MicrosoftCXXABI.cpp revision 210008
1//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targetting the Microsoft Visual C++ ABI.
11// The class in this file generates structures that follow the Microsoft
12// Visual C++ ABI, which is actually not very well documented at all outside
13// of Microsoft.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGCXXABI.h"
18#include "CodeGenModule.h"
19#include "Mangle.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "CGVTables.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30namespace {
31
32/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
33/// Microsoft Visual C++ ABI.
34class MicrosoftCXXNameMangler {
35  MangleContext &Context;
36  llvm::raw_svector_ostream Out;
37
38  ASTContext &getASTContext() const { return Context.getASTContext(); }
39
40public:
41  MicrosoftCXXNameMangler(MangleContext &C, llvm::SmallVectorImpl<char> &Res)
42  : Context(C), Out(Res) { }
43
44  llvm::raw_svector_ostream &getStream() { return Out; }
45
46  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?");
47  void mangleName(const NamedDecl *ND);
48  void mangleFunctionEncoding(const FunctionDecl *FD);
49  void mangleVariableEncoding(const VarDecl *VD);
50  void mangleNumber(int64_t Number);
51  void mangleType(QualType T);
52
53private:
54  void mangleUnqualifiedName(const NamedDecl *ND) {
55    mangleUnqualifiedName(ND, ND->getDeclName());
56  }
57  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
58  void mangleSourceName(const IdentifierInfo *II);
59  void manglePostfix(const DeclContext *DC, bool NoFunction=false);
60  void mangleOperatorName(OverloadedOperatorKind OO);
61  void mangleQualifiers(Qualifiers Quals, bool IsMember);
62
63  void mangleObjCMethodName(const ObjCMethodDecl *MD);
64
65  // Declare manglers for every type class.
66#define ABSTRACT_TYPE(CLASS, PARENT)
67#define NON_CANONICAL_TYPE(CLASS, PARENT)
68#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
69#include "clang/AST/TypeNodes.def"
70
71  void mangleType(const TagType*);
72  void mangleType(const FunctionType *T, const FunctionDecl *D,
73                  bool IsStructor, bool IsInstMethod);
74  void mangleType(const ArrayType *T, bool IsGlobal);
75  void mangleExtraDimensions(QualType T);
76  void mangleFunctionClass(const FunctionDecl *FD);
77  void mangleCallingConvention(const FunctionType *T);
78  void mangleThrowSpecification(const FunctionProtoType *T);
79
80};
81
82/// MicrosoftMangleContext - Overrides the default MangleContext for the
83/// Microsoft Visual C++ ABI.
84class MicrosoftMangleContext : public MangleContext {
85public:
86  MicrosoftMangleContext(ASTContext &Context,
87                         Diagnostic &Diags) : MangleContext(Context, Diags) { }
88  virtual bool shouldMangleDeclName(const NamedDecl *D);
89  virtual void mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &);
90  virtual void mangleThunk(const CXXMethodDecl *MD,
91                           const ThunkInfo &Thunk,
92                           llvm::SmallVectorImpl<char> &);
93  virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
94                                  const ThisAdjustment &ThisAdjustment,
95                                  llvm::SmallVectorImpl<char> &);
96  virtual void mangleGuardVariable(const VarDecl *D,
97                                   llvm::SmallVectorImpl<char> &);
98  virtual void mangleCXXVTable(const CXXRecordDecl *RD,
99                               llvm::SmallVectorImpl<char> &);
100  virtual void mangleCXXVTT(const CXXRecordDecl *RD,
101                            llvm::SmallVectorImpl<char> &);
102  virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
103                                   const CXXRecordDecl *Type,
104                                   llvm::SmallVectorImpl<char> &);
105  virtual void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
106  virtual void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
107  virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
108                             llvm::SmallVectorImpl<char> &);
109  virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
110                             llvm::SmallVectorImpl<char> &);
111};
112
113class MicrosoftCXXABI : public CXXABI {
114  MicrosoftMangleContext MangleCtx;
115public:
116  MicrosoftCXXABI(CodeGenModule &CGM)
117   : MangleCtx(CGM.getContext(), CGM.getDiags()) {}
118
119  MicrosoftMangleContext &getMangleContext() {
120    return MangleCtx;
121  }
122};
123
124}
125
126static bool isInCLinkageSpecification(const Decl *D) {
127  D = D->getCanonicalDecl();
128  for (const DeclContext *DC = D->getDeclContext();
129       !DC->isTranslationUnit(); DC = DC->getParent()) {
130    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
131      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
132  }
133
134  return false;
135}
136
137bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
138  // In C, functions with no attributes never need to be mangled. Fastpath them.
139  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
140    return false;
141
142  // Any decl can be declared with __asm("foo") on it, and this takes precedence
143  // over all other naming in the .o file.
144  if (D->hasAttr<AsmLabelAttr>())
145    return true;
146
147  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
148  // (always) as does passing a C++ member function and a function
149  // whose name is not a simple identifier.
150  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
151  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
152             !FD->getDeclName().isIdentifier()))
153    return true;
154
155  // Otherwise, no mangling is done outside C++ mode.
156  if (!getASTContext().getLangOptions().CPlusPlus)
157    return false;
158
159  // Variables at global scope with internal linkage are not mangled.
160  if (!FD) {
161    const DeclContext *DC = D->getDeclContext();
162    if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
163      return false;
164  }
165
166  // C functions and "main" are not mangled.
167  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
168    return false;
169
170  return true;
171}
172
173void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
174                                     llvm::StringRef Prefix) {
175  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
176  // Therefore it's really important that we don't decorate the
177  // name with leading underscores or leading/trailing at signs. So, emit a
178  // asm marker at the start so we get the name right.
179  Out << '\01';  // LLVM IR Marker for __asm("foo")
180
181  // Any decl can be declared with __asm("foo") on it, and this takes precedence
182  // over all other naming in the .o file.
183  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
184    // If we have an asm name, then we use it as the mangling.
185    Out << ALA->getLabel();
186    return;
187  }
188
189  // <mangled-name> ::= ? <name> <type-encoding>
190  Out << Prefix;
191  mangleName(D);
192  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
193    mangleFunctionEncoding(FD);
194  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
195    mangleVariableEncoding(VD);
196  // TODO: Fields? Can MSVC even mangle them?
197}
198
199void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
200  // <type-encoding> ::= <function-class> <function-type>
201
202  // Don't mangle in the type if this isn't a decl we should typically mangle.
203  if (!Context.shouldMangleDeclName(FD))
204    return;
205
206  // We should never ever see a FunctionNoProtoType at this point.
207  // We don't even know how to mangle their types anyway :).
208  const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType());
209
210  bool InStructor = false, InInstMethod = false;
211  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
212  if (MD) {
213    if (MD->isInstance())
214      InInstMethod = true;
215    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
216      InStructor = true;
217  }
218
219  // First, the function class.
220  mangleFunctionClass(FD);
221
222  mangleType(FT, FD, InStructor, InInstMethod);
223}
224
225void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
226  // <type-encoding> ::= <storage-class> <variable-type>
227  // <storage-class> ::= 0  # private static member
228  //                 ::= 1  # protected static member
229  //                 ::= 2  # public static member
230  //                 ::= 3  # global
231  //                 ::= 4  # static local
232
233  // The first character in the encoding (after the name) is the storage class.
234  if (VD->isStaticDataMember()) {
235    // If it's a static member, it also encodes the access level.
236    switch (VD->getAccess()) {
237      default:
238      case AS_private: Out << '0'; break;
239      case AS_protected: Out << '1'; break;
240      case AS_public: Out << '2'; break;
241    }
242  }
243  else if (!VD->isStaticLocal())
244    Out << '3';
245  else
246    Out << '4';
247  // Now mangle the type.
248  // <variable-type> ::= <type> <cvr-qualifiers>
249  //                 ::= <type> A # pointers, references, arrays
250  // Pointers and references are odd. The type of 'int * const foo;' gets
251  // mangled as 'QAHA' instead of 'PAHB', for example.
252  QualType Ty = VD->getType();
253  if (Ty->isPointerType() || Ty->isReferenceType()) {
254    mangleType(Ty);
255    Out << 'A';
256  } else if (Ty->isArrayType()) {
257    // Global arrays are funny, too.
258    mangleType(static_cast<ArrayType *>(Ty.getTypePtr()), true);
259    Out << 'A';
260  } else {
261    mangleType(Ty.getLocalUnqualifiedType());
262    mangleQualifiers(Ty.getLocalQualifiers(), false);
263  }
264}
265
266void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
267  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
268  const DeclContext *DC = ND->getDeclContext();
269
270  // Always start with the unqualified name.
271  mangleUnqualifiedName(ND);
272
273  // If this is an extern variable declared locally, the relevant DeclContext
274  // is that of the containing namespace, or the translation unit.
275  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
276    while (!DC->isNamespace() && !DC->isTranslationUnit())
277      DC = DC->getParent();
278
279  manglePostfix(DC);
280
281  // Terminate the whole name with an '@'.
282  Out << '@';
283}
284
285void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
286  // <number> ::= [?] <decimal digit> # <= 9
287  //          ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc...
288  if (Number < 0) {
289    Out << '?';
290    Number = -Number;
291  }
292  if (Number >= 1 && Number <= 10) {
293    Out << Number-1;
294  } else {
295    // We have to build up the encoding in reverse order, so it will come
296    // out right when we write it out.
297    char Encoding[16];
298    char *EndPtr = Encoding+sizeof(Encoding);
299    char *CurPtr = EndPtr;
300    while (Number) {
301      *--CurPtr = 'A' + (Number % 16);
302      Number /= 16;
303    }
304    Out.write(CurPtr, EndPtr-CurPtr);
305    Out << '@';
306  }
307}
308
309void
310MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
311                                               DeclarationName Name) {
312  //  <unqualified-name> ::= <operator-name>
313  //                     ::= <ctor-dtor-name>
314  //                     ::= <source-name>
315  switch (Name.getNameKind()) {
316    case DeclarationName::Identifier: {
317      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
318        mangleSourceName(II);
319        break;
320      }
321
322      // Otherwise, an anonymous entity.  We must have a declaration.
323      assert(ND && "mangling empty name without declaration");
324
325      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
326        if (NS->isAnonymousNamespace()) {
327          Out << "?A";
328          break;
329        }
330      }
331
332      // We must have an anonymous struct.
333      const TagDecl *TD = cast<TagDecl>(ND);
334      if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
335        assert(TD->getDeclContext() == D->getDeclContext() &&
336               "Typedef should not be in another decl context!");
337        assert(D->getDeclName().getAsIdentifierInfo() &&
338               "Typedef was not named!");
339        mangleSourceName(D->getDeclName().getAsIdentifierInfo());
340        break;
341      }
342
343      // When VC encounters an anonymous type with no tag and no typedef,
344      // it literally emits '<unnamed-tag>'.
345      Out << "<unnamed-tag>";
346      break;
347    }
348
349    case DeclarationName::ObjCZeroArgSelector:
350    case DeclarationName::ObjCOneArgSelector:
351    case DeclarationName::ObjCMultiArgSelector:
352      assert(false && "Can't mangle Objective-C selector names here!");
353      break;
354
355    case DeclarationName::CXXConstructorName:
356      assert(false && "Can't mangle constructors yet!");
357      break;
358
359    case DeclarationName::CXXDestructorName:
360      assert(false && "Can't mangle destructors yet!");
361      break;
362
363    case DeclarationName::CXXConversionFunctionName:
364      // <operator-name> ::= ?B # (cast)
365      // The target type is encoded as the return type.
366      Out << "?B";
367      break;
368
369    case DeclarationName::CXXOperatorName:
370      mangleOperatorName(Name.getCXXOverloadedOperator());
371      break;
372
373    case DeclarationName::CXXLiteralOperatorName:
374      // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
375      assert(false && "Don't know how to mangle literal operators yet!");
376      break;
377
378    case DeclarationName::CXXUsingDirective:
379      assert(false && "Can't mangle a using directive name!");
380      break;
381  }
382}
383
384void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
385                                            bool NoFunction) {
386  // <postfix> ::= <unqualified-name> [<postfix>]
387  //           ::= <template-postfix> <template-args> [<postfix>]
388  //           ::= <template-param>
389  //           ::= <substitution> [<postfix>]
390
391  if (!DC) return;
392
393  while (isa<LinkageSpecDecl>(DC))
394    DC = DC->getParent();
395
396  if (DC->isTranslationUnit())
397    return;
398
399  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
400    llvm::SmallString<64> Name;
401    Context.mangleBlock(GlobalDecl(), BD, Name);
402    Out << Name << '@';
403    return manglePostfix(DC->getParent(), NoFunction);
404  }
405
406  if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
407    return;
408  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
409    mangleObjCMethodName(Method);
410  else {
411    mangleUnqualifiedName(cast<NamedDecl>(DC));
412    manglePostfix(DC->getParent(), NoFunction);
413  }
414}
415
416void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) {
417  switch (OO) {
418  //                     ?0 # constructor
419  //                     ?1 # destructor
420  // <operator-name> ::= ?2 # new
421  case OO_New: Out << "?2"; break;
422  // <operator-name> ::= ?3 # delete
423  case OO_Delete: Out << "?3"; break;
424  // <operator-name> ::= ?4 # =
425  case OO_Equal: Out << "?4"; break;
426  // <operator-name> ::= ?5 # >>
427  case OO_GreaterGreater: Out << "?5"; break;
428  // <operator-name> ::= ?6 # <<
429  case OO_LessLess: Out << "?6"; break;
430  // <operator-name> ::= ?7 # !
431  case OO_Exclaim: Out << "?7"; break;
432  // <operator-name> ::= ?8 # ==
433  case OO_EqualEqual: Out << "?8"; break;
434  // <operator-name> ::= ?9 # !=
435  case OO_ExclaimEqual: Out << "?9"; break;
436  // <operator-name> ::= ?A # []
437  case OO_Subscript: Out << "?A"; break;
438  //                     ?B # conversion
439  // <operator-name> ::= ?C # ->
440  case OO_Arrow: Out << "?C"; break;
441  // <operator-name> ::= ?D # *
442  case OO_Star: Out << "?D"; break;
443  // <operator-name> ::= ?E # ++
444  case OO_PlusPlus: Out << "?E"; break;
445  // <operator-name> ::= ?F # --
446  case OO_MinusMinus: Out << "?F"; break;
447  // <operator-name> ::= ?G # -
448  case OO_Minus: Out << "?G"; break;
449  // <operator-name> ::= ?H # +
450  case OO_Plus: Out << "?H"; break;
451  // <operator-name> ::= ?I # &
452  case OO_Amp: Out << "?I"; break;
453  // <operator-name> ::= ?J # ->*
454  case OO_ArrowStar: Out << "?J"; break;
455  // <operator-name> ::= ?K # /
456  case OO_Slash: Out << "?K"; break;
457  // <operator-name> ::= ?L # %
458  case OO_Percent: Out << "?L"; break;
459  // <operator-name> ::= ?M # <
460  case OO_Less: Out << "?M"; break;
461  // <operator-name> ::= ?N # <=
462  case OO_LessEqual: Out << "?N"; break;
463  // <operator-name> ::= ?O # >
464  case OO_Greater: Out << "?O"; break;
465  // <operator-name> ::= ?P # >=
466  case OO_GreaterEqual: Out << "?P"; break;
467  // <operator-name> ::= ?Q # ,
468  case OO_Comma: Out << "?Q"; break;
469  // <operator-name> ::= ?R # ()
470  case OO_Call: Out << "?R"; break;
471  // <operator-name> ::= ?S # ~
472  case OO_Tilde: Out << "?S"; break;
473  // <operator-name> ::= ?T # ^
474  case OO_Caret: Out << "?T"; break;
475  // <operator-name> ::= ?U # |
476  case OO_Pipe: Out << "?U"; break;
477  // <operator-name> ::= ?V # &&
478  case OO_AmpAmp: Out << "?V"; break;
479  // <operator-name> ::= ?W # ||
480  case OO_PipePipe: Out << "?W"; break;
481  // <operator-name> ::= ?X # *=
482  case OO_StarEqual: Out << "?X"; break;
483  // <operator-name> ::= ?Y # +=
484  case OO_PlusEqual: Out << "?Y"; break;
485  // <operator-name> ::= ?Z # -=
486  case OO_MinusEqual: Out << "?Z"; break;
487  // <operator-name> ::= ?_0 # /=
488  case OO_SlashEqual: Out << "?_0"; break;
489  // <operator-name> ::= ?_1 # %=
490  case OO_PercentEqual: Out << "?_1"; break;
491  // <operator-name> ::= ?_2 # >>=
492  case OO_GreaterGreaterEqual: Out << "?_2"; break;
493  // <operator-name> ::= ?_3 # <<=
494  case OO_LessLessEqual: Out << "?_3"; break;
495  // <operator-name> ::= ?_4 # &=
496  case OO_AmpEqual: Out << "?_4"; break;
497  // <operator-name> ::= ?_5 # |=
498  case OO_PipeEqual: Out << "?_5"; break;
499  // <operator-name> ::= ?_6 # ^=
500  case OO_CaretEqual: Out << "?_6"; break;
501  //                     ?_7 # vftable
502  //                     ?_8 # vbtable
503  //                     ?_9 # vcall
504  //                     ?_A # typeof
505  //                     ?_B # local static guard
506  //                     ?_C # string
507  //                     ?_D # vbase destructor
508  //                     ?_E # vector deleting destructor
509  //                     ?_F # default constructor closure
510  //                     ?_G # scalar deleting destructor
511  //                     ?_H # vector constructor iterator
512  //                     ?_I # vector destructor iterator
513  //                     ?_J # vector vbase constructor iterator
514  //                     ?_K # virtual displacement map
515  //                     ?_L # eh vector constructor iterator
516  //                     ?_M # eh vector destructor iterator
517  //                     ?_N # eh vector vbase constructor iterator
518  //                     ?_O # copy constructor closure
519  //                     ?_P<name> # udt returning <name>
520  //                     ?_Q # <unknown>
521  //                     ?_R0 # RTTI Type Descriptor
522  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
523  //                     ?_R2 # RTTI Base Class Array
524  //                     ?_R3 # RTTI Class Hierarchy Descriptor
525  //                     ?_R4 # RTTI Complete Object Locator
526  //                     ?_S # local vftable
527  //                     ?_T # local vftable constructor closure
528  // <operator-name> ::= ?_U # new[]
529  case OO_Array_New: Out << "?_U"; break;
530  // <operator-name> ::= ?_V # delete[]
531  case OO_Array_Delete: Out << "?_V"; break;
532
533  case OO_Conditional:
534    assert(false && "Don't know how to mangle ?:");
535    break;
536
537  case OO_None:
538  case NUM_OVERLOADED_OPERATORS:
539    assert(false && "Not an overloaded operator");
540    break;
541  }
542}
543
544void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
545  // <source name> ::= <identifier> @
546  Out << II->getName() << '@';
547}
548
549void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
550  llvm::SmallString<64> Buffer;
551  MiscNameMangler(Context, Buffer).mangleObjCMethodName(MD);
552  Out << Buffer;
553}
554
555void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
556                                               bool IsMember) {
557  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
558  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
559  // 'I' means __restrict (32/64-bit).
560  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
561  // keyword!
562  // <base-cvr-qualifiers> ::= A  # near
563  //                       ::= B  # near const
564  //                       ::= C  # near volatile
565  //                       ::= D  # near const volatile
566  //                       ::= E  # far (16-bit)
567  //                       ::= F  # far const (16-bit)
568  //                       ::= G  # far volatile (16-bit)
569  //                       ::= H  # far const volatile (16-bit)
570  //                       ::= I  # huge (16-bit)
571  //                       ::= J  # huge const (16-bit)
572  //                       ::= K  # huge volatile (16-bit)
573  //                       ::= L  # huge const volatile (16-bit)
574  //                       ::= M <basis> # based
575  //                       ::= N <basis> # based const
576  //                       ::= O <basis> # based volatile
577  //                       ::= P <basis> # based const volatile
578  //                       ::= Q  # near member
579  //                       ::= R  # near const member
580  //                       ::= S  # near volatile member
581  //                       ::= T  # near const volatile member
582  //                       ::= U  # far member (16-bit)
583  //                       ::= V  # far const member (16-bit)
584  //                       ::= W  # far volatile member (16-bit)
585  //                       ::= X  # far const volatile member (16-bit)
586  //                       ::= Y  # huge member (16-bit)
587  //                       ::= Z  # huge const member (16-bit)
588  //                       ::= 0  # huge volatile member (16-bit)
589  //                       ::= 1  # huge const volatile member (16-bit)
590  //                       ::= 2 <basis> # based member
591  //                       ::= 3 <basis> # based const member
592  //                       ::= 4 <basis> # based volatile member
593  //                       ::= 5 <basis> # based const volatile member
594  //                       ::= 6  # near function (pointers only)
595  //                       ::= 7  # far function (pointers only)
596  //                       ::= 8  # near method (pointers only)
597  //                       ::= 9  # far method (pointers only)
598  //                       ::= _A <basis> # based function (pointers only)
599  //                       ::= _B <basis> # based function (far?) (pointers only)
600  //                       ::= _C <basis> # based method (pointers only)
601  //                       ::= _D <basis> # based method (far?) (pointers only)
602  //                       ::= _E # block (Clang)
603  // <basis> ::= 0 # __based(void)
604  //         ::= 1 # __based(segment)?
605  //         ::= 2 <name> # __based(name)
606  //         ::= 3 # ?
607  //         ::= 4 # ?
608  //         ::= 5 # not really based
609  if (!IsMember) {
610    if (!Quals.hasVolatile()) {
611      if (!Quals.hasConst())
612        Out << 'A';
613      else
614        Out << 'B';
615    } else {
616      if (!Quals.hasConst())
617        Out << 'C';
618      else
619        Out << 'D';
620    }
621  } else {
622    if (!Quals.hasVolatile()) {
623      if (!Quals.hasConst())
624        Out << 'Q';
625      else
626        Out << 'R';
627    } else {
628      if (!Quals.hasConst())
629        Out << 'S';
630      else
631        Out << 'T';
632    }
633  }
634
635  // FIXME: For now, just drop all extension qualifiers on the floor.
636}
637
638void MicrosoftCXXNameMangler::mangleType(QualType T) {
639  // Only operate on the canonical type!
640  T = getASTContext().getCanonicalType(T);
641
642  Qualifiers Quals = T.getLocalQualifiers();
643  if (Quals) {
644    // We have to mangle these now, while we still have enough information.
645    // <pointer-cvr-qualifiers> ::= P  # pointer
646    //                          ::= Q  # const pointer
647    //                          ::= R  # volatile pointer
648    //                          ::= S  # const volatile pointer
649    if (T->isAnyPointerType() || T->isMemberPointerType() ||
650        T->isBlockPointerType()) {
651      if (!Quals.hasVolatile())
652        Out << 'Q';
653      else {
654        if (!Quals.hasConst())
655          Out << 'R';
656        else
657          Out << 'S';
658      }
659    } else
660      // Just emit qualifiers like normal.
661      // NB: When we mangle a pointer/reference type, and the pointee
662      // type has no qualifiers, the lack of qualifier gets mangled
663      // in there.
664      mangleQualifiers(Quals, false);
665  } else if (T->isAnyPointerType() || T->isMemberPointerType() ||
666             T->isBlockPointerType()) {
667    Out << 'P';
668  }
669  switch (T->getTypeClass()) {
670#define ABSTRACT_TYPE(CLASS, PARENT)
671#define NON_CANONICAL_TYPE(CLASS, PARENT) \
672case Type::CLASS: \
673llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
674return;
675#define TYPE(CLASS, PARENT) \
676case Type::CLASS: \
677mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
678break;
679#include "clang/AST/TypeNodes.def"
680  }
681}
682
683void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) {
684  //  <type>         ::= <builtin-type>
685  //  <builtin-type> ::= X  # void
686  //                 ::= C  # signed char
687  //                 ::= D  # char
688  //                 ::= E  # unsigned char
689  //                 ::= F  # short
690  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
691  //                 ::= H  # int
692  //                 ::= I  # unsigned int
693  //                 ::= J  # long
694  //                 ::= K  # unsigned long
695  //                     L  # <none>
696  //                 ::= M  # float
697  //                 ::= N  # double
698  //                 ::= O  # long double (__float80 is mangled differently)
699  //                 ::= _D # __int8 (yup, it's a distinct type in MSVC)
700  //                 ::= _E # unsigned __int8
701  //                 ::= _F # __int16
702  //                 ::= _G # unsigned __int16
703  //                 ::= _H # __int32
704  //                 ::= _I # unsigned __int32
705  //                 ::= _J # long long, __int64
706  //                 ::= _K # unsigned long long, __int64
707  //                 ::= _L # __int128
708  //                 ::= _M # unsigned __int128
709  //                 ::= _N # bool
710  //                     _O # <array in parameter>
711  //                 ::= _T # __float80 (Intel)
712  //                 ::= _W # wchar_t
713  //                 ::= _Z # __float80 (Digital Mars)
714  switch (T->getKind()) {
715  case BuiltinType::Void: Out << 'X'; break;
716  case BuiltinType::SChar: Out << 'C'; break;
717  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
718  case BuiltinType::UChar: Out << 'E'; break;
719  case BuiltinType::Short: Out << 'F'; break;
720  case BuiltinType::UShort: Out << 'G'; break;
721  case BuiltinType::Int: Out << 'H'; break;
722  case BuiltinType::UInt: Out << 'I'; break;
723  case BuiltinType::Long: Out << 'J'; break;
724  case BuiltinType::ULong: Out << 'K'; break;
725  case BuiltinType::Float: Out << 'M'; break;
726  case BuiltinType::Double: Out << 'N'; break;
727  // TODO: Determine size and mangle accordingly
728  case BuiltinType::LongDouble: Out << 'O'; break;
729  // TODO: __int8 and friends
730  case BuiltinType::LongLong: Out << "_J"; break;
731  case BuiltinType::ULongLong: Out << "_K"; break;
732  case BuiltinType::Int128: Out << "_L"; break;
733  case BuiltinType::UInt128: Out << "_M"; break;
734  case BuiltinType::Bool: Out << "_N"; break;
735  case BuiltinType::WChar: Out << "_W"; break;
736
737  case BuiltinType::Overload:
738  case BuiltinType::Dependent:
739    assert(false &&
740           "Overloaded and dependent types shouldn't get to name mangling");
741    break;
742  case BuiltinType::UndeducedAuto:
743    assert(0 && "Should not see undeduced auto here");
744    break;
745  case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
746  case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
747  case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
748
749  case BuiltinType::Char16:
750  case BuiltinType::Char32:
751  case BuiltinType::NullPtr:
752    assert(false && "Don't know how to mangle this type");
753    break;
754  }
755}
756
757// <type>          ::= <function-type>
758void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) {
759  // Structors only appear in decls, so at this point we know it's not a
760  // structor type.
761  // I'll probably have mangleType(MemberPointerType) call the mangleType()
762  // method directly.
763  mangleType(T, NULL, false, false);
764}
765void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) {
766  llvm_unreachable("Can't mangle K&R function prototypes");
767}
768
769void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
770                                         const FunctionDecl *D,
771                                         bool IsStructor,
772                                         bool IsInstMethod) {
773  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
774  //                     <return-type> <argument-list> <throw-spec>
775  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
776
777  // If this is a C++ instance method, mangle the CVR qualifiers for the
778  // this pointer.
779  if (IsInstMethod)
780    mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
781
782  mangleCallingConvention(T);
783
784  // <return-type> ::= <type>
785  //               ::= @ # structors (they have no declared return type)
786  if (IsStructor)
787    Out << '@';
788  else
789    mangleType(Proto->getResultType());
790
791  // <argument-list> ::= X # void
792  //                 ::= <type>+ @
793  //                 ::= <type>* Z # varargs
794  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
795    Out << 'X';
796  } else {
797    if (D) {
798      // If we got a decl, use the "types-as-written" to make sure arrays
799      // get mangled right.
800      for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
801           ParmEnd = D->param_end();
802           Parm != ParmEnd; ++Parm)
803        mangleType((*Parm)->getTypeSourceInfo()->getType());
804    } else {
805      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
806           ArgEnd = Proto->arg_type_end();
807           Arg != ArgEnd; ++Arg)
808        mangleType(*Arg);
809    }
810    // <builtin-type>      ::= Z  # ellipsis
811    if (Proto->isVariadic())
812      Out << 'Z';
813    else
814      Out << '@';
815  }
816
817  mangleThrowSpecification(Proto);
818}
819
820void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
821  // <function-class> ::= A # private: near
822  //                  ::= B # private: far
823  //                  ::= C # private: static near
824  //                  ::= D # private: static far
825  //                  ::= E # private: virtual near
826  //                  ::= F # private: virtual far
827  //                  ::= G # private: thunk near
828  //                  ::= H # private: thunk far
829  //                  ::= I # protected: near
830  //                  ::= J # protected: far
831  //                  ::= K # protected: static near
832  //                  ::= L # protected: static far
833  //                  ::= M # protected: virtual near
834  //                  ::= N # protected: virtual far
835  //                  ::= O # protected: thunk near
836  //                  ::= P # protected: thunk far
837  //                  ::= Q # public: near
838  //                  ::= R # public: far
839  //                  ::= S # public: static near
840  //                  ::= T # public: static far
841  //                  ::= U # public: virtual near
842  //                  ::= V # public: virtual far
843  //                  ::= W # public: thunk near
844  //                  ::= X # public: thunk far
845  //                  ::= Y # global near
846  //                  ::= Z # global far
847  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
848    switch (MD->getAccess()) {
849      default:
850      case AS_private:
851        if (MD->isStatic())
852          Out << 'C';
853        else if (MD->isVirtual())
854          Out << 'E';
855        else
856          Out << 'A';
857        break;
858      case AS_protected:
859        if (MD->isStatic())
860          Out << 'K';
861        else if (MD->isVirtual())
862          Out << 'M';
863        else
864          Out << 'I';
865        break;
866      case AS_public:
867        if (MD->isStatic())
868          Out << 'S';
869        else if (MD->isVirtual())
870          Out << 'U';
871        else
872          Out << 'Q';
873    }
874  } else
875    Out << 'Y';
876}
877void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
878  // <calling-convention> ::= A # __cdecl
879  //                      ::= B # __export __cdecl
880  //                      ::= C # __pascal
881  //                      ::= D # __export __pascal
882  //                      ::= E # __thiscall
883  //                      ::= F # __export __thiscall
884  //                      ::= G # __stdcall
885  //                      ::= H # __export __stdcall
886  //                      ::= I # __fastcall
887  //                      ::= J # __export __fastcall
888  // The 'export' calling conventions are from a bygone era
889  // (*cough*Win16*cough*) when functions were declared for export with
890  // that keyword. (It didn't actually export them, it just made them so
891  // that they could be in a DLL and somebody from another module could call
892  // them.)
893  switch (T->getCallConv()) {
894    case CC_Default:
895    case CC_C: Out << 'A'; break;
896    case CC_X86ThisCall: Out << 'E'; break;
897    case CC_X86StdCall: Out << 'G'; break;
898    case CC_X86FastCall: Out << 'I'; break;
899  }
900}
901void MicrosoftCXXNameMangler::mangleThrowSpecification(
902                                                const FunctionProtoType *FT) {
903  // <throw-spec> ::= Z # throw(...) (default)
904  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
905  //              ::= <type>+
906  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
907  // all actually mangled as 'Z'. (They're ignored because their associated
908  // functionality isn't implemented, and probably never will be.)
909  Out << 'Z';
910}
911
912void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) {
913  assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!");
914}
915
916// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
917// <union-type>  ::= T <name>
918// <struct-type> ::= U <name>
919// <class-type>  ::= V <name>
920// <enum-type>   ::= W <size> <name>
921void MicrosoftCXXNameMangler::mangleType(const EnumType *T) {
922  mangleType(static_cast<const TagType*>(T));
923}
924void MicrosoftCXXNameMangler::mangleType(const RecordType *T) {
925  mangleType(static_cast<const TagType*>(T));
926}
927void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
928  switch (T->getDecl()->getTagKind()) {
929    case TTK_Union:
930      Out << 'T';
931      break;
932    case TTK_Struct:
933      Out << 'U';
934      break;
935    case TTK_Class:
936      Out << 'V';
937      break;
938    case TTK_Enum:
939      Out << 'W';
940      Out << getASTContext().getTypeSizeInChars(
941                cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
942      break;
943  }
944  mangleName(T->getDecl());
945}
946
947// <type>       ::= <array-type>
948// <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
949//                                                  <element-type> # as global
950//              ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
951//                                                  <element-type> # as param
952// It's supposed to be the other way around, but for some strange reason, it
953// isn't. Today this behavior is retained for the sole purpose of backwards
954// compatibility.
955void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
956  // This isn't a recursive mangling, so now we have to do it all in this
957  // one call.
958  if (IsGlobal)
959    Out << 'P';
960  else
961    Out << 'Q';
962  mangleExtraDimensions(T->getElementType());
963}
964void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) {
965  mangleType(static_cast<const ArrayType *>(T), false);
966}
967void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) {
968  mangleType(static_cast<const ArrayType *>(T), false);
969}
970void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) {
971  mangleType(static_cast<const ArrayType *>(T), false);
972}
973void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) {
974  mangleType(static_cast<const ArrayType *>(T), false);
975}
976void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
977  llvm::SmallVector<llvm::APInt, 3> Dimensions;
978  for (;;) {
979    if (ElementTy->isConstantArrayType()) {
980      const ConstantArrayType *CAT =
981      static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
982      Dimensions.push_back(CAT->getSize());
983      ElementTy = CAT->getElementType();
984    } else if (ElementTy->isVariableArrayType()) {
985      assert(false && "Don't know how to mangle VLAs!");
986    } else if (ElementTy->isDependentSizedArrayType()) {
987      // The dependent expression has to be folded into a constant (TODO).
988      assert(false && "Don't know how to mangle dependent-sized arrays!");
989    } else if (ElementTy->isIncompleteArrayType()) continue;
990    else break;
991  }
992  mangleQualifiers(ElementTy.getQualifiers(), false);
993  // If there are any additional dimensions, mangle them now.
994  if (Dimensions.size() > 0) {
995    Out << 'Y';
996    // <dimension-count> ::= <number> # number of extra dimensions
997    mangleNumber(Dimensions.size());
998    for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
999      mangleNumber(Dimensions[Dim].getLimitedValue());
1000    }
1001  }
1002  mangleType(ElementTy.getLocalUnqualifiedType());
1003}
1004
1005// <type>                   ::= <pointer-to-member-type>
1006// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1007//                                                          <class name> <type>
1008void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
1009  QualType PointeeType = T->getPointeeType();
1010  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1011    Out << '8';
1012    mangleName(cast<RecordType>(T->getClass())->getDecl());
1013    mangleType(FPT, NULL, false, true);
1014  } else {
1015    mangleQualifiers(PointeeType.getQualifiers(), true);
1016    mangleName(cast<RecordType>(T->getClass())->getDecl());
1017    mangleType(PointeeType.getLocalUnqualifiedType());
1018  }
1019}
1020
1021void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1022  assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!");
1023}
1024
1025// <type> ::= <pointer-type>
1026// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1027void MicrosoftCXXNameMangler::mangleType(const PointerType *T) {
1028  QualType PointeeTy = T->getPointeeType();
1029  if (PointeeTy->isArrayType()) {
1030    // Pointers to arrays are mangled like arrays.
1031    mangleExtraDimensions(T->getPointeeType());
1032  } else if (PointeeTy->isFunctionType()) {
1033    // Function pointers are special.
1034    Out << '6';
1035    mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()),
1036               NULL, false, false);
1037  } else {
1038    if (!PointeeTy.hasQualifiers())
1039      // Lack of qualifiers is mangled as 'A'.
1040      Out << 'A';
1041    mangleType(PointeeTy);
1042  }
1043}
1044void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1045  // Object pointers never have qualifiers.
1046  Out << 'A';
1047  mangleType(T->getPointeeType());
1048}
1049
1050// <type> ::= <reference-type>
1051// <reference-type> ::= A <cvr-qualifiers> <type>
1052void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) {
1053  Out << 'A';
1054  QualType PointeeTy = T->getPointeeType();
1055  if (!PointeeTy.hasQualifiers())
1056    // Lack of qualifiers is mangled as 'A'.
1057    Out << 'A';
1058  mangleType(PointeeTy);
1059}
1060
1061void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) {
1062  assert(false && "Don't know how to mangle RValueReferenceTypes yet!");
1063}
1064
1065void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) {
1066  assert(false && "Don't know how to mangle ComplexTypes yet!");
1067}
1068
1069void MicrosoftCXXNameMangler::mangleType(const VectorType *T) {
1070  assert(false && "Don't know how to mangle VectorTypes yet!");
1071}
1072void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) {
1073  assert(false && "Don't know how to mangle ExtVectorTypes yet!");
1074}
1075void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1076  assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!");
1077}
1078
1079void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1080  // ObjC interfaces have structs underlying them.
1081  Out << 'U';
1082  mangleName(T->getDecl());
1083}
1084
1085void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) {
1086  // We don't allow overloading by different protocol qualification,
1087  // so mangling them isn't necessary.
1088  mangleType(T->getBaseType());
1089}
1090
1091void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) {
1092  Out << "_E";
1093  mangleType(T->getPointeeType());
1094}
1095
1096void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) {
1097  assert(false && "Don't know how to mangle InjectedClassNameTypes yet!");
1098}
1099
1100void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1101  assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!");
1102}
1103
1104void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) {
1105  assert(false && "Don't know how to mangle DependentNameTypes yet!");
1106}
1107
1108void MicrosoftCXXNameMangler::mangleType(
1109                                 const DependentTemplateSpecializationType *T) {
1110  assert(false &&
1111         "Don't know how to mangle DependentTemplateSpecializationTypes yet!");
1112}
1113
1114void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) {
1115  assert(false && "Don't know how to mangle TypeOfTypes yet!");
1116}
1117
1118void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) {
1119  assert(false && "Don't know how to mangle TypeOfExprTypes yet!");
1120}
1121
1122void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) {
1123  assert(false && "Don't know how to mangle DecltypeTypes yet!");
1124}
1125
1126void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1127                                        llvm::SmallVectorImpl<char> &Name) {
1128  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1129         "Invalid mangleName() call, argument is not a variable or function!");
1130  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1131         "Invalid mangleName() call on 'structor decl!");
1132
1133  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1134                                 getASTContext().getSourceManager(),
1135                                 "Mangling declaration");
1136
1137  MicrosoftCXXNameMangler Mangler(*this, Name);
1138  return Mangler.mangle(D);
1139}
1140void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1141                                         const ThunkInfo &Thunk,
1142                                         llvm::SmallVectorImpl<char> &) {
1143  assert(false && "Can't yet mangle thunks!");
1144}
1145void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1146                                                CXXDtorType Type,
1147                                                const ThisAdjustment &,
1148                                                llvm::SmallVectorImpl<char> &) {
1149  assert(false && "Can't yet mangle destructor thunks!");
1150}
1151void MicrosoftMangleContext::mangleGuardVariable(const VarDecl *D,
1152                                                 llvm::SmallVectorImpl<char> &) {
1153  assert(false && "Can't yet mangle guard variables!");
1154}
1155void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1156                                             llvm::SmallVectorImpl<char> &) {
1157  assert(false && "Can't yet mangle virtual tables!");
1158}
1159void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1160                                          llvm::SmallVectorImpl<char> &) {
1161  llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1162}
1163void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1164                                                 int64_t Offset,
1165                                                 const CXXRecordDecl *Type,
1166                                                 llvm::SmallVectorImpl<char> &) {
1167  llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1168}
1169void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1170                                           llvm::SmallVectorImpl<char> &) {
1171  assert(false && "Can't yet mangle RTTI!");
1172}
1173void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1174                                               llvm::SmallVectorImpl<char> &) {
1175  assert(false && "Can't yet mangle RTTI names!");
1176}
1177void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1178                                           CXXCtorType Type,
1179                                           llvm::SmallVectorImpl<char> &) {
1180  assert(false && "Can't yet mangle constructors!");
1181}
1182void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1183                                           CXXDtorType Type,
1184                                           llvm::SmallVectorImpl<char> &) {
1185  assert(false && "Can't yet mangle destructors!");
1186}
1187
1188CXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
1189  return new MicrosoftCXXABI(CGM);
1190}
1191
1192