SemaCXXScopeSpec.cpp revision 234353
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Template.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Sema/DeclSpec.h"
23#include "TypeLocBuilder.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27
28/// \brief Find the current instantiation that associated with the given type.
29static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                DeclContext *CurContext) {
31  if (T.isNull())
32    return 0;
33
34  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37    if (!T->isDependentType())
38      return Record;
39
40    // This may be a member of a class template or class template partial
41    // specialization. If it's part of the current semantic context, then it's
42    // an injected-class-name;
43    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
44      if (CurContext->Equals(Record))
45        return Record;
46
47    return 0;
48  } else if (isa<InjectedClassNameType>(Ty))
49    return cast<InjectedClassNameType>(Ty)->getDecl();
50  else
51    return 0;
52}
53
54/// \brief Compute the DeclContext that is associated with the given type.
55///
56/// \param T the type for which we are attempting to find a DeclContext.
57///
58/// \returns the declaration context represented by the type T,
59/// or NULL if the declaration context cannot be computed (e.g., because it is
60/// dependent and not the current instantiation).
61DeclContext *Sema::computeDeclContext(QualType T) {
62  if (!T->isDependentType())
63    if (const TagType *Tag = T->getAs<TagType>())
64      return Tag->getDecl();
65
66  return ::getCurrentInstantiationOf(T, CurContext);
67}
68
69/// \brief Compute the DeclContext that is associated with the given
70/// scope specifier.
71///
72/// \param SS the C++ scope specifier as it appears in the source
73///
74/// \param EnteringContext when true, we will be entering the context of
75/// this scope specifier, so we can retrieve the declaration context of a
76/// class template or class template partial specialization even if it is
77/// not the current instantiation.
78///
79/// \returns the declaration context represented by the scope specifier @p SS,
80/// or NULL if the declaration context cannot be computed (e.g., because it is
81/// dependent and not the current instantiation).
82DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
83                                      bool EnteringContext) {
84  if (!SS.isSet() || SS.isInvalid())
85    return 0;
86
87  NestedNameSpecifier *NNS
88    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
89  if (NNS->isDependent()) {
90    // If this nested-name-specifier refers to the current
91    // instantiation, return its DeclContext.
92    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
93      return Record;
94
95    if (EnteringContext) {
96      const Type *NNSType = NNS->getAsType();
97      if (!NNSType) {
98        return 0;
99      }
100
101      // Look through type alias templates, per C++0x [temp.dep.type]p1.
102      NNSType = Context.getCanonicalType(NNSType);
103      if (const TemplateSpecializationType *SpecType
104            = NNSType->getAs<TemplateSpecializationType>()) {
105        // We are entering the context of the nested name specifier, so try to
106        // match the nested name specifier to either a primary class template
107        // or a class template partial specialization.
108        if (ClassTemplateDecl *ClassTemplate
109              = dyn_cast_or_null<ClassTemplateDecl>(
110                            SpecType->getTemplateName().getAsTemplateDecl())) {
111          QualType ContextType
112            = Context.getCanonicalType(QualType(SpecType, 0));
113
114          // If the type of the nested name specifier is the same as the
115          // injected class name of the named class template, we're entering
116          // into that class template definition.
117          QualType Injected
118            = ClassTemplate->getInjectedClassNameSpecialization();
119          if (Context.hasSameType(Injected, ContextType))
120            return ClassTemplate->getTemplatedDecl();
121
122          // If the type of the nested name specifier is the same as the
123          // type of one of the class template's class template partial
124          // specializations, we're entering into the definition of that
125          // class template partial specialization.
126          if (ClassTemplatePartialSpecializationDecl *PartialSpec
127                = ClassTemplate->findPartialSpecialization(ContextType))
128            return PartialSpec;
129        }
130      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
131        // The nested name specifier refers to a member of a class template.
132        return RecordT->getDecl();
133      }
134    }
135
136    return 0;
137  }
138
139  switch (NNS->getKind()) {
140  case NestedNameSpecifier::Identifier:
141    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
142
143  case NestedNameSpecifier::Namespace:
144    return NNS->getAsNamespace();
145
146  case NestedNameSpecifier::NamespaceAlias:
147    return NNS->getAsNamespaceAlias()->getNamespace();
148
149  case NestedNameSpecifier::TypeSpec:
150  case NestedNameSpecifier::TypeSpecWithTemplate: {
151    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152    assert(Tag && "Non-tag type in nested-name-specifier");
153    return Tag->getDecl();
154  }
155
156  case NestedNameSpecifier::Global:
157    return Context.getTranslationUnitDecl();
158  }
159
160  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
161}
162
163bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
164  if (!SS.isSet() || SS.isInvalid())
165    return false;
166
167  NestedNameSpecifier *NNS
168    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
169  return NNS->isDependent();
170}
171
172// \brief Determine whether this C++ scope specifier refers to an
173// unknown specialization, i.e., a dependent type that is not the
174// current instantiation.
175bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
176  if (!isDependentScopeSpecifier(SS))
177    return false;
178
179  NestedNameSpecifier *NNS
180    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
181  return getCurrentInstantiationOf(NNS) == 0;
182}
183
184/// \brief If the given nested name specifier refers to the current
185/// instantiation, return the declaration that corresponds to that
186/// current instantiation (C++0x [temp.dep.type]p1).
187///
188/// \param NNS a dependent nested name specifier.
189CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
190  assert(getLangOpts().CPlusPlus && "Only callable in C++");
191  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
192
193  if (!NNS->getAsType())
194    return 0;
195
196  QualType T = QualType(NNS->getAsType(), 0);
197  return ::getCurrentInstantiationOf(T, CurContext);
198}
199
200/// \brief Require that the context specified by SS be complete.
201///
202/// If SS refers to a type, this routine checks whether the type is
203/// complete enough (or can be made complete enough) for name lookup
204/// into the DeclContext. A type that is not yet completed can be
205/// considered "complete enough" if it is a class/struct/union/enum
206/// that is currently being defined. Or, if we have a type that names
207/// a class template specialization that is not a complete type, we
208/// will attempt to instantiate that class template.
209bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
210                                      DeclContext *DC) {
211  assert(DC != 0 && "given null context");
212
213  TagDecl *tag = dyn_cast<TagDecl>(DC);
214
215  // If this is a dependent type, then we consider it complete.
216  if (!tag || tag->isDependentContext())
217    return false;
218
219  // If we're currently defining this type, then lookup into the
220  // type is okay: don't complain that it isn't complete yet.
221  QualType type = Context.getTypeDeclType(tag);
222  const TagType *tagType = type->getAs<TagType>();
223  if (tagType && tagType->isBeingDefined())
224    return false;
225
226  SourceLocation loc = SS.getLastQualifierNameLoc();
227  if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229  // The type must be complete.
230  if (RequireCompleteType(loc, type,
231                          PDiag(diag::err_incomplete_nested_name_spec)
232                            << SS.getRange())) {
233    SS.SetInvalid(SS.getRange());
234    return true;
235  }
236
237  // Fixed enum types are complete, but they aren't valid as scopes
238  // until we see a definition, so awkwardly pull out this special
239  // case.
240  const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
241  if (!enumType || enumType->getDecl()->isCompleteDefinition())
242    return false;
243
244  // Try to instantiate the definition, if this is a specialization of an
245  // enumeration temploid.
246  EnumDecl *ED = enumType->getDecl();
247  if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
248    MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
249    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
250      if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
251                          TSK_ImplicitInstantiation)) {
252        SS.SetInvalid(SS.getRange());
253        return true;
254      }
255      return false;
256    }
257  }
258
259  Diag(loc, diag::err_incomplete_nested_name_spec)
260    << type << SS.getRange();
261  SS.SetInvalid(SS.getRange());
262  return true;
263}
264
265bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
266                                        CXXScopeSpec &SS) {
267  SS.MakeGlobal(Context, CCLoc);
268  return false;
269}
270
271/// \brief Determines whether the given declaration is an valid acceptable
272/// result for name lookup of a nested-name-specifier.
273bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
274  if (!SD)
275    return false;
276
277  // Namespace and namespace aliases are fine.
278  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
279    return true;
280
281  if (!isa<TypeDecl>(SD))
282    return false;
283
284  // Determine whether we have a class (or, in C++11, an enum) or
285  // a typedef thereof. If so, build the nested-name-specifier.
286  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
287  if (T->isDependentType())
288    return true;
289  else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
290    if (TD->getUnderlyingType()->isRecordType() ||
291        (Context.getLangOpts().CPlusPlus0x &&
292         TD->getUnderlyingType()->isEnumeralType()))
293      return true;
294  } else if (isa<RecordDecl>(SD) ||
295             (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD)))
296    return true;
297
298  return false;
299}
300
301/// \brief If the given nested-name-specifier begins with a bare identifier
302/// (e.g., Base::), perform name lookup for that identifier as a
303/// nested-name-specifier within the given scope, and return the result of that
304/// name lookup.
305NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
306  if (!S || !NNS)
307    return 0;
308
309  while (NNS->getPrefix())
310    NNS = NNS->getPrefix();
311
312  if (NNS->getKind() != NestedNameSpecifier::Identifier)
313    return 0;
314
315  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
316                     LookupNestedNameSpecifierName);
317  LookupName(Found, S);
318  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
319
320  if (!Found.isSingleResult())
321    return 0;
322
323  NamedDecl *Result = Found.getFoundDecl();
324  if (isAcceptableNestedNameSpecifier(Result))
325    return Result;
326
327  return 0;
328}
329
330bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
331                                        SourceLocation IdLoc,
332                                        IdentifierInfo &II,
333                                        ParsedType ObjectTypePtr) {
334  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
335  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
336
337  // Determine where to perform name lookup
338  DeclContext *LookupCtx = 0;
339  bool isDependent = false;
340  if (!ObjectType.isNull()) {
341    // This nested-name-specifier occurs in a member access expression, e.g.,
342    // x->B::f, and we are looking into the type of the object.
343    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
344    LookupCtx = computeDeclContext(ObjectType);
345    isDependent = ObjectType->isDependentType();
346  } else if (SS.isSet()) {
347    // This nested-name-specifier occurs after another nested-name-specifier,
348    // so long into the context associated with the prior nested-name-specifier.
349    LookupCtx = computeDeclContext(SS, false);
350    isDependent = isDependentScopeSpecifier(SS);
351    Found.setContextRange(SS.getRange());
352  }
353
354  if (LookupCtx) {
355    // Perform "qualified" name lookup into the declaration context we
356    // computed, which is either the type of the base of a member access
357    // expression or the declaration context associated with a prior
358    // nested-name-specifier.
359
360    // The declaration context must be complete.
361    if (!LookupCtx->isDependentContext() &&
362        RequireCompleteDeclContext(SS, LookupCtx))
363      return false;
364
365    LookupQualifiedName(Found, LookupCtx);
366  } else if (isDependent) {
367    return false;
368  } else {
369    LookupName(Found, S);
370  }
371  Found.suppressDiagnostics();
372
373  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
374    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
375
376  return false;
377}
378
379namespace {
380
381// Callback to only accept typo corrections that can be a valid C++ member
382// intializer: either a non-static field member or a base class.
383class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
384 public:
385  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
386      : SRef(SRef) {}
387
388  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
389    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
390  }
391
392 private:
393  Sema &SRef;
394};
395
396}
397
398/// \brief Build a new nested-name-specifier for "identifier::", as described
399/// by ActOnCXXNestedNameSpecifier.
400///
401/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
402/// that it contains an extra parameter \p ScopeLookupResult, which provides
403/// the result of name lookup within the scope of the nested-name-specifier
404/// that was computed at template definition time.
405///
406/// If ErrorRecoveryLookup is true, then this call is used to improve error
407/// recovery.  This means that it should not emit diagnostics, it should
408/// just return true on failure.  It also means it should only return a valid
409/// scope if it *knows* that the result is correct.  It should not return in a
410/// dependent context, for example. Nor will it extend \p SS with the scope
411/// specifier.
412bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
413                                       IdentifierInfo &Identifier,
414                                       SourceLocation IdentifierLoc,
415                                       SourceLocation CCLoc,
416                                       QualType ObjectType,
417                                       bool EnteringContext,
418                                       CXXScopeSpec &SS,
419                                       NamedDecl *ScopeLookupResult,
420                                       bool ErrorRecoveryLookup) {
421  LookupResult Found(*this, &Identifier, IdentifierLoc,
422                     LookupNestedNameSpecifierName);
423
424  // Determine where to perform name lookup
425  DeclContext *LookupCtx = 0;
426  bool isDependent = false;
427  if (!ObjectType.isNull()) {
428    // This nested-name-specifier occurs in a member access expression, e.g.,
429    // x->B::f, and we are looking into the type of the object.
430    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
431    LookupCtx = computeDeclContext(ObjectType);
432    isDependent = ObjectType->isDependentType();
433  } else if (SS.isSet()) {
434    // This nested-name-specifier occurs after another nested-name-specifier,
435    // so look into the context associated with the prior nested-name-specifier.
436    LookupCtx = computeDeclContext(SS, EnteringContext);
437    isDependent = isDependentScopeSpecifier(SS);
438    Found.setContextRange(SS.getRange());
439  }
440
441
442  bool ObjectTypeSearchedInScope = false;
443  if (LookupCtx) {
444    // Perform "qualified" name lookup into the declaration context we
445    // computed, which is either the type of the base of a member access
446    // expression or the declaration context associated with a prior
447    // nested-name-specifier.
448
449    // The declaration context must be complete.
450    if (!LookupCtx->isDependentContext() &&
451        RequireCompleteDeclContext(SS, LookupCtx))
452      return true;
453
454    LookupQualifiedName(Found, LookupCtx);
455
456    if (!ObjectType.isNull() && Found.empty()) {
457      // C++ [basic.lookup.classref]p4:
458      //   If the id-expression in a class member access is a qualified-id of
459      //   the form
460      //
461      //        class-name-or-namespace-name::...
462      //
463      //   the class-name-or-namespace-name following the . or -> operator is
464      //   looked up both in the context of the entire postfix-expression and in
465      //   the scope of the class of the object expression. If the name is found
466      //   only in the scope of the class of the object expression, the name
467      //   shall refer to a class-name. If the name is found only in the
468      //   context of the entire postfix-expression, the name shall refer to a
469      //   class-name or namespace-name. [...]
470      //
471      // Qualified name lookup into a class will not find a namespace-name,
472      // so we do not need to diagnose that case specifically. However,
473      // this qualified name lookup may find nothing. In that case, perform
474      // unqualified name lookup in the given scope (if available) or
475      // reconstruct the result from when name lookup was performed at template
476      // definition time.
477      if (S)
478        LookupName(Found, S);
479      else if (ScopeLookupResult)
480        Found.addDecl(ScopeLookupResult);
481
482      ObjectTypeSearchedInScope = true;
483    }
484  } else if (!isDependent) {
485    // Perform unqualified name lookup in the current scope.
486    LookupName(Found, S);
487  }
488
489  // If we performed lookup into a dependent context and did not find anything,
490  // that's fine: just build a dependent nested-name-specifier.
491  if (Found.empty() && isDependent &&
492      !(LookupCtx && LookupCtx->isRecord() &&
493        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
494         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
495    // Don't speculate if we're just trying to improve error recovery.
496    if (ErrorRecoveryLookup)
497      return true;
498
499    // We were not able to compute the declaration context for a dependent
500    // base object type or prior nested-name-specifier, so this
501    // nested-name-specifier refers to an unknown specialization. Just build
502    // a dependent nested-name-specifier.
503    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
504    return false;
505  }
506
507  // FIXME: Deal with ambiguities cleanly.
508
509  if (Found.empty() && !ErrorRecoveryLookup) {
510    // We haven't found anything, and we're not recovering from a
511    // different kind of error, so look for typos.
512    DeclarationName Name = Found.getLookupName();
513    NestedNameSpecifierValidatorCCC Validator(*this);
514    TypoCorrection Corrected;
515    Found.clear();
516    if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
517                                 Found.getLookupKind(), S, &SS, Validator,
518                                 LookupCtx, EnteringContext))) {
519      std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
520      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
521      if (LookupCtx)
522        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
523          << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
524          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
525      else
526        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
527          << Name << CorrectedQuotedStr
528          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
529
530      if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
531        Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
532        Found.addDecl(ND);
533      }
534      Found.setLookupName(Corrected.getCorrection());
535    } else {
536      Found.setLookupName(&Identifier);
537    }
538  }
539
540  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
541  if (isAcceptableNestedNameSpecifier(SD)) {
542    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
543      // C++ [basic.lookup.classref]p4:
544      //   [...] If the name is found in both contexts, the
545      //   class-name-or-namespace-name shall refer to the same entity.
546      //
547      // We already found the name in the scope of the object. Now, look
548      // into the current scope (the scope of the postfix-expression) to
549      // see if we can find the same name there. As above, if there is no
550      // scope, reconstruct the result from the template instantiation itself.
551      NamedDecl *OuterDecl;
552      if (S) {
553        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
554                                LookupNestedNameSpecifierName);
555        LookupName(FoundOuter, S);
556        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
557      } else
558        OuterDecl = ScopeLookupResult;
559
560      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
561          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
562          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
563           !Context.hasSameType(
564                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
565                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
566         if (ErrorRecoveryLookup)
567           return true;
568
569         Diag(IdentifierLoc,
570              diag::err_nested_name_member_ref_lookup_ambiguous)
571           << &Identifier;
572         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
573           << ObjectType;
574         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
575
576         // Fall through so that we'll pick the name we found in the object
577         // type, since that's probably what the user wanted anyway.
578       }
579    }
580
581    // If we're just performing this lookup for error-recovery purposes,
582    // don't extend the nested-name-specifier. Just return now.
583    if (ErrorRecoveryLookup)
584      return false;
585
586    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
587      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
588      return false;
589    }
590
591    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
592      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
593      return false;
594    }
595
596    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
597    TypeLocBuilder TLB;
598    if (isa<InjectedClassNameType>(T)) {
599      InjectedClassNameTypeLoc InjectedTL
600        = TLB.push<InjectedClassNameTypeLoc>(T);
601      InjectedTL.setNameLoc(IdentifierLoc);
602    } else if (isa<RecordType>(T)) {
603      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
604      RecordTL.setNameLoc(IdentifierLoc);
605    } else if (isa<TypedefType>(T)) {
606      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
607      TypedefTL.setNameLoc(IdentifierLoc);
608    } else if (isa<EnumType>(T)) {
609      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
610      EnumTL.setNameLoc(IdentifierLoc);
611    } else if (isa<TemplateTypeParmType>(T)) {
612      TemplateTypeParmTypeLoc TemplateTypeTL
613        = TLB.push<TemplateTypeParmTypeLoc>(T);
614      TemplateTypeTL.setNameLoc(IdentifierLoc);
615    } else if (isa<UnresolvedUsingType>(T)) {
616      UnresolvedUsingTypeLoc UnresolvedTL
617        = TLB.push<UnresolvedUsingTypeLoc>(T);
618      UnresolvedTL.setNameLoc(IdentifierLoc);
619    } else if (isa<SubstTemplateTypeParmType>(T)) {
620      SubstTemplateTypeParmTypeLoc TL
621        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
622      TL.setNameLoc(IdentifierLoc);
623    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
624      SubstTemplateTypeParmPackTypeLoc TL
625        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
626      TL.setNameLoc(IdentifierLoc);
627    } else {
628      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
629    }
630
631    if (T->isEnumeralType())
632      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
633
634    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
635              CCLoc);
636    return false;
637  }
638
639  // Otherwise, we have an error case.  If we don't want diagnostics, just
640  // return an error now.
641  if (ErrorRecoveryLookup)
642    return true;
643
644  // If we didn't find anything during our lookup, try again with
645  // ordinary name lookup, which can help us produce better error
646  // messages.
647  if (Found.empty()) {
648    Found.clear(LookupOrdinaryName);
649    LookupName(Found, S);
650  }
651
652  // In Microsoft mode, if we are within a templated function and we can't
653  // resolve Identifier, then extend the SS with Identifier. This will have
654  // the effect of resolving Identifier during template instantiation.
655  // The goal is to be able to resolve a function call whose
656  // nested-name-specifier is located inside a dependent base class.
657  // Example:
658  //
659  // class C {
660  // public:
661  //    static void foo2() {  }
662  // };
663  // template <class T> class A { public: typedef C D; };
664  //
665  // template <class T> class B : public A<T> {
666  // public:
667  //   void foo() { D::foo2(); }
668  // };
669  if (getLangOpts().MicrosoftExt) {
670    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
671    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
672      SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
673      return false;
674    }
675  }
676
677  unsigned DiagID;
678  if (!Found.empty())
679    DiagID = diag::err_expected_class_or_namespace;
680  else if (SS.isSet()) {
681    Diag(IdentifierLoc, diag::err_no_member)
682      << &Identifier << LookupCtx << SS.getRange();
683    return true;
684  } else
685    DiagID = diag::err_undeclared_var_use;
686
687  if (SS.isSet())
688    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
689  else
690    Diag(IdentifierLoc, DiagID) << &Identifier;
691
692  return true;
693}
694
695bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
696                                       IdentifierInfo &Identifier,
697                                       SourceLocation IdentifierLoc,
698                                       SourceLocation CCLoc,
699                                       ParsedType ObjectType,
700                                       bool EnteringContext,
701                                       CXXScopeSpec &SS) {
702  if (SS.isInvalid())
703    return true;
704
705  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
706                                     GetTypeFromParser(ObjectType),
707                                     EnteringContext, SS,
708                                     /*ScopeLookupResult=*/0, false);
709}
710
711bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
712                                               const DeclSpec &DS,
713                                               SourceLocation ColonColonLoc) {
714  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
715    return true;
716
717  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
718
719  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
720  if (!T->isDependentType() && !T->getAs<TagType>()) {
721    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
722      << T << getLangOpts().CPlusPlus;
723    return true;
724  }
725
726  TypeLocBuilder TLB;
727  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
728  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
729  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
730            ColonColonLoc);
731  return false;
732}
733
734/// IsInvalidUnlessNestedName - This method is used for error recovery
735/// purposes to determine whether the specified identifier is only valid as
736/// a nested name specifier, for example a namespace name.  It is
737/// conservatively correct to always return false from this method.
738///
739/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
740bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
741                                     IdentifierInfo &Identifier,
742                                     SourceLocation IdentifierLoc,
743                                     SourceLocation ColonLoc,
744                                     ParsedType ObjectType,
745                                     bool EnteringContext) {
746  if (SS.isInvalid())
747    return false;
748
749  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
750                                      GetTypeFromParser(ObjectType),
751                                      EnteringContext, SS,
752                                      /*ScopeLookupResult=*/0, true);
753}
754
755bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
756                                       CXXScopeSpec &SS,
757                                       SourceLocation TemplateKWLoc,
758                                       TemplateTy Template,
759                                       SourceLocation TemplateNameLoc,
760                                       SourceLocation LAngleLoc,
761                                       ASTTemplateArgsPtr TemplateArgsIn,
762                                       SourceLocation RAngleLoc,
763                                       SourceLocation CCLoc,
764                                       bool EnteringContext) {
765  if (SS.isInvalid())
766    return true;
767
768  // Translate the parser's template argument list in our AST format.
769  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
770  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
771
772  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
773    // Handle a dependent template specialization for which we cannot resolve
774    // the template name.
775    assert(DTN->getQualifier()
776             == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
777    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
778                                                          DTN->getQualifier(),
779                                                          DTN->getIdentifier(),
780                                                                TemplateArgs);
781
782    // Create source-location information for this type.
783    TypeLocBuilder Builder;
784    DependentTemplateSpecializationTypeLoc SpecTL
785      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
786    SpecTL.setElaboratedKeywordLoc(SourceLocation());
787    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
788    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
789    SpecTL.setTemplateNameLoc(TemplateNameLoc);
790    SpecTL.setLAngleLoc(LAngleLoc);
791    SpecTL.setRAngleLoc(RAngleLoc);
792    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
793      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
794
795    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
796              CCLoc);
797    return false;
798  }
799
800
801  if (Template.get().getAsOverloadedTemplate() ||
802      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
803    SourceRange R(TemplateNameLoc, RAngleLoc);
804    if (SS.getRange().isValid())
805      R.setBegin(SS.getRange().getBegin());
806
807    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
808      << Template.get() << R;
809    NoteAllFoundTemplates(Template.get());
810    return true;
811  }
812
813  // We were able to resolve the template name to an actual template.
814  // Build an appropriate nested-name-specifier.
815  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
816                                   TemplateArgs);
817  if (T.isNull())
818    return true;
819
820  // Alias template specializations can produce types which are not valid
821  // nested name specifiers.
822  if (!T->isDependentType() && !T->getAs<TagType>()) {
823    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
824    NoteAllFoundTemplates(Template.get());
825    return true;
826  }
827
828  // Provide source-location information for the template specialization type.
829  TypeLocBuilder Builder;
830  TemplateSpecializationTypeLoc SpecTL
831    = Builder.push<TemplateSpecializationTypeLoc>(T);
832  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
833  SpecTL.setTemplateNameLoc(TemplateNameLoc);
834  SpecTL.setLAngleLoc(LAngleLoc);
835  SpecTL.setRAngleLoc(RAngleLoc);
836  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
837    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
838
839
840  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
841            CCLoc);
842  return false;
843}
844
845namespace {
846  /// \brief A structure that stores a nested-name-specifier annotation,
847  /// including both the nested-name-specifier
848  struct NestedNameSpecifierAnnotation {
849    NestedNameSpecifier *NNS;
850  };
851}
852
853void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
854  if (SS.isEmpty() || SS.isInvalid())
855    return 0;
856
857  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
858                                                        SS.location_size()),
859                               llvm::alignOf<NestedNameSpecifierAnnotation>());
860  NestedNameSpecifierAnnotation *Annotation
861    = new (Mem) NestedNameSpecifierAnnotation;
862  Annotation->NNS = SS.getScopeRep();
863  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
864  return Annotation;
865}
866
867void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
868                                                SourceRange AnnotationRange,
869                                                CXXScopeSpec &SS) {
870  if (!AnnotationPtr) {
871    SS.SetInvalid(AnnotationRange);
872    return;
873  }
874
875  NestedNameSpecifierAnnotation *Annotation
876    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
877  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
878}
879
880bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
881  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
882
883  NestedNameSpecifier *Qualifier =
884    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
885
886  // There are only two places a well-formed program may qualify a
887  // declarator: first, when defining a namespace or class member
888  // out-of-line, and second, when naming an explicitly-qualified
889  // friend function.  The latter case is governed by
890  // C++03 [basic.lookup.unqual]p10:
891  //   In a friend declaration naming a member function, a name used
892  //   in the function declarator and not part of a template-argument
893  //   in a template-id is first looked up in the scope of the member
894  //   function's class. If it is not found, or if the name is part of
895  //   a template-argument in a template-id, the look up is as
896  //   described for unqualified names in the definition of the class
897  //   granting friendship.
898  // i.e. we don't push a scope unless it's a class member.
899
900  switch (Qualifier->getKind()) {
901  case NestedNameSpecifier::Global:
902  case NestedNameSpecifier::Namespace:
903  case NestedNameSpecifier::NamespaceAlias:
904    // These are always namespace scopes.  We never want to enter a
905    // namespace scope from anything but a file context.
906    return CurContext->getRedeclContext()->isFileContext();
907
908  case NestedNameSpecifier::Identifier:
909  case NestedNameSpecifier::TypeSpec:
910  case NestedNameSpecifier::TypeSpecWithTemplate:
911    // These are never namespace scopes.
912    return true;
913  }
914
915  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
916}
917
918/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
919/// scope or nested-name-specifier) is parsed, part of a declarator-id.
920/// After this method is called, according to [C++ 3.4.3p3], names should be
921/// looked up in the declarator-id's scope, until the declarator is parsed and
922/// ActOnCXXExitDeclaratorScope is called.
923/// The 'SS' should be a non-empty valid CXXScopeSpec.
924bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
925  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
926
927  if (SS.isInvalid()) return true;
928
929  DeclContext *DC = computeDeclContext(SS, true);
930  if (!DC) return true;
931
932  // Before we enter a declarator's context, we need to make sure that
933  // it is a complete declaration context.
934  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
935    return true;
936
937  EnterDeclaratorContext(S, DC);
938
939  // Rebuild the nested name specifier for the new scope.
940  if (DC->isDependentContext())
941    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
942
943  return false;
944}
945
946/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
947/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
948/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
949/// Used to indicate that names should revert to being looked up in the
950/// defining scope.
951void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
952  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
953  if (SS.isInvalid())
954    return;
955  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
956         "exiting declarator scope we never really entered");
957  ExitDeclaratorContext(S);
958}
959