
946  return false;
947}
948
949namespace {
950  /// \brief A structure that stores a nested-name-specifier annotation,
951  /// including both the nested-name-specifier
952  struct NestedNameSpecifierAnnotation {
953    NestedNameSpecifier *NNS;
954  };
955}
956
957void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
958  if (SS.isEmpty() || SS.isInvalid())
959    return nullptr;
960
961  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
962                                                        SS.location_size()),
963                               llvm::alignOf<NestedNameSpecifierAnnotation>());
964  NestedNameSpecifierAnnotation *Annotation
965    = new (Mem) NestedNameSpecifierAnnotation;
966  Annotation->NNS = SS.getScopeRep();
967  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
968  return Annotation;
969}
970
971void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
972                                                SourceRange AnnotationRange,
973                                                CXXScopeSpec &SS) {
974  if (!AnnotationPtr) {
975    SS.SetInvalid(AnnotationRange);
976    return;
977  }
978
979  NestedNameSpecifierAnnotation *Annotation
980    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
981  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
982}
983
984bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
985  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
986
987  NestedNameSpecifier *Qualifier = SS.getScopeRep();
988
989  // There are only two places a well-formed program may qualify a
990  // declarator: first, when defining a namespace or class member
991  // out-of-line, and second, when naming an explicitly-qualified
992  // friend function.  The latter case is governed by
993  // C++03 [basic.lookup.unqual]p10:
994  //   In a friend declaration naming a member function, a name used
995  //   in the function declarator and not part of a template-argument
996  //   in a template-id is first looked up in the scope of the member
997  //   function's class. If it is not found, or if the name is part of
998  //   a template-argument in a template-id, the look up is as
999  //   described for unqualified names in the definition of the class
1000  //   granting friendship.
1001  // i.e. we don't push a scope unless it's a class member.
1002
1003  switch (Qualifier->getKind()) {
1004  case NestedNameSpecifier::Global:
1005  case NestedNameSpecifier::Namespace:
1006  case NestedNameSpecifier::NamespaceAlias:
1007    // These are always namespace scopes.  We never want to enter a
1008    // namespace scope from anything but a file context.
1009    return CurContext->getRedeclContext()->isFileContext();
1010
1011  case NestedNameSpecifier::Identifier:
1012  case NestedNameSpecifier::TypeSpec:
1013  case NestedNameSpecifier::TypeSpecWithTemplate:
1014  case NestedNameSpecifier::Super:
1015    // These are never namespace scopes.
1016    return true;
1017  }
1018
1019  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1020}
1021
1022/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1023/// scope or nested-name-specifier) is parsed, part of a declarator-id.
1024/// After this method is called, according to [C++ 3.4.3p3], names should be
1025/// looked up in the declarator-id's scope, until the declarator is parsed and
1026/// ActOnCXXExitDeclaratorScope is called.
1027/// The 'SS' should be a non-empty valid CXXScopeSpec.
1028bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1029  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1030
1031  if (SS.isInvalid()) return true;
1032
1033  DeclContext *DC = computeDeclContext(SS, true);
1034  if (!DC) return true;
1035
1036  // Before we enter a declarator's context, we need to make sure that
1037  // it is a complete declaration context.
1038  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1039    return true;
1040
1041  EnterDeclaratorContext(S, DC);
1042
1043  // Rebuild the nested name specifier for the new scope.
1044  if (DC->isDependentContext())
1045    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1046
1047  return false;
1048}
1049
1050/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1051/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1052/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1053/// Used to indicate that names should revert to being looked up in the
1054/// defining scope.
1055void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1056  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1057  if (SS.isInvalid())
1058    return;
1059  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1060         "exiting declarator scope we never really entered");
1061  ExitDeclaratorContext(S);
1062}
1063