ParseDecl.cpp revision 219077
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/PrettyDeclStackTrace.h"
19#include "RAIIObjectsForParser.h"
20#include "llvm/ADT/SmallSet.h"
21using namespace clang;
22
23//===----------------------------------------------------------------------===//
24// C99 6.7: Declarations.
25//===----------------------------------------------------------------------===//
26
27/// ParseTypeName
28///       type-name: [C99 6.7.6]
29///         specifier-qualifier-list abstract-declarator[opt]
30///
31/// Called type-id in C++.
32TypeResult Parser::ParseTypeName(SourceRange *Range,
33                                 Declarator::TheContext Context) {
34  // Parse the common declaration-specifiers piece.
35  DeclSpec DS;
36  ParseSpecifierQualifierList(DS);
37
38  // Parse the abstract-declarator, if present.
39  Declarator DeclaratorInfo(DS, Context);
40  ParseDeclarator(DeclaratorInfo);
41  if (Range)
42    *Range = DeclaratorInfo.getSourceRange();
43
44  if (DeclaratorInfo.isInvalidType())
45    return true;
46
47  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
48}
49
50/// ParseGNUAttributes - Parse a non-empty attributes list.
51///
52/// [GNU] attributes:
53///         attribute
54///         attributes attribute
55///
56/// [GNU]  attribute:
57///          '__attribute__' '(' '(' attribute-list ')' ')'
58///
59/// [GNU]  attribute-list:
60///          attrib
61///          attribute_list ',' attrib
62///
63/// [GNU]  attrib:
64///          empty
65///          attrib-name
66///          attrib-name '(' identifier ')'
67///          attrib-name '(' identifier ',' nonempty-expr-list ')'
68///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
69///
70/// [GNU]  attrib-name:
71///          identifier
72///          typespec
73///          typequal
74///          storageclass
75///
76/// FIXME: The GCC grammar/code for this construct implies we need two
77/// token lookahead. Comment from gcc: "If they start with an identifier
78/// which is followed by a comma or close parenthesis, then the arguments
79/// start with that identifier; otherwise they are an expression list."
80///
81/// At the moment, I am not doing 2 token lookahead. I am also unaware of
82/// any attributes that don't work (based on my limited testing). Most
83/// attributes are very simple in practice. Until we find a bug, I don't see
84/// a pressing need to implement the 2 token lookahead.
85
86void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
87                                SourceLocation *endLoc) {
88  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
89
90  while (Tok.is(tok::kw___attribute)) {
91    ConsumeToken();
92    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
93                         "attribute")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return;
96    }
97    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
98      SkipUntil(tok::r_paren, true); // skip until ) or ;
99      return;
100    }
101    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
102    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
103           Tok.is(tok::comma)) {
104
105      if (Tok.is(tok::comma)) {
106        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
107        ConsumeToken();
108        continue;
109      }
110      // we have an identifier or declaration specifier (const, int, etc.)
111      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
112      SourceLocation AttrNameLoc = ConsumeToken();
113
114      // check if we have a "parameterized" attribute
115      if (Tok.is(tok::l_paren)) {
116        ConsumeParen(); // ignore the left paren loc for now
117
118        if (Tok.is(tok::identifier)) {
119          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
120          SourceLocation ParmLoc = ConsumeToken();
121
122          if (Tok.is(tok::r_paren)) {
123            // __attribute__(( mode(byte) ))
124            ConsumeParen(); // ignore the right paren loc for now
125            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
126                                         ParmName, ParmLoc, 0, 0));
127          } else if (Tok.is(tok::comma)) {
128            ConsumeToken();
129            // __attribute__(( format(printf, 1, 2) ))
130            ExprVector ArgExprs(Actions);
131            bool ArgExprsOk = true;
132
133            // now parse the non-empty comma separated list of expressions
134            while (1) {
135              ExprResult ArgExpr(ParseAssignmentExpression());
136              if (ArgExpr.isInvalid()) {
137                ArgExprsOk = false;
138                SkipUntil(tok::r_paren);
139                break;
140              } else {
141                ArgExprs.push_back(ArgExpr.release());
142              }
143              if (Tok.isNot(tok::comma))
144                break;
145              ConsumeToken(); // Eat the comma, move to the next argument
146            }
147            if (ArgExprsOk && Tok.is(tok::r_paren)) {
148              ConsumeParen(); // ignore the right paren loc for now
149              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
150                                           AttrNameLoc, ParmName, ParmLoc,
151                                           ArgExprs.take(), ArgExprs.size()));
152            }
153          }
154        } else { // not an identifier
155          switch (Tok.getKind()) {
156          case tok::r_paren:
157          // parse a possibly empty comma separated list of expressions
158            // __attribute__(( nonnull() ))
159            ConsumeParen(); // ignore the right paren loc for now
160            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
161                                         0, SourceLocation(), 0, 0));
162            break;
163          case tok::kw_char:
164          case tok::kw_wchar_t:
165          case tok::kw_char16_t:
166          case tok::kw_char32_t:
167          case tok::kw_bool:
168          case tok::kw_short:
169          case tok::kw_int:
170          case tok::kw_long:
171          case tok::kw_signed:
172          case tok::kw_unsigned:
173          case tok::kw_float:
174          case tok::kw_double:
175          case tok::kw_void:
176          case tok::kw_typeof: {
177            AttributeList *attr
178                     = AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
179                                          0, SourceLocation(), 0, 0);
180            attrs.add(attr);
181            if (attr->getKind() == AttributeList::AT_IBOutletCollection)
182              Diag(Tok, diag::err_iboutletcollection_builtintype);
183            // If it's a builtin type name, eat it and expect a rparen
184            // __attribute__(( vec_type_hint(char) ))
185            ConsumeToken();
186            if (Tok.is(tok::r_paren))
187              ConsumeParen();
188            break;
189          }
190          default:
191            // __attribute__(( aligned(16) ))
192            ExprVector ArgExprs(Actions);
193            bool ArgExprsOk = true;
194
195            // now parse the list of expressions
196            while (1) {
197              ExprResult ArgExpr(ParseAssignmentExpression());
198              if (ArgExpr.isInvalid()) {
199                ArgExprsOk = false;
200                SkipUntil(tok::r_paren);
201                break;
202              } else {
203                ArgExprs.push_back(ArgExpr.release());
204              }
205              if (Tok.isNot(tok::comma))
206                break;
207              ConsumeToken(); // Eat the comma, move to the next argument
208            }
209            // Match the ')'.
210            if (ArgExprsOk && Tok.is(tok::r_paren)) {
211              ConsumeParen(); // ignore the right paren loc for now
212              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
213                                           AttrNameLoc, 0, SourceLocation(),
214                                           ArgExprs.take(), ArgExprs.size()));
215            }
216            break;
217          }
218        }
219      } else {
220        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
221                                     0, SourceLocation(), 0, 0));
222      }
223    }
224    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
225      SkipUntil(tok::r_paren, false);
226    SourceLocation Loc = Tok.getLocation();
227    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
228      SkipUntil(tok::r_paren, false);
229    }
230    if (endLoc)
231      *endLoc = Loc;
232  }
233}
234
235/// ParseMicrosoftDeclSpec - Parse an __declspec construct
236///
237/// [MS] decl-specifier:
238///             __declspec ( extended-decl-modifier-seq )
239///
240/// [MS] extended-decl-modifier-seq:
241///             extended-decl-modifier[opt]
242///             extended-decl-modifier extended-decl-modifier-seq
243
244void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
245  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
246
247  ConsumeToken();
248  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
249                       "declspec")) {
250    SkipUntil(tok::r_paren, true); // skip until ) or ;
251    return;
252  }
253  while (Tok.getIdentifierInfo()) {
254    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
255    SourceLocation AttrNameLoc = ConsumeToken();
256    if (Tok.is(tok::l_paren)) {
257      ConsumeParen();
258      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
259      // correctly.
260      ExprResult ArgExpr(ParseAssignmentExpression());
261      if (!ArgExpr.isInvalid()) {
262        Expr *ExprList = ArgExpr.take();
263        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
264                                     SourceLocation(), &ExprList, 1, true));
265      }
266      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
267        SkipUntil(tok::r_paren, false);
268    } else {
269      attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
270                                   0, SourceLocation(), 0, 0, true));
271    }
272  }
273  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
274    SkipUntil(tok::r_paren, false);
275  return;
276}
277
278void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
279  // Treat these like attributes
280  // FIXME: Allow Sema to distinguish between these and real attributes!
281  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
282         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
283         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
284    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
285    SourceLocation AttrNameLoc = ConsumeToken();
286    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
287      // FIXME: Support these properly!
288      continue;
289    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
290                                 SourceLocation(), 0, 0, true));
291  }
292}
293
294void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
295  // Treat these like attributes
296  while (Tok.is(tok::kw___pascal)) {
297    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
298    SourceLocation AttrNameLoc = ConsumeToken();
299    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
300                                 SourceLocation(), 0, 0, true));
301  }
302}
303
304void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
305  // Treat these like attributes
306  while (Tok.is(tok::kw___kernel)) {
307    SourceLocation AttrNameLoc = ConsumeToken();
308    attrs.add(AttrFactory.Create(PP.getIdentifierInfo("opencl_kernel_function"),
309                                 AttrNameLoc, 0, AttrNameLoc, 0,
310                                 SourceLocation(), 0, 0, false));
311  }
312}
313
314void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
315  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
316    << attrs.Range;
317}
318
319/// ParseDeclaration - Parse a full 'declaration', which consists of
320/// declaration-specifiers, some number of declarators, and a semicolon.
321/// 'Context' should be a Declarator::TheContext value.  This returns the
322/// location of the semicolon in DeclEnd.
323///
324///       declaration: [C99 6.7]
325///         block-declaration ->
326///           simple-declaration
327///           others                   [FIXME]
328/// [C++]   template-declaration
329/// [C++]   namespace-definition
330/// [C++]   using-directive
331/// [C++]   using-declaration
332/// [C++0x] static_assert-declaration
333///         others... [FIXME]
334///
335Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
336                                                unsigned Context,
337                                                SourceLocation &DeclEnd,
338                                          ParsedAttributesWithRange &attrs) {
339  ParenBraceBracketBalancer BalancerRAIIObj(*this);
340
341  Decl *SingleDecl = 0;
342  switch (Tok.getKind()) {
343  case tok::kw_template:
344  case tok::kw_export:
345    ProhibitAttributes(attrs);
346    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
347    break;
348  case tok::kw_inline:
349    // Could be the start of an inline namespace. Allowed as an ext in C++03.
350    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
351      ProhibitAttributes(attrs);
352      SourceLocation InlineLoc = ConsumeToken();
353      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
354      break;
355    }
356    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
357                                  true);
358  case tok::kw_namespace:
359    ProhibitAttributes(attrs);
360    SingleDecl = ParseNamespace(Context, DeclEnd);
361    break;
362  case tok::kw_using:
363    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
364                                                  DeclEnd, attrs);
365    break;
366  case tok::kw_static_assert:
367    ProhibitAttributes(attrs);
368    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
369    break;
370  default:
371    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
372  }
373
374  // This routine returns a DeclGroup, if the thing we parsed only contains a
375  // single decl, convert it now.
376  return Actions.ConvertDeclToDeclGroup(SingleDecl);
377}
378
379///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
380///         declaration-specifiers init-declarator-list[opt] ';'
381///[C90/C++]init-declarator-list ';'                             [TODO]
382/// [OMP]   threadprivate-directive                              [TODO]
383///
384/// If RequireSemi is false, this does not check for a ';' at the end of the
385/// declaration.  If it is true, it checks for and eats it.
386Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
387                                                      unsigned Context,
388                                                      SourceLocation &DeclEnd,
389                                                      ParsedAttributes &attrs,
390                                                      bool RequireSemi) {
391  // Parse the common declaration-specifiers piece.
392  ParsingDeclSpec DS(*this);
393  DS.takeAttributesFrom(attrs);
394  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
395                             getDeclSpecContextFromDeclaratorContext(Context));
396  StmtResult R = Actions.ActOnVlaStmt(DS);
397  if (R.isUsable())
398    Stmts.push_back(R.release());
399
400  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
401  // declaration-specifiers init-declarator-list[opt] ';'
402  if (Tok.is(tok::semi)) {
403    if (RequireSemi) ConsumeToken();
404    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
405                                                           DS);
406    DS.complete(TheDecl);
407    return Actions.ConvertDeclToDeclGroup(TheDecl);
408  }
409
410  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
411}
412
413/// ParseDeclGroup - Having concluded that this is either a function
414/// definition or a group of object declarations, actually parse the
415/// result.
416Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
417                                              unsigned Context,
418                                              bool AllowFunctionDefinitions,
419                                              SourceLocation *DeclEnd) {
420  // Parse the first declarator.
421  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
422  ParseDeclarator(D);
423
424  // Bail out if the first declarator didn't seem well-formed.
425  if (!D.hasName() && !D.mayOmitIdentifier()) {
426    // Skip until ; or }.
427    SkipUntil(tok::r_brace, true, true);
428    if (Tok.is(tok::semi))
429      ConsumeToken();
430    return DeclGroupPtrTy();
431  }
432
433  // Check to see if we have a function *definition* which must have a body.
434  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
435      // Look at the next token to make sure that this isn't a function
436      // declaration.  We have to check this because __attribute__ might be the
437      // start of a function definition in GCC-extended K&R C.
438      !isDeclarationAfterDeclarator()) {
439
440    if (isStartOfFunctionDefinition(D)) {
441      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
442        Diag(Tok, diag::err_function_declared_typedef);
443
444        // Recover by treating the 'typedef' as spurious.
445        DS.ClearStorageClassSpecs();
446      }
447
448      Decl *TheDecl = ParseFunctionDefinition(D);
449      return Actions.ConvertDeclToDeclGroup(TheDecl);
450    }
451
452    if (isDeclarationSpecifier()) {
453      // If there is an invalid declaration specifier right after the function
454      // prototype, then we must be in a missing semicolon case where this isn't
455      // actually a body.  Just fall through into the code that handles it as a
456      // prototype, and let the top-level code handle the erroneous declspec
457      // where it would otherwise expect a comma or semicolon.
458    } else {
459      Diag(Tok, diag::err_expected_fn_body);
460      SkipUntil(tok::semi);
461      return DeclGroupPtrTy();
462    }
463  }
464
465  llvm::SmallVector<Decl *, 8> DeclsInGroup;
466  Decl *FirstDecl = ParseDeclarationAfterDeclarator(D);
467  D.complete(FirstDecl);
468  if (FirstDecl)
469    DeclsInGroup.push_back(FirstDecl);
470
471  // If we don't have a comma, it is either the end of the list (a ';') or an
472  // error, bail out.
473  while (Tok.is(tok::comma)) {
474    // Consume the comma.
475    ConsumeToken();
476
477    // Parse the next declarator.
478    D.clear();
479
480    // Accept attributes in an init-declarator.  In the first declarator in a
481    // declaration, these would be part of the declspec.  In subsequent
482    // declarators, they become part of the declarator itself, so that they
483    // don't apply to declarators after *this* one.  Examples:
484    //    short __attribute__((common)) var;    -> declspec
485    //    short var __attribute__((common));    -> declarator
486    //    short x, __attribute__((common)) var;    -> declarator
487    MaybeParseGNUAttributes(D);
488
489    ParseDeclarator(D);
490
491    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
492    D.complete(ThisDecl);
493    if (ThisDecl)
494      DeclsInGroup.push_back(ThisDecl);
495  }
496
497  if (DeclEnd)
498    *DeclEnd = Tok.getLocation();
499
500  if (Context != Declarator::ForContext &&
501      ExpectAndConsume(tok::semi,
502                       Context == Declarator::FileContext
503                         ? diag::err_invalid_token_after_toplevel_declarator
504                         : diag::err_expected_semi_declaration)) {
505    // Okay, there was no semicolon and one was expected.  If we see a
506    // declaration specifier, just assume it was missing and continue parsing.
507    // Otherwise things are very confused and we skip to recover.
508    if (!isDeclarationSpecifier()) {
509      SkipUntil(tok::r_brace, true, true);
510      if (Tok.is(tok::semi))
511        ConsumeToken();
512    }
513  }
514
515  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
516                                         DeclsInGroup.data(),
517                                         DeclsInGroup.size());
518}
519
520/// \brief Parse 'declaration' after parsing 'declaration-specifiers
521/// declarator'. This method parses the remainder of the declaration
522/// (including any attributes or initializer, among other things) and
523/// finalizes the declaration.
524///
525///       init-declarator: [C99 6.7]
526///         declarator
527///         declarator '=' initializer
528/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
529/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
530/// [C++]   declarator initializer[opt]
531///
532/// [C++] initializer:
533/// [C++]   '=' initializer-clause
534/// [C++]   '(' expression-list ')'
535/// [C++0x] '=' 'default'                                                [TODO]
536/// [C++0x] '=' 'delete'
537///
538/// According to the standard grammar, =default and =delete are function
539/// definitions, but that definitely doesn't fit with the parser here.
540///
541Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
542                                     const ParsedTemplateInfo &TemplateInfo) {
543  // If a simple-asm-expr is present, parse it.
544  if (Tok.is(tok::kw_asm)) {
545    SourceLocation Loc;
546    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
547    if (AsmLabel.isInvalid()) {
548      SkipUntil(tok::semi, true, true);
549      return 0;
550    }
551
552    D.setAsmLabel(AsmLabel.release());
553    D.SetRangeEnd(Loc);
554  }
555
556  MaybeParseGNUAttributes(D);
557
558  // Inform the current actions module that we just parsed this declarator.
559  Decl *ThisDecl = 0;
560  switch (TemplateInfo.Kind) {
561  case ParsedTemplateInfo::NonTemplate:
562    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
563    break;
564
565  case ParsedTemplateInfo::Template:
566  case ParsedTemplateInfo::ExplicitSpecialization:
567    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
568                             MultiTemplateParamsArg(Actions,
569                                          TemplateInfo.TemplateParams->data(),
570                                          TemplateInfo.TemplateParams->size()),
571                                               D);
572    break;
573
574  case ParsedTemplateInfo::ExplicitInstantiation: {
575    DeclResult ThisRes
576      = Actions.ActOnExplicitInstantiation(getCurScope(),
577                                           TemplateInfo.ExternLoc,
578                                           TemplateInfo.TemplateLoc,
579                                           D);
580    if (ThisRes.isInvalid()) {
581      SkipUntil(tok::semi, true, true);
582      return 0;
583    }
584
585    ThisDecl = ThisRes.get();
586    break;
587    }
588  }
589
590  bool TypeContainsAuto =
591    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
592
593  // Parse declarator '=' initializer.
594  if (isTokenEqualOrMistypedEqualEqual(
595                               diag::err_invalid_equalequal_after_declarator)) {
596    ConsumeToken();
597    if (Tok.is(tok::kw_delete)) {
598      SourceLocation DelLoc = ConsumeToken();
599
600      if (!getLang().CPlusPlus0x)
601        Diag(DelLoc, diag::warn_deleted_function_accepted_as_extension);
602
603      Actions.SetDeclDeleted(ThisDecl, DelLoc);
604    } else {
605      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
606        EnterScope(0);
607        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
608      }
609
610      if (Tok.is(tok::code_completion)) {
611        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
612        ConsumeCodeCompletionToken();
613        SkipUntil(tok::comma, true, true);
614        return ThisDecl;
615      }
616
617      ExprResult Init(ParseInitializer());
618
619      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
620        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
621        ExitScope();
622      }
623
624      if (Init.isInvalid()) {
625        SkipUntil(tok::comma, true, true);
626        Actions.ActOnInitializerError(ThisDecl);
627      } else
628        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
629                                     /*DirectInit=*/false, TypeContainsAuto);
630    }
631  } else if (Tok.is(tok::l_paren)) {
632    // Parse C++ direct initializer: '(' expression-list ')'
633    SourceLocation LParenLoc = ConsumeParen();
634    ExprVector Exprs(Actions);
635    CommaLocsTy CommaLocs;
636
637    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
638      EnterScope(0);
639      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
640    }
641
642    if (ParseExpressionList(Exprs, CommaLocs)) {
643      SkipUntil(tok::r_paren);
644
645      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
646        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
647        ExitScope();
648      }
649    } else {
650      // Match the ')'.
651      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
652
653      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
654             "Unexpected number of commas!");
655
656      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
657        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
658        ExitScope();
659      }
660
661      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
662                                            move_arg(Exprs),
663                                            RParenLoc,
664                                            TypeContainsAuto);
665    }
666  } else {
667    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
668  }
669
670  Actions.FinalizeDeclaration(ThisDecl);
671
672  return ThisDecl;
673}
674
675/// ParseSpecifierQualifierList
676///        specifier-qualifier-list:
677///          type-specifier specifier-qualifier-list[opt]
678///          type-qualifier specifier-qualifier-list[opt]
679/// [GNU]    attributes     specifier-qualifier-list[opt]
680///
681void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
682  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
683  /// parse declaration-specifiers and complain about extra stuff.
684  ParseDeclarationSpecifiers(DS);
685
686  // Validate declspec for type-name.
687  unsigned Specs = DS.getParsedSpecifiers();
688  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
689      !DS.hasAttributes())
690    Diag(Tok, diag::err_typename_requires_specqual);
691
692  // Issue diagnostic and remove storage class if present.
693  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
694    if (DS.getStorageClassSpecLoc().isValid())
695      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
696    else
697      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
698    DS.ClearStorageClassSpecs();
699  }
700
701  // Issue diagnostic and remove function specfier if present.
702  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
703    if (DS.isInlineSpecified())
704      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
705    if (DS.isVirtualSpecified())
706      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
707    if (DS.isExplicitSpecified())
708      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
709    DS.ClearFunctionSpecs();
710  }
711}
712
713/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
714/// specified token is valid after the identifier in a declarator which
715/// immediately follows the declspec.  For example, these things are valid:
716///
717///      int x   [             4];         // direct-declarator
718///      int x   (             int y);     // direct-declarator
719///  int(int x   )                         // direct-declarator
720///      int x   ;                         // simple-declaration
721///      int x   =             17;         // init-declarator-list
722///      int x   ,             y;          // init-declarator-list
723///      int x   __asm__       ("foo");    // init-declarator-list
724///      int x   :             4;          // struct-declarator
725///      int x   {             5};         // C++'0x unified initializers
726///
727/// This is not, because 'x' does not immediately follow the declspec (though
728/// ')' happens to be valid anyway).
729///    int (x)
730///
731static bool isValidAfterIdentifierInDeclarator(const Token &T) {
732  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
733         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
734         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
735}
736
737
738/// ParseImplicitInt - This method is called when we have an non-typename
739/// identifier in a declspec (which normally terminates the decl spec) when
740/// the declspec has no type specifier.  In this case, the declspec is either
741/// malformed or is "implicit int" (in K&R and C89).
742///
743/// This method handles diagnosing this prettily and returns false if the
744/// declspec is done being processed.  If it recovers and thinks there may be
745/// other pieces of declspec after it, it returns true.
746///
747bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
748                              const ParsedTemplateInfo &TemplateInfo,
749                              AccessSpecifier AS) {
750  assert(Tok.is(tok::identifier) && "should have identifier");
751
752  SourceLocation Loc = Tok.getLocation();
753  // If we see an identifier that is not a type name, we normally would
754  // parse it as the identifer being declared.  However, when a typename
755  // is typo'd or the definition is not included, this will incorrectly
756  // parse the typename as the identifier name and fall over misparsing
757  // later parts of the diagnostic.
758  //
759  // As such, we try to do some look-ahead in cases where this would
760  // otherwise be an "implicit-int" case to see if this is invalid.  For
761  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
762  // an identifier with implicit int, we'd get a parse error because the
763  // next token is obviously invalid for a type.  Parse these as a case
764  // with an invalid type specifier.
765  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
766
767  // Since we know that this either implicit int (which is rare) or an
768  // error, we'd do lookahead to try to do better recovery.
769  if (isValidAfterIdentifierInDeclarator(NextToken())) {
770    // If this token is valid for implicit int, e.g. "static x = 4", then
771    // we just avoid eating the identifier, so it will be parsed as the
772    // identifier in the declarator.
773    return false;
774  }
775
776  // Otherwise, if we don't consume this token, we are going to emit an
777  // error anyway.  Try to recover from various common problems.  Check
778  // to see if this was a reference to a tag name without a tag specified.
779  // This is a common problem in C (saying 'foo' instead of 'struct foo').
780  //
781  // C++ doesn't need this, and isTagName doesn't take SS.
782  if (SS == 0) {
783    const char *TagName = 0;
784    tok::TokenKind TagKind = tok::unknown;
785
786    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
787      default: break;
788      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
789      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
790      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
791      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
792    }
793
794    if (TagName) {
795      Diag(Loc, diag::err_use_of_tag_name_without_tag)
796        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
797        << FixItHint::CreateInsertion(Tok.getLocation(),TagName);
798
799      // Parse this as a tag as if the missing tag were present.
800      if (TagKind == tok::kw_enum)
801        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
802      else
803        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
804      return true;
805    }
806  }
807
808  // This is almost certainly an invalid type name. Let the action emit a
809  // diagnostic and attempt to recover.
810  ParsedType T;
811  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
812                                      getCurScope(), SS, T)) {
813    // The action emitted a diagnostic, so we don't have to.
814    if (T) {
815      // The action has suggested that the type T could be used. Set that as
816      // the type in the declaration specifiers, consume the would-be type
817      // name token, and we're done.
818      const char *PrevSpec;
819      unsigned DiagID;
820      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
821      DS.SetRangeEnd(Tok.getLocation());
822      ConsumeToken();
823
824      // There may be other declaration specifiers after this.
825      return true;
826    }
827
828    // Fall through; the action had no suggestion for us.
829  } else {
830    // The action did not emit a diagnostic, so emit one now.
831    SourceRange R;
832    if (SS) R = SS->getRange();
833    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
834  }
835
836  // Mark this as an error.
837  const char *PrevSpec;
838  unsigned DiagID;
839  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
840  DS.SetRangeEnd(Tok.getLocation());
841  ConsumeToken();
842
843  // TODO: Could inject an invalid typedef decl in an enclosing scope to
844  // avoid rippling error messages on subsequent uses of the same type,
845  // could be useful if #include was forgotten.
846  return false;
847}
848
849/// \brief Determine the declaration specifier context from the declarator
850/// context.
851///
852/// \param Context the declarator context, which is one of the
853/// Declarator::TheContext enumerator values.
854Parser::DeclSpecContext
855Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
856  if (Context == Declarator::MemberContext)
857    return DSC_class;
858  if (Context == Declarator::FileContext)
859    return DSC_top_level;
860  return DSC_normal;
861}
862
863/// ParseDeclarationSpecifiers
864///       declaration-specifiers: [C99 6.7]
865///         storage-class-specifier declaration-specifiers[opt]
866///         type-specifier declaration-specifiers[opt]
867/// [C99]   function-specifier declaration-specifiers[opt]
868/// [GNU]   attributes declaration-specifiers[opt]
869///
870///       storage-class-specifier: [C99 6.7.1]
871///         'typedef'
872///         'extern'
873///         'static'
874///         'auto'
875///         'register'
876/// [C++]   'mutable'
877/// [GNU]   '__thread'
878///       function-specifier: [C99 6.7.4]
879/// [C99]   'inline'
880/// [C++]   'virtual'
881/// [C++]   'explicit'
882/// [OpenCL] '__kernel'
883///       'friend': [C++ dcl.friend]
884///       'constexpr': [C++0x dcl.constexpr]
885
886///
887void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
888                                        const ParsedTemplateInfo &TemplateInfo,
889                                        AccessSpecifier AS,
890                                        DeclSpecContext DSContext) {
891  DS.SetRangeStart(Tok.getLocation());
892  DS.SetRangeEnd(Tok.getLocation());
893  while (1) {
894    bool isInvalid = false;
895    const char *PrevSpec = 0;
896    unsigned DiagID = 0;
897
898    SourceLocation Loc = Tok.getLocation();
899
900    switch (Tok.getKind()) {
901    default:
902    DoneWithDeclSpec:
903      // If this is not a declaration specifier token, we're done reading decl
904      // specifiers.  First verify that DeclSpec's are consistent.
905      DS.Finish(Diags, PP);
906      return;
907
908    case tok::code_completion: {
909      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
910      if (DS.hasTypeSpecifier()) {
911        bool AllowNonIdentifiers
912          = (getCurScope()->getFlags() & (Scope::ControlScope |
913                                          Scope::BlockScope |
914                                          Scope::TemplateParamScope |
915                                          Scope::FunctionPrototypeScope |
916                                          Scope::AtCatchScope)) == 0;
917        bool AllowNestedNameSpecifiers
918          = DSContext == DSC_top_level ||
919            (DSContext == DSC_class && DS.isFriendSpecified());
920
921        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
922                                     AllowNonIdentifiers,
923                                     AllowNestedNameSpecifiers);
924        ConsumeCodeCompletionToken();
925        return;
926      }
927
928      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
929        CCC = Sema::PCC_LocalDeclarationSpecifiers;
930      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
931        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
932                                    : Sema::PCC_Template;
933      else if (DSContext == DSC_class)
934        CCC = Sema::PCC_Class;
935      else if (ObjCImpDecl)
936        CCC = Sema::PCC_ObjCImplementation;
937
938      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
939      ConsumeCodeCompletionToken();
940      return;
941    }
942
943    case tok::coloncolon: // ::foo::bar
944      // C++ scope specifier.  Annotate and loop, or bail out on error.
945      if (TryAnnotateCXXScopeToken(true)) {
946        if (!DS.hasTypeSpecifier())
947          DS.SetTypeSpecError();
948        goto DoneWithDeclSpec;
949      }
950      if (Tok.is(tok::coloncolon)) // ::new or ::delete
951        goto DoneWithDeclSpec;
952      continue;
953
954    case tok::annot_cxxscope: {
955      if (DS.hasTypeSpecifier())
956        goto DoneWithDeclSpec;
957
958      CXXScopeSpec SS;
959      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
960                                                   Tok.getAnnotationRange(),
961                                                   SS);
962
963      // We are looking for a qualified typename.
964      Token Next = NextToken();
965      if (Next.is(tok::annot_template_id) &&
966          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
967            ->Kind == TNK_Type_template) {
968        // We have a qualified template-id, e.g., N::A<int>
969
970        // C++ [class.qual]p2:
971        //   In a lookup in which the constructor is an acceptable lookup
972        //   result and the nested-name-specifier nominates a class C:
973        //
974        //     - if the name specified after the
975        //       nested-name-specifier, when looked up in C, is the
976        //       injected-class-name of C (Clause 9), or
977        //
978        //     - if the name specified after the nested-name-specifier
979        //       is the same as the identifier or the
980        //       simple-template-id's template-name in the last
981        //       component of the nested-name-specifier,
982        //
983        //   the name is instead considered to name the constructor of
984        //   class C.
985        //
986        // Thus, if the template-name is actually the constructor
987        // name, then the code is ill-formed; this interpretation is
988        // reinforced by the NAD status of core issue 635.
989        TemplateIdAnnotation *TemplateId
990          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
991        if ((DSContext == DSC_top_level ||
992             (DSContext == DSC_class && DS.isFriendSpecified())) &&
993            TemplateId->Name &&
994            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
995          if (isConstructorDeclarator()) {
996            // The user meant this to be an out-of-line constructor
997            // definition, but template arguments are not allowed
998            // there.  Just allow this as a constructor; we'll
999            // complain about it later.
1000            goto DoneWithDeclSpec;
1001          }
1002
1003          // The user meant this to name a type, but it actually names
1004          // a constructor with some extraneous template
1005          // arguments. Complain, then parse it as a type as the user
1006          // intended.
1007          Diag(TemplateId->TemplateNameLoc,
1008               diag::err_out_of_line_template_id_names_constructor)
1009            << TemplateId->Name;
1010        }
1011
1012        DS.getTypeSpecScope() = SS;
1013        ConsumeToken(); // The C++ scope.
1014        assert(Tok.is(tok::annot_template_id) &&
1015               "ParseOptionalCXXScopeSpecifier not working");
1016        AnnotateTemplateIdTokenAsType(&SS);
1017        continue;
1018      }
1019
1020      if (Next.is(tok::annot_typename)) {
1021        DS.getTypeSpecScope() = SS;
1022        ConsumeToken(); // The C++ scope.
1023        if (Tok.getAnnotationValue()) {
1024          ParsedType T = getTypeAnnotation(Tok);
1025          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1026                                         Tok.getAnnotationEndLoc(),
1027                                         PrevSpec, DiagID, T);
1028        }
1029        else
1030          DS.SetTypeSpecError();
1031        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1032        ConsumeToken(); // The typename
1033      }
1034
1035      if (Next.isNot(tok::identifier))
1036        goto DoneWithDeclSpec;
1037
1038      // If we're in a context where the identifier could be a class name,
1039      // check whether this is a constructor declaration.
1040      if ((DSContext == DSC_top_level ||
1041           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1042          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1043                                     &SS)) {
1044        if (isConstructorDeclarator())
1045          goto DoneWithDeclSpec;
1046
1047        // As noted in C++ [class.qual]p2 (cited above), when the name
1048        // of the class is qualified in a context where it could name
1049        // a constructor, its a constructor name. However, we've
1050        // looked at the declarator, and the user probably meant this
1051        // to be a type. Complain that it isn't supposed to be treated
1052        // as a type, then proceed to parse it as a type.
1053        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1054          << Next.getIdentifierInfo();
1055      }
1056
1057      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1058                                               Next.getLocation(),
1059                                               getCurScope(), &SS);
1060
1061      // If the referenced identifier is not a type, then this declspec is
1062      // erroneous: We already checked about that it has no type specifier, and
1063      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1064      // typename.
1065      if (TypeRep == 0) {
1066        ConsumeToken();   // Eat the scope spec so the identifier is current.
1067        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1068        goto DoneWithDeclSpec;
1069      }
1070
1071      DS.getTypeSpecScope() = SS;
1072      ConsumeToken(); // The C++ scope.
1073
1074      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1075                                     DiagID, TypeRep);
1076      if (isInvalid)
1077        break;
1078
1079      DS.SetRangeEnd(Tok.getLocation());
1080      ConsumeToken(); // The typename.
1081
1082      continue;
1083    }
1084
1085    case tok::annot_typename: {
1086      if (Tok.getAnnotationValue()) {
1087        ParsedType T = getTypeAnnotation(Tok);
1088        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1089                                       DiagID, T);
1090      } else
1091        DS.SetTypeSpecError();
1092
1093      if (isInvalid)
1094        break;
1095
1096      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1097      ConsumeToken(); // The typename
1098
1099      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1100      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1101      // Objective-C interface.
1102      if (Tok.is(tok::less) && getLang().ObjC1)
1103        ParseObjCProtocolQualifiers(DS);
1104
1105      continue;
1106    }
1107
1108      // typedef-name
1109    case tok::identifier: {
1110      // In C++, check to see if this is a scope specifier like foo::bar::, if
1111      // so handle it as such.  This is important for ctor parsing.
1112      if (getLang().CPlusPlus) {
1113        if (TryAnnotateCXXScopeToken(true)) {
1114          if (!DS.hasTypeSpecifier())
1115            DS.SetTypeSpecError();
1116          goto DoneWithDeclSpec;
1117        }
1118        if (!Tok.is(tok::identifier))
1119          continue;
1120      }
1121
1122      // This identifier can only be a typedef name if we haven't already seen
1123      // a type-specifier.  Without this check we misparse:
1124      //  typedef int X; struct Y { short X; };  as 'short int'.
1125      if (DS.hasTypeSpecifier())
1126        goto DoneWithDeclSpec;
1127
1128      // Check for need to substitute AltiVec keyword tokens.
1129      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1130        break;
1131
1132      // It has to be available as a typedef too!
1133      ParsedType TypeRep =
1134        Actions.getTypeName(*Tok.getIdentifierInfo(),
1135                            Tok.getLocation(), getCurScope());
1136
1137      // If this is not a typedef name, don't parse it as part of the declspec,
1138      // it must be an implicit int or an error.
1139      if (!TypeRep) {
1140        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1141        goto DoneWithDeclSpec;
1142      }
1143
1144      // If we're in a context where the identifier could be a class name,
1145      // check whether this is a constructor declaration.
1146      if (getLang().CPlusPlus && DSContext == DSC_class &&
1147          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1148          isConstructorDeclarator())
1149        goto DoneWithDeclSpec;
1150
1151      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1152                                     DiagID, TypeRep);
1153      if (isInvalid)
1154        break;
1155
1156      DS.SetRangeEnd(Tok.getLocation());
1157      ConsumeToken(); // The identifier
1158
1159      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1160      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1161      // Objective-C interface.
1162      if (Tok.is(tok::less) && getLang().ObjC1)
1163        ParseObjCProtocolQualifiers(DS);
1164
1165      // Need to support trailing type qualifiers (e.g. "id<p> const").
1166      // If a type specifier follows, it will be diagnosed elsewhere.
1167      continue;
1168    }
1169
1170      // type-name
1171    case tok::annot_template_id: {
1172      TemplateIdAnnotation *TemplateId
1173        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1174      if (TemplateId->Kind != TNK_Type_template) {
1175        // This template-id does not refer to a type name, so we're
1176        // done with the type-specifiers.
1177        goto DoneWithDeclSpec;
1178      }
1179
1180      // If we're in a context where the template-id could be a
1181      // constructor name or specialization, check whether this is a
1182      // constructor declaration.
1183      if (getLang().CPlusPlus && DSContext == DSC_class &&
1184          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1185          isConstructorDeclarator())
1186        goto DoneWithDeclSpec;
1187
1188      // Turn the template-id annotation token into a type annotation
1189      // token, then try again to parse it as a type-specifier.
1190      AnnotateTemplateIdTokenAsType();
1191      continue;
1192    }
1193
1194    // GNU attributes support.
1195    case tok::kw___attribute:
1196      ParseGNUAttributes(DS.getAttributes());
1197      continue;
1198
1199    // Microsoft declspec support.
1200    case tok::kw___declspec:
1201      ParseMicrosoftDeclSpec(DS.getAttributes());
1202      continue;
1203
1204    // Microsoft single token adornments.
1205    case tok::kw___forceinline:
1206      // FIXME: Add handling here!
1207      break;
1208
1209    case tok::kw___ptr64:
1210    case tok::kw___w64:
1211    case tok::kw___cdecl:
1212    case tok::kw___stdcall:
1213    case tok::kw___fastcall:
1214    case tok::kw___thiscall:
1215      ParseMicrosoftTypeAttributes(DS.getAttributes());
1216      continue;
1217
1218    // Borland single token adornments.
1219    case tok::kw___pascal:
1220      ParseBorlandTypeAttributes(DS.getAttributes());
1221      continue;
1222
1223    // OpenCL single token adornments.
1224    case tok::kw___kernel:
1225      ParseOpenCLAttributes(DS.getAttributes());
1226      continue;
1227
1228    // storage-class-specifier
1229    case tok::kw_typedef:
1230      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1231                                         DiagID, getLang());
1232      break;
1233    case tok::kw_extern:
1234      if (DS.isThreadSpecified())
1235        Diag(Tok, diag::ext_thread_before) << "extern";
1236      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1237                                         DiagID, getLang());
1238      break;
1239    case tok::kw___private_extern__:
1240      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1241                                         PrevSpec, DiagID, getLang());
1242      break;
1243    case tok::kw_static:
1244      if (DS.isThreadSpecified())
1245        Diag(Tok, diag::ext_thread_before) << "static";
1246      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1247                                         DiagID, getLang());
1248      break;
1249    case tok::kw_auto:
1250      if (getLang().CPlusPlus0x || getLang().ObjC2) {
1251        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1252          isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1253                                           DiagID, getLang());
1254          if (!isInvalid)
1255            Diag(Tok, diag::auto_storage_class)
1256              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1257        }
1258        else
1259          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1260                                         DiagID);
1261      }
1262      else
1263        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1264                                           DiagID, getLang());
1265      break;
1266    case tok::kw_register:
1267      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1268                                         DiagID, getLang());
1269      break;
1270    case tok::kw_mutable:
1271      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1272                                         DiagID, getLang());
1273      break;
1274    case tok::kw___thread:
1275      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1276      break;
1277
1278    // function-specifier
1279    case tok::kw_inline:
1280      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1281      break;
1282    case tok::kw_virtual:
1283      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1284      break;
1285    case tok::kw_explicit:
1286      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1287      break;
1288
1289    // friend
1290    case tok::kw_friend:
1291      if (DSContext == DSC_class)
1292        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1293      else {
1294        PrevSpec = ""; // not actually used by the diagnostic
1295        DiagID = diag::err_friend_invalid_in_context;
1296        isInvalid = true;
1297      }
1298      break;
1299
1300    // constexpr
1301    case tok::kw_constexpr:
1302      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1303      break;
1304
1305    // type-specifier
1306    case tok::kw_short:
1307      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1308                                      DiagID);
1309      break;
1310    case tok::kw_long:
1311      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1312        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1313                                        DiagID);
1314      else
1315        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1316                                        DiagID);
1317      break;
1318    case tok::kw_signed:
1319      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1320                                     DiagID);
1321      break;
1322    case tok::kw_unsigned:
1323      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1324                                     DiagID);
1325      break;
1326    case tok::kw__Complex:
1327      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1328                                        DiagID);
1329      break;
1330    case tok::kw__Imaginary:
1331      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1332                                        DiagID);
1333      break;
1334    case tok::kw_void:
1335      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1336                                     DiagID);
1337      break;
1338    case tok::kw_char:
1339      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1340                                     DiagID);
1341      break;
1342    case tok::kw_int:
1343      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1344                                     DiagID);
1345      break;
1346    case tok::kw_float:
1347      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1348                                     DiagID);
1349      break;
1350    case tok::kw_double:
1351      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1352                                     DiagID);
1353      break;
1354    case tok::kw_wchar_t:
1355      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1356                                     DiagID);
1357      break;
1358    case tok::kw_char16_t:
1359      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1360                                     DiagID);
1361      break;
1362    case tok::kw_char32_t:
1363      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1364                                     DiagID);
1365      break;
1366    case tok::kw_bool:
1367    case tok::kw__Bool:
1368      if (Tok.is(tok::kw_bool) &&
1369          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
1370          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1371        PrevSpec = ""; // Not used by the diagnostic.
1372        DiagID = diag::err_bool_redeclaration;
1373        isInvalid = true;
1374      } else {
1375        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1376                                       DiagID);
1377      }
1378      break;
1379    case tok::kw__Decimal32:
1380      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1381                                     DiagID);
1382      break;
1383    case tok::kw__Decimal64:
1384      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1385                                     DiagID);
1386      break;
1387    case tok::kw__Decimal128:
1388      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1389                                     DiagID);
1390      break;
1391    case tok::kw___vector:
1392      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1393      break;
1394    case tok::kw___pixel:
1395      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1396      break;
1397
1398    // class-specifier:
1399    case tok::kw_class:
1400    case tok::kw_struct:
1401    case tok::kw_union: {
1402      tok::TokenKind Kind = Tok.getKind();
1403      ConsumeToken();
1404      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1405      continue;
1406    }
1407
1408    // enum-specifier:
1409    case tok::kw_enum:
1410      ConsumeToken();
1411      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1412      continue;
1413
1414    // cv-qualifier:
1415    case tok::kw_const:
1416      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1417                                 getLang());
1418      break;
1419    case tok::kw_volatile:
1420      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1421                                 getLang());
1422      break;
1423    case tok::kw_restrict:
1424      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1425                                 getLang());
1426      break;
1427
1428    // C++ typename-specifier:
1429    case tok::kw_typename:
1430      if (TryAnnotateTypeOrScopeToken()) {
1431        DS.SetTypeSpecError();
1432        goto DoneWithDeclSpec;
1433      }
1434      if (!Tok.is(tok::kw_typename))
1435        continue;
1436      break;
1437
1438    // GNU typeof support.
1439    case tok::kw_typeof:
1440      ParseTypeofSpecifier(DS);
1441      continue;
1442
1443    case tok::kw_decltype:
1444      ParseDecltypeSpecifier(DS);
1445      continue;
1446
1447    case tok::less:
1448      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1449      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1450      // but we support it.
1451      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1452        goto DoneWithDeclSpec;
1453
1454      if (!ParseObjCProtocolQualifiers(DS))
1455        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1456          << FixItHint::CreateInsertion(Loc, "id")
1457          << SourceRange(Loc, DS.getSourceRange().getEnd());
1458
1459      // Need to support trailing type qualifiers (e.g. "id<p> const").
1460      // If a type specifier follows, it will be diagnosed elsewhere.
1461      continue;
1462    }
1463    // If the specifier wasn't legal, issue a diagnostic.
1464    if (isInvalid) {
1465      assert(PrevSpec && "Method did not return previous specifier!");
1466      assert(DiagID);
1467
1468      if (DiagID == diag::ext_duplicate_declspec)
1469        Diag(Tok, DiagID)
1470          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1471      else
1472        Diag(Tok, DiagID) << PrevSpec;
1473    }
1474
1475    DS.SetRangeEnd(Tok.getLocation());
1476    ConsumeToken();
1477  }
1478}
1479
1480/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1481/// primarily follow the C++ grammar with additions for C99 and GNU,
1482/// which together subsume the C grammar. Note that the C++
1483/// type-specifier also includes the C type-qualifier (for const,
1484/// volatile, and C99 restrict). Returns true if a type-specifier was
1485/// found (and parsed), false otherwise.
1486///
1487///       type-specifier: [C++ 7.1.5]
1488///         simple-type-specifier
1489///         class-specifier
1490///         enum-specifier
1491///         elaborated-type-specifier  [TODO]
1492///         cv-qualifier
1493///
1494///       cv-qualifier: [C++ 7.1.5.1]
1495///         'const'
1496///         'volatile'
1497/// [C99]   'restrict'
1498///
1499///       simple-type-specifier: [ C++ 7.1.5.2]
1500///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1501///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1502///         'char'
1503///         'wchar_t'
1504///         'bool'
1505///         'short'
1506///         'int'
1507///         'long'
1508///         'signed'
1509///         'unsigned'
1510///         'float'
1511///         'double'
1512///         'void'
1513/// [C99]   '_Bool'
1514/// [C99]   '_Complex'
1515/// [C99]   '_Imaginary'  // Removed in TC2?
1516/// [GNU]   '_Decimal32'
1517/// [GNU]   '_Decimal64'
1518/// [GNU]   '_Decimal128'
1519/// [GNU]   typeof-specifier
1520/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1521/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1522/// [C++0x] 'decltype' ( expression )
1523/// [AltiVec] '__vector'
1524bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1525                                        const char *&PrevSpec,
1526                                        unsigned &DiagID,
1527                                        const ParsedTemplateInfo &TemplateInfo,
1528                                        bool SuppressDeclarations) {
1529  SourceLocation Loc = Tok.getLocation();
1530
1531  switch (Tok.getKind()) {
1532  case tok::identifier:   // foo::bar
1533    // If we already have a type specifier, this identifier is not a type.
1534    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1535        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1536        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1537      return false;
1538    // Check for need to substitute AltiVec keyword tokens.
1539    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1540      break;
1541    // Fall through.
1542  case tok::kw_typename:  // typename foo::bar
1543    // Annotate typenames and C++ scope specifiers.  If we get one, just
1544    // recurse to handle whatever we get.
1545    if (TryAnnotateTypeOrScopeToken())
1546      return true;
1547    if (Tok.is(tok::identifier))
1548      return false;
1549    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1550                                      TemplateInfo, SuppressDeclarations);
1551  case tok::coloncolon:   // ::foo::bar
1552    if (NextToken().is(tok::kw_new) ||    // ::new
1553        NextToken().is(tok::kw_delete))   // ::delete
1554      return false;
1555
1556    // Annotate typenames and C++ scope specifiers.  If we get one, just
1557    // recurse to handle whatever we get.
1558    if (TryAnnotateTypeOrScopeToken())
1559      return true;
1560    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1561                                      TemplateInfo, SuppressDeclarations);
1562
1563  // simple-type-specifier:
1564  case tok::annot_typename: {
1565    if (ParsedType T = getTypeAnnotation(Tok)) {
1566      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1567                                     Tok.getAnnotationEndLoc(), PrevSpec,
1568                                     DiagID, T);
1569    } else
1570      DS.SetTypeSpecError();
1571    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1572    ConsumeToken(); // The typename
1573
1574    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1575    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1576    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1577    // just a normal reference to a typedef name.
1578    if (Tok.is(tok::less) && getLang().ObjC1)
1579      ParseObjCProtocolQualifiers(DS);
1580
1581    return true;
1582  }
1583
1584  case tok::kw_short:
1585    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1586    break;
1587  case tok::kw_long:
1588    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1589      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1590                                      DiagID);
1591    else
1592      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1593                                      DiagID);
1594    break;
1595  case tok::kw_signed:
1596    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1597    break;
1598  case tok::kw_unsigned:
1599    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1600                                   DiagID);
1601    break;
1602  case tok::kw__Complex:
1603    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1604                                      DiagID);
1605    break;
1606  case tok::kw__Imaginary:
1607    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1608                                      DiagID);
1609    break;
1610  case tok::kw_void:
1611    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1612    break;
1613  case tok::kw_char:
1614    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1615    break;
1616  case tok::kw_int:
1617    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1618    break;
1619  case tok::kw_float:
1620    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1621    break;
1622  case tok::kw_double:
1623    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1624    break;
1625  case tok::kw_wchar_t:
1626    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1627    break;
1628  case tok::kw_char16_t:
1629    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1630    break;
1631  case tok::kw_char32_t:
1632    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1633    break;
1634  case tok::kw_bool:
1635  case tok::kw__Bool:
1636    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1637    break;
1638  case tok::kw__Decimal32:
1639    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1640                                   DiagID);
1641    break;
1642  case tok::kw__Decimal64:
1643    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1644                                   DiagID);
1645    break;
1646  case tok::kw__Decimal128:
1647    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1648                                   DiagID);
1649    break;
1650  case tok::kw___vector:
1651    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1652    break;
1653  case tok::kw___pixel:
1654    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1655    break;
1656
1657  // class-specifier:
1658  case tok::kw_class:
1659  case tok::kw_struct:
1660  case tok::kw_union: {
1661    tok::TokenKind Kind = Tok.getKind();
1662    ConsumeToken();
1663    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
1664                        SuppressDeclarations);
1665    return true;
1666  }
1667
1668  // enum-specifier:
1669  case tok::kw_enum:
1670    ConsumeToken();
1671    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
1672    return true;
1673
1674  // cv-qualifier:
1675  case tok::kw_const:
1676    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1677                               DiagID, getLang());
1678    break;
1679  case tok::kw_volatile:
1680    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1681                               DiagID, getLang());
1682    break;
1683  case tok::kw_restrict:
1684    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1685                               DiagID, getLang());
1686    break;
1687
1688  // GNU typeof support.
1689  case tok::kw_typeof:
1690    ParseTypeofSpecifier(DS);
1691    return true;
1692
1693  // C++0x decltype support.
1694  case tok::kw_decltype:
1695    ParseDecltypeSpecifier(DS);
1696    return true;
1697
1698  // C++0x auto support.
1699  case tok::kw_auto:
1700    if (!getLang().CPlusPlus0x)
1701      return false;
1702
1703    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1704    break;
1705
1706  case tok::kw___ptr64:
1707  case tok::kw___w64:
1708  case tok::kw___cdecl:
1709  case tok::kw___stdcall:
1710  case tok::kw___fastcall:
1711  case tok::kw___thiscall:
1712    ParseMicrosoftTypeAttributes(DS.getAttributes());
1713    return true;
1714
1715  case tok::kw___pascal:
1716    ParseBorlandTypeAttributes(DS.getAttributes());
1717    return true;
1718
1719  default:
1720    // Not a type-specifier; do nothing.
1721    return false;
1722  }
1723
1724  // If the specifier combination wasn't legal, issue a diagnostic.
1725  if (isInvalid) {
1726    assert(PrevSpec && "Method did not return previous specifier!");
1727    // Pick between error or extwarn.
1728    Diag(Tok, DiagID) << PrevSpec;
1729  }
1730  DS.SetRangeEnd(Tok.getLocation());
1731  ConsumeToken(); // whatever we parsed above.
1732  return true;
1733}
1734
1735/// ParseStructDeclaration - Parse a struct declaration without the terminating
1736/// semicolon.
1737///
1738///       struct-declaration:
1739///         specifier-qualifier-list struct-declarator-list
1740/// [GNU]   __extension__ struct-declaration
1741/// [GNU]   specifier-qualifier-list
1742///       struct-declarator-list:
1743///         struct-declarator
1744///         struct-declarator-list ',' struct-declarator
1745/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1746///       struct-declarator:
1747///         declarator
1748/// [GNU]   declarator attributes[opt]
1749///         declarator[opt] ':' constant-expression
1750/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1751///
1752void Parser::
1753ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1754  if (Tok.is(tok::kw___extension__)) {
1755    // __extension__ silences extension warnings in the subexpression.
1756    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1757    ConsumeToken();
1758    return ParseStructDeclaration(DS, Fields);
1759  }
1760
1761  // Parse the common specifier-qualifiers-list piece.
1762  ParseSpecifierQualifierList(DS);
1763
1764  // If there are no declarators, this is a free-standing declaration
1765  // specifier. Let the actions module cope with it.
1766  if (Tok.is(tok::semi)) {
1767    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
1768    return;
1769  }
1770
1771  // Read struct-declarators until we find the semicolon.
1772  bool FirstDeclarator = true;
1773  while (1) {
1774    ParsingDeclRAIIObject PD(*this);
1775    FieldDeclarator DeclaratorInfo(DS);
1776
1777    // Attributes are only allowed here on successive declarators.
1778    if (!FirstDeclarator)
1779      MaybeParseGNUAttributes(DeclaratorInfo.D);
1780
1781    /// struct-declarator: declarator
1782    /// struct-declarator: declarator[opt] ':' constant-expression
1783    if (Tok.isNot(tok::colon)) {
1784      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1785      ColonProtectionRAIIObject X(*this);
1786      ParseDeclarator(DeclaratorInfo.D);
1787    }
1788
1789    if (Tok.is(tok::colon)) {
1790      ConsumeToken();
1791      ExprResult Res(ParseConstantExpression());
1792      if (Res.isInvalid())
1793        SkipUntil(tok::semi, true, true);
1794      else
1795        DeclaratorInfo.BitfieldSize = Res.release();
1796    }
1797
1798    // If attributes exist after the declarator, parse them.
1799    MaybeParseGNUAttributes(DeclaratorInfo.D);
1800
1801    // We're done with this declarator;  invoke the callback.
1802    Decl *D = Fields.invoke(DeclaratorInfo);
1803    PD.complete(D);
1804
1805    // If we don't have a comma, it is either the end of the list (a ';')
1806    // or an error, bail out.
1807    if (Tok.isNot(tok::comma))
1808      return;
1809
1810    // Consume the comma.
1811    ConsumeToken();
1812
1813    FirstDeclarator = false;
1814  }
1815}
1816
1817/// ParseStructUnionBody
1818///       struct-contents:
1819///         struct-declaration-list
1820/// [EXT]   empty
1821/// [GNU]   "struct-declaration-list" without terminatoring ';'
1822///       struct-declaration-list:
1823///         struct-declaration
1824///         struct-declaration-list struct-declaration
1825/// [OBC]   '@' 'defs' '(' class-name ')'
1826///
1827void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1828                                  unsigned TagType, Decl *TagDecl) {
1829  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1830                                      "parsing struct/union body");
1831
1832  SourceLocation LBraceLoc = ConsumeBrace();
1833
1834  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1835  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1836
1837  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1838  // C++.
1839  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1840    Diag(Tok, diag::ext_empty_struct_union)
1841      << (TagType == TST_union);
1842
1843  llvm::SmallVector<Decl *, 32> FieldDecls;
1844
1845  // While we still have something to read, read the declarations in the struct.
1846  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1847    // Each iteration of this loop reads one struct-declaration.
1848
1849    // Check for extraneous top-level semicolon.
1850    if (Tok.is(tok::semi)) {
1851      Diag(Tok, diag::ext_extra_struct_semi)
1852        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1853        << FixItHint::CreateRemoval(Tok.getLocation());
1854      ConsumeToken();
1855      continue;
1856    }
1857
1858    // Parse all the comma separated declarators.
1859    DeclSpec DS;
1860
1861    if (!Tok.is(tok::at)) {
1862      struct CFieldCallback : FieldCallback {
1863        Parser &P;
1864        Decl *TagDecl;
1865        llvm::SmallVectorImpl<Decl *> &FieldDecls;
1866
1867        CFieldCallback(Parser &P, Decl *TagDecl,
1868                       llvm::SmallVectorImpl<Decl *> &FieldDecls) :
1869          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1870
1871        virtual Decl *invoke(FieldDeclarator &FD) {
1872          // Install the declarator into the current TagDecl.
1873          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
1874                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1875                                                 FD.D, FD.BitfieldSize);
1876          FieldDecls.push_back(Field);
1877          return Field;
1878        }
1879      } Callback(*this, TagDecl, FieldDecls);
1880
1881      ParseStructDeclaration(DS, Callback);
1882    } else { // Handle @defs
1883      ConsumeToken();
1884      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1885        Diag(Tok, diag::err_unexpected_at);
1886        SkipUntil(tok::semi, true);
1887        continue;
1888      }
1889      ConsumeToken();
1890      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1891      if (!Tok.is(tok::identifier)) {
1892        Diag(Tok, diag::err_expected_ident);
1893        SkipUntil(tok::semi, true);
1894        continue;
1895      }
1896      llvm::SmallVector<Decl *, 16> Fields;
1897      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
1898                        Tok.getIdentifierInfo(), Fields);
1899      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1900      ConsumeToken();
1901      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1902    }
1903
1904    if (Tok.is(tok::semi)) {
1905      ConsumeToken();
1906    } else if (Tok.is(tok::r_brace)) {
1907      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
1908      break;
1909    } else {
1910      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
1911      // Skip to end of block or statement to avoid ext-warning on extra ';'.
1912      SkipUntil(tok::r_brace, true, true);
1913      // If we stopped at a ';', eat it.
1914      if (Tok.is(tok::semi)) ConsumeToken();
1915    }
1916  }
1917
1918  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1919
1920  ParsedAttributes attrs;
1921  // If attributes exist after struct contents, parse them.
1922  MaybeParseGNUAttributes(attrs);
1923
1924  Actions.ActOnFields(getCurScope(),
1925                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1926                      LBraceLoc, RBraceLoc,
1927                      attrs.getList());
1928  StructScope.Exit();
1929  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1930}
1931
1932/// ParseEnumSpecifier
1933///       enum-specifier: [C99 6.7.2.2]
1934///         'enum' identifier[opt] '{' enumerator-list '}'
1935///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1936/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1937///                                                 '}' attributes[opt]
1938///         'enum' identifier
1939/// [GNU]   'enum' attributes[opt] identifier
1940///
1941/// [C++0x] enum-head '{' enumerator-list[opt] '}'
1942/// [C++0x] enum-head '{' enumerator-list ','  '}'
1943///
1944///       enum-head: [C++0x]
1945///         enum-key attributes[opt] identifier[opt] enum-base[opt]
1946///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
1947///
1948///       enum-key: [C++0x]
1949///         'enum'
1950///         'enum' 'class'
1951///         'enum' 'struct'
1952///
1953///       enum-base: [C++0x]
1954///         ':' type-specifier-seq
1955///
1956/// [C++] elaborated-type-specifier:
1957/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1958///
1959void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1960                                const ParsedTemplateInfo &TemplateInfo,
1961                                AccessSpecifier AS) {
1962  // Parse the tag portion of this.
1963  if (Tok.is(tok::code_completion)) {
1964    // Code completion for an enum name.
1965    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
1966    ConsumeCodeCompletionToken();
1967  }
1968
1969  // If attributes exist after tag, parse them.
1970  ParsedAttributes attrs;
1971  MaybeParseGNUAttributes(attrs);
1972
1973  CXXScopeSpec &SS = DS.getTypeSpecScope();
1974  if (getLang().CPlusPlus) {
1975    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
1976      return;
1977
1978    if (SS.isSet() && Tok.isNot(tok::identifier)) {
1979      Diag(Tok, diag::err_expected_ident);
1980      if (Tok.isNot(tok::l_brace)) {
1981        // Has no name and is not a definition.
1982        // Skip the rest of this declarator, up until the comma or semicolon.
1983        SkipUntil(tok::comma, true);
1984        return;
1985      }
1986    }
1987  }
1988
1989  bool AllowFixedUnderlyingType = getLang().CPlusPlus0x || getLang().Microsoft;
1990  bool IsScopedEnum = false;
1991  bool IsScopedUsingClassTag = false;
1992
1993  if (getLang().CPlusPlus0x &&
1994      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
1995    IsScopedEnum = true;
1996    IsScopedUsingClassTag = Tok.is(tok::kw_class);
1997    ConsumeToken();
1998  }
1999
2000  // Must have either 'enum name' or 'enum {...}'.
2001  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2002      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2003    Diag(Tok, diag::err_expected_ident_lbrace);
2004
2005    // Skip the rest of this declarator, up until the comma or semicolon.
2006    SkipUntil(tok::comma, true);
2007    return;
2008  }
2009
2010  // If an identifier is present, consume and remember it.
2011  IdentifierInfo *Name = 0;
2012  SourceLocation NameLoc;
2013  if (Tok.is(tok::identifier)) {
2014    Name = Tok.getIdentifierInfo();
2015    NameLoc = ConsumeToken();
2016  }
2017
2018  if (!Name && IsScopedEnum) {
2019    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2020    // declaration of a scoped enumeration.
2021    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2022    IsScopedEnum = false;
2023    IsScopedUsingClassTag = false;
2024  }
2025
2026  TypeResult BaseType;
2027
2028  // Parse the fixed underlying type.
2029  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2030    bool PossibleBitfield = false;
2031    if (getCurScope()->getFlags() & Scope::ClassScope) {
2032      // If we're in class scope, this can either be an enum declaration with
2033      // an underlying type, or a declaration of a bitfield member. We try to
2034      // use a simple disambiguation scheme first to catch the common cases
2035      // (integer literal, sizeof); if it's still ambiguous, we then consider
2036      // anything that's a simple-type-specifier followed by '(' as an
2037      // expression. This suffices because function types are not valid
2038      // underlying types anyway.
2039      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2040      // If the next token starts an expression, we know we're parsing a
2041      // bit-field. This is the common case.
2042      if (TPR == TPResult::True())
2043        PossibleBitfield = true;
2044      // If the next token starts a type-specifier-seq, it may be either a
2045      // a fixed underlying type or the start of a function-style cast in C++;
2046      // lookahead one more token to see if it's obvious that we have a
2047      // fixed underlying type.
2048      else if (TPR == TPResult::False() &&
2049               GetLookAheadToken(2).getKind() == tok::semi) {
2050        // Consume the ':'.
2051        ConsumeToken();
2052      } else {
2053        // We have the start of a type-specifier-seq, so we have to perform
2054        // tentative parsing to determine whether we have an expression or a
2055        // type.
2056        TentativeParsingAction TPA(*this);
2057
2058        // Consume the ':'.
2059        ConsumeToken();
2060
2061        if ((getLang().CPlusPlus &&
2062             isCXXDeclarationSpecifier() != TPResult::True()) ||
2063            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2064          // We'll parse this as a bitfield later.
2065          PossibleBitfield = true;
2066          TPA.Revert();
2067        } else {
2068          // We have a type-specifier-seq.
2069          TPA.Commit();
2070        }
2071      }
2072    } else {
2073      // Consume the ':'.
2074      ConsumeToken();
2075    }
2076
2077    if (!PossibleBitfield) {
2078      SourceRange Range;
2079      BaseType = ParseTypeName(&Range);
2080
2081      if (!getLang().CPlusPlus0x)
2082        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2083          << Range;
2084    }
2085  }
2086
2087  // There are three options here.  If we have 'enum foo;', then this is a
2088  // forward declaration.  If we have 'enum foo {...' then this is a
2089  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2090  //
2091  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2092  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2093  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2094  //
2095  Sema::TagUseKind TUK;
2096  if (Tok.is(tok::l_brace))
2097    TUK = Sema::TUK_Definition;
2098  else if (Tok.is(tok::semi))
2099    TUK = Sema::TUK_Declaration;
2100  else
2101    TUK = Sema::TUK_Reference;
2102
2103  // enums cannot be templates, although they can be referenced from a
2104  // template.
2105  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2106      TUK != Sema::TUK_Reference) {
2107    Diag(Tok, diag::err_enum_template);
2108
2109    // Skip the rest of this declarator, up until the comma or semicolon.
2110    SkipUntil(tok::comma, true);
2111    return;
2112  }
2113
2114  if (!Name && TUK != Sema::TUK_Definition) {
2115    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2116
2117    // Skip the rest of this declarator, up until the comma or semicolon.
2118    SkipUntil(tok::comma, true);
2119    return;
2120  }
2121
2122  bool Owned = false;
2123  bool IsDependent = false;
2124  SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
2125  const char *PrevSpec = 0;
2126  unsigned DiagID;
2127  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2128                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2129                                   AS,
2130                                   MultiTemplateParamsArg(Actions),
2131                                   Owned, IsDependent, IsScopedEnum,
2132                                   IsScopedUsingClassTag, BaseType);
2133
2134  if (IsDependent) {
2135    // This enum has a dependent nested-name-specifier. Handle it as a
2136    // dependent tag.
2137    if (!Name) {
2138      DS.SetTypeSpecError();
2139      Diag(Tok, diag::err_expected_type_name_after_typename);
2140      return;
2141    }
2142
2143    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2144                                                TUK, SS, Name, StartLoc,
2145                                                NameLoc);
2146    if (Type.isInvalid()) {
2147      DS.SetTypeSpecError();
2148      return;
2149    }
2150
2151    if (DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc, PrevSpec, DiagID,
2152                           Type.get()))
2153      Diag(StartLoc, DiagID) << PrevSpec;
2154
2155    return;
2156  }
2157
2158  if (!TagDecl) {
2159    // The action failed to produce an enumeration tag. If this is a
2160    // definition, consume the entire definition.
2161    if (Tok.is(tok::l_brace)) {
2162      ConsumeBrace();
2163      SkipUntil(tok::r_brace);
2164    }
2165
2166    DS.SetTypeSpecError();
2167    return;
2168  }
2169
2170  if (Tok.is(tok::l_brace))
2171    ParseEnumBody(StartLoc, TagDecl);
2172
2173  // FIXME: The DeclSpec should keep the locations of both the keyword
2174  // and the name (if there is one).
2175  if (DS.SetTypeSpecType(DeclSpec::TST_enum, TSTLoc, PrevSpec, DiagID,
2176                         TagDecl, Owned))
2177    Diag(StartLoc, DiagID) << PrevSpec;
2178}
2179
2180/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2181///       enumerator-list:
2182///         enumerator
2183///         enumerator-list ',' enumerator
2184///       enumerator:
2185///         enumeration-constant
2186///         enumeration-constant '=' constant-expression
2187///       enumeration-constant:
2188///         identifier
2189///
2190void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2191  // Enter the scope of the enum body and start the definition.
2192  ParseScope EnumScope(this, Scope::DeclScope);
2193  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2194
2195  SourceLocation LBraceLoc = ConsumeBrace();
2196
2197  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2198  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2199    Diag(Tok, diag::error_empty_enum);
2200
2201  llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2202
2203  Decl *LastEnumConstDecl = 0;
2204
2205  // Parse the enumerator-list.
2206  while (Tok.is(tok::identifier)) {
2207    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2208    SourceLocation IdentLoc = ConsumeToken();
2209
2210    // If attributes exist after the enumerator, parse them.
2211    ParsedAttributes attrs;
2212    MaybeParseGNUAttributes(attrs);
2213
2214    SourceLocation EqualLoc;
2215    ExprResult AssignedVal;
2216    if (Tok.is(tok::equal)) {
2217      EqualLoc = ConsumeToken();
2218      AssignedVal = ParseConstantExpression();
2219      if (AssignedVal.isInvalid())
2220        SkipUntil(tok::comma, tok::r_brace, true, true);
2221    }
2222
2223    // Install the enumerator constant into EnumDecl.
2224    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2225                                                    LastEnumConstDecl,
2226                                                    IdentLoc, Ident,
2227                                                    attrs.getList(), EqualLoc,
2228                                                    AssignedVal.release());
2229    EnumConstantDecls.push_back(EnumConstDecl);
2230    LastEnumConstDecl = EnumConstDecl;
2231
2232    if (Tok.is(tok::identifier)) {
2233      // We're missing a comma between enumerators.
2234      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2235      Diag(Loc, diag::err_enumerator_list_missing_comma)
2236        << FixItHint::CreateInsertion(Loc, ", ");
2237      continue;
2238    }
2239
2240    if (Tok.isNot(tok::comma))
2241      break;
2242    SourceLocation CommaLoc = ConsumeToken();
2243
2244    if (Tok.isNot(tok::identifier) &&
2245        !(getLang().C99 || getLang().CPlusPlus0x))
2246      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2247        << getLang().CPlusPlus
2248        << FixItHint::CreateRemoval(CommaLoc);
2249  }
2250
2251  // Eat the }.
2252  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2253
2254  // If attributes exist after the identifier list, parse them.
2255  ParsedAttributes attrs;
2256  MaybeParseGNUAttributes(attrs);
2257
2258  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2259                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2260                        getCurScope(), attrs.getList());
2261
2262  EnumScope.Exit();
2263  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2264}
2265
2266/// isTypeSpecifierQualifier - Return true if the current token could be the
2267/// start of a type-qualifier-list.
2268bool Parser::isTypeQualifier() const {
2269  switch (Tok.getKind()) {
2270  default: return false;
2271    // type-qualifier
2272  case tok::kw_const:
2273  case tok::kw_volatile:
2274  case tok::kw_restrict:
2275    return true;
2276  }
2277}
2278
2279/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2280/// is definitely a type-specifier.  Return false if it isn't part of a type
2281/// specifier or if we're not sure.
2282bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2283  switch (Tok.getKind()) {
2284  default: return false;
2285    // type-specifiers
2286  case tok::kw_short:
2287  case tok::kw_long:
2288  case tok::kw_signed:
2289  case tok::kw_unsigned:
2290  case tok::kw__Complex:
2291  case tok::kw__Imaginary:
2292  case tok::kw_void:
2293  case tok::kw_char:
2294  case tok::kw_wchar_t:
2295  case tok::kw_char16_t:
2296  case tok::kw_char32_t:
2297  case tok::kw_int:
2298  case tok::kw_float:
2299  case tok::kw_double:
2300  case tok::kw_bool:
2301  case tok::kw__Bool:
2302  case tok::kw__Decimal32:
2303  case tok::kw__Decimal64:
2304  case tok::kw__Decimal128:
2305  case tok::kw___vector:
2306
2307    // struct-or-union-specifier (C99) or class-specifier (C++)
2308  case tok::kw_class:
2309  case tok::kw_struct:
2310  case tok::kw_union:
2311    // enum-specifier
2312  case tok::kw_enum:
2313
2314    // typedef-name
2315  case tok::annot_typename:
2316    return true;
2317  }
2318}
2319
2320/// isTypeSpecifierQualifier - Return true if the current token could be the
2321/// start of a specifier-qualifier-list.
2322bool Parser::isTypeSpecifierQualifier() {
2323  switch (Tok.getKind()) {
2324  default: return false;
2325
2326  case tok::identifier:   // foo::bar
2327    if (TryAltiVecVectorToken())
2328      return true;
2329    // Fall through.
2330  case tok::kw_typename:  // typename T::type
2331    // Annotate typenames and C++ scope specifiers.  If we get one, just
2332    // recurse to handle whatever we get.
2333    if (TryAnnotateTypeOrScopeToken())
2334      return true;
2335    if (Tok.is(tok::identifier))
2336      return false;
2337    return isTypeSpecifierQualifier();
2338
2339  case tok::coloncolon:   // ::foo::bar
2340    if (NextToken().is(tok::kw_new) ||    // ::new
2341        NextToken().is(tok::kw_delete))   // ::delete
2342      return false;
2343
2344    if (TryAnnotateTypeOrScopeToken())
2345      return true;
2346    return isTypeSpecifierQualifier();
2347
2348    // GNU attributes support.
2349  case tok::kw___attribute:
2350    // GNU typeof support.
2351  case tok::kw_typeof:
2352
2353    // type-specifiers
2354  case tok::kw_short:
2355  case tok::kw_long:
2356  case tok::kw_signed:
2357  case tok::kw_unsigned:
2358  case tok::kw__Complex:
2359  case tok::kw__Imaginary:
2360  case tok::kw_void:
2361  case tok::kw_char:
2362  case tok::kw_wchar_t:
2363  case tok::kw_char16_t:
2364  case tok::kw_char32_t:
2365  case tok::kw_int:
2366  case tok::kw_float:
2367  case tok::kw_double:
2368  case tok::kw_bool:
2369  case tok::kw__Bool:
2370  case tok::kw__Decimal32:
2371  case tok::kw__Decimal64:
2372  case tok::kw__Decimal128:
2373  case tok::kw___vector:
2374
2375    // struct-or-union-specifier (C99) or class-specifier (C++)
2376  case tok::kw_class:
2377  case tok::kw_struct:
2378  case tok::kw_union:
2379    // enum-specifier
2380  case tok::kw_enum:
2381
2382    // type-qualifier
2383  case tok::kw_const:
2384  case tok::kw_volatile:
2385  case tok::kw_restrict:
2386
2387    // typedef-name
2388  case tok::annot_typename:
2389    return true;
2390
2391    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2392  case tok::less:
2393    return getLang().ObjC1;
2394
2395  case tok::kw___cdecl:
2396  case tok::kw___stdcall:
2397  case tok::kw___fastcall:
2398  case tok::kw___thiscall:
2399  case tok::kw___w64:
2400  case tok::kw___ptr64:
2401  case tok::kw___pascal:
2402    return true;
2403  }
2404}
2405
2406/// isDeclarationSpecifier() - Return true if the current token is part of a
2407/// declaration specifier.
2408///
2409/// \param DisambiguatingWithExpression True to indicate that the purpose of
2410/// this check is to disambiguate between an expression and a declaration.
2411bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2412  switch (Tok.getKind()) {
2413  default: return false;
2414
2415  case tok::identifier:   // foo::bar
2416    // Unfortunate hack to support "Class.factoryMethod" notation.
2417    if (getLang().ObjC1 && NextToken().is(tok::period))
2418      return false;
2419    if (TryAltiVecVectorToken())
2420      return true;
2421    // Fall through.
2422  case tok::kw_typename: // typename T::type
2423    // Annotate typenames and C++ scope specifiers.  If we get one, just
2424    // recurse to handle whatever we get.
2425    if (TryAnnotateTypeOrScopeToken())
2426      return true;
2427    if (Tok.is(tok::identifier))
2428      return false;
2429
2430    // If we're in Objective-C and we have an Objective-C class type followed
2431    // by an identifier and then either ':' or ']', in a place where an
2432    // expression is permitted, then this is probably a class message send
2433    // missing the initial '['. In this case, we won't consider this to be
2434    // the start of a declaration.
2435    if (DisambiguatingWithExpression &&
2436        isStartOfObjCClassMessageMissingOpenBracket())
2437      return false;
2438
2439    return isDeclarationSpecifier();
2440
2441  case tok::coloncolon:   // ::foo::bar
2442    if (NextToken().is(tok::kw_new) ||    // ::new
2443        NextToken().is(tok::kw_delete))   // ::delete
2444      return false;
2445
2446    // Annotate typenames and C++ scope specifiers.  If we get one, just
2447    // recurse to handle whatever we get.
2448    if (TryAnnotateTypeOrScopeToken())
2449      return true;
2450    return isDeclarationSpecifier();
2451
2452    // storage-class-specifier
2453  case tok::kw_typedef:
2454  case tok::kw_extern:
2455  case tok::kw___private_extern__:
2456  case tok::kw_static:
2457  case tok::kw_auto:
2458  case tok::kw_register:
2459  case tok::kw___thread:
2460
2461    // type-specifiers
2462  case tok::kw_short:
2463  case tok::kw_long:
2464  case tok::kw_signed:
2465  case tok::kw_unsigned:
2466  case tok::kw__Complex:
2467  case tok::kw__Imaginary:
2468  case tok::kw_void:
2469  case tok::kw_char:
2470  case tok::kw_wchar_t:
2471  case tok::kw_char16_t:
2472  case tok::kw_char32_t:
2473
2474  case tok::kw_int:
2475  case tok::kw_float:
2476  case tok::kw_double:
2477  case tok::kw_bool:
2478  case tok::kw__Bool:
2479  case tok::kw__Decimal32:
2480  case tok::kw__Decimal64:
2481  case tok::kw__Decimal128:
2482  case tok::kw___vector:
2483
2484    // struct-or-union-specifier (C99) or class-specifier (C++)
2485  case tok::kw_class:
2486  case tok::kw_struct:
2487  case tok::kw_union:
2488    // enum-specifier
2489  case tok::kw_enum:
2490
2491    // type-qualifier
2492  case tok::kw_const:
2493  case tok::kw_volatile:
2494  case tok::kw_restrict:
2495
2496    // function-specifier
2497  case tok::kw_inline:
2498  case tok::kw_virtual:
2499  case tok::kw_explicit:
2500
2501    // typedef-name
2502  case tok::annot_typename:
2503
2504    // GNU typeof support.
2505  case tok::kw_typeof:
2506
2507    // GNU attributes.
2508  case tok::kw___attribute:
2509    return true;
2510
2511    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2512  case tok::less:
2513    return getLang().ObjC1;
2514
2515  case tok::kw___declspec:
2516  case tok::kw___cdecl:
2517  case tok::kw___stdcall:
2518  case tok::kw___fastcall:
2519  case tok::kw___thiscall:
2520  case tok::kw___w64:
2521  case tok::kw___ptr64:
2522  case tok::kw___forceinline:
2523  case tok::kw___pascal:
2524    return true;
2525  }
2526}
2527
2528bool Parser::isConstructorDeclarator() {
2529  TentativeParsingAction TPA(*this);
2530
2531  // Parse the C++ scope specifier.
2532  CXXScopeSpec SS;
2533  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
2534    TPA.Revert();
2535    return false;
2536  }
2537
2538  // Parse the constructor name.
2539  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2540    // We already know that we have a constructor name; just consume
2541    // the token.
2542    ConsumeToken();
2543  } else {
2544    TPA.Revert();
2545    return false;
2546  }
2547
2548  // Current class name must be followed by a left parentheses.
2549  if (Tok.isNot(tok::l_paren)) {
2550    TPA.Revert();
2551    return false;
2552  }
2553  ConsumeParen();
2554
2555  // A right parentheses or ellipsis signals that we have a constructor.
2556  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2557    TPA.Revert();
2558    return true;
2559  }
2560
2561  // If we need to, enter the specified scope.
2562  DeclaratorScopeObj DeclScopeObj(*this, SS);
2563  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2564    DeclScopeObj.EnterDeclaratorScope();
2565
2566  // Optionally skip Microsoft attributes.
2567  ParsedAttributes Attrs;
2568  MaybeParseMicrosoftAttributes(Attrs);
2569
2570  // Check whether the next token(s) are part of a declaration
2571  // specifier, in which case we have the start of a parameter and,
2572  // therefore, we know that this is a constructor.
2573  bool IsConstructor = isDeclarationSpecifier();
2574  TPA.Revert();
2575  return IsConstructor;
2576}
2577
2578/// ParseTypeQualifierListOpt
2579///          type-qualifier-list: [C99 6.7.5]
2580///            type-qualifier
2581/// [vendor]   attributes
2582///              [ only if VendorAttributesAllowed=true ]
2583///            type-qualifier-list type-qualifier
2584/// [vendor]   type-qualifier-list attributes
2585///              [ only if VendorAttributesAllowed=true ]
2586/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
2587///              [ only if CXX0XAttributesAllowed=true ]
2588/// Note: vendor can be GNU, MS, etc.
2589///
2590void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
2591                                       bool VendorAttributesAllowed,
2592                                       bool CXX0XAttributesAllowed) {
2593  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2594    SourceLocation Loc = Tok.getLocation();
2595    ParsedAttributesWithRange attrs;
2596    ParseCXX0XAttributes(attrs);
2597    if (CXX0XAttributesAllowed)
2598      DS.takeAttributesFrom(attrs);
2599    else
2600      Diag(Loc, diag::err_attributes_not_allowed);
2601  }
2602
2603  while (1) {
2604    bool isInvalid = false;
2605    const char *PrevSpec = 0;
2606    unsigned DiagID = 0;
2607    SourceLocation Loc = Tok.getLocation();
2608
2609    switch (Tok.getKind()) {
2610    case tok::code_completion:
2611      Actions.CodeCompleteTypeQualifiers(DS);
2612      ConsumeCodeCompletionToken();
2613      break;
2614
2615    case tok::kw_const:
2616      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2617                                 getLang());
2618      break;
2619    case tok::kw_volatile:
2620      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2621                                 getLang());
2622      break;
2623    case tok::kw_restrict:
2624      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2625                                 getLang());
2626      break;
2627    case tok::kw___w64:
2628    case tok::kw___ptr64:
2629    case tok::kw___cdecl:
2630    case tok::kw___stdcall:
2631    case tok::kw___fastcall:
2632    case tok::kw___thiscall:
2633      if (VendorAttributesAllowed) {
2634        ParseMicrosoftTypeAttributes(DS.getAttributes());
2635        continue;
2636      }
2637      goto DoneWithTypeQuals;
2638    case tok::kw___pascal:
2639      if (VendorAttributesAllowed) {
2640        ParseBorlandTypeAttributes(DS.getAttributes());
2641        continue;
2642      }
2643      goto DoneWithTypeQuals;
2644    case tok::kw___attribute:
2645      if (VendorAttributesAllowed) {
2646        ParseGNUAttributes(DS.getAttributes());
2647        continue; // do *not* consume the next token!
2648      }
2649      // otherwise, FALL THROUGH!
2650    default:
2651      DoneWithTypeQuals:
2652      // If this is not a type-qualifier token, we're done reading type
2653      // qualifiers.  First verify that DeclSpec's are consistent.
2654      DS.Finish(Diags, PP);
2655      return;
2656    }
2657
2658    // If the specifier combination wasn't legal, issue a diagnostic.
2659    if (isInvalid) {
2660      assert(PrevSpec && "Method did not return previous specifier!");
2661      Diag(Tok, DiagID) << PrevSpec;
2662    }
2663    ConsumeToken();
2664  }
2665}
2666
2667
2668/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2669///
2670void Parser::ParseDeclarator(Declarator &D) {
2671  /// This implements the 'declarator' production in the C grammar, then checks
2672  /// for well-formedness and issues diagnostics.
2673  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2674}
2675
2676/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2677/// is parsed by the function passed to it. Pass null, and the direct-declarator
2678/// isn't parsed at all, making this function effectively parse the C++
2679/// ptr-operator production.
2680///
2681///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2682/// [C]     pointer[opt] direct-declarator
2683/// [C++]   direct-declarator
2684/// [C++]   ptr-operator declarator
2685///
2686///       pointer: [C99 6.7.5]
2687///         '*' type-qualifier-list[opt]
2688///         '*' type-qualifier-list[opt] pointer
2689///
2690///       ptr-operator:
2691///         '*' cv-qualifier-seq[opt]
2692///         '&'
2693/// [C++0x] '&&'
2694/// [GNU]   '&' restrict[opt] attributes[opt]
2695/// [GNU?]  '&&' restrict[opt] attributes[opt]
2696///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2697void Parser::ParseDeclaratorInternal(Declarator &D,
2698                                     DirectDeclParseFunction DirectDeclParser) {
2699  if (Diags.hasAllExtensionsSilenced())
2700    D.setExtension();
2701
2702  // C++ member pointers start with a '::' or a nested-name.
2703  // Member pointers get special handling, since there's no place for the
2704  // scope spec in the generic path below.
2705  if (getLang().CPlusPlus &&
2706      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2707       Tok.is(tok::annot_cxxscope))) {
2708    CXXScopeSpec SS;
2709    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
2710
2711    if (SS.isNotEmpty()) {
2712      if (Tok.isNot(tok::star)) {
2713        // The scope spec really belongs to the direct-declarator.
2714        D.getCXXScopeSpec() = SS;
2715        if (DirectDeclParser)
2716          (this->*DirectDeclParser)(D);
2717        return;
2718      }
2719
2720      SourceLocation Loc = ConsumeToken();
2721      D.SetRangeEnd(Loc);
2722      DeclSpec DS;
2723      ParseTypeQualifierListOpt(DS);
2724      D.ExtendWithDeclSpec(DS);
2725
2726      // Recurse to parse whatever is left.
2727      ParseDeclaratorInternal(D, DirectDeclParser);
2728
2729      // Sema will have to catch (syntactically invalid) pointers into global
2730      // scope. It has to catch pointers into namespace scope anyway.
2731      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2732                                                      Loc, DS.takeAttributes()),
2733                    /* Don't replace range end. */SourceLocation());
2734      return;
2735    }
2736  }
2737
2738  tok::TokenKind Kind = Tok.getKind();
2739  // Not a pointer, C++ reference, or block.
2740  if (Kind != tok::star && Kind != tok::caret &&
2741      (Kind != tok::amp || !getLang().CPlusPlus) &&
2742      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2743      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2744    if (DirectDeclParser)
2745      (this->*DirectDeclParser)(D);
2746    return;
2747  }
2748
2749  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2750  // '&&' -> rvalue reference
2751  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2752  D.SetRangeEnd(Loc);
2753
2754  if (Kind == tok::star || Kind == tok::caret) {
2755    // Is a pointer.
2756    DeclSpec DS;
2757
2758    ParseTypeQualifierListOpt(DS);
2759    D.ExtendWithDeclSpec(DS);
2760
2761    // Recursively parse the declarator.
2762    ParseDeclaratorInternal(D, DirectDeclParser);
2763    if (Kind == tok::star)
2764      // Remember that we parsed a pointer type, and remember the type-quals.
2765      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2766                                                DS.getConstSpecLoc(),
2767                                                DS.getVolatileSpecLoc(),
2768                                                DS.getRestrictSpecLoc(),
2769                                                DS.takeAttributes()),
2770                    SourceLocation());
2771    else
2772      // Remember that we parsed a Block type, and remember the type-quals.
2773      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2774                                                     Loc, DS.takeAttributes()),
2775                    SourceLocation());
2776  } else {
2777    // Is a reference
2778    DeclSpec DS;
2779
2780    // Complain about rvalue references in C++03, but then go on and build
2781    // the declarator.
2782    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2783      Diag(Loc, diag::ext_rvalue_reference);
2784
2785    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2786    // cv-qualifiers are introduced through the use of a typedef or of a
2787    // template type argument, in which case the cv-qualifiers are ignored.
2788    //
2789    // [GNU] Retricted references are allowed.
2790    // [GNU] Attributes on references are allowed.
2791    // [C++0x] Attributes on references are not allowed.
2792    ParseTypeQualifierListOpt(DS, true, false);
2793    D.ExtendWithDeclSpec(DS);
2794
2795    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2796      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2797        Diag(DS.getConstSpecLoc(),
2798             diag::err_invalid_reference_qualifier_application) << "const";
2799      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2800        Diag(DS.getVolatileSpecLoc(),
2801             diag::err_invalid_reference_qualifier_application) << "volatile";
2802    }
2803
2804    // Recursively parse the declarator.
2805    ParseDeclaratorInternal(D, DirectDeclParser);
2806
2807    if (D.getNumTypeObjects() > 0) {
2808      // C++ [dcl.ref]p4: There shall be no references to references.
2809      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2810      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2811        if (const IdentifierInfo *II = D.getIdentifier())
2812          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2813           << II;
2814        else
2815          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2816            << "type name";
2817
2818        // Once we've complained about the reference-to-reference, we
2819        // can go ahead and build the (technically ill-formed)
2820        // declarator: reference collapsing will take care of it.
2821      }
2822    }
2823
2824    // Remember that we parsed a reference type. It doesn't have type-quals.
2825    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2826                                                DS.takeAttributes(),
2827                                                Kind == tok::amp),
2828                  SourceLocation());
2829  }
2830}
2831
2832/// ParseDirectDeclarator
2833///       direct-declarator: [C99 6.7.5]
2834/// [C99]   identifier
2835///         '(' declarator ')'
2836/// [GNU]   '(' attributes declarator ')'
2837/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2838/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2839/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2840/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2841/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2842///         direct-declarator '(' parameter-type-list ')'
2843///         direct-declarator '(' identifier-list[opt] ')'
2844/// [GNU]   direct-declarator '(' parameter-forward-declarations
2845///                    parameter-type-list[opt] ')'
2846/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2847///                    cv-qualifier-seq[opt] exception-specification[opt]
2848/// [C++]   declarator-id
2849///
2850///       declarator-id: [C++ 8]
2851///         '...'[opt] id-expression
2852///         '::'[opt] nested-name-specifier[opt] type-name
2853///
2854///       id-expression: [C++ 5.1]
2855///         unqualified-id
2856///         qualified-id
2857///
2858///       unqualified-id: [C++ 5.1]
2859///         identifier
2860///         operator-function-id
2861///         conversion-function-id
2862///          '~' class-name
2863///         template-id
2864///
2865void Parser::ParseDirectDeclarator(Declarator &D) {
2866  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2867
2868  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2869    // ParseDeclaratorInternal might already have parsed the scope.
2870    if (D.getCXXScopeSpec().isEmpty()) {
2871      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
2872    }
2873
2874    if (D.getCXXScopeSpec().isValid()) {
2875      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2876        // Change the declaration context for name lookup, until this function
2877        // is exited (and the declarator has been parsed).
2878        DeclScopeObj.EnterDeclaratorScope();
2879    }
2880
2881    // C++0x [dcl.fct]p14:
2882    //   There is a syntactic ambiguity when an ellipsis occurs at the end
2883    //   of a parameter-declaration-clause without a preceding comma. In
2884    //   this case, the ellipsis is parsed as part of the
2885    //   abstract-declarator if the type of the parameter names a template
2886    //   parameter pack that has not been expanded; otherwise, it is parsed
2887    //   as part of the parameter-declaration-clause.
2888    if (Tok.is(tok::ellipsis) &&
2889        !((D.getContext() == Declarator::PrototypeContext ||
2890           D.getContext() == Declarator::BlockLiteralContext) &&
2891          NextToken().is(tok::r_paren) &&
2892          !Actions.containsUnexpandedParameterPacks(D)))
2893      D.setEllipsisLoc(ConsumeToken());
2894
2895    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2896        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2897      // We found something that indicates the start of an unqualified-id.
2898      // Parse that unqualified-id.
2899      bool AllowConstructorName;
2900      if (D.getDeclSpec().hasTypeSpecifier())
2901        AllowConstructorName = false;
2902      else if (D.getCXXScopeSpec().isSet())
2903        AllowConstructorName =
2904          (D.getContext() == Declarator::FileContext ||
2905           (D.getContext() == Declarator::MemberContext &&
2906            D.getDeclSpec().isFriendSpecified()));
2907      else
2908        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
2909
2910      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2911                             /*EnteringContext=*/true,
2912                             /*AllowDestructorName=*/true,
2913                             AllowConstructorName,
2914                             ParsedType(),
2915                             D.getName()) ||
2916          // Once we're past the identifier, if the scope was bad, mark the
2917          // whole declarator bad.
2918          D.getCXXScopeSpec().isInvalid()) {
2919        D.SetIdentifier(0, Tok.getLocation());
2920        D.setInvalidType(true);
2921      } else {
2922        // Parsed the unqualified-id; update range information and move along.
2923        if (D.getSourceRange().getBegin().isInvalid())
2924          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2925        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2926      }
2927      goto PastIdentifier;
2928    }
2929  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2930    assert(!getLang().CPlusPlus &&
2931           "There's a C++-specific check for tok::identifier above");
2932    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2933    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2934    ConsumeToken();
2935    goto PastIdentifier;
2936  }
2937
2938  if (Tok.is(tok::l_paren)) {
2939    // direct-declarator: '(' declarator ')'
2940    // direct-declarator: '(' attributes declarator ')'
2941    // Example: 'char (*X)'   or 'int (*XX)(void)'
2942    ParseParenDeclarator(D);
2943
2944    // If the declarator was parenthesized, we entered the declarator
2945    // scope when parsing the parenthesized declarator, then exited
2946    // the scope already. Re-enter the scope, if we need to.
2947    if (D.getCXXScopeSpec().isSet()) {
2948      // If there was an error parsing parenthesized declarator, declarator
2949      // scope may have been enterred before. Don't do it again.
2950      if (!D.isInvalidType() &&
2951          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2952        // Change the declaration context for name lookup, until this function
2953        // is exited (and the declarator has been parsed).
2954        DeclScopeObj.EnterDeclaratorScope();
2955    }
2956  } else if (D.mayOmitIdentifier()) {
2957    // This could be something simple like "int" (in which case the declarator
2958    // portion is empty), if an abstract-declarator is allowed.
2959    D.SetIdentifier(0, Tok.getLocation());
2960  } else {
2961    if (D.getContext() == Declarator::MemberContext)
2962      Diag(Tok, diag::err_expected_member_name_or_semi)
2963        << D.getDeclSpec().getSourceRange();
2964    else if (getLang().CPlusPlus)
2965      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2966    else
2967      Diag(Tok, diag::err_expected_ident_lparen);
2968    D.SetIdentifier(0, Tok.getLocation());
2969    D.setInvalidType(true);
2970  }
2971
2972 PastIdentifier:
2973  assert(D.isPastIdentifier() &&
2974         "Haven't past the location of the identifier yet?");
2975
2976  // Don't parse attributes unless we have an identifier.
2977  if (D.getIdentifier())
2978    MaybeParseCXX0XAttributes(D);
2979
2980  while (1) {
2981    if (Tok.is(tok::l_paren)) {
2982      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2983      // In such a case, check if we actually have a function declarator; if it
2984      // is not, the declarator has been fully parsed.
2985      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2986        // When not in file scope, warn for ambiguous function declarators, just
2987        // in case the author intended it as a variable definition.
2988        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2989        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2990          break;
2991      }
2992      ParsedAttributes attrs;
2993      ParseFunctionDeclarator(ConsumeParen(), D, attrs);
2994    } else if (Tok.is(tok::l_square)) {
2995      ParseBracketDeclarator(D);
2996    } else {
2997      break;
2998    }
2999  }
3000}
3001
3002/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3003/// only called before the identifier, so these are most likely just grouping
3004/// parens for precedence.  If we find that these are actually function
3005/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3006///
3007///       direct-declarator:
3008///         '(' declarator ')'
3009/// [GNU]   '(' attributes declarator ')'
3010///         direct-declarator '(' parameter-type-list ')'
3011///         direct-declarator '(' identifier-list[opt] ')'
3012/// [GNU]   direct-declarator '(' parameter-forward-declarations
3013///                    parameter-type-list[opt] ')'
3014///
3015void Parser::ParseParenDeclarator(Declarator &D) {
3016  SourceLocation StartLoc = ConsumeParen();
3017  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3018
3019  // Eat any attributes before we look at whether this is a grouping or function
3020  // declarator paren.  If this is a grouping paren, the attribute applies to
3021  // the type being built up, for example:
3022  //     int (__attribute__(()) *x)(long y)
3023  // If this ends up not being a grouping paren, the attribute applies to the
3024  // first argument, for example:
3025  //     int (__attribute__(()) int x)
3026  // In either case, we need to eat any attributes to be able to determine what
3027  // sort of paren this is.
3028  //
3029  ParsedAttributes attrs;
3030  bool RequiresArg = false;
3031  if (Tok.is(tok::kw___attribute)) {
3032    ParseGNUAttributes(attrs);
3033
3034    // We require that the argument list (if this is a non-grouping paren) be
3035    // present even if the attribute list was empty.
3036    RequiresArg = true;
3037  }
3038  // Eat any Microsoft extensions.
3039  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3040       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3041       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
3042    ParseMicrosoftTypeAttributes(attrs);
3043  }
3044  // Eat any Borland extensions.
3045  if  (Tok.is(tok::kw___pascal))
3046    ParseBorlandTypeAttributes(attrs);
3047
3048  // If we haven't past the identifier yet (or where the identifier would be
3049  // stored, if this is an abstract declarator), then this is probably just
3050  // grouping parens. However, if this could be an abstract-declarator, then
3051  // this could also be the start of function arguments (consider 'void()').
3052  bool isGrouping;
3053
3054  if (!D.mayOmitIdentifier()) {
3055    // If this can't be an abstract-declarator, this *must* be a grouping
3056    // paren, because we haven't seen the identifier yet.
3057    isGrouping = true;
3058  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3059             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3060             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3061    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3062    // considered to be a type, not a K&R identifier-list.
3063    isGrouping = false;
3064  } else {
3065    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3066    isGrouping = true;
3067  }
3068
3069  // If this is a grouping paren, handle:
3070  // direct-declarator: '(' declarator ')'
3071  // direct-declarator: '(' attributes declarator ')'
3072  if (isGrouping) {
3073    bool hadGroupingParens = D.hasGroupingParens();
3074    D.setGroupingParens(true);
3075    if (!attrs.empty())
3076      D.addAttributes(attrs.getList(), SourceLocation());
3077
3078    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3079    // Match the ')'.
3080    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3081    D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc), EndLoc);
3082
3083    D.setGroupingParens(hadGroupingParens);
3084    return;
3085  }
3086
3087  // Okay, if this wasn't a grouping paren, it must be the start of a function
3088  // argument list.  Recognize that this declarator will never have an
3089  // identifier (and remember where it would have been), then call into
3090  // ParseFunctionDeclarator to handle of argument list.
3091  D.SetIdentifier(0, Tok.getLocation());
3092
3093  ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
3094}
3095
3096/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3097/// declarator D up to a paren, which indicates that we are parsing function
3098/// arguments.
3099///
3100/// If AttrList is non-null, then the caller parsed those arguments immediately
3101/// after the open paren - they should be considered to be the first argument of
3102/// a parameter.  If RequiresArg is true, then the first argument of the
3103/// function is required to be present and required to not be an identifier
3104/// list.
3105///
3106/// This method also handles this portion of the grammar:
3107///       parameter-type-list: [C99 6.7.5]
3108///         parameter-list
3109///         parameter-list ',' '...'
3110/// [C++]   parameter-list '...'
3111///
3112///       parameter-list: [C99 6.7.5]
3113///         parameter-declaration
3114///         parameter-list ',' parameter-declaration
3115///
3116///       parameter-declaration: [C99 6.7.5]
3117///         declaration-specifiers declarator
3118/// [C++]   declaration-specifiers declarator '=' assignment-expression
3119/// [GNU]   declaration-specifiers declarator attributes
3120///         declaration-specifiers abstract-declarator[opt]
3121/// [C++]   declaration-specifiers abstract-declarator[opt]
3122///           '=' assignment-expression
3123/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3124///
3125/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]",
3126/// C++0x "ref-qualifier[opt]" and "exception-specification[opt]".
3127///
3128void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3129                                     ParsedAttributes &attrs,
3130                                     bool RequiresArg) {
3131  // lparen is already consumed!
3132  assert(D.isPastIdentifier() && "Should not call before identifier!");
3133
3134  ParsedType TrailingReturnType;
3135
3136  // This parameter list may be empty.
3137  if (Tok.is(tok::r_paren)) {
3138    if (RequiresArg)
3139      Diag(Tok, diag::err_argument_required_after_attribute);
3140
3141    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
3142    SourceLocation EndLoc = RParenLoc;
3143
3144    // cv-qualifier-seq[opt].
3145    DeclSpec DS;
3146    SourceLocation RefQualifierLoc;
3147    bool RefQualifierIsLValueRef = true;
3148    bool hasExceptionSpec = false;
3149    SourceLocation ThrowLoc;
3150    bool hasAnyExceptionSpec = false;
3151    llvm::SmallVector<ParsedType, 2> Exceptions;
3152    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3153    if (getLang().CPlusPlus) {
3154      MaybeParseCXX0XAttributes(attrs);
3155
3156      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3157      if (!DS.getSourceRange().getEnd().isInvalid())
3158        EndLoc = DS.getSourceRange().getEnd();
3159
3160      // Parse ref-qualifier[opt]
3161      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3162        if (!getLang().CPlusPlus0x)
3163          Diag(Tok, diag::ext_ref_qualifier);
3164
3165        RefQualifierIsLValueRef = Tok.is(tok::amp);
3166        RefQualifierLoc = ConsumeToken();
3167        EndLoc = RefQualifierLoc;
3168      }
3169
3170      // Parse exception-specification[opt].
3171      if (Tok.is(tok::kw_throw)) {
3172        hasExceptionSpec = true;
3173        ThrowLoc = Tok.getLocation();
3174        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3175                                    hasAnyExceptionSpec);
3176        assert(Exceptions.size() == ExceptionRanges.size() &&
3177               "Produced different number of exception types and ranges.");
3178      }
3179
3180      // Parse trailing-return-type.
3181      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3182        TrailingReturnType = ParseTrailingReturnType().get();
3183      }
3184    }
3185
3186    // Remember that we parsed a function type, and remember the attributes.
3187    // int() -> no prototype, no '...'.
3188    D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3189                                               /*prototype*/getLang().CPlusPlus,
3190                                               /*variadic*/ false,
3191                                               SourceLocation(),
3192                                               /*arglist*/ 0, 0,
3193                                               DS.getTypeQualifiers(),
3194                                               RefQualifierIsLValueRef,
3195                                               RefQualifierLoc,
3196                                               hasExceptionSpec, ThrowLoc,
3197                                               hasAnyExceptionSpec,
3198                                               Exceptions.data(),
3199                                               ExceptionRanges.data(),
3200                                               Exceptions.size(),
3201                                               LParenLoc, RParenLoc, D,
3202                                               TrailingReturnType),
3203                  EndLoc);
3204    return;
3205  }
3206
3207  // Alternatively, this parameter list may be an identifier list form for a
3208  // K&R-style function:  void foo(a,b,c)
3209  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
3210      && !TryAltiVecVectorToken()) {
3211    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
3212      // K&R identifier lists can't have typedefs as identifiers, per
3213      // C99 6.7.5.3p11.
3214      if (RequiresArg)
3215        Diag(Tok, diag::err_argument_required_after_attribute);
3216
3217      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
3218      // normal declarators, not for abstract-declarators.  Get the first
3219      // identifier.
3220      Token FirstTok = Tok;
3221      ConsumeToken();  // eat the first identifier.
3222
3223      // Identifier lists follow a really simple grammar: the identifiers can
3224      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
3225      // identifier lists are really rare in the brave new modern world, and it
3226      // is very common for someone to typo a type in a non-k&r style list.  If
3227      // we are presented with something like: "void foo(intptr x, float y)",
3228      // we don't want to start parsing the function declarator as though it is
3229      // a K&R style declarator just because intptr is an invalid type.
3230      //
3231      // To handle this, we check to see if the token after the first identifier
3232      // is a "," or ")".  Only if so, do we parse it as an identifier list.
3233      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
3234        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
3235                                                   FirstTok.getIdentifierInfo(),
3236                                                     FirstTok.getLocation(), D);
3237
3238      // If we get here, the code is invalid.  Push the first identifier back
3239      // into the token stream and parse the first argument as an (invalid)
3240      // normal argument declarator.
3241      PP.EnterToken(Tok);
3242      Tok = FirstTok;
3243    }
3244  }
3245
3246  // Finally, a normal, non-empty parameter type list.
3247
3248  // Build up an array of information about the parsed arguments.
3249  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3250
3251  // Enter function-declaration scope, limiting any declarators to the
3252  // function prototype scope, including parameter declarators.
3253  ParseScope PrototypeScope(this,
3254                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3255
3256  bool IsVariadic = false;
3257  SourceLocation EllipsisLoc;
3258  while (1) {
3259    if (Tok.is(tok::ellipsis)) {
3260      IsVariadic = true;
3261      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3262      break;
3263    }
3264
3265    // Parse the declaration-specifiers.
3266    // Just use the ParsingDeclaration "scope" of the declarator.
3267    DeclSpec DS;
3268
3269    // Skip any Microsoft attributes before a param.
3270    if (getLang().Microsoft && Tok.is(tok::l_square))
3271      ParseMicrosoftAttributes(DS.getAttributes());
3272
3273    SourceLocation DSStart = Tok.getLocation();
3274
3275    // If the caller parsed attributes for the first argument, add them now.
3276    // Take them so that we only apply the attributes to the first parameter.
3277    DS.takeAttributesFrom(attrs);
3278
3279    ParseDeclarationSpecifiers(DS);
3280
3281    // Parse the declarator.  This is "PrototypeContext", because we must
3282    // accept either 'declarator' or 'abstract-declarator' here.
3283    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3284    ParseDeclarator(ParmDecl);
3285
3286    // Parse GNU attributes, if present.
3287    MaybeParseGNUAttributes(ParmDecl);
3288
3289    // Remember this parsed parameter in ParamInfo.
3290    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3291
3292    // DefArgToks is used when the parsing of default arguments needs
3293    // to be delayed.
3294    CachedTokens *DefArgToks = 0;
3295
3296    // If no parameter was specified, verify that *something* was specified,
3297    // otherwise we have a missing type and identifier.
3298    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3299        ParmDecl.getNumTypeObjects() == 0) {
3300      // Completely missing, emit error.
3301      Diag(DSStart, diag::err_missing_param);
3302    } else {
3303      // Otherwise, we have something.  Add it and let semantic analysis try
3304      // to grok it and add the result to the ParamInfo we are building.
3305
3306      // Inform the actions module about the parameter declarator, so it gets
3307      // added to the current scope.
3308      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3309
3310      // Parse the default argument, if any. We parse the default
3311      // arguments in all dialects; the semantic analysis in
3312      // ActOnParamDefaultArgument will reject the default argument in
3313      // C.
3314      if (Tok.is(tok::equal)) {
3315        SourceLocation EqualLoc = Tok.getLocation();
3316
3317        // Parse the default argument
3318        if (D.getContext() == Declarator::MemberContext) {
3319          // If we're inside a class definition, cache the tokens
3320          // corresponding to the default argument. We'll actually parse
3321          // them when we see the end of the class definition.
3322          // FIXME: Templates will require something similar.
3323          // FIXME: Can we use a smart pointer for Toks?
3324          DefArgToks = new CachedTokens;
3325
3326          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3327                                    /*StopAtSemi=*/true,
3328                                    /*ConsumeFinalToken=*/false)) {
3329            delete DefArgToks;
3330            DefArgToks = 0;
3331            Actions.ActOnParamDefaultArgumentError(Param);
3332          } else {
3333            // Mark the end of the default argument so that we know when to
3334            // stop when we parse it later on.
3335            Token DefArgEnd;
3336            DefArgEnd.startToken();
3337            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3338            DefArgEnd.setLocation(Tok.getLocation());
3339            DefArgToks->push_back(DefArgEnd);
3340            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3341                                                (*DefArgToks)[1].getLocation());
3342          }
3343        } else {
3344          // Consume the '='.
3345          ConsumeToken();
3346
3347          // The argument isn't actually potentially evaluated unless it is
3348          // used.
3349          EnterExpressionEvaluationContext Eval(Actions,
3350                                              Sema::PotentiallyEvaluatedIfUsed);
3351
3352          ExprResult DefArgResult(ParseAssignmentExpression());
3353          if (DefArgResult.isInvalid()) {
3354            Actions.ActOnParamDefaultArgumentError(Param);
3355            SkipUntil(tok::comma, tok::r_paren, true, true);
3356          } else {
3357            // Inform the actions module about the default argument
3358            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3359                                              DefArgResult.take());
3360          }
3361        }
3362      }
3363
3364      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3365                                          ParmDecl.getIdentifierLoc(), Param,
3366                                          DefArgToks));
3367    }
3368
3369    // If the next token is a comma, consume it and keep reading arguments.
3370    if (Tok.isNot(tok::comma)) {
3371      if (Tok.is(tok::ellipsis)) {
3372        IsVariadic = true;
3373        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3374
3375        if (!getLang().CPlusPlus) {
3376          // We have ellipsis without a preceding ',', which is ill-formed
3377          // in C. Complain and provide the fix.
3378          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3379            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3380        }
3381      }
3382
3383      break;
3384    }
3385
3386    // Consume the comma.
3387    ConsumeToken();
3388  }
3389
3390  // If we have the closing ')', eat it.
3391  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3392  SourceLocation EndLoc = RParenLoc;
3393
3394  DeclSpec DS;
3395  SourceLocation RefQualifierLoc;
3396  bool RefQualifierIsLValueRef = true;
3397  bool hasExceptionSpec = false;
3398  SourceLocation ThrowLoc;
3399  bool hasAnyExceptionSpec = false;
3400  llvm::SmallVector<ParsedType, 2> Exceptions;
3401  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3402
3403  if (getLang().CPlusPlus) {
3404    MaybeParseCXX0XAttributes(attrs);
3405
3406    // Parse cv-qualifier-seq[opt].
3407    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3408      if (!DS.getSourceRange().getEnd().isInvalid())
3409        EndLoc = DS.getSourceRange().getEnd();
3410
3411    // Parse ref-qualifier[opt]
3412    if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3413      if (!getLang().CPlusPlus0x)
3414        Diag(Tok, diag::ext_ref_qualifier);
3415
3416      RefQualifierIsLValueRef = Tok.is(tok::amp);
3417      RefQualifierLoc = ConsumeToken();
3418      EndLoc = RefQualifierLoc;
3419    }
3420
3421    // Parse exception-specification[opt].
3422    if (Tok.is(tok::kw_throw)) {
3423      hasExceptionSpec = true;
3424      ThrowLoc = Tok.getLocation();
3425      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3426                                  hasAnyExceptionSpec);
3427      assert(Exceptions.size() == ExceptionRanges.size() &&
3428             "Produced different number of exception types and ranges.");
3429    }
3430
3431    // Parse trailing-return-type.
3432    if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3433      TrailingReturnType = ParseTrailingReturnType().get();
3434    }
3435  }
3436
3437  // FIXME: We should leave the prototype scope before parsing the exception
3438  // specification, and then reenter it when parsing the trailing return type.
3439
3440  // Leave prototype scope.
3441  PrototypeScope.Exit();
3442
3443  // Remember that we parsed a function type, and remember the attributes.
3444  D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3445                                             /*proto*/true, IsVariadic,
3446                                             EllipsisLoc,
3447                                             ParamInfo.data(), ParamInfo.size(),
3448                                             DS.getTypeQualifiers(),
3449                                             RefQualifierIsLValueRef,
3450                                             RefQualifierLoc,
3451                                             hasExceptionSpec, ThrowLoc,
3452                                             hasAnyExceptionSpec,
3453                                             Exceptions.data(),
3454                                             ExceptionRanges.data(),
3455                                             Exceptions.size(),
3456                                             LParenLoc, RParenLoc, D,
3457                                             TrailingReturnType),
3458                EndLoc);
3459}
3460
3461/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3462/// we found a K&R-style identifier list instead of a type argument list.  The
3463/// first identifier has already been consumed, and the current token is the
3464/// token right after it.
3465///
3466///       identifier-list: [C99 6.7.5]
3467///         identifier
3468///         identifier-list ',' identifier
3469///
3470void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3471                                                   IdentifierInfo *FirstIdent,
3472                                                   SourceLocation FirstIdentLoc,
3473                                                   Declarator &D) {
3474  // Build up an array of information about the parsed arguments.
3475  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3476  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3477
3478  // If there was no identifier specified for the declarator, either we are in
3479  // an abstract-declarator, or we are in a parameter declarator which was found
3480  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3481  // diagnose this.
3482  if (!D.getIdentifier())
3483    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3484
3485  // The first identifier was already read, and is known to be the first
3486  // identifier in the list.  Remember this identifier in ParamInfo.
3487  ParamsSoFar.insert(FirstIdent);
3488  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
3489
3490  while (Tok.is(tok::comma)) {
3491    // Eat the comma.
3492    ConsumeToken();
3493
3494    // If this isn't an identifier, report the error and skip until ')'.
3495    if (Tok.isNot(tok::identifier)) {
3496      Diag(Tok, diag::err_expected_ident);
3497      SkipUntil(tok::r_paren);
3498      return;
3499    }
3500
3501    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3502
3503    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3504    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3505      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3506
3507    // Verify that the argument identifier has not already been mentioned.
3508    if (!ParamsSoFar.insert(ParmII)) {
3509      Diag(Tok, diag::err_param_redefinition) << ParmII;
3510    } else {
3511      // Remember this identifier in ParamInfo.
3512      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3513                                                     Tok.getLocation(),
3514                                                     0));
3515    }
3516
3517    // Eat the identifier.
3518    ConsumeToken();
3519  }
3520
3521  // If we have the closing ')', eat it and we're done.
3522  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3523
3524  // Remember that we parsed a function type, and remember the attributes.  This
3525  // function type is always a K&R style function type, which is not varargs and
3526  // has no prototype.
3527  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
3528                                             /*proto*/false, /*varargs*/false,
3529                                             SourceLocation(),
3530                                             &ParamInfo[0], ParamInfo.size(),
3531                                             /*TypeQuals*/0,
3532                                             true, SourceLocation(),
3533                                             /*exception*/false,
3534                                             SourceLocation(), false, 0, 0, 0,
3535                                             LParenLoc, RLoc, D),
3536                RLoc);
3537}
3538
3539/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3540/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3541/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3542/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3543/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3544void Parser::ParseBracketDeclarator(Declarator &D) {
3545  SourceLocation StartLoc = ConsumeBracket();
3546
3547  // C array syntax has many features, but by-far the most common is [] and [4].
3548  // This code does a fast path to handle some of the most obvious cases.
3549  if (Tok.getKind() == tok::r_square) {
3550    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3551    ParsedAttributes attrs;
3552    MaybeParseCXX0XAttributes(attrs);
3553
3554    // Remember that we parsed the empty array type.
3555    ExprResult NumElements;
3556    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, false, 0,
3557                                            StartLoc, EndLoc),
3558                  EndLoc);
3559    return;
3560  } else if (Tok.getKind() == tok::numeric_constant &&
3561             GetLookAheadToken(1).is(tok::r_square)) {
3562    // [4] is very common.  Parse the numeric constant expression.
3563    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3564    ConsumeToken();
3565
3566    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3567    ParsedAttributes attrs;
3568    MaybeParseCXX0XAttributes(attrs);
3569
3570    // Remember that we parsed a array type, and remember its features.
3571    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, 0,
3572                                            ExprRes.release(),
3573                                            StartLoc, EndLoc),
3574                  EndLoc);
3575    return;
3576  }
3577
3578  // If valid, this location is the position where we read the 'static' keyword.
3579  SourceLocation StaticLoc;
3580  if (Tok.is(tok::kw_static))
3581    StaticLoc = ConsumeToken();
3582
3583  // If there is a type-qualifier-list, read it now.
3584  // Type qualifiers in an array subscript are a C99 feature.
3585  DeclSpec DS;
3586  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3587
3588  // If we haven't already read 'static', check to see if there is one after the
3589  // type-qualifier-list.
3590  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3591    StaticLoc = ConsumeToken();
3592
3593  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3594  bool isStar = false;
3595  ExprResult NumElements;
3596
3597  // Handle the case where we have '[*]' as the array size.  However, a leading
3598  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3599  // the the token after the star is a ']'.  Since stars in arrays are
3600  // infrequent, use of lookahead is not costly here.
3601  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3602    ConsumeToken();  // Eat the '*'.
3603
3604    if (StaticLoc.isValid()) {
3605      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3606      StaticLoc = SourceLocation();  // Drop the static.
3607    }
3608    isStar = true;
3609  } else if (Tok.isNot(tok::r_square)) {
3610    // Note, in C89, this production uses the constant-expr production instead
3611    // of assignment-expr.  The only difference is that assignment-expr allows
3612    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3613    // are not i-c-e's, so we don't need to distinguish between the two here.
3614
3615    // Parse the constant-expression or assignment-expression now (depending
3616    // on dialect).
3617    if (getLang().CPlusPlus)
3618      NumElements = ParseConstantExpression();
3619    else
3620      NumElements = ParseAssignmentExpression();
3621  }
3622
3623  // If there was an error parsing the assignment-expression, recover.
3624  if (NumElements.isInvalid()) {
3625    D.setInvalidType(true);
3626    // If the expression was invalid, skip it.
3627    SkipUntil(tok::r_square);
3628    return;
3629  }
3630
3631  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3632
3633  ParsedAttributes attrs;
3634  MaybeParseCXX0XAttributes(attrs);
3635
3636  // Remember that we parsed a array type, and remember its features.
3637  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), attrs,
3638                                          StaticLoc.isValid(), isStar,
3639                                          NumElements.release(),
3640                                          StartLoc, EndLoc),
3641                EndLoc);
3642}
3643
3644/// [GNU]   typeof-specifier:
3645///           typeof ( expressions )
3646///           typeof ( type-name )
3647/// [GNU/C++] typeof unary-expression
3648///
3649void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3650  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3651  Token OpTok = Tok;
3652  SourceLocation StartLoc = ConsumeToken();
3653
3654  const bool hasParens = Tok.is(tok::l_paren);
3655
3656  bool isCastExpr;
3657  ParsedType CastTy;
3658  SourceRange CastRange;
3659  ExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
3660                                                         isCastExpr,
3661                                                         CastTy,
3662                                                         CastRange);
3663  if (hasParens)
3664    DS.setTypeofParensRange(CastRange);
3665
3666  if (CastRange.getEnd().isInvalid())
3667    // FIXME: Not accurate, the range gets one token more than it should.
3668    DS.SetRangeEnd(Tok.getLocation());
3669  else
3670    DS.SetRangeEnd(CastRange.getEnd());
3671
3672  if (isCastExpr) {
3673    if (!CastTy) {
3674      DS.SetTypeSpecError();
3675      return;
3676    }
3677
3678    const char *PrevSpec = 0;
3679    unsigned DiagID;
3680    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3681    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3682                           DiagID, CastTy))
3683      Diag(StartLoc, DiagID) << PrevSpec;
3684    return;
3685  }
3686
3687  // If we get here, the operand to the typeof was an expresion.
3688  if (Operand.isInvalid()) {
3689    DS.SetTypeSpecError();
3690    return;
3691  }
3692
3693  const char *PrevSpec = 0;
3694  unsigned DiagID;
3695  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3696  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3697                         DiagID, Operand.get()))
3698    Diag(StartLoc, DiagID) << PrevSpec;
3699}
3700
3701
3702/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
3703/// from TryAltiVecVectorToken.
3704bool Parser::TryAltiVecVectorTokenOutOfLine() {
3705  Token Next = NextToken();
3706  switch (Next.getKind()) {
3707  default: return false;
3708  case tok::kw_short:
3709  case tok::kw_long:
3710  case tok::kw_signed:
3711  case tok::kw_unsigned:
3712  case tok::kw_void:
3713  case tok::kw_char:
3714  case tok::kw_int:
3715  case tok::kw_float:
3716  case tok::kw_double:
3717  case tok::kw_bool:
3718  case tok::kw___pixel:
3719    Tok.setKind(tok::kw___vector);
3720    return true;
3721  case tok::identifier:
3722    if (Next.getIdentifierInfo() == Ident_pixel) {
3723      Tok.setKind(tok::kw___vector);
3724      return true;
3725    }
3726    return false;
3727  }
3728}
3729
3730bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
3731                                      const char *&PrevSpec, unsigned &DiagID,
3732                                      bool &isInvalid) {
3733  if (Tok.getIdentifierInfo() == Ident_vector) {
3734    Token Next = NextToken();
3735    switch (Next.getKind()) {
3736    case tok::kw_short:
3737    case tok::kw_long:
3738    case tok::kw_signed:
3739    case tok::kw_unsigned:
3740    case tok::kw_void:
3741    case tok::kw_char:
3742    case tok::kw_int:
3743    case tok::kw_float:
3744    case tok::kw_double:
3745    case tok::kw_bool:
3746    case tok::kw___pixel:
3747      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3748      return true;
3749    case tok::identifier:
3750      if (Next.getIdentifierInfo() == Ident_pixel) {
3751        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3752        return true;
3753      }
3754      break;
3755    default:
3756      break;
3757    }
3758  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
3759             DS.isTypeAltiVecVector()) {
3760    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
3761    return true;
3762  }
3763  return false;
3764}
3765