ParseDecl.cpp revision 280031
1168404Spjd//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2168404Spjd//
3168404Spjd//                     The LLVM Compiler Infrastructure
4168404Spjd//
5168404Spjd// This file is distributed under the University of Illinois Open Source
6168404Spjd// License. See LICENSE.TXT for details.
7168404Spjd//
8168404Spjd//===----------------------------------------------------------------------===//
9168404Spjd//
10168404Spjd//  This file implements the Declaration portions of the Parser interfaces.
11168404Spjd//
12168404Spjd//===----------------------------------------------------------------------===//
13168404Spjd
14168404Spjd#include "clang/Parse/Parser.h"
15168404Spjd#include "RAIIObjectsForParser.h"
16168404Spjd#include "clang/AST/ASTContext.h"
17168404Spjd#include "clang/AST/DeclTemplate.h"
18168404Spjd#include "clang/Basic/AddressSpaces.h"
19168404Spjd#include "clang/Basic/Attributes.h"
20168404Spjd#include "clang/Basic/CharInfo.h"
21168404Spjd#include "clang/Basic/TargetInfo.h"
22168404Spjd#include "clang/Parse/ParseDiagnostic.h"
23168404Spjd#include "clang/Sema/Lookup.h"
24168404Spjd#include "clang/Sema/ParsedTemplate.h"
25168404Spjd#include "clang/Sema/PrettyDeclStackTrace.h"
26168404Spjd#include "clang/Sema/Scope.h"
27168404Spjd#include "llvm/ADT/SmallSet.h"
28168404Spjd#include "llvm/ADT/SmallString.h"
29168404Spjd#include "llvm/ADT/StringSwitch.h"
30169303Spjdusing namespace clang;
31168404Spjd
32168404Spjd//===----------------------------------------------------------------------===//
33168404Spjd// C99 6.7: Declarations.
34168404Spjd//===----------------------------------------------------------------------===//
35168404Spjd
36169303Spjd/// ParseTypeName
37168404Spjd///       type-name: [C99 6.7.6]
38168404Spjd///         specifier-qualifier-list abstract-declarator[opt]
39168404Spjd///
40168404Spjd/// Called type-id in C++.
41168404SpjdTypeResult Parser::ParseTypeName(SourceRange *Range,
42168404Spjd                                 Declarator::TheContext Context,
43168404Spjd                                 AccessSpecifier AS,
44168404Spjd                                 Decl **OwnedType,
45168404Spjd                                 ParsedAttributes *Attrs) {
46168404Spjd  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47168404Spjd  if (DSC == DSC_normal)
48168404Spjd    DSC = DSC_type_specifier;
49168404Spjd
50168404Spjd  // Parse the common declaration-specifiers piece.
51168404Spjd  DeclSpec DS(AttrFactory);
52168404Spjd  if (Attrs)
53168404Spjd    DS.addAttributes(Attrs->getList());
54168404Spjd  ParseSpecifierQualifierList(DS, AS, DSC);
55168404Spjd  if (OwnedType)
56168404Spjd    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57168404Spjd
58168404Spjd  // Parse the abstract-declarator, if present.
59168404Spjd  Declarator DeclaratorInfo(DS, Context);
60168404Spjd  ParseDeclarator(DeclaratorInfo);
61168404Spjd  if (Range)
62168404Spjd    *Range = DeclaratorInfo.getSourceRange();
63168404Spjd
64168404Spjd  if (DeclaratorInfo.isInvalidType())
65168404Spjd    return true;
66168404Spjd
67168404Spjd  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68168404Spjd}
69168404Spjd
70168404Spjd
71168404Spjd/// isAttributeLateParsed - Return true if the attribute has arguments that
72168404Spjd/// require late parsing.
73168404Spjdstatic bool isAttributeLateParsed(const IdentifierInfo &II) {
74168404Spjd#define CLANG_ATTR_LATE_PARSED_LIST
75168404Spjd    return llvm::StringSwitch<bool>(II.getName())
76168404Spjd#include "clang/Parse/AttrParserStringSwitches.inc"
77168404Spjd        .Default(false);
78168404Spjd#undef CLANG_ATTR_LATE_PARSED_LIST
79168404Spjd}
80168404Spjd
81168404Spjd/// ParseGNUAttributes - Parse a non-empty attributes list.
82168404Spjd///
83168404Spjd/// [GNU] attributes:
84168404Spjd///         attribute
85168404Spjd///         attributes attribute
86168404Spjd///
87168404Spjd/// [GNU]  attribute:
88169303Spjd///          '__attribute__' '(' '(' attribute-list ')' ')'
89169303Spjd///
90169087Spjd/// [GNU]  attribute-list:
91168404Spjd///          attrib
92168404Spjd///          attribute_list ',' attrib
93168404Spjd///
94168404Spjd/// [GNU]  attrib:
95168404Spjd///          empty
96169087Spjd///          attrib-name
97168404Spjd///          attrib-name '(' identifier ')'
98168404Spjd///          attrib-name '(' identifier ',' nonempty-expr-list ')'
99185029Spjd///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100185029Spjd///
101185029Spjd/// [GNU]  attrib-name:
102168404Spjd///          identifier
103168404Spjd///          typespec
104168404Spjd///          typequal
105168404Spjd///          storageclass
106168404Spjd///
107168404Spjd/// Whether an attribute takes an 'identifier' is determined by the
108168404Spjd/// attrib-name. GCC's behavior here is not worth imitating:
109168404Spjd///
110168404Spjd///  * In C mode, if the attribute argument list starts with an identifier
111168404Spjd///    followed by a ',' or an ')', and the identifier doesn't resolve to
112168404Spjd///    a type, it is parsed as an identifier. If the attribute actually
113168404Spjd///    wanted an expression, it's out of luck (but it turns out that no
114168404Spjd///    attributes work that way, because C constant expressions are very
115169303Spjd///    limited).
116169303Spjd///  * In C++ mode, if the attribute argument list starts with an identifier,
117169303Spjd///    and the attribute *wants* an identifier, it is parsed as an identifier.
118169303Spjd///    At block scope, any additional tokens between the identifier and the
119169303Spjd///    ',' or ')' are ignored, otherwise they produce a parse error.
120168404Spjd///
121168404Spjd/// We follow the C++ model, but don't allow junk after the identifier.
122168404Spjdvoid Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123168404Spjd                                SourceLocation *endLoc,
124168404Spjd                                LateParsedAttrList *LateAttrs,
125168404Spjd                                Declarator *D) {
126168404Spjd  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127168404Spjd
128168404Spjd  while (Tok.is(tok::kw___attribute)) {
129168404Spjd    ConsumeToken();
130168404Spjd    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131168404Spjd                         "attribute")) {
132168404Spjd      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133168404Spjd      return;
134168404Spjd    }
135168404Spjd    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136168404Spjd      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137168404Spjd      return;
138168404Spjd    }
139168404Spjd    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140168404Spjd    while (true) {
141168404Spjd      // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142168404Spjd      if (TryConsumeToken(tok::comma))
143168404Spjd        continue;
144168404Spjd
145168404Spjd      // Expect an identifier or declaration specifier (const, int, etc.)
146168404Spjd      if (Tok.isAnnotation())
147168404Spjd        break;
148168404Spjd      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
149168404Spjd      if (!AttrName)
150168404Spjd        break;
151168404Spjd
152168404Spjd      SourceLocation AttrNameLoc = ConsumeToken();
153168404Spjd
154168404Spjd      if (Tok.isNot(tok::l_paren)) {
155168404Spjd        attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
156168404Spjd                     AttributeList::AS_GNU);
157168404Spjd        continue;
158168404Spjd      }
159168404Spjd
160168404Spjd      // Handle "parameterized" attributes
161168404Spjd      if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
162168404Spjd        ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
163168404Spjd                              SourceLocation(), AttributeList::AS_GNU, D);
164168404Spjd        continue;
165168404Spjd      }
166168404Spjd
167168404Spjd      // Handle attributes with arguments that require late parsing.
168168404Spjd      LateParsedAttribute *LA =
169168404Spjd          new LateParsedAttribute(this, *AttrName, AttrNameLoc);
170168404Spjd      LateAttrs->push_back(LA);
171168404Spjd
172168404Spjd      // Attributes in a class are parsed at the end of the class, along
173168404Spjd      // with other late-parsed declarations.
174168404Spjd      if (!ClassStack.empty() && !LateAttrs->parseSoon())
175168404Spjd        getCurrentClass().LateParsedDeclarations.push_back(LA);
176168404Spjd
177168404Spjd      // consume everything up to and including the matching right parens
178168404Spjd      ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
179168404Spjd
180168404Spjd      Token Eof;
181168404Spjd      Eof.startToken();
182168404Spjd      Eof.setLocation(Tok.getLocation());
183168404Spjd      LA->Toks.push_back(Eof);
184168404Spjd    }
185168404Spjd
186168404Spjd    if (ExpectAndConsume(tok::r_paren))
187168404Spjd      SkipUntil(tok::r_paren, StopAtSemi);
188168404Spjd    SourceLocation Loc = Tok.getLocation();
189168404Spjd    if (ExpectAndConsume(tok::r_paren))
190168404Spjd      SkipUntil(tok::r_paren, StopAtSemi);
191168404Spjd    if (endLoc)
192168404Spjd      *endLoc = Loc;
193168404Spjd  }
194168404Spjd}
195168404Spjd
196168404Spjd/// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
197168404Spjdstatic StringRef normalizeAttrName(StringRef Name) {
198168404Spjd  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
199168404Spjd    Name = Name.drop_front(2).drop_back(2);
200168404Spjd  return Name;
201168404Spjd}
202168404Spjd
203168404Spjd/// \brief Determine whether the given attribute has an identifier argument.
204168404Spjdstatic bool attributeHasIdentifierArg(const IdentifierInfo &II) {
205168404Spjd#define CLANG_ATTR_IDENTIFIER_ARG_LIST
206172836Sjulian  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
207168404Spjd#include "clang/Parse/AttrParserStringSwitches.inc"
208168404Spjd           .Default(false);
209168404Spjd#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
210168404Spjd}
211168404Spjd
212168404Spjd/// \brief Determine whether the given attribute parses a type argument.
213168404Spjdstatic bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
214168404Spjd#define CLANG_ATTR_TYPE_ARG_LIST
215168404Spjd  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
216168404Spjd#include "clang/Parse/AttrParserStringSwitches.inc"
217168404Spjd           .Default(false);
218168404Spjd#undef CLANG_ATTR_TYPE_ARG_LIST
219168404Spjd}
220168404Spjd
221168404Spjd/// \brief Determine whether the given attribute requires parsing its arguments
222168404Spjd/// in an unevaluated context or not.
223168404Spjdstatic bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
224168404Spjd#define CLANG_ATTR_ARG_CONTEXT_LIST
225168404Spjd  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
226168404Spjd#include "clang/Parse/AttrParserStringSwitches.inc"
227168404Spjd           .Default(false);
228185029Spjd#undef CLANG_ATTR_ARG_CONTEXT_LIST
229168404Spjd}
230168404Spjd
231168404SpjdIdentifierLoc *Parser::ParseIdentifierLoc() {
232185029Spjd  assert(Tok.is(tok::identifier) && "expected an identifier");
233185029Spjd  IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
234185029Spjd                                            Tok.getLocation(),
235185029Spjd                                            Tok.getIdentifierInfo());
236185029Spjd  ConsumeToken();
237185029Spjd  return IL;
238185029Spjd}
239185029Spjd
240185029Spjdvoid Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
241185029Spjd                                       SourceLocation AttrNameLoc,
242185029Spjd                                       ParsedAttributes &Attrs,
243185029Spjd                                       SourceLocation *EndLoc,
244185029Spjd                                       IdentifierInfo *ScopeName,
245185029Spjd                                       SourceLocation ScopeLoc,
246185029Spjd                                       AttributeList::Syntax Syntax) {
247185029Spjd  BalancedDelimiterTracker Parens(*this, tok::l_paren);
248185029Spjd  Parens.consumeOpen();
249185029Spjd
250185029Spjd  TypeResult T;
251185029Spjd  if (Tok.isNot(tok::r_paren))
252185029Spjd    T = ParseTypeName();
253185029Spjd
254185029Spjd  if (Parens.consumeClose())
255185029Spjd    return;
256185029Spjd
257185029Spjd  if (T.isInvalid())
258185029Spjd    return;
259185029Spjd
260185029Spjd  if (T.isUsable())
261185029Spjd    Attrs.addNewTypeAttr(&AttrName,
262185029Spjd                         SourceRange(AttrNameLoc, Parens.getCloseLocation()),
263185029Spjd                         ScopeName, ScopeLoc, T.get(), Syntax);
264185029Spjd  else
265185029Spjd    Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
266185029Spjd                 ScopeName, ScopeLoc, nullptr, 0, Syntax);
267185029Spjd}
268185029Spjd
269185029Spjdunsigned Parser::ParseAttributeArgsCommon(
270185029Spjd    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
271185029Spjd    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
272185029Spjd    SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
273185029Spjd  // Ignore the left paren location for now.
274185029Spjd  ConsumeParen();
275185029Spjd
276185029Spjd  ArgsVector ArgExprs;
277185029Spjd  if (Tok.is(tok::identifier)) {
278185029Spjd    // If this attribute wants an 'identifier' argument, make it so.
279185029Spjd    bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
280185029Spjd    AttributeList::Kind AttrKind =
281185029Spjd        AttributeList::getKind(AttrName, ScopeName, Syntax);
282185174Spjd
283185174Spjd    // If we don't know how to parse this attribute, but this is the only
284185029Spjd    // token in this argument, assume it's meant to be an identifier.
285185029Spjd    if (AttrKind == AttributeList::UnknownAttribute ||
286185029Spjd        AttrKind == AttributeList::IgnoredAttribute) {
287185029Spjd      const Token &Next = NextToken();
288185029Spjd      IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
289185029Spjd    }
290185029Spjd
291185174Spjd    if (IsIdentifierArg)
292185029Spjd      ArgExprs.push_back(ParseIdentifierLoc());
293185029Spjd  }
294185029Spjd
295185029Spjd  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
296185029Spjd    // Eat the comma.
297185029Spjd    if (!ArgExprs.empty())
298185029Spjd      ConsumeToken();
299185029Spjd
300185029Spjd    // Parse the non-empty comma-separated list of expressions.
301185029Spjd    do {
302185029Spjd      std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
303185029Spjd      if (attributeParsedArgsUnevaluated(*AttrName))
304185174Spjd        Unevaluated.reset(
305185029Spjd            new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
306185029Spjd
307185029Spjd      ExprResult ArgExpr(
308185174Spjd          Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
309185029Spjd      if (ArgExpr.isInvalid()) {
310185029Spjd        SkipUntil(tok::r_paren, StopAtSemi);
311185029Spjd        return 0;
312185029Spjd      }
313185029Spjd      ArgExprs.push_back(ArgExpr.get());
314185029Spjd      // Eat the comma, move to the next argument
315185029Spjd    } while (TryConsumeToken(tok::comma));
316185029Spjd  }
317185029Spjd
318185029Spjd  SourceLocation RParen = Tok.getLocation();
319185029Spjd  if (!ExpectAndConsume(tok::r_paren)) {
320185029Spjd    SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
321185029Spjd    Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
322185029Spjd                 ArgExprs.data(), ArgExprs.size(), Syntax);
323185029Spjd  }
324185029Spjd
325185174Spjd  if (EndLoc)
326185174Spjd    *EndLoc = RParen;
327185029Spjd
328185029Spjd  return static_cast<unsigned>(ArgExprs.size());
329185029Spjd}
330185174Spjd
331185174Spjd/// Parse the arguments to a parameterized GNU attribute or
332185174Spjd/// a C++11 attribute in "gnu" namespace.
333185029Spjdvoid Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
334185029Spjd                                   SourceLocation AttrNameLoc,
335169303Spjd                                   ParsedAttributes &Attrs,
336185174Spjd                                   SourceLocation *EndLoc,
337169303Spjd                                   IdentifierInfo *ScopeName,
338169303Spjd                                   SourceLocation ScopeLoc,
339169303Spjd                                   AttributeList::Syntax Syntax,
340169303Spjd                                   Declarator *D) {
341169303Spjd
342169303Spjd  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
343169303Spjd
344169303Spjd  AttributeList::Kind AttrKind =
345169303Spjd      AttributeList::getKind(AttrName, ScopeName, Syntax);
346169303Spjd
347169303Spjd  if (AttrKind == AttributeList::AT_Availability) {
348169303Spjd    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
349169303Spjd                               ScopeLoc, Syntax);
350185174Spjd    return;
351169303Spjd  } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
352169303Spjd    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
353169303Spjd                                    ScopeName, ScopeLoc, Syntax);
354169303Spjd    return;
355169303Spjd  } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356169303Spjd    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
357185174Spjd                                     ScopeName, ScopeLoc, Syntax);
358169303Spjd    return;
359169303Spjd  } else if (attributeIsTypeArgAttr(*AttrName)) {
360169303Spjd    ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
361169303Spjd                              ScopeLoc, Syntax);
362169303Spjd    return;
363169303Spjd  }
364169303Spjd
365169303Spjd  // These may refer to the function arguments, but need to be parsed early to
366169303Spjd  // participate in determining whether it's a redeclaration.
367169303Spjd  std::unique_ptr<ParseScope> PrototypeScope;
368169303Spjd  if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
369169303Spjd    DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
370169303Spjd    PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
371169303Spjd                                        Scope::FunctionDeclarationScope |
372169303Spjd                                        Scope::DeclScope));
373169303Spjd    for (unsigned i = 0; i != FTI.NumParams; ++i) {
374169303Spjd      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
375169303Spjd      Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
376169303Spjd    }
377169303Spjd  }
378169303Spjd
379169303Spjd  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
380169303Spjd                           ScopeLoc, Syntax);
381169303Spjd}
382169303Spjd
383185174Spjdbool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
384169303Spjd                                        SourceLocation AttrNameLoc,
385169303Spjd                                        ParsedAttributes &Attrs) {
386169303Spjd  // If the attribute isn't known, we will not attempt to parse any
387185174Spjd  // arguments.
388169303Spjd  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
389169303Spjd                    getTargetInfo().getTriple(), getLangOpts())) {
390169303Spjd    // Eat the left paren, then skip to the ending right paren.
391169303Spjd    ConsumeParen();
392169303Spjd    SkipUntil(tok::r_paren);
393169303Spjd    return false;
394169303Spjd  }
395169303Spjd
396169303Spjd  SourceLocation OpenParenLoc = Tok.getLocation();
397169303Spjd
398169303Spjd  if (AttrName->getName() == "property") {
399169303Spjd    // The property declspec is more complex in that it can take one or two
400169303Spjd    // assignment expressions as a parameter, but the lhs of the assignment
401169303Spjd    // must be named get or put.
402169303Spjd
403169303Spjd    BalancedDelimiterTracker T(*this, tok::l_paren);
404169303Spjd    T.expectAndConsume(diag::err_expected_lparen_after,
405169303Spjd                       AttrName->getNameStart(), tok::r_paren);
406185174Spjd
407169303Spjd    enum AccessorKind {
408169303Spjd      AK_Invalid = -1,
409169303Spjd      AK_Put = 0,
410169303Spjd      AK_Get = 1 // indices into AccessorNames
411169303Spjd    };
412185174Spjd    IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
413169303Spjd    bool HasInvalidAccessor = false;
414185174Spjd
415169303Spjd    // Parse the accessor specifications.
416169303Spjd    while (true) {
417169303Spjd      // Stop if this doesn't look like an accessor spec.
418169303Spjd      if (!Tok.is(tok::identifier)) {
419169303Spjd        // If the user wrote a completely empty list, use a special diagnostic.
420185029Spjd        if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
421185174Spjd            AccessorNames[AK_Put] == nullptr &&
422168404Spjd            AccessorNames[AK_Get] == nullptr) {
423185174Spjd          Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
424185174Spjd          break;
425185174Spjd        }
426185174Spjd
427185174Spjd        Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
428185174Spjd        break;
429185174Spjd      }
430185174Spjd
431185174Spjd      AccessorKind Kind;
432185174Spjd      SourceLocation KindLoc = Tok.getLocation();
433185174Spjd      StringRef KindStr = Tok.getIdentifierInfo()->getName();
434185174Spjd      if (KindStr == "get") {
435185174Spjd        Kind = AK_Get;
436185174Spjd      } else if (KindStr == "put") {
437185174Spjd        Kind = AK_Put;
438185174Spjd
439185174Spjd        // Recover from the common mistake of using 'set' instead of 'put'.
440185174Spjd      } else if (KindStr == "set") {
441185174Spjd        Diag(KindLoc, diag::err_ms_property_has_set_accessor)
442185174Spjd            << FixItHint::CreateReplacement(KindLoc, "put");
443185174Spjd        Kind = AK_Put;
444185174Spjd
445185174Spjd        // Handle the mistake of forgetting the accessor kind by skipping
446185174Spjd        // this accessor.
447185174Spjd      } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
448185174Spjd        Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
449185174Spjd        ConsumeToken();
450168404Spjd        HasInvalidAccessor = true;
451168404Spjd        goto next_property_accessor;
452185174Spjd
453168404Spjd        // Otherwise, complain about the unknown accessor kind.
454169303Spjd      } else {
455168404Spjd        Diag(KindLoc, diag::err_ms_property_unknown_accessor);
456168404Spjd        HasInvalidAccessor = true;
457169303Spjd        Kind = AK_Invalid;
458169303Spjd
459169303Spjd        // Try to keep parsing unless it doesn't look like an accessor spec.
460185174Spjd        if (!NextToken().is(tok::equal))
461169303Spjd          break;
462185174Spjd      }
463169303Spjd
464185174Spjd      // Consume the identifier.
465169303Spjd      ConsumeToken();
466169303Spjd
467185174Spjd      // Consume the '='.
468185174Spjd      if (!TryConsumeToken(tok::equal)) {
469185174Spjd        Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
470185174Spjd            << KindStr;
471185174Spjd        break;
472185029Spjd      }
473185174Spjd
474169303Spjd      // Expect the method name.
475168404Spjd      if (!Tok.is(tok::identifier)) {
476168404Spjd        Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
477169303Spjd        break;
478185029Spjd      }
479185029Spjd
480169303Spjd      if (Kind == AK_Invalid) {
481185029Spjd        // Just drop invalid accessors.
482185029Spjd      } else if (AccessorNames[Kind] != nullptr) {
483185029Spjd        // Complain about the repeated accessor, ignore it, and keep parsing.
484185029Spjd        Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
485185029Spjd      } else {
486185029Spjd        AccessorNames[Kind] = Tok.getIdentifierInfo();
487185029Spjd      }
488185029Spjd      ConsumeToken();
489185029Spjd
490185029Spjd    next_property_accessor:
491185029Spjd      // Keep processing accessors until we run out.
492185029Spjd      if (TryConsumeToken(tok::comma))
493185029Spjd        continue;
494185029Spjd
495185029Spjd      // If we run into the ')', stop without consuming it.
496185029Spjd      if (Tok.is(tok::r_paren))
497185029Spjd        break;
498185029Spjd
499185029Spjd      Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
500185029Spjd      break;
501185174Spjd    }
502185029Spjd
503185029Spjd    // Only add the property attribute if it was well-formed.
504185174Spjd    if (!HasInvalidAccessor)
505185029Spjd      Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
506185174Spjd                               AccessorNames[AK_Get], AccessorNames[AK_Put],
507185029Spjd                               AttributeList::AS_Declspec);
508185174Spjd    T.skipToEnd();
509169303Spjd    return !HasInvalidAccessor;
510185174Spjd  }
511185174Spjd
512185174Spjd  unsigned NumArgs =
513185174Spjd      ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
514185174Spjd                               SourceLocation(), AttributeList::AS_Declspec);
515185174Spjd
516185174Spjd  // If this attribute's args were parsed, and it was expected to have
517185174Spjd  // arguments but none were provided, emit a diagnostic.
518185174Spjd  const AttributeList *Attr = Attrs.getList();
519168404Spjd  if (Attr && Attr->getMaxArgs() && !NumArgs) {
520168404Spjd    Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
521185029Spjd    return false;
522185029Spjd  }
523185029Spjd  return true;
524185029Spjd}
525185029Spjd
526185029Spjd/// [MS] decl-specifier:
527185029Spjd///             __declspec ( extended-decl-modifier-seq )
528185029Spjd///
529185029Spjd/// [MS] extended-decl-modifier-seq:
530185029Spjd///             extended-decl-modifier[opt]
531169303Spjd///             extended-decl-modifier extended-decl-modifier-seq
532168404Spjdvoid Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
533185029Spjd  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
534185029Spjd
535185029Spjd  ConsumeToken();
536168404Spjd  BalancedDelimiterTracker T(*this, tok::l_paren);
537168404Spjd  if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
538168404Spjd                         tok::r_paren))
539168404Spjd    return;
540168404Spjd
541168404Spjd  // An empty declspec is perfectly legal and should not warn.  Additionally,
542168404Spjd  // you can specify multiple attributes per declspec.
543168404Spjd  while (Tok.isNot(tok::r_paren)) {
544168404Spjd    // Attribute not present.
545168404Spjd    if (TryConsumeToken(tok::comma))
546168404Spjd      continue;
547168404Spjd
548168404Spjd    // We expect either a well-known identifier or a generic string.  Anything
549168404Spjd    // else is a malformed declspec.
550168404Spjd    bool IsString = Tok.getKind() == tok::string_literal ? true : false;
551168404Spjd    if (!IsString && Tok.getKind() != tok::identifier &&
552168404Spjd        Tok.getKind() != tok::kw_restrict) {
553168404Spjd      Diag(Tok, diag::err_ms_declspec_type);
554168404Spjd      T.skipToEnd();
555168404Spjd      return;
556168404Spjd    }
557168404Spjd
558168404Spjd    IdentifierInfo *AttrName;
559168404Spjd    SourceLocation AttrNameLoc;
560168404Spjd    if (IsString) {
561168404Spjd      SmallString<8> StrBuffer;
562168404Spjd      bool Invalid = false;
563168404Spjd      StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
564168404Spjd      if (Invalid) {
565168404Spjd        T.skipToEnd();
566168404Spjd        return;
567168404Spjd      }
568168404Spjd      AttrName = PP.getIdentifierInfo(Str);
569168404Spjd      AttrNameLoc = ConsumeStringToken();
570168404Spjd    } else {
571168404Spjd      AttrName = Tok.getIdentifierInfo();
572168404Spjd      AttrNameLoc = ConsumeToken();
573168404Spjd    }
574168404Spjd
575168404Spjd    bool AttrHandled = false;
576168404Spjd
577168404Spjd    // Parse attribute arguments.
578185029Spjd    if (Tok.is(tok::l_paren))
579185029Spjd      AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
580185029Spjd    else if (AttrName->getName() == "property")
581168404Spjd      // The property attribute must have an argument list.
582168404Spjd      Diag(Tok.getLocation(), diag::err_expected_lparen_after)
583168404Spjd          << AttrName->getName();
584168404Spjd
585168404Spjd    if (!AttrHandled)
586168404Spjd      Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
587185029Spjd                   AttributeList::AS_Declspec);
588168404Spjd  }
589168404Spjd  T.consumeClose();
590168404Spjd}
591168404Spjd
592168404Spjdvoid Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
593168404Spjd  // Treat these like attributes
594168404Spjd  while (true) {
595168404Spjd    switch (Tok.getKind()) {
596168404Spjd    case tok::kw___fastcall:
597168404Spjd    case tok::kw___stdcall:
598168404Spjd    case tok::kw___thiscall:
599168404Spjd    case tok::kw___cdecl:
600168404Spjd    case tok::kw___vectorcall:
601168404Spjd    case tok::kw___ptr64:
602168404Spjd    case tok::kw___w64:
603168404Spjd    case tok::kw___ptr32:
604168404Spjd    case tok::kw___unaligned:
605185029Spjd    case tok::kw___sptr:
606168404Spjd    case tok::kw___uptr: {
607185029Spjd      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
608168404Spjd      SourceLocation AttrNameLoc = ConsumeToken();
609168404Spjd      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
610168404Spjd                   AttributeList::AS_Keyword);
611168404Spjd      break;
612168404Spjd    }
613185029Spjd    default:
614185029Spjd      return;
615185029Spjd    }
616185029Spjd  }
617168404Spjd}
618168404Spjd
619168404Spjdvoid Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
620168404Spjd  SourceLocation StartLoc = Tok.getLocation();
621168404Spjd  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
622168404Spjd
623168404Spjd  if (EndLoc.isValid()) {
624168404Spjd    SourceRange Range(StartLoc, EndLoc);
625168404Spjd    Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
626168404Spjd  }
627185029Spjd}
628168404Spjd
629168404SpjdSourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
630185029Spjd  SourceLocation EndLoc;
631185029Spjd
632185029Spjd  while (true) {
633168404Spjd    switch (Tok.getKind()) {
634168404Spjd    case tok::kw_const:
635168404Spjd    case tok::kw_volatile:
636168404Spjd    case tok::kw___fastcall:
637168404Spjd    case tok::kw___stdcall:
638168404Spjd    case tok::kw___thiscall:
639168404Spjd    case tok::kw___cdecl:
640168404Spjd    case tok::kw___vectorcall:
641168404Spjd    case tok::kw___ptr32:
642168404Spjd    case tok::kw___ptr64:
643168404Spjd    case tok::kw___w64:
644168404Spjd    case tok::kw___unaligned:
645168404Spjd    case tok::kw___sptr:
646168404Spjd    case tok::kw___uptr:
647168404Spjd      EndLoc = ConsumeToken();
648168404Spjd      break;
649168404Spjd    default:
650168404Spjd      return EndLoc;
651168404Spjd    }
652168404Spjd  }
653168404Spjd}
654185029Spjd
655185029Spjdvoid Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
656168404Spjd  // Treat these like attributes
657168404Spjd  while (Tok.is(tok::kw___pascal)) {
658168404Spjd    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
659168404Spjd    SourceLocation AttrNameLoc = ConsumeToken();
660168404Spjd    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
661168404Spjd                 AttributeList::AS_Keyword);
662185029Spjd  }
663185029Spjd}
664185029Spjd
665185029Spjdvoid Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
666185029Spjd  // Treat these like attributes
667185029Spjd  while (Tok.is(tok::kw___kernel)) {
668185029Spjd    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
669185029Spjd    SourceLocation AttrNameLoc = ConsumeToken();
670185029Spjd    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
671168404Spjd                 AttributeList::AS_Keyword);
672185029Spjd  }
673185029Spjd}
674185029Spjd
675168404Spjdvoid Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
676185029Spjd  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677185029Spjd  SourceLocation AttrNameLoc = Tok.getLocation();
678185029Spjd  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679185029Spjd               AttributeList::AS_Keyword);
680185029Spjd}
681168404Spjd
682168404Spjdstatic bool VersionNumberSeparator(const char Separator) {
683168404Spjd  return (Separator == '.' || Separator == '_');
684168404Spjd}
685168404Spjd
686168404Spjd/// \brief Parse a version number.
687168404Spjd///
688168404Spjd/// version:
689168404Spjd///   simple-integer
690168404Spjd///   simple-integer ',' simple-integer
691168404Spjd///   simple-integer ',' simple-integer ',' simple-integer
692168404SpjdVersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
693  Range = Tok.getLocation();
694
695  if (!Tok.is(tok::numeric_constant)) {
696    Diag(Tok, diag::err_expected_version);
697    SkipUntil(tok::comma, tok::r_paren,
698              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
699    return VersionTuple();
700  }
701
702  // Parse the major (and possibly minor and subminor) versions, which
703  // are stored in the numeric constant. We utilize a quirk of the
704  // lexer, which is that it handles something like 1.2.3 as a single
705  // numeric constant, rather than two separate tokens.
706  SmallString<512> Buffer;
707  Buffer.resize(Tok.getLength()+1);
708  const char *ThisTokBegin = &Buffer[0];
709
710  // Get the spelling of the token, which eliminates trigraphs, etc.
711  bool Invalid = false;
712  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
713  if (Invalid)
714    return VersionTuple();
715
716  // Parse the major version.
717  unsigned AfterMajor = 0;
718  unsigned Major = 0;
719  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
720    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
721    ++AfterMajor;
722  }
723
724  if (AfterMajor == 0) {
725    Diag(Tok, diag::err_expected_version);
726    SkipUntil(tok::comma, tok::r_paren,
727              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
728    return VersionTuple();
729  }
730
731  if (AfterMajor == ActualLength) {
732    ConsumeToken();
733
734    // We only had a single version component.
735    if (Major == 0) {
736      Diag(Tok, diag::err_zero_version);
737      return VersionTuple();
738    }
739
740    return VersionTuple(Major);
741  }
742
743  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
744  if (!VersionNumberSeparator(AfterMajorSeparator)
745      || (AfterMajor + 1 == ActualLength)) {
746    Diag(Tok, diag::err_expected_version);
747    SkipUntil(tok::comma, tok::r_paren,
748              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
749    return VersionTuple();
750  }
751
752  // Parse the minor version.
753  unsigned AfterMinor = AfterMajor + 1;
754  unsigned Minor = 0;
755  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
756    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
757    ++AfterMinor;
758  }
759
760  if (AfterMinor == ActualLength) {
761    ConsumeToken();
762
763    // We had major.minor.
764    if (Major == 0 && Minor == 0) {
765      Diag(Tok, diag::err_zero_version);
766      return VersionTuple();
767    }
768
769    return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
770  }
771
772  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
773  // If what follows is not a '.' or '_', we have a problem.
774  if (!VersionNumberSeparator(AfterMinorSeparator)) {
775    Diag(Tok, diag::err_expected_version);
776    SkipUntil(tok::comma, tok::r_paren,
777              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
778    return VersionTuple();
779  }
780
781  // Warn if separators, be it '.' or '_', do not match.
782  if (AfterMajorSeparator != AfterMinorSeparator)
783    Diag(Tok, diag::warn_expected_consistent_version_separator);
784
785  // Parse the subminor version.
786  unsigned AfterSubminor = AfterMinor + 1;
787  unsigned Subminor = 0;
788  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
789    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
790    ++AfterSubminor;
791  }
792
793  if (AfterSubminor != ActualLength) {
794    Diag(Tok, diag::err_expected_version);
795    SkipUntil(tok::comma, tok::r_paren,
796              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
797    return VersionTuple();
798  }
799  ConsumeToken();
800  return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
801}
802
803/// \brief Parse the contents of the "availability" attribute.
804///
805/// availability-attribute:
806///   'availability' '(' platform ',' version-arg-list, opt-message')'
807///
808/// platform:
809///   identifier
810///
811/// version-arg-list:
812///   version-arg
813///   version-arg ',' version-arg-list
814///
815/// version-arg:
816///   'introduced' '=' version
817///   'deprecated' '=' version
818///   'obsoleted' = version
819///   'unavailable'
820/// opt-message:
821///   'message' '=' <string>
822void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
823                                        SourceLocation AvailabilityLoc,
824                                        ParsedAttributes &attrs,
825                                        SourceLocation *endLoc,
826                                        IdentifierInfo *ScopeName,
827                                        SourceLocation ScopeLoc,
828                                        AttributeList::Syntax Syntax) {
829  enum { Introduced, Deprecated, Obsoleted, Unknown };
830  AvailabilityChange Changes[Unknown];
831  ExprResult MessageExpr;
832
833  // Opening '('.
834  BalancedDelimiterTracker T(*this, tok::l_paren);
835  if (T.consumeOpen()) {
836    Diag(Tok, diag::err_expected) << tok::l_paren;
837    return;
838  }
839
840  // Parse the platform name,
841  if (Tok.isNot(tok::identifier)) {
842    Diag(Tok, diag::err_availability_expected_platform);
843    SkipUntil(tok::r_paren, StopAtSemi);
844    return;
845  }
846  IdentifierLoc *Platform = ParseIdentifierLoc();
847
848  // Parse the ',' following the platform name.
849  if (ExpectAndConsume(tok::comma)) {
850    SkipUntil(tok::r_paren, StopAtSemi);
851    return;
852  }
853
854  // If we haven't grabbed the pointers for the identifiers
855  // "introduced", "deprecated", and "obsoleted", do so now.
856  if (!Ident_introduced) {
857    Ident_introduced = PP.getIdentifierInfo("introduced");
858    Ident_deprecated = PP.getIdentifierInfo("deprecated");
859    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
860    Ident_unavailable = PP.getIdentifierInfo("unavailable");
861    Ident_message = PP.getIdentifierInfo("message");
862  }
863
864  // Parse the set of introductions/deprecations/removals.
865  SourceLocation UnavailableLoc;
866  do {
867    if (Tok.isNot(tok::identifier)) {
868      Diag(Tok, diag::err_availability_expected_change);
869      SkipUntil(tok::r_paren, StopAtSemi);
870      return;
871    }
872    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
873    SourceLocation KeywordLoc = ConsumeToken();
874
875    if (Keyword == Ident_unavailable) {
876      if (UnavailableLoc.isValid()) {
877        Diag(KeywordLoc, diag::err_availability_redundant)
878          << Keyword << SourceRange(UnavailableLoc);
879      }
880      UnavailableLoc = KeywordLoc;
881      continue;
882    }
883
884    if (Tok.isNot(tok::equal)) {
885      Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
886      SkipUntil(tok::r_paren, StopAtSemi);
887      return;
888    }
889    ConsumeToken();
890    if (Keyword == Ident_message) {
891      if (Tok.isNot(tok::string_literal)) {
892        Diag(Tok, diag::err_expected_string_literal)
893          << /*Source='availability attribute'*/2;
894        SkipUntil(tok::r_paren, StopAtSemi);
895        return;
896      }
897      MessageExpr = ParseStringLiteralExpression();
898      // Also reject wide string literals.
899      if (StringLiteral *MessageStringLiteral =
900              cast_or_null<StringLiteral>(MessageExpr.get())) {
901        if (MessageStringLiteral->getCharByteWidth() != 1) {
902          Diag(MessageStringLiteral->getSourceRange().getBegin(),
903               diag::err_expected_string_literal)
904            << /*Source='availability attribute'*/ 2;
905          SkipUntil(tok::r_paren, StopAtSemi);
906          return;
907        }
908      }
909      break;
910    }
911
912    // Special handling of 'NA' only when applied to introduced or
913    // deprecated.
914    if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
915        Tok.is(tok::identifier)) {
916      IdentifierInfo *NA = Tok.getIdentifierInfo();
917      if (NA->getName() == "NA") {
918        ConsumeToken();
919        if (Keyword == Ident_introduced)
920          UnavailableLoc = KeywordLoc;
921        continue;
922      }
923    }
924
925    SourceRange VersionRange;
926    VersionTuple Version = ParseVersionTuple(VersionRange);
927
928    if (Version.empty()) {
929      SkipUntil(tok::r_paren, StopAtSemi);
930      return;
931    }
932
933    unsigned Index;
934    if (Keyword == Ident_introduced)
935      Index = Introduced;
936    else if (Keyword == Ident_deprecated)
937      Index = Deprecated;
938    else if (Keyword == Ident_obsoleted)
939      Index = Obsoleted;
940    else
941      Index = Unknown;
942
943    if (Index < Unknown) {
944      if (!Changes[Index].KeywordLoc.isInvalid()) {
945        Diag(KeywordLoc, diag::err_availability_redundant)
946          << Keyword
947          << SourceRange(Changes[Index].KeywordLoc,
948                         Changes[Index].VersionRange.getEnd());
949      }
950
951      Changes[Index].KeywordLoc = KeywordLoc;
952      Changes[Index].Version = Version;
953      Changes[Index].VersionRange = VersionRange;
954    } else {
955      Diag(KeywordLoc, diag::err_availability_unknown_change)
956        << Keyword << VersionRange;
957    }
958
959  } while (TryConsumeToken(tok::comma));
960
961  // Closing ')'.
962  if (T.consumeClose())
963    return;
964
965  if (endLoc)
966    *endLoc = T.getCloseLocation();
967
968  // The 'unavailable' availability cannot be combined with any other
969  // availability changes. Make sure that hasn't happened.
970  if (UnavailableLoc.isValid()) {
971    bool Complained = false;
972    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
973      if (Changes[Index].KeywordLoc.isValid()) {
974        if (!Complained) {
975          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
976            << SourceRange(Changes[Index].KeywordLoc,
977                           Changes[Index].VersionRange.getEnd());
978          Complained = true;
979        }
980
981        // Clear out the availability.
982        Changes[Index] = AvailabilityChange();
983      }
984    }
985  }
986
987  // Record this attribute
988  attrs.addNew(&Availability,
989               SourceRange(AvailabilityLoc, T.getCloseLocation()),
990               ScopeName, ScopeLoc,
991               Platform,
992               Changes[Introduced],
993               Changes[Deprecated],
994               Changes[Obsoleted],
995               UnavailableLoc, MessageExpr.get(),
996               Syntax);
997}
998
999/// \brief Parse the contents of the "objc_bridge_related" attribute.
1000/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1001/// related_class:
1002///     Identifier
1003///
1004/// opt-class_method:
1005///     Identifier: | <empty>
1006///
1007/// opt-instance_method:
1008///     Identifier | <empty>
1009///
1010void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1011                                SourceLocation ObjCBridgeRelatedLoc,
1012                                ParsedAttributes &attrs,
1013                                SourceLocation *endLoc,
1014                                IdentifierInfo *ScopeName,
1015                                SourceLocation ScopeLoc,
1016                                AttributeList::Syntax Syntax) {
1017  // Opening '('.
1018  BalancedDelimiterTracker T(*this, tok::l_paren);
1019  if (T.consumeOpen()) {
1020    Diag(Tok, diag::err_expected) << tok::l_paren;
1021    return;
1022  }
1023
1024  // Parse the related class name.
1025  if (Tok.isNot(tok::identifier)) {
1026    Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1027    SkipUntil(tok::r_paren, StopAtSemi);
1028    return;
1029  }
1030  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1031  if (ExpectAndConsume(tok::comma)) {
1032    SkipUntil(tok::r_paren, StopAtSemi);
1033    return;
1034  }
1035
1036  // Parse optional class method name.
1037  IdentifierLoc *ClassMethod = nullptr;
1038  if (Tok.is(tok::identifier)) {
1039    ClassMethod = ParseIdentifierLoc();
1040    if (!TryConsumeToken(tok::colon)) {
1041      Diag(Tok, diag::err_objcbridge_related_selector_name);
1042      SkipUntil(tok::r_paren, StopAtSemi);
1043      return;
1044    }
1045  }
1046  if (!TryConsumeToken(tok::comma)) {
1047    if (Tok.is(tok::colon))
1048      Diag(Tok, diag::err_objcbridge_related_selector_name);
1049    else
1050      Diag(Tok, diag::err_expected) << tok::comma;
1051    SkipUntil(tok::r_paren, StopAtSemi);
1052    return;
1053  }
1054
1055  // Parse optional instance method name.
1056  IdentifierLoc *InstanceMethod = nullptr;
1057  if (Tok.is(tok::identifier))
1058    InstanceMethod = ParseIdentifierLoc();
1059  else if (Tok.isNot(tok::r_paren)) {
1060    Diag(Tok, diag::err_expected) << tok::r_paren;
1061    SkipUntil(tok::r_paren, StopAtSemi);
1062    return;
1063  }
1064
1065  // Closing ')'.
1066  if (T.consumeClose())
1067    return;
1068
1069  if (endLoc)
1070    *endLoc = T.getCloseLocation();
1071
1072  // Record this attribute
1073  attrs.addNew(&ObjCBridgeRelated,
1074               SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1075               ScopeName, ScopeLoc,
1076               RelatedClass,
1077               ClassMethod,
1078               InstanceMethod,
1079               Syntax);
1080}
1081
1082// Late Parsed Attributes:
1083// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1084
1085void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1086
1087void Parser::LateParsedClass::ParseLexedAttributes() {
1088  Self->ParseLexedAttributes(*Class);
1089}
1090
1091void Parser::LateParsedAttribute::ParseLexedAttributes() {
1092  Self->ParseLexedAttribute(*this, true, false);
1093}
1094
1095/// Wrapper class which calls ParseLexedAttribute, after setting up the
1096/// scope appropriately.
1097void Parser::ParseLexedAttributes(ParsingClass &Class) {
1098  // Deal with templates
1099  // FIXME: Test cases to make sure this does the right thing for templates.
1100  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1101  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1102                                HasTemplateScope);
1103  if (HasTemplateScope)
1104    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1105
1106  // Set or update the scope flags.
1107  bool AlreadyHasClassScope = Class.TopLevelClass;
1108  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1109  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1110  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1111
1112  // Enter the scope of nested classes
1113  if (!AlreadyHasClassScope)
1114    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1115                                                Class.TagOrTemplate);
1116  if (!Class.LateParsedDeclarations.empty()) {
1117    for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1118      Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1119    }
1120  }
1121
1122  if (!AlreadyHasClassScope)
1123    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1124                                                 Class.TagOrTemplate);
1125}
1126
1127
1128/// \brief Parse all attributes in LAs, and attach them to Decl D.
1129void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1130                                     bool EnterScope, bool OnDefinition) {
1131  assert(LAs.parseSoon() &&
1132         "Attribute list should be marked for immediate parsing.");
1133  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1134    if (D)
1135      LAs[i]->addDecl(D);
1136    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1137    delete LAs[i];
1138  }
1139  LAs.clear();
1140}
1141
1142
1143/// \brief Finish parsing an attribute for which parsing was delayed.
1144/// This will be called at the end of parsing a class declaration
1145/// for each LateParsedAttribute. We consume the saved tokens and
1146/// create an attribute with the arguments filled in. We add this
1147/// to the Attribute list for the decl.
1148void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1149                                 bool EnterScope, bool OnDefinition) {
1150  // Create a fake EOF so that attribute parsing won't go off the end of the
1151  // attribute.
1152  Token AttrEnd;
1153  AttrEnd.startToken();
1154  AttrEnd.setKind(tok::eof);
1155  AttrEnd.setLocation(Tok.getLocation());
1156  AttrEnd.setEofData(LA.Toks.data());
1157  LA.Toks.push_back(AttrEnd);
1158
1159  // Append the current token at the end of the new token stream so that it
1160  // doesn't get lost.
1161  LA.Toks.push_back(Tok);
1162  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1163  // Consume the previously pushed token.
1164  ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1165
1166  ParsedAttributes Attrs(AttrFactory);
1167  SourceLocation endLoc;
1168
1169  if (LA.Decls.size() > 0) {
1170    Decl *D = LA.Decls[0];
1171    NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1172    RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1173
1174    // Allow 'this' within late-parsed attributes.
1175    Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1176                                     ND && ND->isCXXInstanceMember());
1177
1178    if (LA.Decls.size() == 1) {
1179      // If the Decl is templatized, add template parameters to scope.
1180      bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1181      ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1182      if (HasTemplateScope)
1183        Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1184
1185      // If the Decl is on a function, add function parameters to the scope.
1186      bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1187      ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1188      if (HasFunScope)
1189        Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1190
1191      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1192                            nullptr, SourceLocation(), AttributeList::AS_GNU,
1193                            nullptr);
1194
1195      if (HasFunScope) {
1196        Actions.ActOnExitFunctionContext();
1197        FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1198      }
1199      if (HasTemplateScope) {
1200        TempScope.Exit();
1201      }
1202    } else {
1203      // If there are multiple decls, then the decl cannot be within the
1204      // function scope.
1205      ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1206                            nullptr, SourceLocation(), AttributeList::AS_GNU,
1207                            nullptr);
1208    }
1209  } else {
1210    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1211  }
1212
1213  const AttributeList *AL = Attrs.getList();
1214  if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1215      AL->isKnownToGCC())
1216    Diag(Tok, diag::warn_attribute_on_function_definition)
1217      << &LA.AttrName;
1218
1219  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1220    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1221
1222  // Due to a parsing error, we either went over the cached tokens or
1223  // there are still cached tokens left, so we skip the leftover tokens.
1224  while (Tok.isNot(tok::eof))
1225    ConsumeAnyToken();
1226
1227  if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1228    ConsumeAnyToken();
1229}
1230
1231void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1232                                              SourceLocation AttrNameLoc,
1233                                              ParsedAttributes &Attrs,
1234                                              SourceLocation *EndLoc,
1235                                              IdentifierInfo *ScopeName,
1236                                              SourceLocation ScopeLoc,
1237                                              AttributeList::Syntax Syntax) {
1238  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1239
1240  BalancedDelimiterTracker T(*this, tok::l_paren);
1241  T.consumeOpen();
1242
1243  if (Tok.isNot(tok::identifier)) {
1244    Diag(Tok, diag::err_expected) << tok::identifier;
1245    T.skipToEnd();
1246    return;
1247  }
1248  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1249
1250  if (ExpectAndConsume(tok::comma)) {
1251    T.skipToEnd();
1252    return;
1253  }
1254
1255  SourceRange MatchingCTypeRange;
1256  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1257  if (MatchingCType.isInvalid()) {
1258    T.skipToEnd();
1259    return;
1260  }
1261
1262  bool LayoutCompatible = false;
1263  bool MustBeNull = false;
1264  while (TryConsumeToken(tok::comma)) {
1265    if (Tok.isNot(tok::identifier)) {
1266      Diag(Tok, diag::err_expected) << tok::identifier;
1267      T.skipToEnd();
1268      return;
1269    }
1270    IdentifierInfo *Flag = Tok.getIdentifierInfo();
1271    if (Flag->isStr("layout_compatible"))
1272      LayoutCompatible = true;
1273    else if (Flag->isStr("must_be_null"))
1274      MustBeNull = true;
1275    else {
1276      Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1277      T.skipToEnd();
1278      return;
1279    }
1280    ConsumeToken(); // consume flag
1281  }
1282
1283  if (!T.consumeClose()) {
1284    Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1285                                   ArgumentKind, MatchingCType.get(),
1286                                   LayoutCompatible, MustBeNull, Syntax);
1287  }
1288
1289  if (EndLoc)
1290    *EndLoc = T.getCloseLocation();
1291}
1292
1293/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1294/// of a C++11 attribute-specifier in a location where an attribute is not
1295/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1296/// situation.
1297///
1298/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1299/// this doesn't appear to actually be an attribute-specifier, and the caller
1300/// should try to parse it.
1301bool Parser::DiagnoseProhibitedCXX11Attribute() {
1302  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1303
1304  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1305  case CAK_NotAttributeSpecifier:
1306    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1307    return false;
1308
1309  case CAK_InvalidAttributeSpecifier:
1310    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1311    return false;
1312
1313  case CAK_AttributeSpecifier:
1314    // Parse and discard the attributes.
1315    SourceLocation BeginLoc = ConsumeBracket();
1316    ConsumeBracket();
1317    SkipUntil(tok::r_square);
1318    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1319    SourceLocation EndLoc = ConsumeBracket();
1320    Diag(BeginLoc, diag::err_attributes_not_allowed)
1321      << SourceRange(BeginLoc, EndLoc);
1322    return true;
1323  }
1324  llvm_unreachable("All cases handled above.");
1325}
1326
1327/// \brief We have found the opening square brackets of a C++11
1328/// attribute-specifier in a location where an attribute is not permitted, but
1329/// we know where the attributes ought to be written. Parse them anyway, and
1330/// provide a fixit moving them to the right place.
1331void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1332                                             SourceLocation CorrectLocation) {
1333  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1334         Tok.is(tok::kw_alignas));
1335
1336  // Consume the attributes.
1337  SourceLocation Loc = Tok.getLocation();
1338  ParseCXX11Attributes(Attrs);
1339  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1340
1341  Diag(Loc, diag::err_attributes_not_allowed)
1342    << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1343    << FixItHint::CreateRemoval(AttrRange);
1344}
1345
1346void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1347  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1348    << attrs.Range;
1349}
1350
1351void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1352  AttributeList *AttrList = attrs.getList();
1353  while (AttrList) {
1354    if (AttrList->isCXX11Attribute()) {
1355      Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1356        << AttrList->getName();
1357      AttrList->setInvalid();
1358    }
1359    AttrList = AttrList->getNext();
1360  }
1361}
1362
1363/// ParseDeclaration - Parse a full 'declaration', which consists of
1364/// declaration-specifiers, some number of declarators, and a semicolon.
1365/// 'Context' should be a Declarator::TheContext value.  This returns the
1366/// location of the semicolon in DeclEnd.
1367///
1368///       declaration: [C99 6.7]
1369///         block-declaration ->
1370///           simple-declaration
1371///           others                   [FIXME]
1372/// [C++]   template-declaration
1373/// [C++]   namespace-definition
1374/// [C++]   using-directive
1375/// [C++]   using-declaration
1376/// [C++11/C11] static_assert-declaration
1377///         others... [FIXME]
1378///
1379Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1380                                                SourceLocation &DeclEnd,
1381                                          ParsedAttributesWithRange &attrs) {
1382  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1383  // Must temporarily exit the objective-c container scope for
1384  // parsing c none objective-c decls.
1385  ObjCDeclContextSwitch ObjCDC(*this);
1386
1387  Decl *SingleDecl = nullptr;
1388  Decl *OwnedType = nullptr;
1389  switch (Tok.getKind()) {
1390  case tok::kw_template:
1391  case tok::kw_export:
1392    ProhibitAttributes(attrs);
1393    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1394    break;
1395  case tok::kw_inline:
1396    // Could be the start of an inline namespace. Allowed as an ext in C++03.
1397    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1398      ProhibitAttributes(attrs);
1399      SourceLocation InlineLoc = ConsumeToken();
1400      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1401      break;
1402    }
1403    return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1404                                  true);
1405  case tok::kw_namespace:
1406    ProhibitAttributes(attrs);
1407    SingleDecl = ParseNamespace(Context, DeclEnd);
1408    break;
1409  case tok::kw_using:
1410    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1411                                                  DeclEnd, attrs, &OwnedType);
1412    break;
1413  case tok::kw_static_assert:
1414  case tok::kw__Static_assert:
1415    ProhibitAttributes(attrs);
1416    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1417    break;
1418  default:
1419    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1420  }
1421
1422  // This routine returns a DeclGroup, if the thing we parsed only contains a
1423  // single decl, convert it now. Alias declarations can also declare a type;
1424  // include that too if it is present.
1425  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1426}
1427
1428///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1429///         declaration-specifiers init-declarator-list[opt] ';'
1430/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1431///             init-declarator-list ';'
1432///[C90/C++]init-declarator-list ';'                             [TODO]
1433/// [OMP]   threadprivate-directive                              [TODO]
1434///
1435///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1436///         attribute-specifier-seq[opt] type-specifier-seq declarator
1437///
1438/// If RequireSemi is false, this does not check for a ';' at the end of the
1439/// declaration.  If it is true, it checks for and eats it.
1440///
1441/// If FRI is non-null, we might be parsing a for-range-declaration instead
1442/// of a simple-declaration. If we find that we are, we also parse the
1443/// for-range-initializer, and place it here.
1444Parser::DeclGroupPtrTy
1445Parser::ParseSimpleDeclaration(unsigned Context,
1446                               SourceLocation &DeclEnd,
1447                               ParsedAttributesWithRange &Attrs,
1448                               bool RequireSemi, ForRangeInit *FRI) {
1449  // Parse the common declaration-specifiers piece.
1450  ParsingDeclSpec DS(*this);
1451
1452  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1453  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1454
1455  // If we had a free-standing type definition with a missing semicolon, we
1456  // may get this far before the problem becomes obvious.
1457  if (DS.hasTagDefinition() &&
1458      DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1459    return DeclGroupPtrTy();
1460
1461  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1462  // declaration-specifiers init-declarator-list[opt] ';'
1463  if (Tok.is(tok::semi)) {
1464    ProhibitAttributes(Attrs);
1465    DeclEnd = Tok.getLocation();
1466    if (RequireSemi) ConsumeToken();
1467    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1468                                                       DS);
1469    DS.complete(TheDecl);
1470    return Actions.ConvertDeclToDeclGroup(TheDecl);
1471  }
1472
1473  DS.takeAttributesFrom(Attrs);
1474  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1475}
1476
1477/// Returns true if this might be the start of a declarator, or a common typo
1478/// for a declarator.
1479bool Parser::MightBeDeclarator(unsigned Context) {
1480  switch (Tok.getKind()) {
1481  case tok::annot_cxxscope:
1482  case tok::annot_template_id:
1483  case tok::caret:
1484  case tok::code_completion:
1485  case tok::coloncolon:
1486  case tok::ellipsis:
1487  case tok::kw___attribute:
1488  case tok::kw_operator:
1489  case tok::l_paren:
1490  case tok::star:
1491    return true;
1492
1493  case tok::amp:
1494  case tok::ampamp:
1495    return getLangOpts().CPlusPlus;
1496
1497  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1498    return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1499           NextToken().is(tok::l_square);
1500
1501  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1502    return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1503
1504  case tok::identifier:
1505    switch (NextToken().getKind()) {
1506    case tok::code_completion:
1507    case tok::coloncolon:
1508    case tok::comma:
1509    case tok::equal:
1510    case tok::equalequal: // Might be a typo for '='.
1511    case tok::kw_alignas:
1512    case tok::kw_asm:
1513    case tok::kw___attribute:
1514    case tok::l_brace:
1515    case tok::l_paren:
1516    case tok::l_square:
1517    case tok::less:
1518    case tok::r_brace:
1519    case tok::r_paren:
1520    case tok::r_square:
1521    case tok::semi:
1522      return true;
1523
1524    case tok::colon:
1525      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1526      // and in block scope it's probably a label. Inside a class definition,
1527      // this is a bit-field.
1528      return Context == Declarator::MemberContext ||
1529             (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1530
1531    case tok::identifier: // Possible virt-specifier.
1532      return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1533
1534    default:
1535      return false;
1536    }
1537
1538  default:
1539    return false;
1540  }
1541}
1542
1543/// Skip until we reach something which seems like a sensible place to pick
1544/// up parsing after a malformed declaration. This will sometimes stop sooner
1545/// than SkipUntil(tok::r_brace) would, but will never stop later.
1546void Parser::SkipMalformedDecl() {
1547  while (true) {
1548    switch (Tok.getKind()) {
1549    case tok::l_brace:
1550      // Skip until matching }, then stop. We've probably skipped over
1551      // a malformed class or function definition or similar.
1552      ConsumeBrace();
1553      SkipUntil(tok::r_brace);
1554      if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1555        // This declaration isn't over yet. Keep skipping.
1556        continue;
1557      }
1558      TryConsumeToken(tok::semi);
1559      return;
1560
1561    case tok::l_square:
1562      ConsumeBracket();
1563      SkipUntil(tok::r_square);
1564      continue;
1565
1566    case tok::l_paren:
1567      ConsumeParen();
1568      SkipUntil(tok::r_paren);
1569      continue;
1570
1571    case tok::r_brace:
1572      return;
1573
1574    case tok::semi:
1575      ConsumeToken();
1576      return;
1577
1578    case tok::kw_inline:
1579      // 'inline namespace' at the start of a line is almost certainly
1580      // a good place to pick back up parsing, except in an Objective-C
1581      // @interface context.
1582      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1583          (!ParsingInObjCContainer || CurParsedObjCImpl))
1584        return;
1585      break;
1586
1587    case tok::kw_namespace:
1588      // 'namespace' at the start of a line is almost certainly a good
1589      // place to pick back up parsing, except in an Objective-C
1590      // @interface context.
1591      if (Tok.isAtStartOfLine() &&
1592          (!ParsingInObjCContainer || CurParsedObjCImpl))
1593        return;
1594      break;
1595
1596    case tok::at:
1597      // @end is very much like } in Objective-C contexts.
1598      if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1599          ParsingInObjCContainer)
1600        return;
1601      break;
1602
1603    case tok::minus:
1604    case tok::plus:
1605      // - and + probably start new method declarations in Objective-C contexts.
1606      if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1607        return;
1608      break;
1609
1610    case tok::eof:
1611    case tok::annot_module_begin:
1612    case tok::annot_module_end:
1613    case tok::annot_module_include:
1614      return;
1615
1616    default:
1617      break;
1618    }
1619
1620    ConsumeAnyToken();
1621  }
1622}
1623
1624/// ParseDeclGroup - Having concluded that this is either a function
1625/// definition or a group of object declarations, actually parse the
1626/// result.
1627Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1628                                              unsigned Context,
1629                                              SourceLocation *DeclEnd,
1630                                              ForRangeInit *FRI) {
1631  // Parse the first declarator.
1632  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1633  ParseDeclarator(D);
1634
1635  // Bail out if the first declarator didn't seem well-formed.
1636  if (!D.hasName() && !D.mayOmitIdentifier()) {
1637    SkipMalformedDecl();
1638    return DeclGroupPtrTy();
1639  }
1640
1641  // Save late-parsed attributes for now; they need to be parsed in the
1642  // appropriate function scope after the function Decl has been constructed.
1643  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1644  LateParsedAttrList LateParsedAttrs(true);
1645  if (D.isFunctionDeclarator()) {
1646    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1647
1648    // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1649    // attribute. If we find the keyword here, tell the user to put it
1650    // at the start instead.
1651    if (Tok.is(tok::kw__Noreturn)) {
1652      SourceLocation Loc = ConsumeToken();
1653      const char *PrevSpec;
1654      unsigned DiagID;
1655
1656      // We can offer a fixit if it's valid to mark this function as _Noreturn
1657      // and we don't have any other declarators in this declaration.
1658      bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1659      MaybeParseGNUAttributes(D, &LateParsedAttrs);
1660      Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
1661
1662      Diag(Loc, diag::err_c11_noreturn_misplaced)
1663          << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1664          << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1665                    : FixItHint());
1666    }
1667  }
1668
1669  // Check to see if we have a function *definition* which must have a body.
1670  if (D.isFunctionDeclarator() &&
1671      // Look at the next token to make sure that this isn't a function
1672      // declaration.  We have to check this because __attribute__ might be the
1673      // start of a function definition in GCC-extended K&R C.
1674      !isDeclarationAfterDeclarator()) {
1675
1676    // Function definitions are only allowed at file scope and in C++ classes.
1677    // The C++ inline method definition case is handled elsewhere, so we only
1678    // need to handle the file scope definition case.
1679    if (Context == Declarator::FileContext) {
1680      if (isStartOfFunctionDefinition(D)) {
1681        if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1682          Diag(Tok, diag::err_function_declared_typedef);
1683
1684          // Recover by treating the 'typedef' as spurious.
1685          DS.ClearStorageClassSpecs();
1686        }
1687
1688        Decl *TheDecl =
1689          ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1690        return Actions.ConvertDeclToDeclGroup(TheDecl);
1691      }
1692
1693      if (isDeclarationSpecifier()) {
1694        // If there is an invalid declaration specifier right after the function
1695        // prototype, then we must be in a missing semicolon case where this isn't
1696        // actually a body.  Just fall through into the code that handles it as a
1697        // prototype, and let the top-level code handle the erroneous declspec
1698        // where it would otherwise expect a comma or semicolon.
1699      } else {
1700        Diag(Tok, diag::err_expected_fn_body);
1701        SkipUntil(tok::semi);
1702        return DeclGroupPtrTy();
1703      }
1704    } else {
1705      if (Tok.is(tok::l_brace)) {
1706        Diag(Tok, diag::err_function_definition_not_allowed);
1707        SkipMalformedDecl();
1708        return DeclGroupPtrTy();
1709      }
1710    }
1711  }
1712
1713  if (ParseAsmAttributesAfterDeclarator(D))
1714    return DeclGroupPtrTy();
1715
1716  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1717  // must parse and analyze the for-range-initializer before the declaration is
1718  // analyzed.
1719  //
1720  // Handle the Objective-C for-in loop variable similarly, although we
1721  // don't need to parse the container in advance.
1722  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1723    bool IsForRangeLoop = false;
1724    if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1725      IsForRangeLoop = true;
1726      if (Tok.is(tok::l_brace))
1727        FRI->RangeExpr = ParseBraceInitializer();
1728      else
1729        FRI->RangeExpr = ParseExpression();
1730    }
1731
1732    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1733    if (IsForRangeLoop)
1734      Actions.ActOnCXXForRangeDecl(ThisDecl);
1735    Actions.FinalizeDeclaration(ThisDecl);
1736    D.complete(ThisDecl);
1737    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1738  }
1739
1740  SmallVector<Decl *, 8> DeclsInGroup;
1741  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1742      D, ParsedTemplateInfo(), FRI);
1743  if (LateParsedAttrs.size() > 0)
1744    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1745  D.complete(FirstDecl);
1746  if (FirstDecl)
1747    DeclsInGroup.push_back(FirstDecl);
1748
1749  bool ExpectSemi = Context != Declarator::ForContext;
1750
1751  // If we don't have a comma, it is either the end of the list (a ';') or an
1752  // error, bail out.
1753  SourceLocation CommaLoc;
1754  while (TryConsumeToken(tok::comma, CommaLoc)) {
1755    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1756      // This comma was followed by a line-break and something which can't be
1757      // the start of a declarator. The comma was probably a typo for a
1758      // semicolon.
1759      Diag(CommaLoc, diag::err_expected_semi_declaration)
1760        << FixItHint::CreateReplacement(CommaLoc, ";");
1761      ExpectSemi = false;
1762      break;
1763    }
1764
1765    // Parse the next declarator.
1766    D.clear();
1767    D.setCommaLoc(CommaLoc);
1768
1769    // Accept attributes in an init-declarator.  In the first declarator in a
1770    // declaration, these would be part of the declspec.  In subsequent
1771    // declarators, they become part of the declarator itself, so that they
1772    // don't apply to declarators after *this* one.  Examples:
1773    //    short __attribute__((common)) var;    -> declspec
1774    //    short var __attribute__((common));    -> declarator
1775    //    short x, __attribute__((common)) var;    -> declarator
1776    MaybeParseGNUAttributes(D);
1777
1778    // MSVC parses but ignores qualifiers after the comma as an extension.
1779    if (getLangOpts().MicrosoftExt)
1780      DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1781
1782    ParseDeclarator(D);
1783    if (!D.isInvalidType()) {
1784      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1785      D.complete(ThisDecl);
1786      if (ThisDecl)
1787        DeclsInGroup.push_back(ThisDecl);
1788    }
1789  }
1790
1791  if (DeclEnd)
1792    *DeclEnd = Tok.getLocation();
1793
1794  if (ExpectSemi &&
1795      ExpectAndConsumeSemi(Context == Declarator::FileContext
1796                           ? diag::err_invalid_token_after_toplevel_declarator
1797                           : diag::err_expected_semi_declaration)) {
1798    // Okay, there was no semicolon and one was expected.  If we see a
1799    // declaration specifier, just assume it was missing and continue parsing.
1800    // Otherwise things are very confused and we skip to recover.
1801    if (!isDeclarationSpecifier()) {
1802      SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1803      TryConsumeToken(tok::semi);
1804    }
1805  }
1806
1807  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1808}
1809
1810/// Parse an optional simple-asm-expr and attributes, and attach them to a
1811/// declarator. Returns true on an error.
1812bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1813  // If a simple-asm-expr is present, parse it.
1814  if (Tok.is(tok::kw_asm)) {
1815    SourceLocation Loc;
1816    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1817    if (AsmLabel.isInvalid()) {
1818      SkipUntil(tok::semi, StopBeforeMatch);
1819      return true;
1820    }
1821
1822    D.setAsmLabel(AsmLabel.get());
1823    D.SetRangeEnd(Loc);
1824  }
1825
1826  MaybeParseGNUAttributes(D);
1827  return false;
1828}
1829
1830/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1831/// declarator'. This method parses the remainder of the declaration
1832/// (including any attributes or initializer, among other things) and
1833/// finalizes the declaration.
1834///
1835///       init-declarator: [C99 6.7]
1836///         declarator
1837///         declarator '=' initializer
1838/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1839/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1840/// [C++]   declarator initializer[opt]
1841///
1842/// [C++] initializer:
1843/// [C++]   '=' initializer-clause
1844/// [C++]   '(' expression-list ')'
1845/// [C++0x] '=' 'default'                                                [TODO]
1846/// [C++0x] '=' 'delete'
1847/// [C++0x] braced-init-list
1848///
1849/// According to the standard grammar, =default and =delete are function
1850/// definitions, but that definitely doesn't fit with the parser here.
1851///
1852Decl *Parser::ParseDeclarationAfterDeclarator(
1853    Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1854  if (ParseAsmAttributesAfterDeclarator(D))
1855    return nullptr;
1856
1857  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1858}
1859
1860Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1861    Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1862  // Inform the current actions module that we just parsed this declarator.
1863  Decl *ThisDecl = nullptr;
1864  switch (TemplateInfo.Kind) {
1865  case ParsedTemplateInfo::NonTemplate:
1866    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1867    break;
1868
1869  case ParsedTemplateInfo::Template:
1870  case ParsedTemplateInfo::ExplicitSpecialization: {
1871    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1872                                               *TemplateInfo.TemplateParams,
1873                                               D);
1874    if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1875      // Re-direct this decl to refer to the templated decl so that we can
1876      // initialize it.
1877      ThisDecl = VT->getTemplatedDecl();
1878    break;
1879  }
1880  case ParsedTemplateInfo::ExplicitInstantiation: {
1881    if (Tok.is(tok::semi)) {
1882      DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1883          getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1884      if (ThisRes.isInvalid()) {
1885        SkipUntil(tok::semi, StopBeforeMatch);
1886        return nullptr;
1887      }
1888      ThisDecl = ThisRes.get();
1889    } else {
1890      // FIXME: This check should be for a variable template instantiation only.
1891
1892      // Check that this is a valid instantiation
1893      if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1894        // If the declarator-id is not a template-id, issue a diagnostic and
1895        // recover by ignoring the 'template' keyword.
1896        Diag(Tok, diag::err_template_defn_explicit_instantiation)
1897            << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1898        ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1899      } else {
1900        SourceLocation LAngleLoc =
1901            PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1902        Diag(D.getIdentifierLoc(),
1903             diag::err_explicit_instantiation_with_definition)
1904            << SourceRange(TemplateInfo.TemplateLoc)
1905            << FixItHint::CreateInsertion(LAngleLoc, "<>");
1906
1907        // Recover as if it were an explicit specialization.
1908        TemplateParameterLists FakedParamLists;
1909        FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1910            0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1911            0, LAngleLoc));
1912
1913        ThisDecl =
1914            Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1915      }
1916    }
1917    break;
1918    }
1919  }
1920
1921  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1922
1923  // Parse declarator '=' initializer.
1924  // If a '==' or '+=' is found, suggest a fixit to '='.
1925  if (isTokenEqualOrEqualTypo()) {
1926    SourceLocation EqualLoc = ConsumeToken();
1927
1928    if (Tok.is(tok::kw_delete)) {
1929      if (D.isFunctionDeclarator())
1930        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1931          << 1 /* delete */;
1932      else
1933        Diag(ConsumeToken(), diag::err_deleted_non_function);
1934    } else if (Tok.is(tok::kw_default)) {
1935      if (D.isFunctionDeclarator())
1936        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1937          << 0 /* default */;
1938      else
1939        Diag(ConsumeToken(), diag::err_default_special_members);
1940    } else {
1941      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1942        EnterScope(0);
1943        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1944      }
1945
1946      if (Tok.is(tok::code_completion)) {
1947        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1948        Actions.FinalizeDeclaration(ThisDecl);
1949        cutOffParsing();
1950        return nullptr;
1951      }
1952
1953      ExprResult Init(ParseInitializer());
1954
1955      // If this is the only decl in (possibly) range based for statement,
1956      // our best guess is that the user meant ':' instead of '='.
1957      if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1958        Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1959            << FixItHint::CreateReplacement(EqualLoc, ":");
1960        // We are trying to stop parser from looking for ';' in this for
1961        // statement, therefore preventing spurious errors to be issued.
1962        FRI->ColonLoc = EqualLoc;
1963        Init = ExprError();
1964        FRI->RangeExpr = Init;
1965      }
1966
1967      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1968        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1969        ExitScope();
1970      }
1971
1972      if (Init.isInvalid()) {
1973        SmallVector<tok::TokenKind, 2> StopTokens;
1974        StopTokens.push_back(tok::comma);
1975        if (D.getContext() == Declarator::ForContext)
1976          StopTokens.push_back(tok::r_paren);
1977        SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1978        Actions.ActOnInitializerError(ThisDecl);
1979      } else
1980        Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1981                                     /*DirectInit=*/false, TypeContainsAuto);
1982    }
1983  } else if (Tok.is(tok::l_paren)) {
1984    // Parse C++ direct initializer: '(' expression-list ')'
1985    BalancedDelimiterTracker T(*this, tok::l_paren);
1986    T.consumeOpen();
1987
1988    ExprVector Exprs;
1989    CommaLocsTy CommaLocs;
1990
1991    if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1992      EnterScope(0);
1993      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1994    }
1995
1996    if (ParseExpressionList(Exprs, CommaLocs)) {
1997      Actions.ActOnInitializerError(ThisDecl);
1998      SkipUntil(tok::r_paren, StopAtSemi);
1999
2000      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2001        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2002        ExitScope();
2003      }
2004    } else {
2005      // Match the ')'.
2006      T.consumeClose();
2007
2008      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2009             "Unexpected number of commas!");
2010
2011      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2012        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2013        ExitScope();
2014      }
2015
2016      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2017                                                          T.getCloseLocation(),
2018                                                          Exprs);
2019      Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2020                                   /*DirectInit=*/true, TypeContainsAuto);
2021    }
2022  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2023             (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2024    // Parse C++0x braced-init-list.
2025    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2026
2027    if (D.getCXXScopeSpec().isSet()) {
2028      EnterScope(0);
2029      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2030    }
2031
2032    ExprResult Init(ParseBraceInitializer());
2033
2034    if (D.getCXXScopeSpec().isSet()) {
2035      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2036      ExitScope();
2037    }
2038
2039    if (Init.isInvalid()) {
2040      Actions.ActOnInitializerError(ThisDecl);
2041    } else
2042      Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2043                                   /*DirectInit=*/true, TypeContainsAuto);
2044
2045  } else {
2046    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2047  }
2048
2049  Actions.FinalizeDeclaration(ThisDecl);
2050
2051  return ThisDecl;
2052}
2053
2054/// ParseSpecifierQualifierList
2055///        specifier-qualifier-list:
2056///          type-specifier specifier-qualifier-list[opt]
2057///          type-qualifier specifier-qualifier-list[opt]
2058/// [GNU]    attributes     specifier-qualifier-list[opt]
2059///
2060void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2061                                         DeclSpecContext DSC) {
2062  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2063  /// parse declaration-specifiers and complain about extra stuff.
2064  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2065  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2066
2067  // Validate declspec for type-name.
2068  unsigned Specs = DS.getParsedSpecifiers();
2069  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2070    Diag(Tok, diag::err_expected_type);
2071    DS.SetTypeSpecError();
2072  } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
2073             !DS.hasAttributes()) {
2074    Diag(Tok, diag::err_typename_requires_specqual);
2075    if (!DS.hasTypeSpecifier())
2076      DS.SetTypeSpecError();
2077  }
2078
2079  // Issue diagnostic and remove storage class if present.
2080  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2081    if (DS.getStorageClassSpecLoc().isValid())
2082      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2083    else
2084      Diag(DS.getThreadStorageClassSpecLoc(),
2085           diag::err_typename_invalid_storageclass);
2086    DS.ClearStorageClassSpecs();
2087  }
2088
2089  // Issue diagnostic and remove function specfier if present.
2090  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2091    if (DS.isInlineSpecified())
2092      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2093    if (DS.isVirtualSpecified())
2094      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2095    if (DS.isExplicitSpecified())
2096      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2097    DS.ClearFunctionSpecs();
2098  }
2099
2100  // Issue diagnostic and remove constexpr specfier if present.
2101  if (DS.isConstexprSpecified()) {
2102    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2103    DS.ClearConstexprSpec();
2104  }
2105}
2106
2107/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2108/// specified token is valid after the identifier in a declarator which
2109/// immediately follows the declspec.  For example, these things are valid:
2110///
2111///      int x   [             4];         // direct-declarator
2112///      int x   (             int y);     // direct-declarator
2113///  int(int x   )                         // direct-declarator
2114///      int x   ;                         // simple-declaration
2115///      int x   =             17;         // init-declarator-list
2116///      int x   ,             y;          // init-declarator-list
2117///      int x   __asm__       ("foo");    // init-declarator-list
2118///      int x   :             4;          // struct-declarator
2119///      int x   {             5};         // C++'0x unified initializers
2120///
2121/// This is not, because 'x' does not immediately follow the declspec (though
2122/// ')' happens to be valid anyway).
2123///    int (x)
2124///
2125static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2126  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2127         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2128         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2129}
2130
2131
2132/// ParseImplicitInt - This method is called when we have an non-typename
2133/// identifier in a declspec (which normally terminates the decl spec) when
2134/// the declspec has no type specifier.  In this case, the declspec is either
2135/// malformed or is "implicit int" (in K&R and C89).
2136///
2137/// This method handles diagnosing this prettily and returns false if the
2138/// declspec is done being processed.  If it recovers and thinks there may be
2139/// other pieces of declspec after it, it returns true.
2140///
2141bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2142                              const ParsedTemplateInfo &TemplateInfo,
2143                              AccessSpecifier AS, DeclSpecContext DSC,
2144                              ParsedAttributesWithRange &Attrs) {
2145  assert(Tok.is(tok::identifier) && "should have identifier");
2146
2147  SourceLocation Loc = Tok.getLocation();
2148  // If we see an identifier that is not a type name, we normally would
2149  // parse it as the identifer being declared.  However, when a typename
2150  // is typo'd or the definition is not included, this will incorrectly
2151  // parse the typename as the identifier name and fall over misparsing
2152  // later parts of the diagnostic.
2153  //
2154  // As such, we try to do some look-ahead in cases where this would
2155  // otherwise be an "implicit-int" case to see if this is invalid.  For
2156  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2157  // an identifier with implicit int, we'd get a parse error because the
2158  // next token is obviously invalid for a type.  Parse these as a case
2159  // with an invalid type specifier.
2160  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2161
2162  // Since we know that this either implicit int (which is rare) or an
2163  // error, do lookahead to try to do better recovery. This never applies
2164  // within a type specifier. Outside of C++, we allow this even if the
2165  // language doesn't "officially" support implicit int -- we support
2166  // implicit int as an extension in C99 and C11.
2167  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2168      isValidAfterIdentifierInDeclarator(NextToken())) {
2169    // If this token is valid for implicit int, e.g. "static x = 4", then
2170    // we just avoid eating the identifier, so it will be parsed as the
2171    // identifier in the declarator.
2172    return false;
2173  }
2174
2175  if (getLangOpts().CPlusPlus &&
2176      DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2177    // Don't require a type specifier if we have the 'auto' storage class
2178    // specifier in C++98 -- we'll promote it to a type specifier.
2179    if (SS)
2180      AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2181    return false;
2182  }
2183
2184  // Otherwise, if we don't consume this token, we are going to emit an
2185  // error anyway.  Try to recover from various common problems.  Check
2186  // to see if this was a reference to a tag name without a tag specified.
2187  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2188  //
2189  // C++ doesn't need this, and isTagName doesn't take SS.
2190  if (SS == nullptr) {
2191    const char *TagName = nullptr, *FixitTagName = nullptr;
2192    tok::TokenKind TagKind = tok::unknown;
2193
2194    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2195      default: break;
2196      case DeclSpec::TST_enum:
2197        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2198      case DeclSpec::TST_union:
2199        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2200      case DeclSpec::TST_struct:
2201        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2202      case DeclSpec::TST_interface:
2203        TagName="__interface"; FixitTagName = "__interface ";
2204        TagKind=tok::kw___interface;break;
2205      case DeclSpec::TST_class:
2206        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2207    }
2208
2209    if (TagName) {
2210      IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2211      LookupResult R(Actions, TokenName, SourceLocation(),
2212                     Sema::LookupOrdinaryName);
2213
2214      Diag(Loc, diag::err_use_of_tag_name_without_tag)
2215        << TokenName << TagName << getLangOpts().CPlusPlus
2216        << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2217
2218      if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2219        for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2220             I != IEnd; ++I)
2221          Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2222            << TokenName << TagName;
2223      }
2224
2225      // Parse this as a tag as if the missing tag were present.
2226      if (TagKind == tok::kw_enum)
2227        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2228      else
2229        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2230                            /*EnteringContext*/ false, DSC_normal, Attrs);
2231      return true;
2232    }
2233  }
2234
2235  // Determine whether this identifier could plausibly be the name of something
2236  // being declared (with a missing type).
2237  if (!isTypeSpecifier(DSC) &&
2238      (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2239    // Look ahead to the next token to try to figure out what this declaration
2240    // was supposed to be.
2241    switch (NextToken().getKind()) {
2242    case tok::l_paren: {
2243      // static x(4); // 'x' is not a type
2244      // x(int n);    // 'x' is not a type
2245      // x (*p)[];    // 'x' is a type
2246      //
2247      // Since we're in an error case, we can afford to perform a tentative
2248      // parse to determine which case we're in.
2249      TentativeParsingAction PA(*this);
2250      ConsumeToken();
2251      TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2252      PA.Revert();
2253
2254      if (TPR != TPResult::False) {
2255        // The identifier is followed by a parenthesized declarator.
2256        // It's supposed to be a type.
2257        break;
2258      }
2259
2260      // If we're in a context where we could be declaring a constructor,
2261      // check whether this is a constructor declaration with a bogus name.
2262      if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2263        IdentifierInfo *II = Tok.getIdentifierInfo();
2264        if (Actions.isCurrentClassNameTypo(II, SS)) {
2265          Diag(Loc, diag::err_constructor_bad_name)
2266            << Tok.getIdentifierInfo() << II
2267            << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2268          Tok.setIdentifierInfo(II);
2269        }
2270      }
2271      // Fall through.
2272    }
2273    case tok::comma:
2274    case tok::equal:
2275    case tok::kw_asm:
2276    case tok::l_brace:
2277    case tok::l_square:
2278    case tok::semi:
2279      // This looks like a variable or function declaration. The type is
2280      // probably missing. We're done parsing decl-specifiers.
2281      if (SS)
2282        AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2283      return false;
2284
2285    default:
2286      // This is probably supposed to be a type. This includes cases like:
2287      //   int f(itn);
2288      //   struct S { unsinged : 4; };
2289      break;
2290    }
2291  }
2292
2293  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2294  // and attempt to recover.
2295  ParsedType T;
2296  IdentifierInfo *II = Tok.getIdentifierInfo();
2297  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2298                                  getLangOpts().CPlusPlus &&
2299                                      NextToken().is(tok::less));
2300  if (T) {
2301    // The action has suggested that the type T could be used. Set that as
2302    // the type in the declaration specifiers, consume the would-be type
2303    // name token, and we're done.
2304    const char *PrevSpec;
2305    unsigned DiagID;
2306    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2307                       Actions.getASTContext().getPrintingPolicy());
2308    DS.SetRangeEnd(Tok.getLocation());
2309    ConsumeToken();
2310    // There may be other declaration specifiers after this.
2311    return true;
2312  } else if (II != Tok.getIdentifierInfo()) {
2313    // If no type was suggested, the correction is to a keyword
2314    Tok.setKind(II->getTokenID());
2315    // There may be other declaration specifiers after this.
2316    return true;
2317  }
2318
2319  // Otherwise, the action had no suggestion for us.  Mark this as an error.
2320  DS.SetTypeSpecError();
2321  DS.SetRangeEnd(Tok.getLocation());
2322  ConsumeToken();
2323
2324  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2325  // avoid rippling error messages on subsequent uses of the same type,
2326  // could be useful if #include was forgotten.
2327  return false;
2328}
2329
2330/// \brief Determine the declaration specifier context from the declarator
2331/// context.
2332///
2333/// \param Context the declarator context, which is one of the
2334/// Declarator::TheContext enumerator values.
2335Parser::DeclSpecContext
2336Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2337  if (Context == Declarator::MemberContext)
2338    return DSC_class;
2339  if (Context == Declarator::FileContext)
2340    return DSC_top_level;
2341  if (Context == Declarator::TemplateTypeArgContext)
2342    return DSC_template_type_arg;
2343  if (Context == Declarator::TrailingReturnContext)
2344    return DSC_trailing;
2345  if (Context == Declarator::AliasDeclContext ||
2346      Context == Declarator::AliasTemplateContext)
2347    return DSC_alias_declaration;
2348  return DSC_normal;
2349}
2350
2351/// ParseAlignArgument - Parse the argument to an alignment-specifier.
2352///
2353/// FIXME: Simply returns an alignof() expression if the argument is a
2354/// type. Ideally, the type should be propagated directly into Sema.
2355///
2356/// [C11]   type-id
2357/// [C11]   constant-expression
2358/// [C++0x] type-id ...[opt]
2359/// [C++0x] assignment-expression ...[opt]
2360ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2361                                      SourceLocation &EllipsisLoc) {
2362  ExprResult ER;
2363  if (isTypeIdInParens()) {
2364    SourceLocation TypeLoc = Tok.getLocation();
2365    ParsedType Ty = ParseTypeName().get();
2366    SourceRange TypeRange(Start, Tok.getLocation());
2367    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2368                                               Ty.getAsOpaquePtr(), TypeRange);
2369  } else
2370    ER = ParseConstantExpression();
2371
2372  if (getLangOpts().CPlusPlus11)
2373    TryConsumeToken(tok::ellipsis, EllipsisLoc);
2374
2375  return ER;
2376}
2377
2378/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2379/// attribute to Attrs.
2380///
2381/// alignment-specifier:
2382/// [C11]   '_Alignas' '(' type-id ')'
2383/// [C11]   '_Alignas' '(' constant-expression ')'
2384/// [C++11] 'alignas' '(' type-id ...[opt] ')'
2385/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2386void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2387                                     SourceLocation *EndLoc) {
2388  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2389         "Not an alignment-specifier!");
2390
2391  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2392  SourceLocation KWLoc = ConsumeToken();
2393
2394  BalancedDelimiterTracker T(*this, tok::l_paren);
2395  if (T.expectAndConsume())
2396    return;
2397
2398  SourceLocation EllipsisLoc;
2399  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2400  if (ArgExpr.isInvalid()) {
2401    T.skipToEnd();
2402    return;
2403  }
2404
2405  T.consumeClose();
2406  if (EndLoc)
2407    *EndLoc = T.getCloseLocation();
2408
2409  ArgsVector ArgExprs;
2410  ArgExprs.push_back(ArgExpr.get());
2411  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2412               AttributeList::AS_Keyword, EllipsisLoc);
2413}
2414
2415/// Determine whether we're looking at something that might be a declarator
2416/// in a simple-declaration. If it can't possibly be a declarator, maybe
2417/// diagnose a missing semicolon after a prior tag definition in the decl
2418/// specifier.
2419///
2420/// \return \c true if an error occurred and this can't be any kind of
2421/// declaration.
2422bool
2423Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2424                                              DeclSpecContext DSContext,
2425                                              LateParsedAttrList *LateAttrs) {
2426  assert(DS.hasTagDefinition() && "shouldn't call this");
2427
2428  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2429
2430  if (getLangOpts().CPlusPlus &&
2431      (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2432       Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2433      TryAnnotateCXXScopeToken(EnteringContext)) {
2434    SkipMalformedDecl();
2435    return true;
2436  }
2437
2438  bool HasScope = Tok.is(tok::annot_cxxscope);
2439  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2440  Token AfterScope = HasScope ? NextToken() : Tok;
2441
2442  // Determine whether the following tokens could possibly be a
2443  // declarator.
2444  bool MightBeDeclarator = true;
2445  if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2446    // A declarator-id can't start with 'typename'.
2447    MightBeDeclarator = false;
2448  } else if (AfterScope.is(tok::annot_template_id)) {
2449    // If we have a type expressed as a template-id, this cannot be a
2450    // declarator-id (such a type cannot be redeclared in a simple-declaration).
2451    TemplateIdAnnotation *Annot =
2452        static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2453    if (Annot->Kind == TNK_Type_template)
2454      MightBeDeclarator = false;
2455  } else if (AfterScope.is(tok::identifier)) {
2456    const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2457
2458    // These tokens cannot come after the declarator-id in a
2459    // simple-declaration, and are likely to come after a type-specifier.
2460    if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2461        Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2462        Next.is(tok::coloncolon)) {
2463      // Missing a semicolon.
2464      MightBeDeclarator = false;
2465    } else if (HasScope) {
2466      // If the declarator-id has a scope specifier, it must redeclare a
2467      // previously-declared entity. If that's a type (and this is not a
2468      // typedef), that's an error.
2469      CXXScopeSpec SS;
2470      Actions.RestoreNestedNameSpecifierAnnotation(
2471          Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2472      IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2473      Sema::NameClassification Classification = Actions.ClassifyName(
2474          getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2475          /*IsAddressOfOperand*/false);
2476      switch (Classification.getKind()) {
2477      case Sema::NC_Error:
2478        SkipMalformedDecl();
2479        return true;
2480
2481      case Sema::NC_Keyword:
2482      case Sema::NC_NestedNameSpecifier:
2483        llvm_unreachable("typo correction and nested name specifiers not "
2484                         "possible here");
2485
2486      case Sema::NC_Type:
2487      case Sema::NC_TypeTemplate:
2488        // Not a previously-declared non-type entity.
2489        MightBeDeclarator = false;
2490        break;
2491
2492      case Sema::NC_Unknown:
2493      case Sema::NC_Expression:
2494      case Sema::NC_VarTemplate:
2495      case Sema::NC_FunctionTemplate:
2496        // Might be a redeclaration of a prior entity.
2497        break;
2498      }
2499    }
2500  }
2501
2502  if (MightBeDeclarator)
2503    return false;
2504
2505  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2506  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2507       diag::err_expected_after)
2508      << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2509
2510  // Try to recover from the typo, by dropping the tag definition and parsing
2511  // the problematic tokens as a type.
2512  //
2513  // FIXME: Split the DeclSpec into pieces for the standalone
2514  // declaration and pieces for the following declaration, instead
2515  // of assuming that all the other pieces attach to new declaration,
2516  // and call ParsedFreeStandingDeclSpec as appropriate.
2517  DS.ClearTypeSpecType();
2518  ParsedTemplateInfo NotATemplate;
2519  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2520  return false;
2521}
2522
2523/// ParseDeclarationSpecifiers
2524///       declaration-specifiers: [C99 6.7]
2525///         storage-class-specifier declaration-specifiers[opt]
2526///         type-specifier declaration-specifiers[opt]
2527/// [C99]   function-specifier declaration-specifiers[opt]
2528/// [C11]   alignment-specifier declaration-specifiers[opt]
2529/// [GNU]   attributes declaration-specifiers[opt]
2530/// [Clang] '__module_private__' declaration-specifiers[opt]
2531///
2532///       storage-class-specifier: [C99 6.7.1]
2533///         'typedef'
2534///         'extern'
2535///         'static'
2536///         'auto'
2537///         'register'
2538/// [C++]   'mutable'
2539/// [C++11] 'thread_local'
2540/// [C11]   '_Thread_local'
2541/// [GNU]   '__thread'
2542///       function-specifier: [C99 6.7.4]
2543/// [C99]   'inline'
2544/// [C++]   'virtual'
2545/// [C++]   'explicit'
2546/// [OpenCL] '__kernel'
2547///       'friend': [C++ dcl.friend]
2548///       'constexpr': [C++0x dcl.constexpr]
2549
2550///
2551void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2552                                        const ParsedTemplateInfo &TemplateInfo,
2553                                        AccessSpecifier AS,
2554                                        DeclSpecContext DSContext,
2555                                        LateParsedAttrList *LateAttrs) {
2556  if (DS.getSourceRange().isInvalid()) {
2557    // Start the range at the current token but make the end of the range
2558    // invalid.  This will make the entire range invalid unless we successfully
2559    // consume a token.
2560    DS.SetRangeStart(Tok.getLocation());
2561    DS.SetRangeEnd(SourceLocation());
2562  }
2563
2564  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2565  bool AttrsLastTime = false;
2566  ParsedAttributesWithRange attrs(AttrFactory);
2567  const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
2568  while (1) {
2569    bool isInvalid = false;
2570    bool isStorageClass = false;
2571    const char *PrevSpec = nullptr;
2572    unsigned DiagID = 0;
2573
2574    SourceLocation Loc = Tok.getLocation();
2575
2576    switch (Tok.getKind()) {
2577    default:
2578    DoneWithDeclSpec:
2579      if (!AttrsLastTime)
2580        ProhibitAttributes(attrs);
2581      else {
2582        // Reject C++11 attributes that appertain to decl specifiers as
2583        // we don't support any C++11 attributes that appertain to decl
2584        // specifiers. This also conforms to what g++ 4.8 is doing.
2585        ProhibitCXX11Attributes(attrs);
2586
2587        DS.takeAttributesFrom(attrs);
2588      }
2589
2590      // If this is not a declaration specifier token, we're done reading decl
2591      // specifiers.  First verify that DeclSpec's are consistent.
2592      DS.Finish(Diags, PP, Policy);
2593      return;
2594
2595    case tok::l_square:
2596    case tok::kw_alignas:
2597      if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2598        goto DoneWithDeclSpec;
2599
2600      ProhibitAttributes(attrs);
2601      // FIXME: It would be good to recover by accepting the attributes,
2602      //        but attempting to do that now would cause serious
2603      //        madness in terms of diagnostics.
2604      attrs.clear();
2605      attrs.Range = SourceRange();
2606
2607      ParseCXX11Attributes(attrs);
2608      AttrsLastTime = true;
2609      continue;
2610
2611    case tok::code_completion: {
2612      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2613      if (DS.hasTypeSpecifier()) {
2614        bool AllowNonIdentifiers
2615          = (getCurScope()->getFlags() & (Scope::ControlScope |
2616                                          Scope::BlockScope |
2617                                          Scope::TemplateParamScope |
2618                                          Scope::FunctionPrototypeScope |
2619                                          Scope::AtCatchScope)) == 0;
2620        bool AllowNestedNameSpecifiers
2621          = DSContext == DSC_top_level ||
2622            (DSContext == DSC_class && DS.isFriendSpecified());
2623
2624        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2625                                     AllowNonIdentifiers,
2626                                     AllowNestedNameSpecifiers);
2627        return cutOffParsing();
2628      }
2629
2630      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2631        CCC = Sema::PCC_LocalDeclarationSpecifiers;
2632      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2633        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2634                                    : Sema::PCC_Template;
2635      else if (DSContext == DSC_class)
2636        CCC = Sema::PCC_Class;
2637      else if (CurParsedObjCImpl)
2638        CCC = Sema::PCC_ObjCImplementation;
2639
2640      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2641      return cutOffParsing();
2642    }
2643
2644    case tok::coloncolon: // ::foo::bar
2645      // C++ scope specifier.  Annotate and loop, or bail out on error.
2646      if (TryAnnotateCXXScopeToken(EnteringContext)) {
2647        if (!DS.hasTypeSpecifier())
2648          DS.SetTypeSpecError();
2649        goto DoneWithDeclSpec;
2650      }
2651      if (Tok.is(tok::coloncolon)) // ::new or ::delete
2652        goto DoneWithDeclSpec;
2653      continue;
2654
2655    case tok::annot_cxxscope: {
2656      if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2657        goto DoneWithDeclSpec;
2658
2659      CXXScopeSpec SS;
2660      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2661                                                   Tok.getAnnotationRange(),
2662                                                   SS);
2663
2664      // We are looking for a qualified typename.
2665      Token Next = NextToken();
2666      if (Next.is(tok::annot_template_id) &&
2667          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2668            ->Kind == TNK_Type_template) {
2669        // We have a qualified template-id, e.g., N::A<int>
2670
2671        // C++ [class.qual]p2:
2672        //   In a lookup in which the constructor is an acceptable lookup
2673        //   result and the nested-name-specifier nominates a class C:
2674        //
2675        //     - if the name specified after the
2676        //       nested-name-specifier, when looked up in C, is the
2677        //       injected-class-name of C (Clause 9), or
2678        //
2679        //     - if the name specified after the nested-name-specifier
2680        //       is the same as the identifier or the
2681        //       simple-template-id's template-name in the last
2682        //       component of the nested-name-specifier,
2683        //
2684        //   the name is instead considered to name the constructor of
2685        //   class C.
2686        //
2687        // Thus, if the template-name is actually the constructor
2688        // name, then the code is ill-formed; this interpretation is
2689        // reinforced by the NAD status of core issue 635.
2690        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2691        if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2692            TemplateId->Name &&
2693            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2694          if (isConstructorDeclarator(/*Unqualified*/false)) {
2695            // The user meant this to be an out-of-line constructor
2696            // definition, but template arguments are not allowed
2697            // there.  Just allow this as a constructor; we'll
2698            // complain about it later.
2699            goto DoneWithDeclSpec;
2700          }
2701
2702          // The user meant this to name a type, but it actually names
2703          // a constructor with some extraneous template
2704          // arguments. Complain, then parse it as a type as the user
2705          // intended.
2706          Diag(TemplateId->TemplateNameLoc,
2707               diag::err_out_of_line_template_id_names_constructor)
2708            << TemplateId->Name;
2709        }
2710
2711        DS.getTypeSpecScope() = SS;
2712        ConsumeToken(); // The C++ scope.
2713        assert(Tok.is(tok::annot_template_id) &&
2714               "ParseOptionalCXXScopeSpecifier not working");
2715        AnnotateTemplateIdTokenAsType();
2716        continue;
2717      }
2718
2719      if (Next.is(tok::annot_typename)) {
2720        DS.getTypeSpecScope() = SS;
2721        ConsumeToken(); // The C++ scope.
2722        if (Tok.getAnnotationValue()) {
2723          ParsedType T = getTypeAnnotation(Tok);
2724          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2725                                         Tok.getAnnotationEndLoc(),
2726                                         PrevSpec, DiagID, T, Policy);
2727          if (isInvalid)
2728            break;
2729        }
2730        else
2731          DS.SetTypeSpecError();
2732        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2733        ConsumeToken(); // The typename
2734      }
2735
2736      if (Next.isNot(tok::identifier))
2737        goto DoneWithDeclSpec;
2738
2739      // If we're in a context where the identifier could be a class name,
2740      // check whether this is a constructor declaration.
2741      if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2742          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2743                                     &SS)) {
2744        if (isConstructorDeclarator(/*Unqualified*/false))
2745          goto DoneWithDeclSpec;
2746
2747        // As noted in C++ [class.qual]p2 (cited above), when the name
2748        // of the class is qualified in a context where it could name
2749        // a constructor, its a constructor name. However, we've
2750        // looked at the declarator, and the user probably meant this
2751        // to be a type. Complain that it isn't supposed to be treated
2752        // as a type, then proceed to parse it as a type.
2753        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2754          << Next.getIdentifierInfo();
2755      }
2756
2757      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2758                                               Next.getLocation(),
2759                                               getCurScope(), &SS,
2760                                               false, false, ParsedType(),
2761                                               /*IsCtorOrDtorName=*/false,
2762                                               /*NonTrivialSourceInfo=*/true);
2763
2764      // If the referenced identifier is not a type, then this declspec is
2765      // erroneous: We already checked about that it has no type specifier, and
2766      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2767      // typename.
2768      if (!TypeRep) {
2769        ConsumeToken();   // Eat the scope spec so the identifier is current.
2770        ParsedAttributesWithRange Attrs(AttrFactory);
2771        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2772          if (!Attrs.empty()) {
2773            AttrsLastTime = true;
2774            attrs.takeAllFrom(Attrs);
2775          }
2776          continue;
2777        }
2778        goto DoneWithDeclSpec;
2779      }
2780
2781      DS.getTypeSpecScope() = SS;
2782      ConsumeToken(); // The C++ scope.
2783
2784      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2785                                     DiagID, TypeRep, Policy);
2786      if (isInvalid)
2787        break;
2788
2789      DS.SetRangeEnd(Tok.getLocation());
2790      ConsumeToken(); // The typename.
2791
2792      continue;
2793    }
2794
2795    case tok::annot_typename: {
2796      // If we've previously seen a tag definition, we were almost surely
2797      // missing a semicolon after it.
2798      if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2799        goto DoneWithDeclSpec;
2800
2801      if (Tok.getAnnotationValue()) {
2802        ParsedType T = getTypeAnnotation(Tok);
2803        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2804                                       DiagID, T, Policy);
2805      } else
2806        DS.SetTypeSpecError();
2807
2808      if (isInvalid)
2809        break;
2810
2811      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2812      ConsumeToken(); // The typename
2813
2814      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2815      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2816      // Objective-C interface.
2817      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2818        ParseObjCProtocolQualifiers(DS);
2819
2820      continue;
2821    }
2822
2823    case tok::kw___is_signed:
2824      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2825      // typically treats it as a trait. If we see __is_signed as it appears
2826      // in libstdc++, e.g.,
2827      //
2828      //   static const bool __is_signed;
2829      //
2830      // then treat __is_signed as an identifier rather than as a keyword.
2831      if (DS.getTypeSpecType() == TST_bool &&
2832          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2833          DS.getStorageClassSpec() == DeclSpec::SCS_static)
2834        TryKeywordIdentFallback(true);
2835
2836      // We're done with the declaration-specifiers.
2837      goto DoneWithDeclSpec;
2838
2839      // typedef-name
2840    case tok::kw___super:
2841    case tok::kw_decltype:
2842    case tok::identifier: {
2843      // This identifier can only be a typedef name if we haven't already seen
2844      // a type-specifier.  Without this check we misparse:
2845      //  typedef int X; struct Y { short X; };  as 'short int'.
2846      if (DS.hasTypeSpecifier())
2847        goto DoneWithDeclSpec;
2848
2849      // In C++, check to see if this is a scope specifier like foo::bar::, if
2850      // so handle it as such.  This is important for ctor parsing.
2851      if (getLangOpts().CPlusPlus) {
2852        if (TryAnnotateCXXScopeToken(EnteringContext)) {
2853          DS.SetTypeSpecError();
2854          goto DoneWithDeclSpec;
2855        }
2856        if (!Tok.is(tok::identifier))
2857          continue;
2858      }
2859
2860      // Check for need to substitute AltiVec keyword tokens.
2861      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2862        break;
2863
2864      // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2865      //                allow the use of a typedef name as a type specifier.
2866      if (DS.isTypeAltiVecVector())
2867        goto DoneWithDeclSpec;
2868
2869      ParsedType TypeRep =
2870        Actions.getTypeName(*Tok.getIdentifierInfo(),
2871                            Tok.getLocation(), getCurScope());
2872
2873      // MSVC: If we weren't able to parse a default template argument, and it's
2874      // just a simple identifier, create a DependentNameType.  This will allow us
2875      // to defer the name lookup to template instantiation time, as long we forge a
2876      // NestedNameSpecifier for the current context.
2877      if (!TypeRep && DSContext == DSC_template_type_arg &&
2878          getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2879        TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2880            *Tok.getIdentifierInfo(), Tok.getLocation());
2881      }
2882
2883      // If this is not a typedef name, don't parse it as part of the declspec,
2884      // it must be an implicit int or an error.
2885      if (!TypeRep) {
2886        ParsedAttributesWithRange Attrs(AttrFactory);
2887        if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2888          if (!Attrs.empty()) {
2889            AttrsLastTime = true;
2890            attrs.takeAllFrom(Attrs);
2891          }
2892          continue;
2893        }
2894        goto DoneWithDeclSpec;
2895      }
2896
2897      // If we're in a context where the identifier could be a class name,
2898      // check whether this is a constructor declaration.
2899      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2900          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2901          isConstructorDeclarator(/*Unqualified*/true))
2902        goto DoneWithDeclSpec;
2903
2904      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2905                                     DiagID, TypeRep, Policy);
2906      if (isInvalid)
2907        break;
2908
2909      DS.SetRangeEnd(Tok.getLocation());
2910      ConsumeToken(); // The identifier
2911
2912      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2913      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2914      // Objective-C interface.
2915      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2916        ParseObjCProtocolQualifiers(DS);
2917
2918      // Need to support trailing type qualifiers (e.g. "id<p> const").
2919      // If a type specifier follows, it will be diagnosed elsewhere.
2920      continue;
2921    }
2922
2923      // type-name
2924    case tok::annot_template_id: {
2925      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2926      if (TemplateId->Kind != TNK_Type_template) {
2927        // This template-id does not refer to a type name, so we're
2928        // done with the type-specifiers.
2929        goto DoneWithDeclSpec;
2930      }
2931
2932      // If we're in a context where the template-id could be a
2933      // constructor name or specialization, check whether this is a
2934      // constructor declaration.
2935      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2936          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2937          isConstructorDeclarator(TemplateId->SS.isEmpty()))
2938        goto DoneWithDeclSpec;
2939
2940      // Turn the template-id annotation token into a type annotation
2941      // token, then try again to parse it as a type-specifier.
2942      AnnotateTemplateIdTokenAsType();
2943      continue;
2944    }
2945
2946    // GNU attributes support.
2947    case tok::kw___attribute:
2948      ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2949      continue;
2950
2951    // Microsoft declspec support.
2952    case tok::kw___declspec:
2953      ParseMicrosoftDeclSpec(DS.getAttributes());
2954      continue;
2955
2956    // Microsoft single token adornments.
2957    case tok::kw___forceinline: {
2958      isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2959      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2960      SourceLocation AttrNameLoc = Tok.getLocation();
2961      DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2962                                nullptr, 0, AttributeList::AS_Keyword);
2963      break;
2964    }
2965
2966    case tok::kw___sptr:
2967    case tok::kw___uptr:
2968    case tok::kw___ptr64:
2969    case tok::kw___ptr32:
2970    case tok::kw___w64:
2971    case tok::kw___cdecl:
2972    case tok::kw___stdcall:
2973    case tok::kw___fastcall:
2974    case tok::kw___thiscall:
2975    case tok::kw___vectorcall:
2976    case tok::kw___unaligned:
2977      ParseMicrosoftTypeAttributes(DS.getAttributes());
2978      continue;
2979
2980    // Borland single token adornments.
2981    case tok::kw___pascal:
2982      ParseBorlandTypeAttributes(DS.getAttributes());
2983      continue;
2984
2985    // OpenCL single token adornments.
2986    case tok::kw___kernel:
2987      ParseOpenCLAttributes(DS.getAttributes());
2988      continue;
2989
2990    // storage-class-specifier
2991    case tok::kw_typedef:
2992      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2993                                         PrevSpec, DiagID, Policy);
2994      isStorageClass = true;
2995      break;
2996    case tok::kw_extern:
2997      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2998        Diag(Tok, diag::ext_thread_before) << "extern";
2999      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3000                                         PrevSpec, DiagID, Policy);
3001      isStorageClass = true;
3002      break;
3003    case tok::kw___private_extern__:
3004      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3005                                         Loc, PrevSpec, DiagID, Policy);
3006      isStorageClass = true;
3007      break;
3008    case tok::kw_static:
3009      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3010        Diag(Tok, diag::ext_thread_before) << "static";
3011      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3012                                         PrevSpec, DiagID, Policy);
3013      isStorageClass = true;
3014      break;
3015    case tok::kw_auto:
3016      if (getLangOpts().CPlusPlus11) {
3017        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3018          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3019                                             PrevSpec, DiagID, Policy);
3020          if (!isInvalid)
3021            Diag(Tok, diag::ext_auto_storage_class)
3022              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3023        } else
3024          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3025                                         DiagID, Policy);
3026      } else
3027        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3028                                           PrevSpec, DiagID, Policy);
3029      isStorageClass = true;
3030      break;
3031    case tok::kw_register:
3032      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3033                                         PrevSpec, DiagID, Policy);
3034      isStorageClass = true;
3035      break;
3036    case tok::kw_mutable:
3037      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3038                                         PrevSpec, DiagID, Policy);
3039      isStorageClass = true;
3040      break;
3041    case tok::kw___thread:
3042      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3043                                               PrevSpec, DiagID);
3044      isStorageClass = true;
3045      break;
3046    case tok::kw_thread_local:
3047      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3048                                               PrevSpec, DiagID);
3049      break;
3050    case tok::kw__Thread_local:
3051      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3052                                               Loc, PrevSpec, DiagID);
3053      isStorageClass = true;
3054      break;
3055
3056    // function-specifier
3057    case tok::kw_inline:
3058      isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3059      break;
3060    case tok::kw_virtual:
3061      isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3062      break;
3063    case tok::kw_explicit:
3064      isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3065      break;
3066    case tok::kw__Noreturn:
3067      if (!getLangOpts().C11)
3068        Diag(Loc, diag::ext_c11_noreturn);
3069      isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3070      break;
3071
3072    // alignment-specifier
3073    case tok::kw__Alignas:
3074      if (!getLangOpts().C11)
3075        Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3076      ParseAlignmentSpecifier(DS.getAttributes());
3077      continue;
3078
3079    // friend
3080    case tok::kw_friend:
3081      if (DSContext == DSC_class)
3082        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3083      else {
3084        PrevSpec = ""; // not actually used by the diagnostic
3085        DiagID = diag::err_friend_invalid_in_context;
3086        isInvalid = true;
3087      }
3088      break;
3089
3090    // Modules
3091    case tok::kw___module_private__:
3092      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3093      break;
3094
3095    // constexpr
3096    case tok::kw_constexpr:
3097      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3098      break;
3099
3100    // type-specifier
3101    case tok::kw_short:
3102      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3103                                      DiagID, Policy);
3104      break;
3105    case tok::kw_long:
3106      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3107        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3108                                        DiagID, Policy);
3109      else
3110        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3111                                        DiagID, Policy);
3112      break;
3113    case tok::kw___int64:
3114        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3115                                        DiagID, Policy);
3116      break;
3117    case tok::kw_signed:
3118      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3119                                     DiagID);
3120      break;
3121    case tok::kw_unsigned:
3122      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3123                                     DiagID);
3124      break;
3125    case tok::kw__Complex:
3126      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3127                                        DiagID);
3128      break;
3129    case tok::kw__Imaginary:
3130      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3131                                        DiagID);
3132      break;
3133    case tok::kw_void:
3134      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3135                                     DiagID, Policy);
3136      break;
3137    case tok::kw_char:
3138      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3139                                     DiagID, Policy);
3140      break;
3141    case tok::kw_int:
3142      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3143                                     DiagID, Policy);
3144      break;
3145    case tok::kw___int128:
3146      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3147                                     DiagID, Policy);
3148      break;
3149    case tok::kw_half:
3150      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3151                                     DiagID, Policy);
3152      break;
3153    case tok::kw_float:
3154      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3155                                     DiagID, Policy);
3156      break;
3157    case tok::kw_double:
3158      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3159                                     DiagID, Policy);
3160      break;
3161    case tok::kw_wchar_t:
3162      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3163                                     DiagID, Policy);
3164      break;
3165    case tok::kw_char16_t:
3166      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3167                                     DiagID, Policy);
3168      break;
3169    case tok::kw_char32_t:
3170      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3171                                     DiagID, Policy);
3172      break;
3173    case tok::kw_bool:
3174    case tok::kw__Bool:
3175      if (Tok.is(tok::kw_bool) &&
3176          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3177          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3178        PrevSpec = ""; // Not used by the diagnostic.
3179        DiagID = diag::err_bool_redeclaration;
3180        // For better error recovery.
3181        Tok.setKind(tok::identifier);
3182        isInvalid = true;
3183      } else {
3184        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3185                                       DiagID, Policy);
3186      }
3187      break;
3188    case tok::kw__Decimal32:
3189      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3190                                     DiagID, Policy);
3191      break;
3192    case tok::kw__Decimal64:
3193      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3194                                     DiagID, Policy);
3195      break;
3196    case tok::kw__Decimal128:
3197      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3198                                     DiagID, Policy);
3199      break;
3200    case tok::kw___vector:
3201      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3202      break;
3203    case tok::kw___pixel:
3204      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3205      break;
3206    case tok::kw___bool:
3207      isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3208      break;
3209    case tok::kw___unknown_anytype:
3210      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3211                                     PrevSpec, DiagID, Policy);
3212      break;
3213
3214    // class-specifier:
3215    case tok::kw_class:
3216    case tok::kw_struct:
3217    case tok::kw___interface:
3218    case tok::kw_union: {
3219      tok::TokenKind Kind = Tok.getKind();
3220      ConsumeToken();
3221
3222      // These are attributes following class specifiers.
3223      // To produce better diagnostic, we parse them when
3224      // parsing class specifier.
3225      ParsedAttributesWithRange Attributes(AttrFactory);
3226      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3227                          EnteringContext, DSContext, Attributes);
3228
3229      // If there are attributes following class specifier,
3230      // take them over and handle them here.
3231      if (!Attributes.empty()) {
3232        AttrsLastTime = true;
3233        attrs.takeAllFrom(Attributes);
3234      }
3235      continue;
3236    }
3237
3238    // enum-specifier:
3239    case tok::kw_enum:
3240      ConsumeToken();
3241      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3242      continue;
3243
3244    // cv-qualifier:
3245    case tok::kw_const:
3246      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3247                                 getLangOpts());
3248      break;
3249    case tok::kw_volatile:
3250      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3251                                 getLangOpts());
3252      break;
3253    case tok::kw_restrict:
3254      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3255                                 getLangOpts());
3256      break;
3257
3258    // C++ typename-specifier:
3259    case tok::kw_typename:
3260      if (TryAnnotateTypeOrScopeToken()) {
3261        DS.SetTypeSpecError();
3262        goto DoneWithDeclSpec;
3263      }
3264      if (!Tok.is(tok::kw_typename))
3265        continue;
3266      break;
3267
3268    // GNU typeof support.
3269    case tok::kw_typeof:
3270      ParseTypeofSpecifier(DS);
3271      continue;
3272
3273    case tok::annot_decltype:
3274      ParseDecltypeSpecifier(DS);
3275      continue;
3276
3277    case tok::kw___underlying_type:
3278      ParseUnderlyingTypeSpecifier(DS);
3279      continue;
3280
3281    case tok::kw__Atomic:
3282      // C11 6.7.2.4/4:
3283      //   If the _Atomic keyword is immediately followed by a left parenthesis,
3284      //   it is interpreted as a type specifier (with a type name), not as a
3285      //   type qualifier.
3286      if (NextToken().is(tok::l_paren)) {
3287        ParseAtomicSpecifier(DS);
3288        continue;
3289      }
3290      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3291                                 getLangOpts());
3292      break;
3293
3294    // OpenCL qualifiers:
3295    case tok::kw___generic:
3296      // generic address space is introduced only in OpenCL v2.0
3297      // see OpenCL C Spec v2.0 s6.5.5
3298      if (Actions.getLangOpts().OpenCLVersion < 200) {
3299        DiagID = diag::err_opencl_unknown_type_specifier;
3300        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3301        isInvalid = true;
3302        break;
3303      };
3304    case tok::kw___private:
3305    case tok::kw___global:
3306    case tok::kw___local:
3307    case tok::kw___constant:
3308    case tok::kw___read_only:
3309    case tok::kw___write_only:
3310    case tok::kw___read_write:
3311      ParseOpenCLQualifiers(DS.getAttributes());
3312      break;
3313
3314    case tok::less:
3315      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3316      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3317      // but we support it.
3318      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3319        goto DoneWithDeclSpec;
3320
3321      if (!ParseObjCProtocolQualifiers(DS))
3322        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3323          << FixItHint::CreateInsertion(Loc, "id")
3324          << SourceRange(Loc, DS.getSourceRange().getEnd());
3325
3326      // Need to support trailing type qualifiers (e.g. "id<p> const").
3327      // If a type specifier follows, it will be diagnosed elsewhere.
3328      continue;
3329    }
3330    // If the specifier wasn't legal, issue a diagnostic.
3331    if (isInvalid) {
3332      assert(PrevSpec && "Method did not return previous specifier!");
3333      assert(DiagID);
3334
3335      if (DiagID == diag::ext_duplicate_declspec)
3336        Diag(Tok, DiagID)
3337          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3338      else if (DiagID == diag::err_opencl_unknown_type_specifier)
3339        Diag(Tok, DiagID) << PrevSpec << isStorageClass;
3340      else
3341        Diag(Tok, DiagID) << PrevSpec;
3342    }
3343
3344    DS.SetRangeEnd(Tok.getLocation());
3345    if (DiagID != diag::err_bool_redeclaration)
3346      ConsumeToken();
3347
3348    AttrsLastTime = false;
3349  }
3350}
3351
3352/// ParseStructDeclaration - Parse a struct declaration without the terminating
3353/// semicolon.
3354///
3355///       struct-declaration:
3356///         specifier-qualifier-list struct-declarator-list
3357/// [GNU]   __extension__ struct-declaration
3358/// [GNU]   specifier-qualifier-list
3359///       struct-declarator-list:
3360///         struct-declarator
3361///         struct-declarator-list ',' struct-declarator
3362/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3363///       struct-declarator:
3364///         declarator
3365/// [GNU]   declarator attributes[opt]
3366///         declarator[opt] ':' constant-expression
3367/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3368///
3369void Parser::ParseStructDeclaration(
3370    ParsingDeclSpec &DS,
3371    llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3372
3373  if (Tok.is(tok::kw___extension__)) {
3374    // __extension__ silences extension warnings in the subexpression.
3375    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
3376    ConsumeToken();
3377    return ParseStructDeclaration(DS, FieldsCallback);
3378  }
3379
3380  // Parse the common specifier-qualifiers-list piece.
3381  ParseSpecifierQualifierList(DS);
3382
3383  // If there are no declarators, this is a free-standing declaration
3384  // specifier. Let the actions module cope with it.
3385  if (Tok.is(tok::semi)) {
3386    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3387                                                       DS);
3388    DS.complete(TheDecl);
3389    return;
3390  }
3391
3392  // Read struct-declarators until we find the semicolon.
3393  bool FirstDeclarator = true;
3394  SourceLocation CommaLoc;
3395  while (1) {
3396    ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3397    DeclaratorInfo.D.setCommaLoc(CommaLoc);
3398
3399    // Attributes are only allowed here on successive declarators.
3400    if (!FirstDeclarator)
3401      MaybeParseGNUAttributes(DeclaratorInfo.D);
3402
3403    /// struct-declarator: declarator
3404    /// struct-declarator: declarator[opt] ':' constant-expression
3405    if (Tok.isNot(tok::colon)) {
3406      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3407      ColonProtectionRAIIObject X(*this);
3408      ParseDeclarator(DeclaratorInfo.D);
3409    } else
3410      DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3411
3412    if (TryConsumeToken(tok::colon)) {
3413      ExprResult Res(ParseConstantExpression());
3414      if (Res.isInvalid())
3415        SkipUntil(tok::semi, StopBeforeMatch);
3416      else
3417        DeclaratorInfo.BitfieldSize = Res.get();
3418    }
3419
3420    // If attributes exist after the declarator, parse them.
3421    MaybeParseGNUAttributes(DeclaratorInfo.D);
3422
3423    // We're done with this declarator;  invoke the callback.
3424    FieldsCallback(DeclaratorInfo);
3425
3426    // If we don't have a comma, it is either the end of the list (a ';')
3427    // or an error, bail out.
3428    if (!TryConsumeToken(tok::comma, CommaLoc))
3429      return;
3430
3431    FirstDeclarator = false;
3432  }
3433}
3434
3435/// ParseStructUnionBody
3436///       struct-contents:
3437///         struct-declaration-list
3438/// [EXT]   empty
3439/// [GNU]   "struct-declaration-list" without terminatoring ';'
3440///       struct-declaration-list:
3441///         struct-declaration
3442///         struct-declaration-list struct-declaration
3443/// [OBC]   '@' 'defs' '(' class-name ')'
3444///
3445void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3446                                  unsigned TagType, Decl *TagDecl) {
3447  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3448                                      "parsing struct/union body");
3449  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3450
3451  BalancedDelimiterTracker T(*this, tok::l_brace);
3452  if (T.consumeOpen())
3453    return;
3454
3455  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3456  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3457
3458  SmallVector<Decl *, 32> FieldDecls;
3459
3460  // While we still have something to read, read the declarations in the struct.
3461  while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3462    // Each iteration of this loop reads one struct-declaration.
3463
3464    // Check for extraneous top-level semicolon.
3465    if (Tok.is(tok::semi)) {
3466      ConsumeExtraSemi(InsideStruct, TagType);
3467      continue;
3468    }
3469
3470    // Parse _Static_assert declaration.
3471    if (Tok.is(tok::kw__Static_assert)) {
3472      SourceLocation DeclEnd;
3473      ParseStaticAssertDeclaration(DeclEnd);
3474      continue;
3475    }
3476
3477    if (Tok.is(tok::annot_pragma_pack)) {
3478      HandlePragmaPack();
3479      continue;
3480    }
3481
3482    if (Tok.is(tok::annot_pragma_align)) {
3483      HandlePragmaAlign();
3484      continue;
3485    }
3486
3487    if (!Tok.is(tok::at)) {
3488      auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3489        // Install the declarator into the current TagDecl.
3490        Decl *Field =
3491            Actions.ActOnField(getCurScope(), TagDecl,
3492                               FD.D.getDeclSpec().getSourceRange().getBegin(),
3493                               FD.D, FD.BitfieldSize);
3494        FieldDecls.push_back(Field);
3495        FD.complete(Field);
3496      };
3497
3498      // Parse all the comma separated declarators.
3499      ParsingDeclSpec DS(*this);
3500      ParseStructDeclaration(DS, CFieldCallback);
3501    } else { // Handle @defs
3502      ConsumeToken();
3503      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3504        Diag(Tok, diag::err_unexpected_at);
3505        SkipUntil(tok::semi);
3506        continue;
3507      }
3508      ConsumeToken();
3509      ExpectAndConsume(tok::l_paren);
3510      if (!Tok.is(tok::identifier)) {
3511        Diag(Tok, diag::err_expected) << tok::identifier;
3512        SkipUntil(tok::semi);
3513        continue;
3514      }
3515      SmallVector<Decl *, 16> Fields;
3516      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3517                        Tok.getIdentifierInfo(), Fields);
3518      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3519      ConsumeToken();
3520      ExpectAndConsume(tok::r_paren);
3521    }
3522
3523    if (TryConsumeToken(tok::semi))
3524      continue;
3525
3526    if (Tok.is(tok::r_brace)) {
3527      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3528      break;
3529    }
3530
3531    ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3532    // Skip to end of block or statement to avoid ext-warning on extra ';'.
3533    SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3534    // If we stopped at a ';', eat it.
3535    TryConsumeToken(tok::semi);
3536  }
3537
3538  T.consumeClose();
3539
3540  ParsedAttributes attrs(AttrFactory);
3541  // If attributes exist after struct contents, parse them.
3542  MaybeParseGNUAttributes(attrs);
3543
3544  Actions.ActOnFields(getCurScope(),
3545                      RecordLoc, TagDecl, FieldDecls,
3546                      T.getOpenLocation(), T.getCloseLocation(),
3547                      attrs.getList());
3548  StructScope.Exit();
3549  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3550                                   T.getCloseLocation());
3551}
3552
3553/// ParseEnumSpecifier
3554///       enum-specifier: [C99 6.7.2.2]
3555///         'enum' identifier[opt] '{' enumerator-list '}'
3556///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3557/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3558///                                                 '}' attributes[opt]
3559/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3560///                                                 '}'
3561///         'enum' identifier
3562/// [GNU]   'enum' attributes[opt] identifier
3563///
3564/// [C++11] enum-head '{' enumerator-list[opt] '}'
3565/// [C++11] enum-head '{' enumerator-list ','  '}'
3566///
3567///       enum-head: [C++11]
3568///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3569///         enum-key attribute-specifier-seq[opt] nested-name-specifier
3570///             identifier enum-base[opt]
3571///
3572///       enum-key: [C++11]
3573///         'enum'
3574///         'enum' 'class'
3575///         'enum' 'struct'
3576///
3577///       enum-base: [C++11]
3578///         ':' type-specifier-seq
3579///
3580/// [C++] elaborated-type-specifier:
3581/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
3582///
3583void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3584                                const ParsedTemplateInfo &TemplateInfo,
3585                                AccessSpecifier AS, DeclSpecContext DSC) {
3586  // Parse the tag portion of this.
3587  if (Tok.is(tok::code_completion)) {
3588    // Code completion for an enum name.
3589    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3590    return cutOffParsing();
3591  }
3592
3593  // If attributes exist after tag, parse them.
3594  ParsedAttributesWithRange attrs(AttrFactory);
3595  MaybeParseGNUAttributes(attrs);
3596  MaybeParseCXX11Attributes(attrs);
3597
3598  // If declspecs exist after tag, parse them.
3599  while (Tok.is(tok::kw___declspec))
3600    ParseMicrosoftDeclSpec(attrs);
3601
3602  SourceLocation ScopedEnumKWLoc;
3603  bool IsScopedUsingClassTag = false;
3604
3605  // In C++11, recognize 'enum class' and 'enum struct'.
3606  if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3607    Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3608                                        : diag::ext_scoped_enum);
3609    IsScopedUsingClassTag = Tok.is(tok::kw_class);
3610    ScopedEnumKWLoc = ConsumeToken();
3611
3612    // Attributes are not allowed between these keywords.  Diagnose,
3613    // but then just treat them like they appeared in the right place.
3614    ProhibitAttributes(attrs);
3615
3616    // They are allowed afterwards, though.
3617    MaybeParseGNUAttributes(attrs);
3618    MaybeParseCXX11Attributes(attrs);
3619    while (Tok.is(tok::kw___declspec))
3620      ParseMicrosoftDeclSpec(attrs);
3621  }
3622
3623  // C++11 [temp.explicit]p12:
3624  //   The usual access controls do not apply to names used to specify
3625  //   explicit instantiations.
3626  // We extend this to also cover explicit specializations.  Note that
3627  // we don't suppress if this turns out to be an elaborated type
3628  // specifier.
3629  bool shouldDelayDiagsInTag =
3630    (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3631     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3632  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3633
3634  // Enum definitions should not be parsed in a trailing-return-type.
3635  bool AllowDeclaration = DSC != DSC_trailing;
3636
3637  bool AllowFixedUnderlyingType = AllowDeclaration &&
3638    (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3639     getLangOpts().ObjC2);
3640
3641  CXXScopeSpec &SS = DS.getTypeSpecScope();
3642  if (getLangOpts().CPlusPlus) {
3643    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3644    // if a fixed underlying type is allowed.
3645    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3646
3647    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3648                                       /*EnteringContext=*/true))
3649      return;
3650
3651    if (SS.isSet() && Tok.isNot(tok::identifier)) {
3652      Diag(Tok, diag::err_expected) << tok::identifier;
3653      if (Tok.isNot(tok::l_brace)) {
3654        // Has no name and is not a definition.
3655        // Skip the rest of this declarator, up until the comma or semicolon.
3656        SkipUntil(tok::comma, StopAtSemi);
3657        return;
3658      }
3659    }
3660  }
3661
3662  // Must have either 'enum name' or 'enum {...}'.
3663  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3664      !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3665    Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3666
3667    // Skip the rest of this declarator, up until the comma or semicolon.
3668    SkipUntil(tok::comma, StopAtSemi);
3669    return;
3670  }
3671
3672  // If an identifier is present, consume and remember it.
3673  IdentifierInfo *Name = nullptr;
3674  SourceLocation NameLoc;
3675  if (Tok.is(tok::identifier)) {
3676    Name = Tok.getIdentifierInfo();
3677    NameLoc = ConsumeToken();
3678  }
3679
3680  if (!Name && ScopedEnumKWLoc.isValid()) {
3681    // C++0x 7.2p2: The optional identifier shall not be omitted in the
3682    // declaration of a scoped enumeration.
3683    Diag(Tok, diag::err_scoped_enum_missing_identifier);
3684    ScopedEnumKWLoc = SourceLocation();
3685    IsScopedUsingClassTag = false;
3686  }
3687
3688  // Okay, end the suppression area.  We'll decide whether to emit the
3689  // diagnostics in a second.
3690  if (shouldDelayDiagsInTag)
3691    diagsFromTag.done();
3692
3693  TypeResult BaseType;
3694
3695  // Parse the fixed underlying type.
3696  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3697  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3698    bool PossibleBitfield = false;
3699    if (CanBeBitfield) {
3700      // If we're in class scope, this can either be an enum declaration with
3701      // an underlying type, or a declaration of a bitfield member. We try to
3702      // use a simple disambiguation scheme first to catch the common cases
3703      // (integer literal, sizeof); if it's still ambiguous, we then consider
3704      // anything that's a simple-type-specifier followed by '(' as an
3705      // expression. This suffices because function types are not valid
3706      // underlying types anyway.
3707      EnterExpressionEvaluationContext Unevaluated(Actions,
3708                                                   Sema::ConstantEvaluated);
3709      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3710      // If the next token starts an expression, we know we're parsing a
3711      // bit-field. This is the common case.
3712      if (TPR == TPResult::True)
3713        PossibleBitfield = true;
3714      // If the next token starts a type-specifier-seq, it may be either a
3715      // a fixed underlying type or the start of a function-style cast in C++;
3716      // lookahead one more token to see if it's obvious that we have a
3717      // fixed underlying type.
3718      else if (TPR == TPResult::False &&
3719               GetLookAheadToken(2).getKind() == tok::semi) {
3720        // Consume the ':'.
3721        ConsumeToken();
3722      } else {
3723        // We have the start of a type-specifier-seq, so we have to perform
3724        // tentative parsing to determine whether we have an expression or a
3725        // type.
3726        TentativeParsingAction TPA(*this);
3727
3728        // Consume the ':'.
3729        ConsumeToken();
3730
3731        // If we see a type specifier followed by an open-brace, we have an
3732        // ambiguity between an underlying type and a C++11 braced
3733        // function-style cast. Resolve this by always treating it as an
3734        // underlying type.
3735        // FIXME: The standard is not entirely clear on how to disambiguate in
3736        // this case.
3737        if ((getLangOpts().CPlusPlus &&
3738             isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3739            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3740          // We'll parse this as a bitfield later.
3741          PossibleBitfield = true;
3742          TPA.Revert();
3743        } else {
3744          // We have a type-specifier-seq.
3745          TPA.Commit();
3746        }
3747      }
3748    } else {
3749      // Consume the ':'.
3750      ConsumeToken();
3751    }
3752
3753    if (!PossibleBitfield) {
3754      SourceRange Range;
3755      BaseType = ParseTypeName(&Range);
3756
3757      if (getLangOpts().CPlusPlus11) {
3758        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3759      } else if (!getLangOpts().ObjC2) {
3760        if (getLangOpts().CPlusPlus)
3761          Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3762        else
3763          Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3764      }
3765    }
3766  }
3767
3768  // There are four options here.  If we have 'friend enum foo;' then this is a
3769  // friend declaration, and cannot have an accompanying definition. If we have
3770  // 'enum foo;', then this is a forward declaration.  If we have
3771  // 'enum foo {...' then this is a definition. Otherwise we have something
3772  // like 'enum foo xyz', a reference.
3773  //
3774  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3775  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
3776  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
3777  //
3778  Sema::TagUseKind TUK;
3779  if (!AllowDeclaration) {
3780    TUK = Sema::TUK_Reference;
3781  } else if (Tok.is(tok::l_brace)) {
3782    if (DS.isFriendSpecified()) {
3783      Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3784        << SourceRange(DS.getFriendSpecLoc());
3785      ConsumeBrace();
3786      SkipUntil(tok::r_brace, StopAtSemi);
3787      TUK = Sema::TUK_Friend;
3788    } else {
3789      TUK = Sema::TUK_Definition;
3790    }
3791  } else if (!isTypeSpecifier(DSC) &&
3792             (Tok.is(tok::semi) ||
3793              (Tok.isAtStartOfLine() &&
3794               !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3795    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3796    if (Tok.isNot(tok::semi)) {
3797      // A semicolon was missing after this declaration. Diagnose and recover.
3798      ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3799      PP.EnterToken(Tok);
3800      Tok.setKind(tok::semi);
3801    }
3802  } else {
3803    TUK = Sema::TUK_Reference;
3804  }
3805
3806  // If this is an elaborated type specifier, and we delayed
3807  // diagnostics before, just merge them into the current pool.
3808  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3809    diagsFromTag.redelay();
3810  }
3811
3812  MultiTemplateParamsArg TParams;
3813  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3814      TUK != Sema::TUK_Reference) {
3815    if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3816      // Skip the rest of this declarator, up until the comma or semicolon.
3817      Diag(Tok, diag::err_enum_template);
3818      SkipUntil(tok::comma, StopAtSemi);
3819      return;
3820    }
3821
3822    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3823      // Enumerations can't be explicitly instantiated.
3824      DS.SetTypeSpecError();
3825      Diag(StartLoc, diag::err_explicit_instantiation_enum);
3826      return;
3827    }
3828
3829    assert(TemplateInfo.TemplateParams && "no template parameters");
3830    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3831                                     TemplateInfo.TemplateParams->size());
3832  }
3833
3834  if (TUK == Sema::TUK_Reference)
3835    ProhibitAttributes(attrs);
3836
3837  if (!Name && TUK != Sema::TUK_Definition) {
3838    Diag(Tok, diag::err_enumerator_unnamed_no_def);
3839
3840    // Skip the rest of this declarator, up until the comma or semicolon.
3841    SkipUntil(tok::comma, StopAtSemi);
3842    return;
3843  }
3844
3845  bool Owned = false;
3846  bool IsDependent = false;
3847  const char *PrevSpec = nullptr;
3848  unsigned DiagID;
3849  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3850                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
3851                                   AS, DS.getModulePrivateSpecLoc(), TParams,
3852                                   Owned, IsDependent, ScopedEnumKWLoc,
3853                                   IsScopedUsingClassTag, BaseType,
3854                                   DSC == DSC_type_specifier);
3855
3856  if (IsDependent) {
3857    // This enum has a dependent nested-name-specifier. Handle it as a
3858    // dependent tag.
3859    if (!Name) {
3860      DS.SetTypeSpecError();
3861      Diag(Tok, diag::err_expected_type_name_after_typename);
3862      return;
3863    }
3864
3865    TypeResult Type = Actions.ActOnDependentTag(
3866        getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3867    if (Type.isInvalid()) {
3868      DS.SetTypeSpecError();
3869      return;
3870    }
3871
3872    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3873                           NameLoc.isValid() ? NameLoc : StartLoc,
3874                           PrevSpec, DiagID, Type.get(),
3875                           Actions.getASTContext().getPrintingPolicy()))
3876      Diag(StartLoc, DiagID) << PrevSpec;
3877
3878    return;
3879  }
3880
3881  if (!TagDecl) {
3882    // The action failed to produce an enumeration tag. If this is a
3883    // definition, consume the entire definition.
3884    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3885      ConsumeBrace();
3886      SkipUntil(tok::r_brace, StopAtSemi);
3887    }
3888
3889    DS.SetTypeSpecError();
3890    return;
3891  }
3892
3893  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3894    ParseEnumBody(StartLoc, TagDecl);
3895
3896  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3897                         NameLoc.isValid() ? NameLoc : StartLoc,
3898                         PrevSpec, DiagID, TagDecl, Owned,
3899                         Actions.getASTContext().getPrintingPolicy()))
3900    Diag(StartLoc, DiagID) << PrevSpec;
3901}
3902
3903/// ParseEnumBody - Parse a {} enclosed enumerator-list.
3904///       enumerator-list:
3905///         enumerator
3906///         enumerator-list ',' enumerator
3907///       enumerator:
3908///         enumeration-constant attributes[opt]
3909///         enumeration-constant attributes[opt] '=' constant-expression
3910///       enumeration-constant:
3911///         identifier
3912///
3913void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3914  // Enter the scope of the enum body and start the definition.
3915  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3916  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3917
3918  BalancedDelimiterTracker T(*this, tok::l_brace);
3919  T.consumeOpen();
3920
3921  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3922  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3923    Diag(Tok, diag::error_empty_enum);
3924
3925  SmallVector<Decl *, 32> EnumConstantDecls;
3926
3927  Decl *LastEnumConstDecl = nullptr;
3928
3929  // Parse the enumerator-list.
3930  while (Tok.isNot(tok::r_brace)) {
3931    // Parse enumerator. If failed, try skipping till the start of the next
3932    // enumerator definition.
3933    if (Tok.isNot(tok::identifier)) {
3934      Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3935      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3936          TryConsumeToken(tok::comma))
3937        continue;
3938      break;
3939    }
3940    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3941    SourceLocation IdentLoc = ConsumeToken();
3942
3943    // If attributes exist after the enumerator, parse them.
3944    ParsedAttributesWithRange attrs(AttrFactory);
3945    MaybeParseGNUAttributes(attrs);
3946    ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
3947    if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
3948      if (!getLangOpts().CPlusPlus1z)
3949        Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
3950            << 1 /*enumerator*/;
3951      ParseCXX11Attributes(attrs);
3952    }
3953
3954    SourceLocation EqualLoc;
3955    ExprResult AssignedVal;
3956    ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3957
3958    if (TryConsumeToken(tok::equal, EqualLoc)) {
3959      AssignedVal = ParseConstantExpression();
3960      if (AssignedVal.isInvalid())
3961        SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3962    }
3963
3964    // Install the enumerator constant into EnumDecl.
3965    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3966                                                    LastEnumConstDecl,
3967                                                    IdentLoc, Ident,
3968                                                    attrs.getList(), EqualLoc,
3969                                                    AssignedVal.get());
3970    PD.complete(EnumConstDecl);
3971
3972    EnumConstantDecls.push_back(EnumConstDecl);
3973    LastEnumConstDecl = EnumConstDecl;
3974
3975    if (Tok.is(tok::identifier)) {
3976      // We're missing a comma between enumerators.
3977      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3978      Diag(Loc, diag::err_enumerator_list_missing_comma)
3979        << FixItHint::CreateInsertion(Loc, ", ");
3980      continue;
3981    }
3982
3983    // Emumerator definition must be finished, only comma or r_brace are
3984    // allowed here.
3985    SourceLocation CommaLoc;
3986    if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3987      if (EqualLoc.isValid())
3988        Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3989                                                           << tok::comma;
3990      else
3991        Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
3992      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
3993        if (TryConsumeToken(tok::comma, CommaLoc))
3994          continue;
3995      } else {
3996        break;
3997      }
3998    }
3999
4000    // If comma is followed by r_brace, emit appropriate warning.
4001    if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4002      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4003        Diag(CommaLoc, getLangOpts().CPlusPlus ?
4004               diag::ext_enumerator_list_comma_cxx :
4005               diag::ext_enumerator_list_comma_c)
4006          << FixItHint::CreateRemoval(CommaLoc);
4007      else if (getLangOpts().CPlusPlus11)
4008        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4009          << FixItHint::CreateRemoval(CommaLoc);
4010      break;
4011    }
4012  }
4013
4014  // Eat the }.
4015  T.consumeClose();
4016
4017  // If attributes exist after the identifier list, parse them.
4018  ParsedAttributes attrs(AttrFactory);
4019  MaybeParseGNUAttributes(attrs);
4020
4021  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4022                        EnumDecl, EnumConstantDecls,
4023                        getCurScope(),
4024                        attrs.getList());
4025
4026  EnumScope.Exit();
4027  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4028                                   T.getCloseLocation());
4029
4030  // The next token must be valid after an enum definition. If not, a ';'
4031  // was probably forgotten.
4032  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4033  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4034    ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4035    // Push this token back into the preprocessor and change our current token
4036    // to ';' so that the rest of the code recovers as though there were an
4037    // ';' after the definition.
4038    PP.EnterToken(Tok);
4039    Tok.setKind(tok::semi);
4040  }
4041}
4042
4043/// isTypeSpecifierQualifier - Return true if the current token could be the
4044/// start of a type-qualifier-list.
4045bool Parser::isTypeQualifier() const {
4046  switch (Tok.getKind()) {
4047  default: return false;
4048  // type-qualifier
4049  case tok::kw_const:
4050  case tok::kw_volatile:
4051  case tok::kw_restrict:
4052  case tok::kw___private:
4053  case tok::kw___local:
4054  case tok::kw___global:
4055  case tok::kw___constant:
4056  case tok::kw___generic:
4057  case tok::kw___read_only:
4058  case tok::kw___read_write:
4059  case tok::kw___write_only:
4060    return true;
4061  }
4062}
4063
4064/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4065/// is definitely a type-specifier.  Return false if it isn't part of a type
4066/// specifier or if we're not sure.
4067bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4068  switch (Tok.getKind()) {
4069  default: return false;
4070    // type-specifiers
4071  case tok::kw_short:
4072  case tok::kw_long:
4073  case tok::kw___int64:
4074  case tok::kw___int128:
4075  case tok::kw_signed:
4076  case tok::kw_unsigned:
4077  case tok::kw__Complex:
4078  case tok::kw__Imaginary:
4079  case tok::kw_void:
4080  case tok::kw_char:
4081  case tok::kw_wchar_t:
4082  case tok::kw_char16_t:
4083  case tok::kw_char32_t:
4084  case tok::kw_int:
4085  case tok::kw_half:
4086  case tok::kw_float:
4087  case tok::kw_double:
4088  case tok::kw_bool:
4089  case tok::kw__Bool:
4090  case tok::kw__Decimal32:
4091  case tok::kw__Decimal64:
4092  case tok::kw__Decimal128:
4093  case tok::kw___vector:
4094
4095    // struct-or-union-specifier (C99) or class-specifier (C++)
4096  case tok::kw_class:
4097  case tok::kw_struct:
4098  case tok::kw___interface:
4099  case tok::kw_union:
4100    // enum-specifier
4101  case tok::kw_enum:
4102
4103    // typedef-name
4104  case tok::annot_typename:
4105    return true;
4106  }
4107}
4108
4109/// isTypeSpecifierQualifier - Return true if the current token could be the
4110/// start of a specifier-qualifier-list.
4111bool Parser::isTypeSpecifierQualifier() {
4112  switch (Tok.getKind()) {
4113  default: return false;
4114
4115  case tok::identifier:   // foo::bar
4116    if (TryAltiVecVectorToken())
4117      return true;
4118    // Fall through.
4119  case tok::kw_typename:  // typename T::type
4120    // Annotate typenames and C++ scope specifiers.  If we get one, just
4121    // recurse to handle whatever we get.
4122    if (TryAnnotateTypeOrScopeToken())
4123      return true;
4124    if (Tok.is(tok::identifier))
4125      return false;
4126    return isTypeSpecifierQualifier();
4127
4128  case tok::coloncolon:   // ::foo::bar
4129    if (NextToken().is(tok::kw_new) ||    // ::new
4130        NextToken().is(tok::kw_delete))   // ::delete
4131      return false;
4132
4133    if (TryAnnotateTypeOrScopeToken())
4134      return true;
4135    return isTypeSpecifierQualifier();
4136
4137    // GNU attributes support.
4138  case tok::kw___attribute:
4139    // GNU typeof support.
4140  case tok::kw_typeof:
4141
4142    // type-specifiers
4143  case tok::kw_short:
4144  case tok::kw_long:
4145  case tok::kw___int64:
4146  case tok::kw___int128:
4147  case tok::kw_signed:
4148  case tok::kw_unsigned:
4149  case tok::kw__Complex:
4150  case tok::kw__Imaginary:
4151  case tok::kw_void:
4152  case tok::kw_char:
4153  case tok::kw_wchar_t:
4154  case tok::kw_char16_t:
4155  case tok::kw_char32_t:
4156  case tok::kw_int:
4157  case tok::kw_half:
4158  case tok::kw_float:
4159  case tok::kw_double:
4160  case tok::kw_bool:
4161  case tok::kw__Bool:
4162  case tok::kw__Decimal32:
4163  case tok::kw__Decimal64:
4164  case tok::kw__Decimal128:
4165  case tok::kw___vector:
4166
4167    // struct-or-union-specifier (C99) or class-specifier (C++)
4168  case tok::kw_class:
4169  case tok::kw_struct:
4170  case tok::kw___interface:
4171  case tok::kw_union:
4172    // enum-specifier
4173  case tok::kw_enum:
4174
4175    // type-qualifier
4176  case tok::kw_const:
4177  case tok::kw_volatile:
4178  case tok::kw_restrict:
4179
4180    // Debugger support.
4181  case tok::kw___unknown_anytype:
4182
4183    // typedef-name
4184  case tok::annot_typename:
4185    return true;
4186
4187    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4188  case tok::less:
4189    return getLangOpts().ObjC1;
4190
4191  case tok::kw___cdecl:
4192  case tok::kw___stdcall:
4193  case tok::kw___fastcall:
4194  case tok::kw___thiscall:
4195  case tok::kw___vectorcall:
4196  case tok::kw___w64:
4197  case tok::kw___ptr64:
4198  case tok::kw___ptr32:
4199  case tok::kw___pascal:
4200  case tok::kw___unaligned:
4201
4202  case tok::kw___private:
4203  case tok::kw___local:
4204  case tok::kw___global:
4205  case tok::kw___constant:
4206  case tok::kw___generic:
4207  case tok::kw___read_only:
4208  case tok::kw___read_write:
4209  case tok::kw___write_only:
4210
4211    return true;
4212
4213  // C11 _Atomic
4214  case tok::kw__Atomic:
4215    return true;
4216  }
4217}
4218
4219/// isDeclarationSpecifier() - Return true if the current token is part of a
4220/// declaration specifier.
4221///
4222/// \param DisambiguatingWithExpression True to indicate that the purpose of
4223/// this check is to disambiguate between an expression and a declaration.
4224bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4225  switch (Tok.getKind()) {
4226  default: return false;
4227
4228  case tok::identifier:   // foo::bar
4229    // Unfortunate hack to support "Class.factoryMethod" notation.
4230    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4231      return false;
4232    if (TryAltiVecVectorToken())
4233      return true;
4234    // Fall through.
4235  case tok::kw_decltype: // decltype(T())::type
4236  case tok::kw_typename: // typename T::type
4237    // Annotate typenames and C++ scope specifiers.  If we get one, just
4238    // recurse to handle whatever we get.
4239    if (TryAnnotateTypeOrScopeToken())
4240      return true;
4241    if (Tok.is(tok::identifier))
4242      return false;
4243
4244    // If we're in Objective-C and we have an Objective-C class type followed
4245    // by an identifier and then either ':' or ']', in a place where an
4246    // expression is permitted, then this is probably a class message send
4247    // missing the initial '['. In this case, we won't consider this to be
4248    // the start of a declaration.
4249    if (DisambiguatingWithExpression &&
4250        isStartOfObjCClassMessageMissingOpenBracket())
4251      return false;
4252
4253    return isDeclarationSpecifier();
4254
4255  case tok::coloncolon:   // ::foo::bar
4256    if (NextToken().is(tok::kw_new) ||    // ::new
4257        NextToken().is(tok::kw_delete))   // ::delete
4258      return false;
4259
4260    // Annotate typenames and C++ scope specifiers.  If we get one, just
4261    // recurse to handle whatever we get.
4262    if (TryAnnotateTypeOrScopeToken())
4263      return true;
4264    return isDeclarationSpecifier();
4265
4266    // storage-class-specifier
4267  case tok::kw_typedef:
4268  case tok::kw_extern:
4269  case tok::kw___private_extern__:
4270  case tok::kw_static:
4271  case tok::kw_auto:
4272  case tok::kw_register:
4273  case tok::kw___thread:
4274  case tok::kw_thread_local:
4275  case tok::kw__Thread_local:
4276
4277    // Modules
4278  case tok::kw___module_private__:
4279
4280    // Debugger support
4281  case tok::kw___unknown_anytype:
4282
4283    // type-specifiers
4284  case tok::kw_short:
4285  case tok::kw_long:
4286  case tok::kw___int64:
4287  case tok::kw___int128:
4288  case tok::kw_signed:
4289  case tok::kw_unsigned:
4290  case tok::kw__Complex:
4291  case tok::kw__Imaginary:
4292  case tok::kw_void:
4293  case tok::kw_char:
4294  case tok::kw_wchar_t:
4295  case tok::kw_char16_t:
4296  case tok::kw_char32_t:
4297
4298  case tok::kw_int:
4299  case tok::kw_half:
4300  case tok::kw_float:
4301  case tok::kw_double:
4302  case tok::kw_bool:
4303  case tok::kw__Bool:
4304  case tok::kw__Decimal32:
4305  case tok::kw__Decimal64:
4306  case tok::kw__Decimal128:
4307  case tok::kw___vector:
4308
4309    // struct-or-union-specifier (C99) or class-specifier (C++)
4310  case tok::kw_class:
4311  case tok::kw_struct:
4312  case tok::kw_union:
4313  case tok::kw___interface:
4314    // enum-specifier
4315  case tok::kw_enum:
4316
4317    // type-qualifier
4318  case tok::kw_const:
4319  case tok::kw_volatile:
4320  case tok::kw_restrict:
4321
4322    // function-specifier
4323  case tok::kw_inline:
4324  case tok::kw_virtual:
4325  case tok::kw_explicit:
4326  case tok::kw__Noreturn:
4327
4328    // alignment-specifier
4329  case tok::kw__Alignas:
4330
4331    // friend keyword.
4332  case tok::kw_friend:
4333
4334    // static_assert-declaration
4335  case tok::kw__Static_assert:
4336
4337    // GNU typeof support.
4338  case tok::kw_typeof:
4339
4340    // GNU attributes.
4341  case tok::kw___attribute:
4342
4343    // C++11 decltype and constexpr.
4344  case tok::annot_decltype:
4345  case tok::kw_constexpr:
4346
4347    // C11 _Atomic
4348  case tok::kw__Atomic:
4349    return true;
4350
4351    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4352  case tok::less:
4353    return getLangOpts().ObjC1;
4354
4355    // typedef-name
4356  case tok::annot_typename:
4357    return !DisambiguatingWithExpression ||
4358           !isStartOfObjCClassMessageMissingOpenBracket();
4359
4360  case tok::kw___declspec:
4361  case tok::kw___cdecl:
4362  case tok::kw___stdcall:
4363  case tok::kw___fastcall:
4364  case tok::kw___thiscall:
4365  case tok::kw___vectorcall:
4366  case tok::kw___w64:
4367  case tok::kw___sptr:
4368  case tok::kw___uptr:
4369  case tok::kw___ptr64:
4370  case tok::kw___ptr32:
4371  case tok::kw___forceinline:
4372  case tok::kw___pascal:
4373  case tok::kw___unaligned:
4374
4375  case tok::kw___private:
4376  case tok::kw___local:
4377  case tok::kw___global:
4378  case tok::kw___constant:
4379  case tok::kw___generic:
4380  case tok::kw___read_only:
4381  case tok::kw___read_write:
4382  case tok::kw___write_only:
4383
4384    return true;
4385  }
4386}
4387
4388bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4389  TentativeParsingAction TPA(*this);
4390
4391  // Parse the C++ scope specifier.
4392  CXXScopeSpec SS;
4393  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4394                                     /*EnteringContext=*/true)) {
4395    TPA.Revert();
4396    return false;
4397  }
4398
4399  // Parse the constructor name.
4400  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4401    // We already know that we have a constructor name; just consume
4402    // the token.
4403    ConsumeToken();
4404  } else {
4405    TPA.Revert();
4406    return false;
4407  }
4408
4409  // Current class name must be followed by a left parenthesis.
4410  if (Tok.isNot(tok::l_paren)) {
4411    TPA.Revert();
4412    return false;
4413  }
4414  ConsumeParen();
4415
4416  // A right parenthesis, or ellipsis followed by a right parenthesis signals
4417  // that we have a constructor.
4418  if (Tok.is(tok::r_paren) ||
4419      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4420    TPA.Revert();
4421    return true;
4422  }
4423
4424  // A C++11 attribute here signals that we have a constructor, and is an
4425  // attribute on the first constructor parameter.
4426  if (getLangOpts().CPlusPlus11 &&
4427      isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4428                                /*OuterMightBeMessageSend*/ true)) {
4429    TPA.Revert();
4430    return true;
4431  }
4432
4433  // If we need to, enter the specified scope.
4434  DeclaratorScopeObj DeclScopeObj(*this, SS);
4435  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4436    DeclScopeObj.EnterDeclaratorScope();
4437
4438  // Optionally skip Microsoft attributes.
4439  ParsedAttributes Attrs(AttrFactory);
4440  MaybeParseMicrosoftAttributes(Attrs);
4441
4442  // Check whether the next token(s) are part of a declaration
4443  // specifier, in which case we have the start of a parameter and,
4444  // therefore, we know that this is a constructor.
4445  bool IsConstructor = false;
4446  if (isDeclarationSpecifier())
4447    IsConstructor = true;
4448  else if (Tok.is(tok::identifier) ||
4449           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4450    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4451    // This might be a parenthesized member name, but is more likely to
4452    // be a constructor declaration with an invalid argument type. Keep
4453    // looking.
4454    if (Tok.is(tok::annot_cxxscope))
4455      ConsumeToken();
4456    ConsumeToken();
4457
4458    // If this is not a constructor, we must be parsing a declarator,
4459    // which must have one of the following syntactic forms (see the
4460    // grammar extract at the start of ParseDirectDeclarator):
4461    switch (Tok.getKind()) {
4462    case tok::l_paren:
4463      // C(X   (   int));
4464    case tok::l_square:
4465      // C(X   [   5]);
4466      // C(X   [   [attribute]]);
4467    case tok::coloncolon:
4468      // C(X   ::   Y);
4469      // C(X   ::   *p);
4470      // Assume this isn't a constructor, rather than assuming it's a
4471      // constructor with an unnamed parameter of an ill-formed type.
4472      break;
4473
4474    case tok::r_paren:
4475      // C(X   )
4476      if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4477        // Assume these were meant to be constructors:
4478        //   C(X)   :    (the name of a bit-field cannot be parenthesized).
4479        //   C(X)   try  (this is otherwise ill-formed).
4480        IsConstructor = true;
4481      }
4482      if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4483        // If we have a constructor name within the class definition,
4484        // assume these were meant to be constructors:
4485        //   C(X)   {
4486        //   C(X)   ;
4487        // ... because otherwise we would be declaring a non-static data
4488        // member that is ill-formed because it's of the same type as its
4489        // surrounding class.
4490        //
4491        // FIXME: We can actually do this whether or not the name is qualified,
4492        // because if it is qualified in this context it must be being used as
4493        // a constructor name. However, we do not implement that rule correctly
4494        // currently, so we're somewhat conservative here.
4495        IsConstructor = IsUnqualified;
4496      }
4497      break;
4498
4499    default:
4500      IsConstructor = true;
4501      break;
4502    }
4503  }
4504
4505  TPA.Revert();
4506  return IsConstructor;
4507}
4508
4509/// ParseTypeQualifierListOpt
4510///          type-qualifier-list: [C99 6.7.5]
4511///            type-qualifier
4512/// [vendor]   attributes
4513///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4514///            type-qualifier-list type-qualifier
4515/// [vendor]   type-qualifier-list attributes
4516///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4517/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
4518///              [ only if AttReqs & AR_CXX11AttributesParsed ]
4519/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4520/// AttrRequirements bitmask values.
4521void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4522                                       bool AtomicAllowed,
4523                                       bool IdentifierRequired) {
4524  if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4525      isCXX11AttributeSpecifier()) {
4526    ParsedAttributesWithRange attrs(AttrFactory);
4527    ParseCXX11Attributes(attrs);
4528    DS.takeAttributesFrom(attrs);
4529  }
4530
4531  SourceLocation EndLoc;
4532
4533  while (1) {
4534    bool isInvalid = false;
4535    const char *PrevSpec = nullptr;
4536    unsigned DiagID = 0;
4537    SourceLocation Loc = Tok.getLocation();
4538
4539    switch (Tok.getKind()) {
4540    case tok::code_completion:
4541      Actions.CodeCompleteTypeQualifiers(DS);
4542      return cutOffParsing();
4543
4544    case tok::kw_const:
4545      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
4546                                 getLangOpts());
4547      break;
4548    case tok::kw_volatile:
4549      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4550                                 getLangOpts());
4551      break;
4552    case tok::kw_restrict:
4553      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4554                                 getLangOpts());
4555      break;
4556    case tok::kw__Atomic:
4557      if (!AtomicAllowed)
4558        goto DoneWithTypeQuals;
4559      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4560                                 getLangOpts());
4561      break;
4562
4563    // OpenCL qualifiers:
4564    case tok::kw___private:
4565    case tok::kw___global:
4566    case tok::kw___local:
4567    case tok::kw___constant:
4568    case tok::kw___generic:
4569    case tok::kw___read_only:
4570    case tok::kw___write_only:
4571    case tok::kw___read_write:
4572      ParseOpenCLQualifiers(DS.getAttributes());
4573      break;
4574
4575    case tok::kw___uptr:
4576      // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4577      // with the MS modifier keyword.
4578      if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4579          IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4580        if (TryKeywordIdentFallback(false))
4581          continue;
4582      }
4583    case tok::kw___sptr:
4584    case tok::kw___w64:
4585    case tok::kw___ptr64:
4586    case tok::kw___ptr32:
4587    case tok::kw___cdecl:
4588    case tok::kw___stdcall:
4589    case tok::kw___fastcall:
4590    case tok::kw___thiscall:
4591    case tok::kw___vectorcall:
4592    case tok::kw___unaligned:
4593      if (AttrReqs & AR_DeclspecAttributesParsed) {
4594        ParseMicrosoftTypeAttributes(DS.getAttributes());
4595        continue;
4596      }
4597      goto DoneWithTypeQuals;
4598    case tok::kw___pascal:
4599      if (AttrReqs & AR_VendorAttributesParsed) {
4600        ParseBorlandTypeAttributes(DS.getAttributes());
4601        continue;
4602      }
4603      goto DoneWithTypeQuals;
4604    case tok::kw___attribute:
4605      if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4606        // When GNU attributes are expressly forbidden, diagnose their usage.
4607        Diag(Tok, diag::err_attributes_not_allowed);
4608
4609      // Parse the attributes even if they are rejected to ensure that error
4610      // recovery is graceful.
4611      if (AttrReqs & AR_GNUAttributesParsed ||
4612          AttrReqs & AR_GNUAttributesParsedAndRejected) {
4613        ParseGNUAttributes(DS.getAttributes());
4614        continue; // do *not* consume the next token!
4615      }
4616      // otherwise, FALL THROUGH!
4617    default:
4618      DoneWithTypeQuals:
4619      // If this is not a type-qualifier token, we're done reading type
4620      // qualifiers.  First verify that DeclSpec's are consistent.
4621      DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4622      if (EndLoc.isValid())
4623        DS.SetRangeEnd(EndLoc);
4624      return;
4625    }
4626
4627    // If the specifier combination wasn't legal, issue a diagnostic.
4628    if (isInvalid) {
4629      assert(PrevSpec && "Method did not return previous specifier!");
4630      Diag(Tok, DiagID) << PrevSpec;
4631    }
4632    EndLoc = ConsumeToken();
4633  }
4634}
4635
4636
4637/// ParseDeclarator - Parse and verify a newly-initialized declarator.
4638///
4639void Parser::ParseDeclarator(Declarator &D) {
4640  /// This implements the 'declarator' production in the C grammar, then checks
4641  /// for well-formedness and issues diagnostics.
4642  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4643}
4644
4645static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4646                               unsigned TheContext) {
4647  if (Kind == tok::star || Kind == tok::caret)
4648    return true;
4649
4650  if (!Lang.CPlusPlus)
4651    return false;
4652
4653  if (Kind == tok::amp)
4654    return true;
4655
4656  // We parse rvalue refs in C++03, because otherwise the errors are scary.
4657  // But we must not parse them in conversion-type-ids and new-type-ids, since
4658  // those can be legitimately followed by a && operator.
4659  // (The same thing can in theory happen after a trailing-return-type, but
4660  // since those are a C++11 feature, there is no rejects-valid issue there.)
4661  if (Kind == tok::ampamp)
4662    return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4663                                TheContext != Declarator::CXXNewContext);
4664
4665  return false;
4666}
4667
4668/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4669/// is parsed by the function passed to it. Pass null, and the direct-declarator
4670/// isn't parsed at all, making this function effectively parse the C++
4671/// ptr-operator production.
4672///
4673/// If the grammar of this construct is extended, matching changes must also be
4674/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4675/// isConstructorDeclarator.
4676///
4677///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4678/// [C]     pointer[opt] direct-declarator
4679/// [C++]   direct-declarator
4680/// [C++]   ptr-operator declarator
4681///
4682///       pointer: [C99 6.7.5]
4683///         '*' type-qualifier-list[opt]
4684///         '*' type-qualifier-list[opt] pointer
4685///
4686///       ptr-operator:
4687///         '*' cv-qualifier-seq[opt]
4688///         '&'
4689/// [C++0x] '&&'
4690/// [GNU]   '&' restrict[opt] attributes[opt]
4691/// [GNU?]  '&&' restrict[opt] attributes[opt]
4692///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
4693void Parser::ParseDeclaratorInternal(Declarator &D,
4694                                     DirectDeclParseFunction DirectDeclParser) {
4695  if (Diags.hasAllExtensionsSilenced())
4696    D.setExtension();
4697
4698  // C++ member pointers start with a '::' or a nested-name.
4699  // Member pointers get special handling, since there's no place for the
4700  // scope spec in the generic path below.
4701  if (getLangOpts().CPlusPlus &&
4702      (Tok.is(tok::coloncolon) ||
4703       (Tok.is(tok::identifier) &&
4704        (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
4705       Tok.is(tok::annot_cxxscope))) {
4706    bool EnteringContext = D.getContext() == Declarator::FileContext ||
4707                           D.getContext() == Declarator::MemberContext;
4708    CXXScopeSpec SS;
4709    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4710
4711    if (SS.isNotEmpty()) {
4712      if (Tok.isNot(tok::star)) {
4713        // The scope spec really belongs to the direct-declarator.
4714        if (D.mayHaveIdentifier())
4715          D.getCXXScopeSpec() = SS;
4716        else
4717          AnnotateScopeToken(SS, true);
4718
4719        if (DirectDeclParser)
4720          (this->*DirectDeclParser)(D);
4721        return;
4722      }
4723
4724      SourceLocation Loc = ConsumeToken();
4725      D.SetRangeEnd(Loc);
4726      DeclSpec DS(AttrFactory);
4727      ParseTypeQualifierListOpt(DS);
4728      D.ExtendWithDeclSpec(DS);
4729
4730      // Recurse to parse whatever is left.
4731      ParseDeclaratorInternal(D, DirectDeclParser);
4732
4733      // Sema will have to catch (syntactically invalid) pointers into global
4734      // scope. It has to catch pointers into namespace scope anyway.
4735      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4736                                                      DS.getLocEnd()),
4737                    DS.getAttributes(),
4738                    /* Don't replace range end. */SourceLocation());
4739      return;
4740    }
4741  }
4742
4743  tok::TokenKind Kind = Tok.getKind();
4744  // Not a pointer, C++ reference, or block.
4745  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
4746    if (DirectDeclParser)
4747      (this->*DirectDeclParser)(D);
4748    return;
4749  }
4750
4751  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4752  // '&&' -> rvalue reference
4753  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
4754  D.SetRangeEnd(Loc);
4755
4756  if (Kind == tok::star || Kind == tok::caret) {
4757    // Is a pointer.
4758    DeclSpec DS(AttrFactory);
4759
4760    // GNU attributes are not allowed here in a new-type-id, but Declspec and
4761    // C++11 attributes are allowed.
4762    unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
4763                            ((D.getContext() != Declarator::CXXNewContext)
4764                                 ? AR_GNUAttributesParsed
4765                                 : AR_GNUAttributesParsedAndRejected);
4766    ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
4767    D.ExtendWithDeclSpec(DS);
4768
4769    // Recursively parse the declarator.
4770    ParseDeclaratorInternal(D, DirectDeclParser);
4771    if (Kind == tok::star)
4772      // Remember that we parsed a pointer type, and remember the type-quals.
4773      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4774                                                DS.getConstSpecLoc(),
4775                                                DS.getVolatileSpecLoc(),
4776                                                DS.getRestrictSpecLoc()),
4777                    DS.getAttributes(),
4778                    SourceLocation());
4779    else
4780      // Remember that we parsed a Block type, and remember the type-quals.
4781      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4782                                                     Loc),
4783                    DS.getAttributes(),
4784                    SourceLocation());
4785  } else {
4786    // Is a reference
4787    DeclSpec DS(AttrFactory);
4788
4789    // Complain about rvalue references in C++03, but then go on and build
4790    // the declarator.
4791    if (Kind == tok::ampamp)
4792      Diag(Loc, getLangOpts().CPlusPlus11 ?
4793           diag::warn_cxx98_compat_rvalue_reference :
4794           diag::ext_rvalue_reference);
4795
4796    // GNU-style and C++11 attributes are allowed here, as is restrict.
4797    ParseTypeQualifierListOpt(DS);
4798    D.ExtendWithDeclSpec(DS);
4799
4800    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4801    // cv-qualifiers are introduced through the use of a typedef or of a
4802    // template type argument, in which case the cv-qualifiers are ignored.
4803    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4804      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4805        Diag(DS.getConstSpecLoc(),
4806             diag::err_invalid_reference_qualifier_application) << "const";
4807      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4808        Diag(DS.getVolatileSpecLoc(),
4809             diag::err_invalid_reference_qualifier_application) << "volatile";
4810      // 'restrict' is permitted as an extension.
4811      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4812        Diag(DS.getAtomicSpecLoc(),
4813             diag::err_invalid_reference_qualifier_application) << "_Atomic";
4814    }
4815
4816    // Recursively parse the declarator.
4817    ParseDeclaratorInternal(D, DirectDeclParser);
4818
4819    if (D.getNumTypeObjects() > 0) {
4820      // C++ [dcl.ref]p4: There shall be no references to references.
4821      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4822      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4823        if (const IdentifierInfo *II = D.getIdentifier())
4824          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4825           << II;
4826        else
4827          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4828            << "type name";
4829
4830        // Once we've complained about the reference-to-reference, we
4831        // can go ahead and build the (technically ill-formed)
4832        // declarator: reference collapsing will take care of it.
4833      }
4834    }
4835
4836    // Remember that we parsed a reference type.
4837    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4838                                                Kind == tok::amp),
4839                  DS.getAttributes(),
4840                  SourceLocation());
4841  }
4842}
4843
4844// When correcting from misplaced brackets before the identifier, the location
4845// is saved inside the declarator so that other diagnostic messages can use
4846// them.  This extracts and returns that location, or returns the provided
4847// location if a stored location does not exist.
4848static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4849                                                SourceLocation Loc) {
4850  if (D.getName().StartLocation.isInvalid() &&
4851      D.getName().EndLocation.isValid())
4852    return D.getName().EndLocation;
4853
4854  return Loc;
4855}
4856
4857/// ParseDirectDeclarator
4858///       direct-declarator: [C99 6.7.5]
4859/// [C99]   identifier
4860///         '(' declarator ')'
4861/// [GNU]   '(' attributes declarator ')'
4862/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4863/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4864/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4865/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4866/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4867/// [C++11] direct-declarator '[' constant-expression[opt] ']'
4868///                    attribute-specifier-seq[opt]
4869///         direct-declarator '(' parameter-type-list ')'
4870///         direct-declarator '(' identifier-list[opt] ')'
4871/// [GNU]   direct-declarator '(' parameter-forward-declarations
4872///                    parameter-type-list[opt] ')'
4873/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
4874///                    cv-qualifier-seq[opt] exception-specification[opt]
4875/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4876///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4877///                    ref-qualifier[opt] exception-specification[opt]
4878/// [C++]   declarator-id
4879/// [C++11] declarator-id attribute-specifier-seq[opt]
4880///
4881///       declarator-id: [C++ 8]
4882///         '...'[opt] id-expression
4883///         '::'[opt] nested-name-specifier[opt] type-name
4884///
4885///       id-expression: [C++ 5.1]
4886///         unqualified-id
4887///         qualified-id
4888///
4889///       unqualified-id: [C++ 5.1]
4890///         identifier
4891///         operator-function-id
4892///         conversion-function-id
4893///          '~' class-name
4894///         template-id
4895///
4896/// Note, any additional constructs added here may need corresponding changes
4897/// in isConstructorDeclarator.
4898void Parser::ParseDirectDeclarator(Declarator &D) {
4899  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4900
4901  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4902    // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
4903    // this context it is a bitfield. Also in range-based for statement colon
4904    // may delimit for-range-declaration.
4905    ColonProtectionRAIIObject X(*this,
4906                                D.getContext() == Declarator::MemberContext ||
4907                                    (D.getContext() == Declarator::ForContext &&
4908                                     getLangOpts().CPlusPlus11));
4909
4910    // ParseDeclaratorInternal might already have parsed the scope.
4911    if (D.getCXXScopeSpec().isEmpty()) {
4912      bool EnteringContext = D.getContext() == Declarator::FileContext ||
4913                             D.getContext() == Declarator::MemberContext;
4914      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4915                                     EnteringContext);
4916    }
4917
4918    if (D.getCXXScopeSpec().isValid()) {
4919      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4920        // Change the declaration context for name lookup, until this function
4921        // is exited (and the declarator has been parsed).
4922        DeclScopeObj.EnterDeclaratorScope();
4923    }
4924
4925    // C++0x [dcl.fct]p14:
4926    //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
4927    //   parameter-declaration-clause without a preceding comma. In this case,
4928    //   the ellipsis is parsed as part of the abstract-declarator if the type
4929    //   of the parameter either names a template parameter pack that has not
4930    //   been expanded or contains auto; otherwise, it is parsed as part of the
4931    //   parameter-declaration-clause.
4932    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4933        !((D.getContext() == Declarator::PrototypeContext ||
4934           D.getContext() == Declarator::LambdaExprParameterContext ||
4935           D.getContext() == Declarator::BlockLiteralContext) &&
4936          NextToken().is(tok::r_paren) &&
4937          !D.hasGroupingParens() &&
4938          !Actions.containsUnexpandedParameterPacks(D) &&
4939          D.getDeclSpec().getTypeSpecType() != TST_auto)) {
4940      SourceLocation EllipsisLoc = ConsumeToken();
4941      if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
4942        // The ellipsis was put in the wrong place. Recover, and explain to
4943        // the user what they should have done.
4944        ParseDeclarator(D);
4945        if (EllipsisLoc.isValid())
4946          DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4947        return;
4948      } else
4949        D.setEllipsisLoc(EllipsisLoc);
4950
4951      // The ellipsis can't be followed by a parenthesized declarator. We
4952      // check for that in ParseParenDeclarator, after we have disambiguated
4953      // the l_paren token.
4954    }
4955
4956    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4957        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4958      // We found something that indicates the start of an unqualified-id.
4959      // Parse that unqualified-id.
4960      bool AllowConstructorName;
4961      if (D.getDeclSpec().hasTypeSpecifier())
4962        AllowConstructorName = false;
4963      else if (D.getCXXScopeSpec().isSet())
4964        AllowConstructorName =
4965          (D.getContext() == Declarator::FileContext ||
4966           D.getContext() == Declarator::MemberContext);
4967      else
4968        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4969
4970      SourceLocation TemplateKWLoc;
4971      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4972                             /*EnteringContext=*/true,
4973                             /*AllowDestructorName=*/true,
4974                             AllowConstructorName,
4975                             ParsedType(),
4976                             TemplateKWLoc,
4977                             D.getName()) ||
4978          // Once we're past the identifier, if the scope was bad, mark the
4979          // whole declarator bad.
4980          D.getCXXScopeSpec().isInvalid()) {
4981        D.SetIdentifier(nullptr, Tok.getLocation());
4982        D.setInvalidType(true);
4983      } else {
4984        // Parsed the unqualified-id; update range information and move along.
4985        if (D.getSourceRange().getBegin().isInvalid())
4986          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
4987        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
4988      }
4989      goto PastIdentifier;
4990    }
4991  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
4992    assert(!getLangOpts().CPlusPlus &&
4993           "There's a C++-specific check for tok::identifier above");
4994    assert(Tok.getIdentifierInfo() && "Not an identifier?");
4995    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
4996    D.SetRangeEnd(Tok.getLocation());
4997    ConsumeToken();
4998    goto PastIdentifier;
4999  } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5000    // A virt-specifier isn't treated as an identifier if it appears after a
5001    // trailing-return-type.
5002    if (D.getContext() != Declarator::TrailingReturnContext ||
5003        !isCXX11VirtSpecifier(Tok)) {
5004      Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5005        << FixItHint::CreateRemoval(Tok.getLocation());
5006      D.SetIdentifier(nullptr, Tok.getLocation());
5007      ConsumeToken();
5008      goto PastIdentifier;
5009    }
5010  }
5011
5012  if (Tok.is(tok::l_paren)) {
5013    // direct-declarator: '(' declarator ')'
5014    // direct-declarator: '(' attributes declarator ')'
5015    // Example: 'char (*X)'   or 'int (*XX)(void)'
5016    ParseParenDeclarator(D);
5017
5018    // If the declarator was parenthesized, we entered the declarator
5019    // scope when parsing the parenthesized declarator, then exited
5020    // the scope already. Re-enter the scope, if we need to.
5021    if (D.getCXXScopeSpec().isSet()) {
5022      // If there was an error parsing parenthesized declarator, declarator
5023      // scope may have been entered before. Don't do it again.
5024      if (!D.isInvalidType() &&
5025          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
5026        // Change the declaration context for name lookup, until this function
5027        // is exited (and the declarator has been parsed).
5028        DeclScopeObj.EnterDeclaratorScope();
5029    }
5030  } else if (D.mayOmitIdentifier()) {
5031    // This could be something simple like "int" (in which case the declarator
5032    // portion is empty), if an abstract-declarator is allowed.
5033    D.SetIdentifier(nullptr, Tok.getLocation());
5034
5035    // The grammar for abstract-pack-declarator does not allow grouping parens.
5036    // FIXME: Revisit this once core issue 1488 is resolved.
5037    if (D.hasEllipsis() && D.hasGroupingParens())
5038      Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5039           diag::ext_abstract_pack_declarator_parens);
5040  } else {
5041    if (Tok.getKind() == tok::annot_pragma_parser_crash)
5042      LLVM_BUILTIN_TRAP;
5043    if (Tok.is(tok::l_square))
5044      return ParseMisplacedBracketDeclarator(D);
5045    if (D.getContext() == Declarator::MemberContext) {
5046      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5047           diag::err_expected_member_name_or_semi)
5048          << (D.getDeclSpec().isEmpty() ? SourceRange()
5049                                        : D.getDeclSpec().getSourceRange());
5050    } else if (getLangOpts().CPlusPlus) {
5051      if (Tok.is(tok::period) || Tok.is(tok::arrow))
5052        Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5053      else {
5054        SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5055        if (Tok.isAtStartOfLine() && Loc.isValid())
5056          Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5057              << getLangOpts().CPlusPlus;
5058        else
5059          Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5060               diag::err_expected_unqualified_id)
5061              << getLangOpts().CPlusPlus;
5062      }
5063    } else {
5064      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5065           diag::err_expected_either)
5066          << tok::identifier << tok::l_paren;
5067    }
5068    D.SetIdentifier(nullptr, Tok.getLocation());
5069    D.setInvalidType(true);
5070  }
5071
5072 PastIdentifier:
5073  assert(D.isPastIdentifier() &&
5074         "Haven't past the location of the identifier yet?");
5075
5076  // Don't parse attributes unless we have parsed an unparenthesized name.
5077  if (D.hasName() && !D.getNumTypeObjects())
5078    MaybeParseCXX11Attributes(D);
5079
5080  while (1) {
5081    if (Tok.is(tok::l_paren)) {
5082      // Enter function-declaration scope, limiting any declarators to the
5083      // function prototype scope, including parameter declarators.
5084      ParseScope PrototypeScope(this,
5085                                Scope::FunctionPrototypeScope|Scope::DeclScope|
5086                                (D.isFunctionDeclaratorAFunctionDeclaration()
5087                                   ? Scope::FunctionDeclarationScope : 0));
5088
5089      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5090      // In such a case, check if we actually have a function declarator; if it
5091      // is not, the declarator has been fully parsed.
5092      bool IsAmbiguous = false;
5093      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5094        // The name of the declarator, if any, is tentatively declared within
5095        // a possible direct initializer.
5096        TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5097        bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5098        TentativelyDeclaredIdentifiers.pop_back();
5099        if (!IsFunctionDecl)
5100          break;
5101      }
5102      ParsedAttributes attrs(AttrFactory);
5103      BalancedDelimiterTracker T(*this, tok::l_paren);
5104      T.consumeOpen();
5105      ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5106      PrototypeScope.Exit();
5107    } else if (Tok.is(tok::l_square)) {
5108      ParseBracketDeclarator(D);
5109    } else {
5110      break;
5111    }
5112  }
5113}
5114
5115/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
5116/// only called before the identifier, so these are most likely just grouping
5117/// parens for precedence.  If we find that these are actually function
5118/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5119///
5120///       direct-declarator:
5121///         '(' declarator ')'
5122/// [GNU]   '(' attributes declarator ')'
5123///         direct-declarator '(' parameter-type-list ')'
5124///         direct-declarator '(' identifier-list[opt] ')'
5125/// [GNU]   direct-declarator '(' parameter-forward-declarations
5126///                    parameter-type-list[opt] ')'
5127///
5128void Parser::ParseParenDeclarator(Declarator &D) {
5129  BalancedDelimiterTracker T(*this, tok::l_paren);
5130  T.consumeOpen();
5131
5132  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5133
5134  // Eat any attributes before we look at whether this is a grouping or function
5135  // declarator paren.  If this is a grouping paren, the attribute applies to
5136  // the type being built up, for example:
5137  //     int (__attribute__(()) *x)(long y)
5138  // If this ends up not being a grouping paren, the attribute applies to the
5139  // first argument, for example:
5140  //     int (__attribute__(()) int x)
5141  // In either case, we need to eat any attributes to be able to determine what
5142  // sort of paren this is.
5143  //
5144  ParsedAttributes attrs(AttrFactory);
5145  bool RequiresArg = false;
5146  if (Tok.is(tok::kw___attribute)) {
5147    ParseGNUAttributes(attrs);
5148
5149    // We require that the argument list (if this is a non-grouping paren) be
5150    // present even if the attribute list was empty.
5151    RequiresArg = true;
5152  }
5153
5154  // Eat any Microsoft extensions.
5155  ParseMicrosoftTypeAttributes(attrs);
5156
5157  // Eat any Borland extensions.
5158  if  (Tok.is(tok::kw___pascal))
5159    ParseBorlandTypeAttributes(attrs);
5160
5161  // If we haven't past the identifier yet (or where the identifier would be
5162  // stored, if this is an abstract declarator), then this is probably just
5163  // grouping parens. However, if this could be an abstract-declarator, then
5164  // this could also be the start of function arguments (consider 'void()').
5165  bool isGrouping;
5166
5167  if (!D.mayOmitIdentifier()) {
5168    // If this can't be an abstract-declarator, this *must* be a grouping
5169    // paren, because we haven't seen the identifier yet.
5170    isGrouping = true;
5171  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
5172             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5173              NextToken().is(tok::r_paren)) || // C++ int(...)
5174             isDeclarationSpecifier() ||       // 'int(int)' is a function.
5175             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
5176    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5177    // considered to be a type, not a K&R identifier-list.
5178    isGrouping = false;
5179  } else {
5180    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5181    isGrouping = true;
5182  }
5183
5184  // If this is a grouping paren, handle:
5185  // direct-declarator: '(' declarator ')'
5186  // direct-declarator: '(' attributes declarator ')'
5187  if (isGrouping) {
5188    SourceLocation EllipsisLoc = D.getEllipsisLoc();
5189    D.setEllipsisLoc(SourceLocation());
5190
5191    bool hadGroupingParens = D.hasGroupingParens();
5192    D.setGroupingParens(true);
5193    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5194    // Match the ')'.
5195    T.consumeClose();
5196    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5197                                            T.getCloseLocation()),
5198                  attrs, T.getCloseLocation());
5199
5200    D.setGroupingParens(hadGroupingParens);
5201
5202    // An ellipsis cannot be placed outside parentheses.
5203    if (EllipsisLoc.isValid())
5204      DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5205
5206    return;
5207  }
5208
5209  // Okay, if this wasn't a grouping paren, it must be the start of a function
5210  // argument list.  Recognize that this declarator will never have an
5211  // identifier (and remember where it would have been), then call into
5212  // ParseFunctionDeclarator to handle of argument list.
5213  D.SetIdentifier(nullptr, Tok.getLocation());
5214
5215  // Enter function-declaration scope, limiting any declarators to the
5216  // function prototype scope, including parameter declarators.
5217  ParseScope PrototypeScope(this,
5218                            Scope::FunctionPrototypeScope | Scope::DeclScope |
5219                            (D.isFunctionDeclaratorAFunctionDeclaration()
5220                               ? Scope::FunctionDeclarationScope : 0));
5221  ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5222  PrototypeScope.Exit();
5223}
5224
5225/// ParseFunctionDeclarator - We are after the identifier and have parsed the
5226/// declarator D up to a paren, which indicates that we are parsing function
5227/// arguments.
5228///
5229/// If FirstArgAttrs is non-null, then the caller parsed those arguments
5230/// immediately after the open paren - they should be considered to be the
5231/// first argument of a parameter.
5232///
5233/// If RequiresArg is true, then the first argument of the function is required
5234/// to be present and required to not be an identifier list.
5235///
5236/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5237/// (C++11) ref-qualifier[opt], exception-specification[opt],
5238/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5239///
5240/// [C++11] exception-specification:
5241///           dynamic-exception-specification
5242///           noexcept-specification
5243///
5244void Parser::ParseFunctionDeclarator(Declarator &D,
5245                                     ParsedAttributes &FirstArgAttrs,
5246                                     BalancedDelimiterTracker &Tracker,
5247                                     bool IsAmbiguous,
5248                                     bool RequiresArg) {
5249  assert(getCurScope()->isFunctionPrototypeScope() &&
5250         "Should call from a Function scope");
5251  // lparen is already consumed!
5252  assert(D.isPastIdentifier() && "Should not call before identifier!");
5253
5254  // This should be true when the function has typed arguments.
5255  // Otherwise, it is treated as a K&R-style function.
5256  bool HasProto = false;
5257  // Build up an array of information about the parsed arguments.
5258  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5259  // Remember where we see an ellipsis, if any.
5260  SourceLocation EllipsisLoc;
5261
5262  DeclSpec DS(AttrFactory);
5263  bool RefQualifierIsLValueRef = true;
5264  SourceLocation RefQualifierLoc;
5265  SourceLocation ConstQualifierLoc;
5266  SourceLocation VolatileQualifierLoc;
5267  SourceLocation RestrictQualifierLoc;
5268  ExceptionSpecificationType ESpecType = EST_None;
5269  SourceRange ESpecRange;
5270  SmallVector<ParsedType, 2> DynamicExceptions;
5271  SmallVector<SourceRange, 2> DynamicExceptionRanges;
5272  ExprResult NoexceptExpr;
5273  CachedTokens *ExceptionSpecTokens = 0;
5274  ParsedAttributes FnAttrs(AttrFactory);
5275  TypeResult TrailingReturnType;
5276
5277  /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5278     EndLoc is the end location for the function declarator.
5279     They differ for trailing return types. */
5280  SourceLocation StartLoc, LocalEndLoc, EndLoc;
5281  SourceLocation LParenLoc, RParenLoc;
5282  LParenLoc = Tracker.getOpenLocation();
5283  StartLoc = LParenLoc;
5284
5285  if (isFunctionDeclaratorIdentifierList()) {
5286    if (RequiresArg)
5287      Diag(Tok, diag::err_argument_required_after_attribute);
5288
5289    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5290
5291    Tracker.consumeClose();
5292    RParenLoc = Tracker.getCloseLocation();
5293    LocalEndLoc = RParenLoc;
5294    EndLoc = RParenLoc;
5295  } else {
5296    if (Tok.isNot(tok::r_paren))
5297      ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5298                                      EllipsisLoc);
5299    else if (RequiresArg)
5300      Diag(Tok, diag::err_argument_required_after_attribute);
5301
5302    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5303
5304    // If we have the closing ')', eat it.
5305    Tracker.consumeClose();
5306    RParenLoc = Tracker.getCloseLocation();
5307    LocalEndLoc = RParenLoc;
5308    EndLoc = RParenLoc;
5309
5310    if (getLangOpts().CPlusPlus) {
5311      // FIXME: Accept these components in any order, and produce fixits to
5312      // correct the order if the user gets it wrong. Ideally we should deal
5313      // with the virt-specifier-seq and pure-specifier in the same way.
5314
5315      // Parse cv-qualifier-seq[opt].
5316      ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5317                                /*AtomicAllowed*/ false);
5318      if (!DS.getSourceRange().getEnd().isInvalid()) {
5319        EndLoc = DS.getSourceRange().getEnd();
5320        ConstQualifierLoc = DS.getConstSpecLoc();
5321        VolatileQualifierLoc = DS.getVolatileSpecLoc();
5322        RestrictQualifierLoc = DS.getRestrictSpecLoc();
5323      }
5324
5325      // Parse ref-qualifier[opt].
5326      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5327        Diag(Tok, getLangOpts().CPlusPlus11 ?
5328             diag::warn_cxx98_compat_ref_qualifier :
5329             diag::ext_ref_qualifier);
5330
5331        RefQualifierIsLValueRef = Tok.is(tok::amp);
5332        RefQualifierLoc = ConsumeToken();
5333        EndLoc = RefQualifierLoc;
5334      }
5335
5336      // C++11 [expr.prim.general]p3:
5337      //   If a declaration declares a member function or member function
5338      //   template of a class X, the expression this is a prvalue of type
5339      //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5340      //   and the end of the function-definition, member-declarator, or
5341      //   declarator.
5342      // FIXME: currently, "static" case isn't handled correctly.
5343      bool IsCXX11MemberFunction =
5344        getLangOpts().CPlusPlus11 &&
5345        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5346        (D.getContext() == Declarator::MemberContext
5347         ? !D.getDeclSpec().isFriendSpecified()
5348         : D.getContext() == Declarator::FileContext &&
5349           D.getCXXScopeSpec().isValid() &&
5350           Actions.CurContext->isRecord());
5351      Sema::CXXThisScopeRAII ThisScope(Actions,
5352                               dyn_cast<CXXRecordDecl>(Actions.CurContext),
5353                               DS.getTypeQualifiers() |
5354                               (D.getDeclSpec().isConstexprSpecified() &&
5355                                !getLangOpts().CPlusPlus14
5356                                  ? Qualifiers::Const : 0),
5357                               IsCXX11MemberFunction);
5358
5359      // Parse exception-specification[opt].
5360      bool Delayed = D.isFirstDeclarationOfMember() &&
5361                     D.isFunctionDeclaratorAFunctionDeclaration();
5362      if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5363          GetLookAheadToken(0).is(tok::kw_noexcept) &&
5364          GetLookAheadToken(1).is(tok::l_paren) &&
5365          GetLookAheadToken(2).is(tok::kw_noexcept) &&
5366          GetLookAheadToken(3).is(tok::l_paren) &&
5367          GetLookAheadToken(4).is(tok::identifier) &&
5368          GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5369        // HACK: We've got an exception-specification
5370        //   noexcept(noexcept(swap(...)))
5371        // or
5372        //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5373        // on a 'swap' member function. This is a libstdc++ bug; the lookup
5374        // for 'swap' will only find the function we're currently declaring,
5375        // whereas it expects to find a non-member swap through ADL. Turn off
5376        // delayed parsing to give it a chance to find what it expects.
5377        Delayed = false;
5378      }
5379      ESpecType = tryParseExceptionSpecification(Delayed,
5380                                                 ESpecRange,
5381                                                 DynamicExceptions,
5382                                                 DynamicExceptionRanges,
5383                                                 NoexceptExpr,
5384                                                 ExceptionSpecTokens);
5385      if (ESpecType != EST_None)
5386        EndLoc = ESpecRange.getEnd();
5387
5388      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5389      // after the exception-specification.
5390      MaybeParseCXX11Attributes(FnAttrs);
5391
5392      // Parse trailing-return-type[opt].
5393      LocalEndLoc = EndLoc;
5394      if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5395        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5396        if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5397          StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5398        LocalEndLoc = Tok.getLocation();
5399        SourceRange Range;
5400        TrailingReturnType = ParseTrailingReturnType(Range);
5401        EndLoc = Range.getEnd();
5402      }
5403    }
5404  }
5405
5406  // Remember that we parsed a function type, and remember the attributes.
5407  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5408                                             IsAmbiguous,
5409                                             LParenLoc,
5410                                             ParamInfo.data(), ParamInfo.size(),
5411                                             EllipsisLoc, RParenLoc,
5412                                             DS.getTypeQualifiers(),
5413                                             RefQualifierIsLValueRef,
5414                                             RefQualifierLoc, ConstQualifierLoc,
5415                                             VolatileQualifierLoc,
5416                                             RestrictQualifierLoc,
5417                                             /*MutableLoc=*/SourceLocation(),
5418                                             ESpecType, ESpecRange.getBegin(),
5419                                             DynamicExceptions.data(),
5420                                             DynamicExceptionRanges.data(),
5421                                             DynamicExceptions.size(),
5422                                             NoexceptExpr.isUsable() ?
5423                                               NoexceptExpr.get() : nullptr,
5424                                             ExceptionSpecTokens,
5425                                             StartLoc, LocalEndLoc, D,
5426                                             TrailingReturnType),
5427                FnAttrs, EndLoc);
5428}
5429
5430/// isFunctionDeclaratorIdentifierList - This parameter list may have an
5431/// identifier list form for a K&R-style function:  void foo(a,b,c)
5432///
5433/// Note that identifier-lists are only allowed for normal declarators, not for
5434/// abstract-declarators.
5435bool Parser::isFunctionDeclaratorIdentifierList() {
5436  return !getLangOpts().CPlusPlus
5437         && Tok.is(tok::identifier)
5438         && !TryAltiVecVectorToken()
5439         // K&R identifier lists can't have typedefs as identifiers, per C99
5440         // 6.7.5.3p11.
5441         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5442         // Identifier lists follow a really simple grammar: the identifiers can
5443         // be followed *only* by a ", identifier" or ")".  However, K&R
5444         // identifier lists are really rare in the brave new modern world, and
5445         // it is very common for someone to typo a type in a non-K&R style
5446         // list.  If we are presented with something like: "void foo(intptr x,
5447         // float y)", we don't want to start parsing the function declarator as
5448         // though it is a K&R style declarator just because intptr is an
5449         // invalid type.
5450         //
5451         // To handle this, we check to see if the token after the first
5452         // identifier is a "," or ")".  Only then do we parse it as an
5453         // identifier list.
5454         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5455}
5456
5457/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5458/// we found a K&R-style identifier list instead of a typed parameter list.
5459///
5460/// After returning, ParamInfo will hold the parsed parameters.
5461///
5462///       identifier-list: [C99 6.7.5]
5463///         identifier
5464///         identifier-list ',' identifier
5465///
5466void Parser::ParseFunctionDeclaratorIdentifierList(
5467       Declarator &D,
5468       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5469  // If there was no identifier specified for the declarator, either we are in
5470  // an abstract-declarator, or we are in a parameter declarator which was found
5471  // to be abstract.  In abstract-declarators, identifier lists are not valid:
5472  // diagnose this.
5473  if (!D.getIdentifier())
5474    Diag(Tok, diag::ext_ident_list_in_param);
5475
5476  // Maintain an efficient lookup of params we have seen so far.
5477  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5478
5479  do {
5480    // If this isn't an identifier, report the error and skip until ')'.
5481    if (Tok.isNot(tok::identifier)) {
5482      Diag(Tok, diag::err_expected) << tok::identifier;
5483      SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5484      // Forget we parsed anything.
5485      ParamInfo.clear();
5486      return;
5487    }
5488
5489    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5490
5491    // Reject 'typedef int y; int test(x, y)', but continue parsing.
5492    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5493      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5494
5495    // Verify that the argument identifier has not already been mentioned.
5496    if (!ParamsSoFar.insert(ParmII).second) {
5497      Diag(Tok, diag::err_param_redefinition) << ParmII;
5498    } else {
5499      // Remember this identifier in ParamInfo.
5500      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5501                                                     Tok.getLocation(),
5502                                                     nullptr));
5503    }
5504
5505    // Eat the identifier.
5506    ConsumeToken();
5507    // The list continues if we see a comma.
5508  } while (TryConsumeToken(tok::comma));
5509}
5510
5511/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5512/// after the opening parenthesis. This function will not parse a K&R-style
5513/// identifier list.
5514///
5515/// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
5516/// caller parsed those arguments immediately after the open paren - they should
5517/// be considered to be part of the first parameter.
5518///
5519/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5520/// be the location of the ellipsis, if any was parsed.
5521///
5522///       parameter-type-list: [C99 6.7.5]
5523///         parameter-list
5524///         parameter-list ',' '...'
5525/// [C++]   parameter-list '...'
5526///
5527///       parameter-list: [C99 6.7.5]
5528///         parameter-declaration
5529///         parameter-list ',' parameter-declaration
5530///
5531///       parameter-declaration: [C99 6.7.5]
5532///         declaration-specifiers declarator
5533/// [C++]   declaration-specifiers declarator '=' assignment-expression
5534/// [C++11]                                       initializer-clause
5535/// [GNU]   declaration-specifiers declarator attributes
5536///         declaration-specifiers abstract-declarator[opt]
5537/// [C++]   declaration-specifiers abstract-declarator[opt]
5538///           '=' assignment-expression
5539/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
5540/// [C++11] attribute-specifier-seq parameter-declaration
5541///
5542void Parser::ParseParameterDeclarationClause(
5543       Declarator &D,
5544       ParsedAttributes &FirstArgAttrs,
5545       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5546       SourceLocation &EllipsisLoc) {
5547  do {
5548    // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5549    // before deciding this was a parameter-declaration-clause.
5550    if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5551      break;
5552
5553    // Parse the declaration-specifiers.
5554    // Just use the ParsingDeclaration "scope" of the declarator.
5555    DeclSpec DS(AttrFactory);
5556
5557    // Parse any C++11 attributes.
5558    MaybeParseCXX11Attributes(DS.getAttributes());
5559
5560    // Skip any Microsoft attributes before a param.
5561    MaybeParseMicrosoftAttributes(DS.getAttributes());
5562
5563    SourceLocation DSStart = Tok.getLocation();
5564
5565    // If the caller parsed attributes for the first argument, add them now.
5566    // Take them so that we only apply the attributes to the first parameter.
5567    // FIXME: If we can leave the attributes in the token stream somehow, we can
5568    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5569    // too much hassle.
5570    DS.takeAttributesFrom(FirstArgAttrs);
5571
5572    ParseDeclarationSpecifiers(DS);
5573
5574
5575    // Parse the declarator.  This is "PrototypeContext" or
5576    // "LambdaExprParameterContext", because we must accept either
5577    // 'declarator' or 'abstract-declarator' here.
5578    Declarator ParmDeclarator(DS,
5579              D.getContext() == Declarator::LambdaExprContext ?
5580                                  Declarator::LambdaExprParameterContext :
5581                                                Declarator::PrototypeContext);
5582    ParseDeclarator(ParmDeclarator);
5583
5584    // Parse GNU attributes, if present.
5585    MaybeParseGNUAttributes(ParmDeclarator);
5586
5587    // Remember this parsed parameter in ParamInfo.
5588    IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5589
5590    // DefArgToks is used when the parsing of default arguments needs
5591    // to be delayed.
5592    CachedTokens *DefArgToks = nullptr;
5593
5594    // If no parameter was specified, verify that *something* was specified,
5595    // otherwise we have a missing type and identifier.
5596    if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5597        ParmDeclarator.getNumTypeObjects() == 0) {
5598      // Completely missing, emit error.
5599      Diag(DSStart, diag::err_missing_param);
5600    } else {
5601      // Otherwise, we have something.  Add it and let semantic analysis try
5602      // to grok it and add the result to the ParamInfo we are building.
5603
5604      // Last chance to recover from a misplaced ellipsis in an attempted
5605      // parameter pack declaration.
5606      if (Tok.is(tok::ellipsis) &&
5607          (NextToken().isNot(tok::r_paren) ||
5608           (!ParmDeclarator.getEllipsisLoc().isValid() &&
5609            !Actions.isUnexpandedParameterPackPermitted())) &&
5610          Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5611        DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5612
5613      // Inform the actions module about the parameter declarator, so it gets
5614      // added to the current scope.
5615      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5616      // Parse the default argument, if any. We parse the default
5617      // arguments in all dialects; the semantic analysis in
5618      // ActOnParamDefaultArgument will reject the default argument in
5619      // C.
5620      if (Tok.is(tok::equal)) {
5621        SourceLocation EqualLoc = Tok.getLocation();
5622
5623        // Parse the default argument
5624        if (D.getContext() == Declarator::MemberContext) {
5625          // If we're inside a class definition, cache the tokens
5626          // corresponding to the default argument. We'll actually parse
5627          // them when we see the end of the class definition.
5628          // FIXME: Can we use a smart pointer for Toks?
5629          DefArgToks = new CachedTokens;
5630
5631          SourceLocation ArgStartLoc = NextToken().getLocation();
5632          if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5633            delete DefArgToks;
5634            DefArgToks = nullptr;
5635            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5636          } else {
5637            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5638                                                      ArgStartLoc);
5639          }
5640        } else {
5641          // Consume the '='.
5642          ConsumeToken();
5643
5644          // The argument isn't actually potentially evaluated unless it is
5645          // used.
5646          EnterExpressionEvaluationContext Eval(Actions,
5647                                              Sema::PotentiallyEvaluatedIfUsed,
5648                                                Param);
5649
5650          ExprResult DefArgResult;
5651          if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5652            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5653            DefArgResult = ParseBraceInitializer();
5654          } else
5655            DefArgResult = ParseAssignmentExpression();
5656          DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5657          if (DefArgResult.isInvalid()) {
5658            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5659            SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5660          } else {
5661            // Inform the actions module about the default argument
5662            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5663                                              DefArgResult.get());
5664          }
5665        }
5666      }
5667
5668      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5669                                          ParmDeclarator.getIdentifierLoc(),
5670                                          Param, DefArgToks));
5671    }
5672
5673    if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
5674      if (!getLangOpts().CPlusPlus) {
5675        // We have ellipsis without a preceding ',', which is ill-formed
5676        // in C. Complain and provide the fix.
5677        Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5678            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5679      } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
5680                 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
5681        // It looks like this was supposed to be a parameter pack. Warn and
5682        // point out where the ellipsis should have gone.
5683        SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
5684        Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
5685          << ParmEllipsis.isValid() << ParmEllipsis;
5686        if (ParmEllipsis.isValid()) {
5687          Diag(ParmEllipsis,
5688               diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
5689        } else {
5690          Diag(ParmDeclarator.getIdentifierLoc(),
5691               diag::note_misplaced_ellipsis_vararg_add_ellipsis)
5692            << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
5693                                          "...")
5694            << !ParmDeclarator.hasName();
5695        }
5696        Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
5697          << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5698      }
5699
5700      // We can't have any more parameters after an ellipsis.
5701      break;
5702    }
5703
5704    // If the next token is a comma, consume it and keep reading arguments.
5705  } while (TryConsumeToken(tok::comma));
5706}
5707
5708/// [C90]   direct-declarator '[' constant-expression[opt] ']'
5709/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5710/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5711/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5712/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5713/// [C++11] direct-declarator '[' constant-expression[opt] ']'
5714///                           attribute-specifier-seq[opt]
5715void Parser::ParseBracketDeclarator(Declarator &D) {
5716  if (CheckProhibitedCXX11Attribute())
5717    return;
5718
5719  BalancedDelimiterTracker T(*this, tok::l_square);
5720  T.consumeOpen();
5721
5722  // C array syntax has many features, but by-far the most common is [] and [4].
5723  // This code does a fast path to handle some of the most obvious cases.
5724  if (Tok.getKind() == tok::r_square) {
5725    T.consumeClose();
5726    ParsedAttributes attrs(AttrFactory);
5727    MaybeParseCXX11Attributes(attrs);
5728
5729    // Remember that we parsed the empty array type.
5730    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5731                                            T.getOpenLocation(),
5732                                            T.getCloseLocation()),
5733                  attrs, T.getCloseLocation());
5734    return;
5735  } else if (Tok.getKind() == tok::numeric_constant &&
5736             GetLookAheadToken(1).is(tok::r_square)) {
5737    // [4] is very common.  Parse the numeric constant expression.
5738    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5739    ConsumeToken();
5740
5741    T.consumeClose();
5742    ParsedAttributes attrs(AttrFactory);
5743    MaybeParseCXX11Attributes(attrs);
5744
5745    // Remember that we parsed a array type, and remember its features.
5746    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5747                                            ExprRes.get(),
5748                                            T.getOpenLocation(),
5749                                            T.getCloseLocation()),
5750                  attrs, T.getCloseLocation());
5751    return;
5752  }
5753
5754  // If valid, this location is the position where we read the 'static' keyword.
5755  SourceLocation StaticLoc;
5756  TryConsumeToken(tok::kw_static, StaticLoc);
5757
5758  // If there is a type-qualifier-list, read it now.
5759  // Type qualifiers in an array subscript are a C99 feature.
5760  DeclSpec DS(AttrFactory);
5761  ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
5762
5763  // If we haven't already read 'static', check to see if there is one after the
5764  // type-qualifier-list.
5765  if (!StaticLoc.isValid())
5766    TryConsumeToken(tok::kw_static, StaticLoc);
5767
5768  // Handle "direct-declarator [ type-qual-list[opt] * ]".
5769  bool isStar = false;
5770  ExprResult NumElements;
5771
5772  // Handle the case where we have '[*]' as the array size.  However, a leading
5773  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
5774  // the token after the star is a ']'.  Since stars in arrays are
5775  // infrequent, use of lookahead is not costly here.
5776  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5777    ConsumeToken();  // Eat the '*'.
5778
5779    if (StaticLoc.isValid()) {
5780      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5781      StaticLoc = SourceLocation();  // Drop the static.
5782    }
5783    isStar = true;
5784  } else if (Tok.isNot(tok::r_square)) {
5785    // Note, in C89, this production uses the constant-expr production instead
5786    // of assignment-expr.  The only difference is that assignment-expr allows
5787    // things like '=' and '*='.  Sema rejects these in C89 mode because they
5788    // are not i-c-e's, so we don't need to distinguish between the two here.
5789
5790    // Parse the constant-expression or assignment-expression now (depending
5791    // on dialect).
5792    if (getLangOpts().CPlusPlus) {
5793      NumElements = ParseConstantExpression();
5794    } else {
5795      EnterExpressionEvaluationContext Unevaluated(Actions,
5796                                                   Sema::ConstantEvaluated);
5797      NumElements =
5798          Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
5799    }
5800  } else {
5801    if (StaticLoc.isValid()) {
5802      Diag(StaticLoc, diag::err_unspecified_size_with_static);
5803      StaticLoc = SourceLocation();  // Drop the static.
5804    }
5805  }
5806
5807  // If there was an error parsing the assignment-expression, recover.
5808  if (NumElements.isInvalid()) {
5809    D.setInvalidType(true);
5810    // If the expression was invalid, skip it.
5811    SkipUntil(tok::r_square, StopAtSemi);
5812    return;
5813  }
5814
5815  T.consumeClose();
5816
5817  ParsedAttributes attrs(AttrFactory);
5818  MaybeParseCXX11Attributes(attrs);
5819
5820  // Remember that we parsed a array type, and remember its features.
5821  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5822                                          StaticLoc.isValid(), isStar,
5823                                          NumElements.get(),
5824                                          T.getOpenLocation(),
5825                                          T.getCloseLocation()),
5826                attrs, T.getCloseLocation());
5827}
5828
5829/// Diagnose brackets before an identifier.
5830void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5831  assert(Tok.is(tok::l_square) && "Missing opening bracket");
5832  assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5833
5834  SourceLocation StartBracketLoc = Tok.getLocation();
5835  Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5836
5837  while (Tok.is(tok::l_square)) {
5838    ParseBracketDeclarator(TempDeclarator);
5839  }
5840
5841  // Stuff the location of the start of the brackets into the Declarator.
5842  // The diagnostics from ParseDirectDeclarator will make more sense if
5843  // they use this location instead.
5844  if (Tok.is(tok::semi))
5845    D.getName().EndLocation = StartBracketLoc;
5846
5847  SourceLocation SuggestParenLoc = Tok.getLocation();
5848
5849  // Now that the brackets are removed, try parsing the declarator again.
5850  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5851
5852  // Something went wrong parsing the brackets, in which case,
5853  // ParseBracketDeclarator has emitted an error, and we don't need to emit
5854  // one here.
5855  if (TempDeclarator.getNumTypeObjects() == 0)
5856    return;
5857
5858  // Determine if parens will need to be suggested in the diagnostic.
5859  bool NeedParens = false;
5860  if (D.getNumTypeObjects() != 0) {
5861    switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5862    case DeclaratorChunk::Pointer:
5863    case DeclaratorChunk::Reference:
5864    case DeclaratorChunk::BlockPointer:
5865    case DeclaratorChunk::MemberPointer:
5866      NeedParens = true;
5867      break;
5868    case DeclaratorChunk::Array:
5869    case DeclaratorChunk::Function:
5870    case DeclaratorChunk::Paren:
5871      break;
5872    }
5873  }
5874
5875  if (NeedParens) {
5876    // Create a DeclaratorChunk for the inserted parens.
5877    ParsedAttributes attrs(AttrFactory);
5878    SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5879    D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5880                  SourceLocation());
5881  }
5882
5883  // Adding back the bracket info to the end of the Declarator.
5884  for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5885    const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5886    ParsedAttributes attrs(AttrFactory);
5887    attrs.set(Chunk.Common.AttrList);
5888    D.AddTypeInfo(Chunk, attrs, SourceLocation());
5889  }
5890
5891  // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5892  // If parentheses are required, always suggest them.
5893  if (!D.getIdentifier() && !NeedParens)
5894    return;
5895
5896  SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5897
5898  // Generate the move bracket error message.
5899  SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5900  SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5901
5902  if (NeedParens) {
5903    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5904        << getLangOpts().CPlusPlus
5905        << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5906        << FixItHint::CreateInsertion(EndLoc, ")")
5907        << FixItHint::CreateInsertionFromRange(
5908               EndLoc, CharSourceRange(BracketRange, true))
5909        << FixItHint::CreateRemoval(BracketRange);
5910  } else {
5911    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5912        << getLangOpts().CPlusPlus
5913        << FixItHint::CreateInsertionFromRange(
5914               EndLoc, CharSourceRange(BracketRange, true))
5915        << FixItHint::CreateRemoval(BracketRange);
5916  }
5917}
5918
5919/// [GNU]   typeof-specifier:
5920///           typeof ( expressions )
5921///           typeof ( type-name )
5922/// [GNU/C++] typeof unary-expression
5923///
5924void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5925  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5926  Token OpTok = Tok;
5927  SourceLocation StartLoc = ConsumeToken();
5928
5929  const bool hasParens = Tok.is(tok::l_paren);
5930
5931  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5932                                               Sema::ReuseLambdaContextDecl);
5933
5934  bool isCastExpr;
5935  ParsedType CastTy;
5936  SourceRange CastRange;
5937  ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
5938      ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
5939  if (hasParens)
5940    DS.setTypeofParensRange(CastRange);
5941
5942  if (CastRange.getEnd().isInvalid())
5943    // FIXME: Not accurate, the range gets one token more than it should.
5944    DS.SetRangeEnd(Tok.getLocation());
5945  else
5946    DS.SetRangeEnd(CastRange.getEnd());
5947
5948  if (isCastExpr) {
5949    if (!CastTy) {
5950      DS.SetTypeSpecError();
5951      return;
5952    }
5953
5954    const char *PrevSpec = nullptr;
5955    unsigned DiagID;
5956    // Check for duplicate type specifiers (e.g. "int typeof(int)").
5957    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5958                           DiagID, CastTy,
5959                           Actions.getASTContext().getPrintingPolicy()))
5960      Diag(StartLoc, DiagID) << PrevSpec;
5961    return;
5962  }
5963
5964  // If we get here, the operand to the typeof was an expresion.
5965  if (Operand.isInvalid()) {
5966    DS.SetTypeSpecError();
5967    return;
5968  }
5969
5970  // We might need to transform the operand if it is potentially evaluated.
5971  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
5972  if (Operand.isInvalid()) {
5973    DS.SetTypeSpecError();
5974    return;
5975  }
5976
5977  const char *PrevSpec = nullptr;
5978  unsigned DiagID;
5979  // Check for duplicate type specifiers (e.g. "int typeof(int)").
5980  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
5981                         DiagID, Operand.get(),
5982                         Actions.getASTContext().getPrintingPolicy()))
5983    Diag(StartLoc, DiagID) << PrevSpec;
5984}
5985
5986/// [C11]   atomic-specifier:
5987///           _Atomic ( type-name )
5988///
5989void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
5990  assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
5991         "Not an atomic specifier");
5992
5993  SourceLocation StartLoc = ConsumeToken();
5994  BalancedDelimiterTracker T(*this, tok::l_paren);
5995  if (T.consumeOpen())
5996    return;
5997
5998  TypeResult Result = ParseTypeName();
5999  if (Result.isInvalid()) {
6000    SkipUntil(tok::r_paren, StopAtSemi);
6001    return;
6002  }
6003
6004  // Match the ')'
6005  T.consumeClose();
6006
6007  if (T.getCloseLocation().isInvalid())
6008    return;
6009
6010  DS.setTypeofParensRange(T.getRange());
6011  DS.SetRangeEnd(T.getCloseLocation());
6012
6013  const char *PrevSpec = nullptr;
6014  unsigned DiagID;
6015  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6016                         DiagID, Result.get(),
6017                         Actions.getASTContext().getPrintingPolicy()))
6018    Diag(StartLoc, DiagID) << PrevSpec;
6019}
6020
6021
6022/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6023/// from TryAltiVecVectorToken.
6024bool Parser::TryAltiVecVectorTokenOutOfLine() {
6025  Token Next = NextToken();
6026  switch (Next.getKind()) {
6027  default: return false;
6028  case tok::kw_short:
6029  case tok::kw_long:
6030  case tok::kw_signed:
6031  case tok::kw_unsigned:
6032  case tok::kw_void:
6033  case tok::kw_char:
6034  case tok::kw_int:
6035  case tok::kw_float:
6036  case tok::kw_double:
6037  case tok::kw_bool:
6038  case tok::kw___bool:
6039  case tok::kw___pixel:
6040    Tok.setKind(tok::kw___vector);
6041    return true;
6042  case tok::identifier:
6043    if (Next.getIdentifierInfo() == Ident_pixel) {
6044      Tok.setKind(tok::kw___vector);
6045      return true;
6046    }
6047    if (Next.getIdentifierInfo() == Ident_bool) {
6048      Tok.setKind(tok::kw___vector);
6049      return true;
6050    }
6051    return false;
6052  }
6053}
6054
6055bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6056                                      const char *&PrevSpec, unsigned &DiagID,
6057                                      bool &isInvalid) {
6058  const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6059  if (Tok.getIdentifierInfo() == Ident_vector) {
6060    Token Next = NextToken();
6061    switch (Next.getKind()) {
6062    case tok::kw_short:
6063    case tok::kw_long:
6064    case tok::kw_signed:
6065    case tok::kw_unsigned:
6066    case tok::kw_void:
6067    case tok::kw_char:
6068    case tok::kw_int:
6069    case tok::kw_float:
6070    case tok::kw_double:
6071    case tok::kw_bool:
6072    case tok::kw___bool:
6073    case tok::kw___pixel:
6074      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6075      return true;
6076    case tok::identifier:
6077      if (Next.getIdentifierInfo() == Ident_pixel) {
6078        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6079        return true;
6080      }
6081      if (Next.getIdentifierInfo() == Ident_bool) {
6082        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6083        return true;
6084      }
6085      break;
6086    default:
6087      break;
6088    }
6089  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6090             DS.isTypeAltiVecVector()) {
6091    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6092    return true;
6093  } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6094             DS.isTypeAltiVecVector()) {
6095    isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6096    return true;
6097  }
6098  return false;
6099}
6100