JumpDiagnostics.cpp revision 218893
1//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the JumpScopeChecker class, which is used to diagnose
11// jumps that enter a VLA scope in an invalid way.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/StmtObjC.h"
19#include "clang/AST/StmtCXX.h"
20#include "llvm/ADT/BitVector.h"
21using namespace clang;
22
23namespace {
24
25/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
26/// into VLA and other protected scopes.  For example, this rejects:
27///    goto L;
28///    int a[n];
29///  L:
30///
31class JumpScopeChecker {
32  Sema &S;
33
34  /// GotoScope - This is a record that we use to keep track of all of the
35  /// scopes that are introduced by VLAs and other things that scope jumps like
36  /// gotos.  This scope tree has nothing to do with the source scope tree,
37  /// because you can have multiple VLA scopes per compound statement, and most
38  /// compound statements don't introduce any scopes.
39  struct GotoScope {
40    /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
41    /// the parent scope is the function body.
42    unsigned ParentScope;
43
44    /// InDiag - The diagnostic to emit if there is a jump into this scope.
45    unsigned InDiag;
46
47    /// OutDiag - The diagnostic to emit if there is an indirect jump out
48    /// of this scope.  Direct jumps always clean up their current scope
49    /// in an orderly way.
50    unsigned OutDiag;
51
52    /// Loc - Location to emit the diagnostic.
53    SourceLocation Loc;
54
55    GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
56              SourceLocation L)
57      : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
58  };
59
60  llvm::SmallVector<GotoScope, 48> Scopes;
61  llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
62  llvm::SmallVector<Stmt*, 16> Jumps;
63
64  llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
65  llvm::SmallVector<LabelDecl*, 4> IndirectJumpTargets;
66public:
67  JumpScopeChecker(Stmt *Body, Sema &S);
68private:
69  void BuildScopeInformation(Decl *D, unsigned &ParentScope);
70  void BuildScopeInformation(Stmt *S, unsigned ParentScope);
71  void VerifyJumps();
72  void VerifyIndirectJumps();
73  void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
74                            LabelDecl *Target, unsigned TargetScope);
75  void CheckJump(Stmt *From, Stmt *To,
76                 SourceLocation DiagLoc, unsigned JumpDiag);
77
78  unsigned GetDeepestCommonScope(unsigned A, unsigned B);
79};
80} // end anonymous namespace
81
82
83JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
84  // Add a scope entry for function scope.
85  Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
86
87  // Build information for the top level compound statement, so that we have a
88  // defined scope record for every "goto" and label.
89  BuildScopeInformation(Body, 0);
90
91  // Check that all jumps we saw are kosher.
92  VerifyJumps();
93  VerifyIndirectJumps();
94}
95
96/// GetDeepestCommonScope - Finds the innermost scope enclosing the
97/// two scopes.
98unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
99  while (A != B) {
100    // Inner scopes are created after outer scopes and therefore have
101    // higher indices.
102    if (A < B) {
103      assert(Scopes[B].ParentScope < B);
104      B = Scopes[B].ParentScope;
105    } else {
106      assert(Scopes[A].ParentScope < A);
107      A = Scopes[A].ParentScope;
108    }
109  }
110  return A;
111}
112
113/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
114/// diagnostic that should be emitted if control goes over it. If not, return 0.
115static std::pair<unsigned,unsigned>
116    GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) {
117  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
118    unsigned InDiag = 0, OutDiag = 0;
119    if (VD->getType()->isVariablyModifiedType())
120      InDiag = diag::note_protected_by_vla;
121
122    if (VD->hasAttr<BlocksAttr>()) {
123      InDiag = diag::note_protected_by___block;
124      OutDiag = diag::note_exits___block;
125    } else if (VD->hasAttr<CleanupAttr>()) {
126      InDiag = diag::note_protected_by_cleanup;
127      OutDiag = diag::note_exits_cleanup;
128    } else if (isCPlusPlus) {
129      // FIXME: In C++0x, we have to check more conditions than "did we
130      // just give it an initializer?". See 6.7p3.
131      if (VD->hasLocalStorage() && VD->hasInit())
132        InDiag = diag::note_protected_by_variable_init;
133
134      CanQualType T = VD->getType()->getCanonicalTypeUnqualified();
135      if (!T->isDependentType()) {
136        while (CanQual<ArrayType> AT = T->getAs<ArrayType>())
137          T = AT->getElementType();
138        if (CanQual<RecordType> RT = T->getAs<RecordType>())
139          if (!cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor())
140            OutDiag = diag::note_exits_dtor;
141      }
142    }
143
144    return std::make_pair(InDiag, OutDiag);
145  }
146
147  if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
148    if (TD->getUnderlyingType()->isVariablyModifiedType())
149      return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0);
150  }
151
152  return std::make_pair(0U, 0U);
153}
154
155/// \brief Build scope information for a declaration that is part of a DeclStmt.
156void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
157  bool isCPlusPlus = this->S.getLangOptions().CPlusPlus;
158
159  // If this decl causes a new scope, push and switch to it.
160  std::pair<unsigned,unsigned> Diags
161    = GetDiagForGotoScopeDecl(D, isCPlusPlus);
162  if (Diags.first || Diags.second) {
163    Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
164                               D->getLocation()));
165    ParentScope = Scopes.size()-1;
166  }
167
168  // If the decl has an initializer, walk it with the potentially new
169  // scope we just installed.
170  if (VarDecl *VD = dyn_cast<VarDecl>(D))
171    if (Expr *Init = VD->getInit())
172      BuildScopeInformation(Init, ParentScope);
173}
174
175/// BuildScopeInformation - The statements from CI to CE are known to form a
176/// coherent VLA scope with a specified parent node.  Walk through the
177/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
178/// walking the AST as needed.
179void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) {
180  bool SkipFirstSubStmt = false;
181
182  // If we found a label, remember that it is in ParentScope scope.
183  switch (S->getStmtClass()) {
184  case Stmt::AddrLabelExprClass:
185    IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
186    break;
187
188  case Stmt::IndirectGotoStmtClass:
189    // "goto *&&lbl;" is a special case which we treat as equivalent
190    // to a normal goto.  In addition, we don't calculate scope in the
191    // operand (to avoid recording the address-of-label use), which
192    // works only because of the restricted set of expressions which
193    // we detect as constant targets.
194    if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
195      LabelAndGotoScopes[S] = ParentScope;
196      Jumps.push_back(S);
197      return;
198    }
199
200    LabelAndGotoScopes[S] = ParentScope;
201    IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
202    break;
203
204  case Stmt::SwitchStmtClass:
205    // Evaluate the condition variable before entering the scope of the switch
206    // statement.
207    if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
208      BuildScopeInformation(Var, ParentScope);
209      SkipFirstSubStmt = true;
210    }
211    // Fall through
212
213  case Stmt::GotoStmtClass:
214    // Remember both what scope a goto is in as well as the fact that we have
215    // it.  This makes the second scan not have to walk the AST again.
216    LabelAndGotoScopes[S] = ParentScope;
217    Jumps.push_back(S);
218    break;
219
220  default:
221    break;
222  }
223
224  for (Stmt::child_range CI = S->children(); CI; ++CI) {
225    if (SkipFirstSubStmt) {
226      SkipFirstSubStmt = false;
227      continue;
228    }
229
230    Stmt *SubStmt = *CI;
231    if (SubStmt == 0) continue;
232
233    // Cases, labels, and defaults aren't "scope parents".  It's also
234    // important to handle these iteratively instead of recursively in
235    // order to avoid blowing out the stack.
236    while (true) {
237      Stmt *Next;
238      if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
239        Next = CS->getSubStmt();
240      else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
241        Next = DS->getSubStmt();
242      else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
243        Next = LS->getSubStmt();
244      else
245        break;
246
247      LabelAndGotoScopes[SubStmt] = ParentScope;
248      SubStmt = Next;
249    }
250
251    // If this is a declstmt with a VLA definition, it defines a scope from here
252    // to the end of the containing context.
253    if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
254      // The decl statement creates a scope if any of the decls in it are VLAs
255      // or have the cleanup attribute.
256      for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
257           I != E; ++I)
258        BuildScopeInformation(*I, ParentScope);
259      continue;
260    }
261
262    // Disallow jumps into any part of an @try statement by pushing a scope and
263    // walking all sub-stmts in that scope.
264    if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
265      // Recursively walk the AST for the @try part.
266      Scopes.push_back(GotoScope(ParentScope,
267                                 diag::note_protected_by_objc_try,
268                                 diag::note_exits_objc_try,
269                                 AT->getAtTryLoc()));
270      if (Stmt *TryPart = AT->getTryBody())
271        BuildScopeInformation(TryPart, Scopes.size()-1);
272
273      // Jump from the catch to the finally or try is not valid.
274      for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
275        ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
276        Scopes.push_back(GotoScope(ParentScope,
277                                   diag::note_protected_by_objc_catch,
278                                   diag::note_exits_objc_catch,
279                                   AC->getAtCatchLoc()));
280        // @catches are nested and it isn't
281        BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1);
282      }
283
284      // Jump from the finally to the try or catch is not valid.
285      if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
286        Scopes.push_back(GotoScope(ParentScope,
287                                   diag::note_protected_by_objc_finally,
288                                   diag::note_exits_objc_finally,
289                                   AF->getAtFinallyLoc()));
290        BuildScopeInformation(AF, Scopes.size()-1);
291      }
292
293      continue;
294    }
295
296    // Disallow jumps into the protected statement of an @synchronized, but
297    // allow jumps into the object expression it protects.
298    if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
299      // Recursively walk the AST for the @synchronized object expr, it is
300      // evaluated in the normal scope.
301      BuildScopeInformation(AS->getSynchExpr(), ParentScope);
302
303      // Recursively walk the AST for the @synchronized part, protected by a new
304      // scope.
305      Scopes.push_back(GotoScope(ParentScope,
306                                 diag::note_protected_by_objc_synchronized,
307                                 diag::note_exits_objc_synchronized,
308                                 AS->getAtSynchronizedLoc()));
309      BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1);
310      continue;
311    }
312
313    // Disallow jumps into any part of a C++ try statement. This is pretty
314    // much the same as for Obj-C.
315    if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
316      Scopes.push_back(GotoScope(ParentScope,
317                                 diag::note_protected_by_cxx_try,
318                                 diag::note_exits_cxx_try,
319                                 TS->getSourceRange().getBegin()));
320      if (Stmt *TryBlock = TS->getTryBlock())
321        BuildScopeInformation(TryBlock, Scopes.size()-1);
322
323      // Jump from the catch into the try is not allowed either.
324      for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
325        CXXCatchStmt *CS = TS->getHandler(I);
326        Scopes.push_back(GotoScope(ParentScope,
327                                   diag::note_protected_by_cxx_catch,
328                                   diag::note_exits_cxx_catch,
329                                   CS->getSourceRange().getBegin()));
330        BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1);
331      }
332
333      continue;
334    }
335
336    // Recursively walk the AST.
337    BuildScopeInformation(SubStmt, ParentScope);
338  }
339}
340
341/// VerifyJumps - Verify each element of the Jumps array to see if they are
342/// valid, emitting diagnostics if not.
343void JumpScopeChecker::VerifyJumps() {
344  while (!Jumps.empty()) {
345    Stmt *Jump = Jumps.pop_back_val();
346
347    // With a goto,
348    if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
349      CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
350                diag::err_goto_into_protected_scope);
351      continue;
352    }
353
354    // We only get indirect gotos here when they have a constant target.
355    if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
356      LabelDecl *Target = IGS->getConstantTarget();
357      CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
358                diag::err_goto_into_protected_scope);
359      continue;
360    }
361
362    SwitchStmt *SS = cast<SwitchStmt>(Jump);
363    for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
364         SC = SC->getNextSwitchCase()) {
365      assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
366      CheckJump(SS, SC, SC->getLocStart(),
367                diag::err_switch_into_protected_scope);
368    }
369  }
370}
371
372/// VerifyIndirectJumps - Verify whether any possible indirect jump
373/// might cross a protection boundary.  Unlike direct jumps, indirect
374/// jumps count cleanups as protection boundaries:  since there's no
375/// way to know where the jump is going, we can't implicitly run the
376/// right cleanups the way we can with direct jumps.
377///
378/// Thus, an indirect jump is "trivial" if it bypasses no
379/// initializations and no teardowns.  More formally, an indirect jump
380/// from A to B is trivial if the path out from A to DCA(A,B) is
381/// trivial and the path in from DCA(A,B) to B is trivial, where
382/// DCA(A,B) is the deepest common ancestor of A and B.
383/// Jump-triviality is transitive but asymmetric.
384///
385/// A path in is trivial if none of the entered scopes have an InDiag.
386/// A path out is trivial is none of the exited scopes have an OutDiag.
387///
388/// Under these definitions, this function checks that the indirect
389/// jump between A and B is trivial for every indirect goto statement A
390/// and every label B whose address was taken in the function.
391void JumpScopeChecker::VerifyIndirectJumps() {
392  if (IndirectJumps.empty()) return;
393
394  // If there aren't any address-of-label expressions in this function,
395  // complain about the first indirect goto.
396  if (IndirectJumpTargets.empty()) {
397    S.Diag(IndirectJumps[0]->getGotoLoc(),
398           diag::err_indirect_goto_without_addrlabel);
399    return;
400  }
401
402  // Collect a single representative of every scope containing an
403  // indirect goto.  For most code bases, this substantially cuts
404  // down on the number of jump sites we'll have to consider later.
405  typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
406  llvm::SmallVector<JumpScope, 32> JumpScopes;
407  {
408    llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
409    for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator
410           I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
411      IndirectGotoStmt *IG = *I;
412      assert(LabelAndGotoScopes.count(IG) &&
413             "indirect jump didn't get added to scopes?");
414      unsigned IGScope = LabelAndGotoScopes[IG];
415      IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
416      if (!Entry) Entry = IG;
417    }
418    JumpScopes.reserve(JumpScopesMap.size());
419    for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
420           I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
421      JumpScopes.push_back(*I);
422  }
423
424  // Collect a single representative of every scope containing a
425  // label whose address was taken somewhere in the function.
426  // For most code bases, there will be only one such scope.
427  llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
428  for (llvm::SmallVectorImpl<LabelDecl*>::iterator
429         I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
430       I != E; ++I) {
431    LabelDecl *TheLabel = *I;
432    assert(LabelAndGotoScopes.count(TheLabel->getStmt()) &&
433           "Referenced label didn't get added to scopes?");
434    unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
435    LabelDecl *&Target = TargetScopes[LabelScope];
436    if (!Target) Target = TheLabel;
437  }
438
439  // For each target scope, make sure it's trivially reachable from
440  // every scope containing a jump site.
441  //
442  // A path between scopes always consists of exitting zero or more
443  // scopes, then entering zero or more scopes.  We build a set of
444  // of scopes S from which the target scope can be trivially
445  // entered, then verify that every jump scope can be trivially
446  // exitted to reach a scope in S.
447  llvm::BitVector Reachable(Scopes.size(), false);
448  for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
449         TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
450    unsigned TargetScope = TI->first;
451    LabelDecl *TargetLabel = TI->second;
452
453    Reachable.reset();
454
455    // Mark all the enclosing scopes from which you can safely jump
456    // into the target scope.  'Min' will end up being the index of
457    // the shallowest such scope.
458    unsigned Min = TargetScope;
459    while (true) {
460      Reachable.set(Min);
461
462      // Don't go beyond the outermost scope.
463      if (Min == 0) break;
464
465      // Stop if we can't trivially enter the current scope.
466      if (Scopes[Min].InDiag) break;
467
468      Min = Scopes[Min].ParentScope;
469    }
470
471    // Walk through all the jump sites, checking that they can trivially
472    // reach this label scope.
473    for (llvm::SmallVectorImpl<JumpScope>::iterator
474           I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
475      unsigned Scope = I->first;
476
477      // Walk out the "scope chain" for this scope, looking for a scope
478      // we've marked reachable.  For well-formed code this amortizes
479      // to O(JumpScopes.size() / Scopes.size()):  we only iterate
480      // when we see something unmarked, and in well-formed code we
481      // mark everything we iterate past.
482      bool IsReachable = false;
483      while (true) {
484        if (Reachable.test(Scope)) {
485          // If we find something reachable, mark all the scopes we just
486          // walked through as reachable.
487          for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
488            Reachable.set(S);
489          IsReachable = true;
490          break;
491        }
492
493        // Don't walk out if we've reached the top-level scope or we've
494        // gotten shallower than the shallowest reachable scope.
495        if (Scope == 0 || Scope < Min) break;
496
497        // Don't walk out through an out-diagnostic.
498        if (Scopes[Scope].OutDiag) break;
499
500        Scope = Scopes[Scope].ParentScope;
501      }
502
503      // Only diagnose if we didn't find something.
504      if (IsReachable) continue;
505
506      DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
507    }
508  }
509}
510
511/// Diagnose an indirect jump which is known to cross scopes.
512void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
513                                            unsigned JumpScope,
514                                            LabelDecl *Target,
515                                            unsigned TargetScope) {
516  assert(JumpScope != TargetScope);
517
518  S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
519  S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
520
521  unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
522
523  // Walk out the scope chain until we reach the common ancestor.
524  for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
525    if (Scopes[I].OutDiag)
526      S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
527
528  // Now walk into the scopes containing the label whose address was taken.
529  for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
530    if (Scopes[I].InDiag)
531      S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
532}
533
534/// CheckJump - Validate that the specified jump statement is valid: that it is
535/// jumping within or out of its current scope, not into a deeper one.
536void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To,
537                                 SourceLocation DiagLoc, unsigned JumpDiag) {
538  assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
539  unsigned FromScope = LabelAndGotoScopes[From];
540
541  assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
542  unsigned ToScope = LabelAndGotoScopes[To];
543
544  // Common case: exactly the same scope, which is fine.
545  if (FromScope == ToScope) return;
546
547  unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
548
549  // It's okay to jump out from a nested scope.
550  if (CommonScope == ToScope) return;
551
552  // Pull out (and reverse) any scopes we might need to diagnose skipping.
553  llvm::SmallVector<unsigned, 10> ToScopes;
554  for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope)
555    if (Scopes[I].InDiag)
556      ToScopes.push_back(I);
557
558  // If the only scopes present are cleanup scopes, we're okay.
559  if (ToScopes.empty()) return;
560
561  S.Diag(DiagLoc, JumpDiag);
562
563  // Emit diagnostics for whatever is left in ToScopes.
564  for (unsigned i = 0, e = ToScopes.size(); i != e; ++i)
565    S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag);
566}
567
568void Sema::DiagnoseInvalidJumps(Stmt *Body) {
569  (void)JumpScopeChecker(Body, *this);
570}
571