MicrosoftCXXABI.cpp revision 280031
1//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11// The class in this file generates structures that follow the Microsoft
12// Visual C++ ABI, which is actually not very well documented at all outside
13// of Microsoft.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGCXXABI.h"
18#include "CGVTables.h"
19#include "CodeGenModule.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/VTableBuilder.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/StringSet.h"
25#include "llvm/IR/CallSite.h"
26
27using namespace clang;
28using namespace CodeGen;
29
30namespace {
31
32/// Holds all the vbtable globals for a given class.
33struct VBTableGlobals {
34  const VPtrInfoVector *VBTables;
35  SmallVector<llvm::GlobalVariable *, 2> Globals;
36};
37
38class MicrosoftCXXABI : public CGCXXABI {
39public:
40  MicrosoftCXXABI(CodeGenModule &CGM)
41      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
42        ClassHierarchyDescriptorType(nullptr),
43        CompleteObjectLocatorType(nullptr) {}
44
45  bool HasThisReturn(GlobalDecl GD) const override;
46  bool hasMostDerivedReturn(GlobalDecl GD) const override;
47
48  bool classifyReturnType(CGFunctionInfo &FI) const override;
49
50  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
51
52  bool isSRetParameterAfterThis() const override { return true; }
53
54  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
55                              FunctionArgList &Args) const override {
56    assert(Args.size() >= 2 &&
57           "expected the arglist to have at least two args!");
58    // The 'most_derived' parameter goes second if the ctor is variadic and
59    // has v-bases.
60    if (CD->getParent()->getNumVBases() > 0 &&
61        CD->getType()->castAs<FunctionProtoType>()->isVariadic())
62      return 2;
63    return 1;
64  }
65
66  StringRef GetPureVirtualCallName() override { return "_purecall"; }
67  StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
68
69  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
70                               llvm::Value *Ptr, QualType ElementType,
71                               const CXXDestructorDecl *Dtor) override;
72
73  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
74
75  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
76                                                   const VPtrInfo *Info);
77
78  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
79
80  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
81  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
82  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
83                          llvm::Value *ThisPtr,
84                          llvm::Type *StdTypeInfoPtrTy) override;
85
86  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
87                                          QualType SrcRecordTy) override;
88
89  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
90                                   QualType SrcRecordTy, QualType DestTy,
91                                   QualType DestRecordTy,
92                                   llvm::BasicBlock *CastEnd) override;
93
94  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
95                                     QualType SrcRecordTy,
96                                     QualType DestTy) override;
97
98  bool EmitBadCastCall(CodeGenFunction &CGF) override;
99
100  llvm::Value *
101  GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
102                            const CXXRecordDecl *ClassDecl,
103                            const CXXRecordDecl *BaseClassDecl) override;
104
105  llvm::BasicBlock *
106  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
107                                const CXXRecordDecl *RD) override;
108
109  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
110                                              const CXXRecordDecl *RD) override;
111
112  void EmitCXXConstructors(const CXXConstructorDecl *D) override;
113
114  // Background on MSVC destructors
115  // ==============================
116  //
117  // Both Itanium and MSVC ABIs have destructor variants.  The variant names
118  // roughly correspond in the following way:
119  //   Itanium       Microsoft
120  //   Base       -> no name, just ~Class
121  //   Complete   -> vbase destructor
122  //   Deleting   -> scalar deleting destructor
123  //                 vector deleting destructor
124  //
125  // The base and complete destructors are the same as in Itanium, although the
126  // complete destructor does not accept a VTT parameter when there are virtual
127  // bases.  A separate mechanism involving vtordisps is used to ensure that
128  // virtual methods of destroyed subobjects are not called.
129  //
130  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
131  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
132  // pointer points to an array.  The scalar deleting destructor assumes that
133  // bit 2 is zero, and therefore does not contain a loop.
134  //
135  // For virtual destructors, only one entry is reserved in the vftable, and it
136  // always points to the vector deleting destructor.  The vector deleting
137  // destructor is the most general, so it can be used to destroy objects in
138  // place, delete single heap objects, or delete arrays.
139  //
140  // A TU defining a non-inline destructor is only guaranteed to emit a base
141  // destructor, and all of the other variants are emitted on an as-needed basis
142  // in COMDATs.  Because a non-base destructor can be emitted in a TU that
143  // lacks a definition for the destructor, non-base destructors must always
144  // delegate to or alias the base destructor.
145
146  void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
147                              SmallVectorImpl<CanQualType> &ArgTys) override;
148
149  /// Non-base dtors should be emitted as delegating thunks in this ABI.
150  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
151                              CXXDtorType DT) const override {
152    return DT != Dtor_Base;
153  }
154
155  void EmitCXXDestructors(const CXXDestructorDecl *D) override;
156
157  const CXXRecordDecl *
158  getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
159    MD = MD->getCanonicalDecl();
160    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
161      MicrosoftVTableContext::MethodVFTableLocation ML =
162          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
163      // The vbases might be ordered differently in the final overrider object
164      // and the complete object, so the "this" argument may sometimes point to
165      // memory that has no particular type (e.g. past the complete object).
166      // In this case, we just use a generic pointer type.
167      // FIXME: might want to have a more precise type in the non-virtual
168      // multiple inheritance case.
169      if (ML.VBase || !ML.VFPtrOffset.isZero())
170        return nullptr;
171    }
172    return MD->getParent();
173  }
174
175  llvm::Value *
176  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
177                                           llvm::Value *This,
178                                           bool VirtualCall) override;
179
180  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
181                                 FunctionArgList &Params) override;
182
183  llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
184      CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
185
186  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
187
188  unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
189                                      const CXXConstructorDecl *D,
190                                      CXXCtorType Type, bool ForVirtualBase,
191                                      bool Delegating,
192                                      CallArgList &Args) override;
193
194  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
195                          CXXDtorType Type, bool ForVirtualBase,
196                          bool Delegating, llvm::Value *This) override;
197
198  void emitVTableDefinitions(CodeGenVTables &CGVT,
199                             const CXXRecordDecl *RD) override;
200
201  llvm::Value *getVTableAddressPointInStructor(
202      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
203      BaseSubobject Base, const CXXRecordDecl *NearestVBase,
204      bool &NeedsVirtualOffset) override;
205
206  llvm::Constant *
207  getVTableAddressPointForConstExpr(BaseSubobject Base,
208                                    const CXXRecordDecl *VTableClass) override;
209
210  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
211                                        CharUnits VPtrOffset) override;
212
213  llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
214                                         llvm::Value *This,
215                                         llvm::Type *Ty) override;
216
217  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
218                                         const CXXDestructorDecl *Dtor,
219                                         CXXDtorType DtorType,
220                                         llvm::Value *This,
221                                         const CXXMemberCallExpr *CE) override;
222
223  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
224                                        CallArgList &CallArgs) override {
225    assert(GD.getDtorType() == Dtor_Deleting &&
226           "Only deleting destructor thunks are available in this ABI");
227    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
228                             CGM.getContext().IntTy);
229  }
230
231  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
232
233  llvm::GlobalVariable *
234  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
235                   llvm::GlobalVariable::LinkageTypes Linkage);
236
237  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
238                             llvm::GlobalVariable *GV) const;
239
240  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
241                       GlobalDecl GD, bool ReturnAdjustment) override {
242    // Never dllimport/dllexport thunks.
243    Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
244
245    GVALinkage Linkage =
246        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
247
248    if (Linkage == GVA_Internal)
249      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
250    else if (ReturnAdjustment)
251      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
252    else
253      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
254  }
255
256  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
257                                     const ThisAdjustment &TA) override;
258
259  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
260                                       const ReturnAdjustment &RA) override;
261
262  void EmitThreadLocalInitFuncs(
263      CodeGenModule &CGM,
264      ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
265          CXXThreadLocals,
266      ArrayRef<llvm::Function *> CXXThreadLocalInits,
267      ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
268
269  bool usesThreadWrapperFunction() const override { return false; }
270  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
271                                      QualType LValType) override;
272
273  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
274                       llvm::GlobalVariable *DeclPtr,
275                       bool PerformInit) override;
276  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
277                          llvm::Constant *Dtor, llvm::Constant *Addr) override;
278
279  // ==== Notes on array cookies =========
280  //
281  // MSVC seems to only use cookies when the class has a destructor; a
282  // two-argument usual array deallocation function isn't sufficient.
283  //
284  // For example, this code prints "100" and "1":
285  //   struct A {
286  //     char x;
287  //     void *operator new[](size_t sz) {
288  //       printf("%u\n", sz);
289  //       return malloc(sz);
290  //     }
291  //     void operator delete[](void *p, size_t sz) {
292  //       printf("%u\n", sz);
293  //       free(p);
294  //     }
295  //   };
296  //   int main() {
297  //     A *p = new A[100];
298  //     delete[] p;
299  //   }
300  // Whereas it prints "104" and "104" if you give A a destructor.
301
302  bool requiresArrayCookie(const CXXDeleteExpr *expr,
303                           QualType elementType) override;
304  bool requiresArrayCookie(const CXXNewExpr *expr) override;
305  CharUnits getArrayCookieSizeImpl(QualType type) override;
306  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
307                                     llvm::Value *NewPtr,
308                                     llvm::Value *NumElements,
309                                     const CXXNewExpr *expr,
310                                     QualType ElementType) override;
311  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
312                                   llvm::Value *allocPtr,
313                                   CharUnits cookieSize) override;
314
315  friend struct MSRTTIBuilder;
316
317  bool isImageRelative() const {
318    return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
319  }
320
321  // 5 routines for constructing the llvm types for MS RTTI structs.
322  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
323    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
324    TDTypeName += llvm::utostr(TypeInfoString.size());
325    llvm::StructType *&TypeDescriptorType =
326        TypeDescriptorTypeMap[TypeInfoString.size()];
327    if (TypeDescriptorType)
328      return TypeDescriptorType;
329    llvm::Type *FieldTypes[] = {
330        CGM.Int8PtrPtrTy,
331        CGM.Int8PtrTy,
332        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
333    TypeDescriptorType =
334        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
335    return TypeDescriptorType;
336  }
337
338  llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
339    if (!isImageRelative())
340      return PtrType;
341    return CGM.IntTy;
342  }
343
344  llvm::StructType *getBaseClassDescriptorType() {
345    if (BaseClassDescriptorType)
346      return BaseClassDescriptorType;
347    llvm::Type *FieldTypes[] = {
348        getImageRelativeType(CGM.Int8PtrTy),
349        CGM.IntTy,
350        CGM.IntTy,
351        CGM.IntTy,
352        CGM.IntTy,
353        CGM.IntTy,
354        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
355    };
356    BaseClassDescriptorType = llvm::StructType::create(
357        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
358    return BaseClassDescriptorType;
359  }
360
361  llvm::StructType *getClassHierarchyDescriptorType() {
362    if (ClassHierarchyDescriptorType)
363      return ClassHierarchyDescriptorType;
364    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
365    ClassHierarchyDescriptorType = llvm::StructType::create(
366        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
367    llvm::Type *FieldTypes[] = {
368        CGM.IntTy,
369        CGM.IntTy,
370        CGM.IntTy,
371        getImageRelativeType(
372            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
373    };
374    ClassHierarchyDescriptorType->setBody(FieldTypes);
375    return ClassHierarchyDescriptorType;
376  }
377
378  llvm::StructType *getCompleteObjectLocatorType() {
379    if (CompleteObjectLocatorType)
380      return CompleteObjectLocatorType;
381    CompleteObjectLocatorType = llvm::StructType::create(
382        CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
383    llvm::Type *FieldTypes[] = {
384        CGM.IntTy,
385        CGM.IntTy,
386        CGM.IntTy,
387        getImageRelativeType(CGM.Int8PtrTy),
388        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
389        getImageRelativeType(CompleteObjectLocatorType),
390    };
391    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
392    if (!isImageRelative())
393      FieldTypesRef = FieldTypesRef.drop_back();
394    CompleteObjectLocatorType->setBody(FieldTypesRef);
395    return CompleteObjectLocatorType;
396  }
397
398  llvm::GlobalVariable *getImageBase() {
399    StringRef Name = "__ImageBase";
400    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
401      return GV;
402
403    return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
404                                    /*isConstant=*/true,
405                                    llvm::GlobalValue::ExternalLinkage,
406                                    /*Initializer=*/nullptr, Name);
407  }
408
409  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
410    if (!isImageRelative())
411      return PtrVal;
412
413    llvm::Constant *ImageBaseAsInt =
414        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
415    llvm::Constant *PtrValAsInt =
416        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
417    llvm::Constant *Diff =
418        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
419                                   /*HasNUW=*/true, /*HasNSW=*/true);
420    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
421  }
422
423private:
424  MicrosoftMangleContext &getMangleContext() {
425    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
426  }
427
428  llvm::Constant *getZeroInt() {
429    return llvm::ConstantInt::get(CGM.IntTy, 0);
430  }
431
432  llvm::Constant *getAllOnesInt() {
433    return  llvm::Constant::getAllOnesValue(CGM.IntTy);
434  }
435
436  llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
437    return C ? C : getZeroInt();
438  }
439
440  llvm::Value *getValueOrZeroInt(llvm::Value *C) {
441    return C ? C : getZeroInt();
442  }
443
444  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
445
446  void
447  GetNullMemberPointerFields(const MemberPointerType *MPT,
448                             llvm::SmallVectorImpl<llvm::Constant *> &fields);
449
450  /// \brief Shared code for virtual base adjustment.  Returns the offset from
451  /// the vbptr to the virtual base.  Optionally returns the address of the
452  /// vbptr itself.
453  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
454                                       llvm::Value *Base,
455                                       llvm::Value *VBPtrOffset,
456                                       llvm::Value *VBTableOffset,
457                                       llvm::Value **VBPtr = nullptr);
458
459  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
460                                       llvm::Value *Base,
461                                       int32_t VBPtrOffset,
462                                       int32_t VBTableOffset,
463                                       llvm::Value **VBPtr = nullptr) {
464    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
465    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
466                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
467    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
468  }
469
470  /// \brief Performs a full virtual base adjustment.  Used to dereference
471  /// pointers to members of virtual bases.
472  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
473                                 const CXXRecordDecl *RD, llvm::Value *Base,
474                                 llvm::Value *VirtualBaseAdjustmentOffset,
475                                 llvm::Value *VBPtrOffset /* optional */);
476
477  /// \brief Emits a full member pointer with the fields common to data and
478  /// function member pointers.
479  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
480                                        bool IsMemberFunction,
481                                        const CXXRecordDecl *RD,
482                                        CharUnits NonVirtualBaseAdjustment);
483
484  llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
485                                     const CXXMethodDecl *MD,
486                                     CharUnits NonVirtualBaseAdjustment);
487
488  bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
489                                   llvm::Constant *MP);
490
491  /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
492  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
493
494  /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
495  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
496
497  /// \brief Generate a thunk for calling a virtual member function MD.
498  llvm::Function *EmitVirtualMemPtrThunk(
499      const CXXMethodDecl *MD,
500      const MicrosoftVTableContext::MethodVFTableLocation &ML);
501
502public:
503  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
504
505  bool isZeroInitializable(const MemberPointerType *MPT) override;
506
507  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
508    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
509    return RD->hasAttr<MSInheritanceAttr>();
510  }
511
512  bool isTypeInfoCalculable(QualType Ty) const override {
513    if (!CGCXXABI::isTypeInfoCalculable(Ty))
514      return false;
515    if (const auto *MPT = Ty->getAs<MemberPointerType>()) {
516      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
517      if (!RD->hasAttr<MSInheritanceAttr>())
518        return false;
519    }
520    return true;
521  }
522
523  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
524
525  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
526                                        CharUnits offset) override;
527  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
528  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
529
530  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
531                                           llvm::Value *L,
532                                           llvm::Value *R,
533                                           const MemberPointerType *MPT,
534                                           bool Inequality) override;
535
536  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
537                                          llvm::Value *MemPtr,
538                                          const MemberPointerType *MPT) override;
539
540  llvm::Value *
541  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
542                               llvm::Value *Base, llvm::Value *MemPtr,
543                               const MemberPointerType *MPT) override;
544
545  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
546                                           const CastExpr *E,
547                                           llvm::Value *Src) override;
548
549  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
550                                              llvm::Constant *Src) override;
551
552  llvm::Value *
553  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
554                                  llvm::Value *&This, llvm::Value *MemPtr,
555                                  const MemberPointerType *MPT) override;
556
557  void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
558
559private:
560  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
561  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
562  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
563  /// \brief All the vftables that have been referenced.
564  VFTablesMapTy VFTablesMap;
565  VTablesMapTy VTablesMap;
566
567  /// \brief This set holds the record decls we've deferred vtable emission for.
568  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
569
570
571  /// \brief All the vbtables which have been referenced.
572  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
573
574  /// Info on the global variable used to guard initialization of static locals.
575  /// The BitIndex field is only used for externally invisible declarations.
576  struct GuardInfo {
577    GuardInfo() : Guard(nullptr), BitIndex(0) {}
578    llvm::GlobalVariable *Guard;
579    unsigned BitIndex;
580  };
581
582  /// Map from DeclContext to the current guard variable.  We assume that the
583  /// AST is visited in source code order.
584  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
585
586  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
587  llvm::StructType *BaseClassDescriptorType;
588  llvm::StructType *ClassHierarchyDescriptorType;
589  llvm::StructType *CompleteObjectLocatorType;
590};
591
592}
593
594CGCXXABI::RecordArgABI
595MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
596  switch (CGM.getTarget().getTriple().getArch()) {
597  default:
598    // FIXME: Implement for other architectures.
599    return RAA_Default;
600
601  case llvm::Triple::x86:
602    // All record arguments are passed in memory on x86.  Decide whether to
603    // construct the object directly in argument memory, or to construct the
604    // argument elsewhere and copy the bytes during the call.
605
606    // If C++ prohibits us from making a copy, construct the arguments directly
607    // into argument memory.
608    if (!canCopyArgument(RD))
609      return RAA_DirectInMemory;
610
611    // Otherwise, construct the argument into a temporary and copy the bytes
612    // into the outgoing argument memory.
613    return RAA_Default;
614
615  case llvm::Triple::x86_64:
616    // Win64 passes objects with non-trivial copy ctors indirectly.
617    if (RD->hasNonTrivialCopyConstructor())
618      return RAA_Indirect;
619
620    // If an object has a destructor, we'd really like to pass it indirectly
621    // because it allows us to elide copies.  Unfortunately, MSVC makes that
622    // impossible for small types, which it will pass in a single register or
623    // stack slot. Most objects with dtors are large-ish, so handle that early.
624    // We can't call out all large objects as being indirect because there are
625    // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
626    // how we pass large POD types.
627    if (RD->hasNonTrivialDestructor() &&
628        getContext().getTypeSize(RD->getTypeForDecl()) > 64)
629      return RAA_Indirect;
630
631    // We have a trivial copy constructor or no copy constructors, but we have
632    // to make sure it isn't deleted.
633    bool CopyDeleted = false;
634    for (const CXXConstructorDecl *CD : RD->ctors()) {
635      if (CD->isCopyConstructor()) {
636        assert(CD->isTrivial());
637        // We had at least one undeleted trivial copy ctor.  Return directly.
638        if (!CD->isDeleted())
639          return RAA_Default;
640        CopyDeleted = true;
641      }
642    }
643
644    // The trivial copy constructor was deleted.  Return indirectly.
645    if (CopyDeleted)
646      return RAA_Indirect;
647
648    // There were no copy ctors.  Return in RAX.
649    return RAA_Default;
650  }
651
652  llvm_unreachable("invalid enum");
653}
654
655void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
656                                              const CXXDeleteExpr *DE,
657                                              llvm::Value *Ptr,
658                                              QualType ElementType,
659                                              const CXXDestructorDecl *Dtor) {
660  // FIXME: Provide a source location here even though there's no
661  // CXXMemberCallExpr for dtor call.
662  bool UseGlobalDelete = DE->isGlobalDelete();
663  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
664  llvm::Value *MDThis =
665      EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
666  if (UseGlobalDelete)
667    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
668}
669
670static llvm::Function *getRethrowFn(CodeGenModule &CGM) {
671  // _CxxThrowException takes two pointer width arguments: a value and a context
672  // object which points to a TypeInfo object.
673  llvm::Type *ArgTypes[] = {CGM.Int8PtrTy, CGM.Int8PtrTy};
674  llvm::FunctionType *FTy =
675      llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
676  auto *Fn = cast<llvm::Function>(
677      CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
678  // _CxxThrowException is stdcall on 32-bit x86 platforms.
679  if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
680    Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
681  return Fn;
682}
683
684void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
685  llvm::Value *Args[] = {llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
686                         llvm::ConstantPointerNull::get(CGM.Int8PtrTy)};
687  auto *Fn = getRethrowFn(CGM);
688  if (isNoReturn)
689    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
690  else
691    CGF.EmitRuntimeCallOrInvoke(Fn, Args);
692}
693
694/// \brief Gets the offset to the virtual base that contains the vfptr for
695/// MS-ABI polymorphic types.
696static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF,
697                                         const CXXRecordDecl *RD,
698                                         llvm::Value *Value) {
699  const ASTContext &Context = RD->getASTContext();
700  for (const CXXBaseSpecifier &Base : RD->vbases())
701    if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl())
702            .hasExtendableVFPtr())
703      return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset(
704          CGF, Value, RD, Base.getType()->getAsCXXRecordDecl());
705  llvm_unreachable("One of our vbases should be polymorphic.");
706}
707
708static std::pair<llvm::Value *, llvm::Value *>
709performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
710                      QualType SrcRecordTy) {
711  Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
712  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
713
714  if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
715    return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
716
717  // Perform a base adjustment.
718  llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value);
719  Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
720  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
721  return std::make_pair(Value, Offset);
722}
723
724bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
725                                                QualType SrcRecordTy) {
726  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
727  return IsDeref &&
728         !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
729}
730
731static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
732                                       llvm::Value *Argument) {
733  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
734  llvm::FunctionType *FTy =
735      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
736  llvm::Value *Args[] = {Argument};
737  llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
738  return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
739}
740
741void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
742  llvm::CallSite Call =
743      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
744  Call.setDoesNotReturn();
745  CGF.Builder.CreateUnreachable();
746}
747
748llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
749                                         QualType SrcRecordTy,
750                                         llvm::Value *ThisPtr,
751                                         llvm::Type *StdTypeInfoPtrTy) {
752  llvm::Value *Offset;
753  std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
754  return CGF.Builder.CreateBitCast(
755      emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
756}
757
758bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
759                                                         QualType SrcRecordTy) {
760  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
761  return SrcIsPtr &&
762         !CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
763}
764
765llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
766    CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
767    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
768  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
769
770  llvm::Value *SrcRTTI =
771      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
772  llvm::Value *DestRTTI =
773      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
774
775  llvm::Value *Offset;
776  std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
777
778  // PVOID __RTDynamicCast(
779  //   PVOID inptr,
780  //   LONG VfDelta,
781  //   PVOID SrcType,
782  //   PVOID TargetType,
783  //   BOOL isReference)
784  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
785                            CGF.Int8PtrTy, CGF.Int32Ty};
786  llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
787      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
788      "__RTDynamicCast");
789  llvm::Value *Args[] = {
790      Value, Offset, SrcRTTI, DestRTTI,
791      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
792  Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
793  return CGF.Builder.CreateBitCast(Value, DestLTy);
794}
795
796llvm::Value *
797MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
798                                       QualType SrcRecordTy,
799                                       QualType DestTy) {
800  llvm::Value *Offset;
801  std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
802
803  // PVOID __RTCastToVoid(
804  //   PVOID inptr)
805  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
806  llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
807      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
808      "__RTCastToVoid");
809  llvm::Value *Args[] = {Value};
810  return CGF.EmitRuntimeCall(Function, Args);
811}
812
813bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
814  return false;
815}
816
817llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
818    CodeGenFunction &CGF, llvm::Value *This, const CXXRecordDecl *ClassDecl,
819    const CXXRecordDecl *BaseClassDecl) {
820  int64_t VBPtrChars =
821      getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
822  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
823  CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy);
824  CharUnits VBTableChars =
825      IntSize *
826      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
827  llvm::Value *VBTableOffset =
828      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
829
830  llvm::Value *VBPtrToNewBase =
831      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
832  VBPtrToNewBase =
833      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
834  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
835}
836
837bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
838  return isa<CXXConstructorDecl>(GD.getDecl());
839}
840
841static bool isDeletingDtor(GlobalDecl GD) {
842  return isa<CXXDestructorDecl>(GD.getDecl()) &&
843         GD.getDtorType() == Dtor_Deleting;
844}
845
846bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
847  return isDeletingDtor(GD);
848}
849
850bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
851  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
852  if (!RD)
853    return false;
854
855  if (FI.isInstanceMethod()) {
856    // If it's an instance method, aggregates are always returned indirectly via
857    // the second parameter.
858    FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
859    FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
860    return true;
861  } else if (!RD->isPOD()) {
862    // If it's a free function, non-POD types are returned indirectly.
863    FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
864    return true;
865  }
866
867  // Otherwise, use the C ABI rules.
868  return false;
869}
870
871llvm::BasicBlock *
872MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
873                                               const CXXRecordDecl *RD) {
874  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
875  assert(IsMostDerivedClass &&
876         "ctor for a class with virtual bases must have an implicit parameter");
877  llvm::Value *IsCompleteObject =
878    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
879
880  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
881  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
882  CGF.Builder.CreateCondBr(IsCompleteObject,
883                           CallVbaseCtorsBB, SkipVbaseCtorsBB);
884
885  CGF.EmitBlock(CallVbaseCtorsBB);
886
887  // Fill in the vbtable pointers here.
888  EmitVBPtrStores(CGF, RD);
889
890  // CGF will put the base ctor calls in this basic block for us later.
891
892  return SkipVbaseCtorsBB;
893}
894
895void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
896    CodeGenFunction &CGF, const CXXRecordDecl *RD) {
897  // In most cases, an override for a vbase virtual method can adjust
898  // the "this" parameter by applying a constant offset.
899  // However, this is not enough while a constructor or a destructor of some
900  // class X is being executed if all the following conditions are met:
901  //  - X has virtual bases, (1)
902  //  - X overrides a virtual method M of a vbase Y, (2)
903  //  - X itself is a vbase of the most derived class.
904  //
905  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
906  // which holds the extra amount of "this" adjustment we must do when we use
907  // the X vftables (i.e. during X ctor or dtor).
908  // Outside the ctors and dtors, the values of vtorDisps are zero.
909
910  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
911  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
912  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
913  CGBuilderTy &Builder = CGF.Builder;
914
915  unsigned AS =
916      cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
917  llvm::Value *Int8This = nullptr;  // Initialize lazily.
918
919  for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
920        I != E; ++I) {
921    if (!I->second.hasVtorDisp())
922      continue;
923
924    llvm::Value *VBaseOffset =
925        GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
926    // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
927    // just to Trunc back immediately.
928    VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
929    uint64_t ConstantVBaseOffset =
930        Layout.getVBaseClassOffset(I->first).getQuantity();
931
932    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
933    llvm::Value *VtorDispValue = Builder.CreateSub(
934        VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
935        "vtordisp.value");
936
937    if (!Int8This)
938      Int8This = Builder.CreateBitCast(getThisValue(CGF),
939                                       CGF.Int8Ty->getPointerTo(AS));
940    llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
941    // vtorDisp is always the 32-bits before the vbase in the class layout.
942    VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
943    VtorDispPtr = Builder.CreateBitCast(
944        VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
945
946    Builder.CreateStore(VtorDispValue, VtorDispPtr);
947  }
948}
949
950void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
951  // There's only one constructor type in this ABI.
952  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
953}
954
955void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
956                                      const CXXRecordDecl *RD) {
957  llvm::Value *ThisInt8Ptr =
958    CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
959  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
960
961  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
962  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
963    const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
964    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
965    const ASTRecordLayout &SubobjectLayout =
966        CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr);
967    CharUnits Offs = VBT->NonVirtualOffset;
968    Offs += SubobjectLayout.getVBPtrOffset();
969    if (VBT->getVBaseWithVPtr())
970      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
971    llvm::Value *VBPtr =
972        CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
973    llvm::Value *GVPtr = CGF.Builder.CreateConstInBoundsGEP2_32(GV, 0, 0);
974    VBPtr = CGF.Builder.CreateBitCast(VBPtr, GVPtr->getType()->getPointerTo(0),
975                                      "vbptr." + VBT->ReusingBase->getName());
976    CGF.Builder.CreateStore(GVPtr, VBPtr);
977  }
978}
979
980void
981MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
982                                        SmallVectorImpl<CanQualType> &ArgTys) {
983  // TODO: 'for base' flag
984  if (T == StructorType::Deleting) {
985    // The scalar deleting destructor takes an implicit int parameter.
986    ArgTys.push_back(CGM.getContext().IntTy);
987  }
988  auto *CD = dyn_cast<CXXConstructorDecl>(MD);
989  if (!CD)
990    return;
991
992  // All parameters are already in place except is_most_derived, which goes
993  // after 'this' if it's variadic and last if it's not.
994
995  const CXXRecordDecl *Class = CD->getParent();
996  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
997  if (Class->getNumVBases()) {
998    if (FPT->isVariadic())
999      ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy);
1000    else
1001      ArgTys.push_back(CGM.getContext().IntTy);
1002  }
1003}
1004
1005void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1006  // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1007  // other destructor variants are delegating thunks.
1008  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1009}
1010
1011CharUnits
1012MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1013  GD = GD.getCanonicalDecl();
1014  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1015
1016  GlobalDecl LookupGD = GD;
1017  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1018    // Complete destructors take a pointer to the complete object as a
1019    // parameter, thus don't need this adjustment.
1020    if (GD.getDtorType() == Dtor_Complete)
1021      return CharUnits();
1022
1023    // There's no Dtor_Base in vftable but it shares the this adjustment with
1024    // the deleting one, so look it up instead.
1025    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1026  }
1027
1028  MicrosoftVTableContext::MethodVFTableLocation ML =
1029      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1030  CharUnits Adjustment = ML.VFPtrOffset;
1031
1032  // Normal virtual instance methods need to adjust from the vfptr that first
1033  // defined the virtual method to the virtual base subobject, but destructors
1034  // do not.  The vector deleting destructor thunk applies this adjustment for
1035  // us if necessary.
1036  if (isa<CXXDestructorDecl>(MD))
1037    Adjustment = CharUnits::Zero();
1038
1039  if (ML.VBase) {
1040    const ASTRecordLayout &DerivedLayout =
1041        CGM.getContext().getASTRecordLayout(MD->getParent());
1042    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1043  }
1044
1045  return Adjustment;
1046}
1047
1048llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1049    CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
1050  if (!VirtualCall) {
1051    // If the call of a virtual function is not virtual, we just have to
1052    // compensate for the adjustment the virtual function does in its prologue.
1053    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1054    if (Adjustment.isZero())
1055      return This;
1056
1057    unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1058    llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1059    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1060    assert(Adjustment.isPositive());
1061    return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
1062  }
1063
1064  GD = GD.getCanonicalDecl();
1065  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1066
1067  GlobalDecl LookupGD = GD;
1068  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1069    // Complete dtors take a pointer to the complete object,
1070    // thus don't need adjustment.
1071    if (GD.getDtorType() == Dtor_Complete)
1072      return This;
1073
1074    // There's only Dtor_Deleting in vftable but it shares the this adjustment
1075    // with the base one, so look up the deleting one instead.
1076    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1077  }
1078  MicrosoftVTableContext::MethodVFTableLocation ML =
1079      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1080
1081  unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1082  llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
1083  CharUnits StaticOffset = ML.VFPtrOffset;
1084
1085  // Base destructors expect 'this' to point to the beginning of the base
1086  // subobject, not the first vfptr that happens to contain the virtual dtor.
1087  // However, we still need to apply the virtual base adjustment.
1088  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1089    StaticOffset = CharUnits::Zero();
1090
1091  if (ML.VBase) {
1092    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1093    llvm::Value *VBaseOffset =
1094        GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
1095    This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
1096  }
1097  if (!StaticOffset.isZero()) {
1098    assert(StaticOffset.isPositive());
1099    This = CGF.Builder.CreateBitCast(This, charPtrTy);
1100    if (ML.VBase) {
1101      // Non-virtual adjustment might result in a pointer outside the allocated
1102      // object, e.g. if the final overrider class is laid out after the virtual
1103      // base that declares a method in the most derived class.
1104      // FIXME: Update the code that emits this adjustment in thunks prologues.
1105      This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
1106    } else {
1107      This = CGF.Builder.CreateConstInBoundsGEP1_32(This,
1108                                                    StaticOffset.getQuantity());
1109    }
1110  }
1111  return This;
1112}
1113
1114void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1115                                                QualType &ResTy,
1116                                                FunctionArgList &Params) {
1117  ASTContext &Context = getContext();
1118  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1119  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1120  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1121    ImplicitParamDecl *IsMostDerived
1122      = ImplicitParamDecl::Create(Context, nullptr,
1123                                  CGF.CurGD.getDecl()->getLocation(),
1124                                  &Context.Idents.get("is_most_derived"),
1125                                  Context.IntTy);
1126    // The 'most_derived' parameter goes second if the ctor is variadic and last
1127    // if it's not.  Dtors can't be variadic.
1128    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1129    if (FPT->isVariadic())
1130      Params.insert(Params.begin() + 1, IsMostDerived);
1131    else
1132      Params.push_back(IsMostDerived);
1133    getStructorImplicitParamDecl(CGF) = IsMostDerived;
1134  } else if (isDeletingDtor(CGF.CurGD)) {
1135    ImplicitParamDecl *ShouldDelete
1136      = ImplicitParamDecl::Create(Context, nullptr,
1137                                  CGF.CurGD.getDecl()->getLocation(),
1138                                  &Context.Idents.get("should_call_delete"),
1139                                  Context.IntTy);
1140    Params.push_back(ShouldDelete);
1141    getStructorImplicitParamDecl(CGF) = ShouldDelete;
1142  }
1143}
1144
1145llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1146    CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1147  // In this ABI, every virtual function takes a pointer to one of the
1148  // subobjects that first defines it as the 'this' parameter, rather than a
1149  // pointer to the final overrider subobject. Thus, we need to adjust it back
1150  // to the final overrider subobject before use.
1151  // See comments in the MicrosoftVFTableContext implementation for the details.
1152  CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1153  if (Adjustment.isZero())
1154    return This;
1155
1156  unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1157  llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1158             *thisTy = This->getType();
1159
1160  This = CGF.Builder.CreateBitCast(This, charPtrTy);
1161  assert(Adjustment.isPositive());
1162  This =
1163      CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity());
1164  return CGF.Builder.CreateBitCast(This, thisTy);
1165}
1166
1167void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1168  EmitThisParam(CGF);
1169
1170  /// If this is a function that the ABI specifies returns 'this', initialize
1171  /// the return slot to 'this' at the start of the function.
1172  ///
1173  /// Unlike the setting of return types, this is done within the ABI
1174  /// implementation instead of by clients of CGCXXABI because:
1175  /// 1) getThisValue is currently protected
1176  /// 2) in theory, an ABI could implement 'this' returns some other way;
1177  ///    HasThisReturn only specifies a contract, not the implementation
1178  if (HasThisReturn(CGF.CurGD))
1179    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1180  else if (hasMostDerivedReturn(CGF.CurGD))
1181    CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1182                            CGF.ReturnValue);
1183
1184  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1185  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1186    assert(getStructorImplicitParamDecl(CGF) &&
1187           "no implicit parameter for a constructor with virtual bases?");
1188    getStructorImplicitParamValue(CGF)
1189      = CGF.Builder.CreateLoad(
1190          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1191          "is_most_derived");
1192  }
1193
1194  if (isDeletingDtor(CGF.CurGD)) {
1195    assert(getStructorImplicitParamDecl(CGF) &&
1196           "no implicit parameter for a deleting destructor?");
1197    getStructorImplicitParamValue(CGF)
1198      = CGF.Builder.CreateLoad(
1199          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1200          "should_call_delete");
1201  }
1202}
1203
1204unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1205    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1206    bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1207  assert(Type == Ctor_Complete || Type == Ctor_Base);
1208
1209  // Check if we need a 'most_derived' parameter.
1210  if (!D->getParent()->getNumVBases())
1211    return 0;
1212
1213  // Add the 'most_derived' argument second if we are variadic or last if not.
1214  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1215  llvm::Value *MostDerivedArg =
1216      llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1217  RValue RV = RValue::get(MostDerivedArg);
1218  if (MostDerivedArg) {
1219    if (FPT->isVariadic())
1220      Args.insert(Args.begin() + 1,
1221                  CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1222    else
1223      Args.add(RV, getContext().IntTy);
1224  }
1225
1226  return 1;  // Added one arg.
1227}
1228
1229void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1230                                         const CXXDestructorDecl *DD,
1231                                         CXXDtorType Type, bool ForVirtualBase,
1232                                         bool Delegating, llvm::Value *This) {
1233  llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1234
1235  if (DD->isVirtual()) {
1236    assert(Type != CXXDtorType::Dtor_Deleting &&
1237           "The deleting destructor should only be called via a virtual call");
1238    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1239                                                    This, false);
1240  }
1241
1242  CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This,
1243                          /*ImplicitParam=*/nullptr,
1244                          /*ImplicitParamTy=*/QualType(), nullptr,
1245                          getFromDtorType(Type));
1246}
1247
1248void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1249                                            const CXXRecordDecl *RD) {
1250  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1251  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1252
1253  for (VPtrInfo *Info : VFPtrs) {
1254    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1255    if (VTable->hasInitializer())
1256      continue;
1257
1258    llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
1259                               ? getMSCompleteObjectLocator(RD, Info)
1260                               : nullptr;
1261
1262    const VTableLayout &VTLayout =
1263      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1264    llvm::Constant *Init = CGVT.CreateVTableInitializer(
1265        RD, VTLayout.vtable_component_begin(),
1266        VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1267        VTLayout.getNumVTableThunks(), RTTI);
1268
1269    VTable->setInitializer(Init);
1270  }
1271}
1272
1273llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1274    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1275    const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
1276  NeedsVirtualOffset = (NearestVBase != nullptr);
1277
1278  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1279  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1280  llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
1281  if (!VTableAddressPoint) {
1282    assert(Base.getBase()->getNumVBases() &&
1283           !CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1284  }
1285  return VTableAddressPoint;
1286}
1287
1288static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1289                              const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1290                              SmallString<256> &Name) {
1291  llvm::raw_svector_ostream Out(Name);
1292  MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1293}
1294
1295llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1296    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1297  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1298  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1299  llvm::GlobalValue *VFTable = VFTablesMap[ID];
1300  assert(VFTable && "Couldn't find a vftable for the given base?");
1301  return VFTable;
1302}
1303
1304llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1305                                                       CharUnits VPtrOffset) {
1306  // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1307  // shouldn't be used in the given record type. We want to cache this result in
1308  // VFTablesMap, thus a simple zero check is not sufficient.
1309  VFTableIdTy ID(RD, VPtrOffset);
1310  VTablesMapTy::iterator I;
1311  bool Inserted;
1312  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1313  if (!Inserted)
1314    return I->second;
1315
1316  llvm::GlobalVariable *&VTable = I->second;
1317
1318  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1319  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1320
1321  if (DeferredVFTables.insert(RD).second) {
1322    // We haven't processed this record type before.
1323    // Queue up this v-table for possible deferred emission.
1324    CGM.addDeferredVTable(RD);
1325
1326#ifndef NDEBUG
1327    // Create all the vftables at once in order to make sure each vftable has
1328    // a unique mangled name.
1329    llvm::StringSet<> ObservedMangledNames;
1330    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1331      SmallString<256> Name;
1332      mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1333      if (!ObservedMangledNames.insert(Name.str()).second)
1334        llvm_unreachable("Already saw this mangling before?");
1335    }
1336#endif
1337  }
1338
1339  for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1340    if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset)
1341      continue;
1342    SmallString<256> VFTableName;
1343    mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName);
1344    StringRef VTableName = VFTableName;
1345
1346    uint64_t NumVTableSlots =
1347        VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC)
1348            .getNumVTableComponents();
1349    llvm::GlobalValue::LinkageTypes VTableLinkage =
1350        llvm::GlobalValue::ExternalLinkage;
1351    llvm::ArrayType *VTableType =
1352        llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1353    if (getContext().getLangOpts().RTTIData) {
1354      VTableLinkage = llvm::GlobalValue::PrivateLinkage;
1355      VTableName = "";
1356    }
1357
1358    VTable = CGM.getModule().getNamedGlobal(VFTableName);
1359    if (!VTable) {
1360      // Create a backing variable for the contents of VTable.  The VTable may
1361      // or may not include space for a pointer to RTTI data.
1362      llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable(
1363          CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage,
1364          /*Initializer=*/nullptr, VTableName);
1365      VTable->setUnnamedAddr(true);
1366
1367      // Only insert a pointer into the VFTable for RTTI data if we are not
1368      // importing it.  We never reference the RTTI data directly so there is no
1369      // need to make room for it.
1370      if (getContext().getLangOpts().RTTIData &&
1371          !RD->hasAttr<DLLImportAttr>()) {
1372        llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1373                                     llvm::ConstantInt::get(CGM.IntTy, 1)};
1374        // Create a GEP which points just after the first entry in the VFTable,
1375        // this should be the location of the first virtual method.
1376        llvm::Constant *VTableGEP =
1377            llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices);
1378        // The symbol for the VFTable is an alias to the GEP.  It is
1379        // transparent, to other modules, what the nature of this symbol is; all
1380        // that matters is that the alias be the address of the first virtual
1381        // method.
1382        VFTable = llvm::GlobalAlias::create(
1383            cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
1384            /*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage,
1385            VFTableName.str(), VTableGEP, &CGM.getModule());
1386      } else {
1387        // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1388        // be referencing any RTTI data.  The GlobalVariable will end up being
1389        // an appropriate definition of the VFTable.
1390        VTable->setName(VFTableName.str());
1391      }
1392
1393      VFTable->setUnnamedAddr(true);
1394      if (RD->hasAttr<DLLImportAttr>())
1395        VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1396      else if (RD->hasAttr<DLLExportAttr>())
1397        VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1398
1399      llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
1400      if (VFTable != VTable) {
1401        if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) {
1402          // AvailableExternally implies that we grabbed the data from another
1403          // executable.  No need to stick the alias in a Comdat.
1404        } else if (llvm::GlobalValue::isInternalLinkage(VFTableLinkage) ||
1405                   llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) ||
1406                   llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) {
1407          // The alias is going to be dropped into a Comdat, no need to make it
1408          // weak.
1409          if (!llvm::GlobalValue::isInternalLinkage(VFTableLinkage))
1410            VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1411          llvm::Comdat *C =
1412              CGM.getModule().getOrInsertComdat(VFTable->getName());
1413          // We must indicate which VFTable is larger to support linking between
1414          // translation units which do and do not have RTTI data.  The largest
1415          // VFTable contains the RTTI data; translation units which reference
1416          // the smaller VFTable always reference it relative to the first
1417          // virtual method.
1418          C->setSelectionKind(llvm::Comdat::Largest);
1419          VTable->setComdat(C);
1420        } else {
1421          llvm_unreachable("unexpected linkage for vftable!");
1422        }
1423      }
1424      VFTable->setLinkage(VFTableLinkage);
1425      CGM.setGlobalVisibility(VFTable, RD);
1426      VFTablesMap[ID] = VFTable;
1427    }
1428    break;
1429  }
1430
1431  return VTable;
1432}
1433
1434llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1435                                                        GlobalDecl GD,
1436                                                        llvm::Value *This,
1437                                                        llvm::Type *Ty) {
1438  GD = GD.getCanonicalDecl();
1439  CGBuilderTy &Builder = CGF.Builder;
1440
1441  Ty = Ty->getPointerTo()->getPointerTo();
1442  llvm::Value *VPtr =
1443      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1444  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
1445
1446  MicrosoftVTableContext::MethodVFTableLocation ML =
1447      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1448  llvm::Value *VFuncPtr =
1449      Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1450  return Builder.CreateLoad(VFuncPtr);
1451}
1452
1453llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1454    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1455    llvm::Value *This, const CXXMemberCallExpr *CE) {
1456  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1457  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1458
1459  // We have only one destructor in the vftable but can get both behaviors
1460  // by passing an implicit int parameter.
1461  GlobalDecl GD(Dtor, Dtor_Deleting);
1462  const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1463      Dtor, StructorType::Deleting);
1464  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1465  llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
1466
1467  ASTContext &Context = CGF.getContext();
1468  llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1469      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1470      DtorType == Dtor_Deleting);
1471
1472  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1473  RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), This,
1474                                      ImplicitParam, Context.IntTy, CE,
1475                                      StructorType::Deleting);
1476  return RV.getScalarVal();
1477}
1478
1479const VBTableGlobals &
1480MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1481  // At this layer, we can key the cache off of a single class, which is much
1482  // easier than caching each vbtable individually.
1483  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1484  bool Added;
1485  std::tie(Entry, Added) =
1486      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1487  VBTableGlobals &VBGlobals = Entry->second;
1488  if (!Added)
1489    return VBGlobals;
1490
1491  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1492  VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1493
1494  // Cache the globals for all vbtables so we don't have to recompute the
1495  // mangled names.
1496  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1497  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1498                                      E = VBGlobals.VBTables->end();
1499       I != E; ++I) {
1500    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1501  }
1502
1503  return VBGlobals;
1504}
1505
1506llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1507    const CXXMethodDecl *MD,
1508    const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1509  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1510         "can't form pointers to ctors or virtual dtors");
1511
1512  // Calculate the mangled name.
1513  SmallString<256> ThunkName;
1514  llvm::raw_svector_ostream Out(ThunkName);
1515  getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1516  Out.flush();
1517
1518  // If the thunk has been generated previously, just return it.
1519  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1520    return cast<llvm::Function>(GV);
1521
1522  // Create the llvm::Function.
1523  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1524  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1525  llvm::Function *ThunkFn =
1526      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1527                             ThunkName.str(), &CGM.getModule());
1528  assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1529
1530  ThunkFn->setLinkage(MD->isExternallyVisible()
1531                          ? llvm::GlobalValue::LinkOnceODRLinkage
1532                          : llvm::GlobalValue::InternalLinkage);
1533
1534  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1535  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1536
1537  // Add the "thunk" attribute so that LLVM knows that the return type is
1538  // meaningless. These thunks can be used to call functions with differing
1539  // return types, and the caller is required to cast the prototype
1540  // appropriately to extract the correct value.
1541  ThunkFn->addFnAttr("thunk");
1542
1543  // These thunks can be compared, so they are not unnamed.
1544  ThunkFn->setUnnamedAddr(false);
1545
1546  // Start codegen.
1547  CodeGenFunction CGF(CGM);
1548  CGF.CurGD = GlobalDecl(MD);
1549  CGF.CurFuncIsThunk = true;
1550
1551  // Build FunctionArgs, but only include the implicit 'this' parameter
1552  // declaration.
1553  FunctionArgList FunctionArgs;
1554  buildThisParam(CGF, FunctionArgs);
1555
1556  // Start defining the function.
1557  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1558                    FunctionArgs, MD->getLocation(), SourceLocation());
1559  EmitThisParam(CGF);
1560
1561  // Load the vfptr and then callee from the vftable.  The callee should have
1562  // adjusted 'this' so that the vfptr is at offset zero.
1563  llvm::Value *VTable = CGF.GetVTablePtr(
1564      getThisValue(CGF), ThunkTy->getPointerTo()->getPointerTo());
1565  llvm::Value *VFuncPtr =
1566      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1567  llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
1568
1569  CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1570
1571  return ThunkFn;
1572}
1573
1574void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1575  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1576  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1577    const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1578    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1579    emitVBTableDefinition(*VBT, RD, GV);
1580  }
1581}
1582
1583llvm::GlobalVariable *
1584MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1585                                  llvm::GlobalVariable::LinkageTypes Linkage) {
1586  SmallString<256> OutName;
1587  llvm::raw_svector_ostream Out(OutName);
1588  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1589  Out.flush();
1590  StringRef Name = OutName.str();
1591
1592  llvm::ArrayType *VBTableType =
1593      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1594
1595  assert(!CGM.getModule().getNamedGlobal(Name) &&
1596         "vbtable with this name already exists: mangling bug?");
1597  llvm::GlobalVariable *GV =
1598      CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1599  GV->setUnnamedAddr(true);
1600
1601  if (RD->hasAttr<DLLImportAttr>())
1602    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1603  else if (RD->hasAttr<DLLExportAttr>())
1604    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1605
1606  return GV;
1607}
1608
1609void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1610                                            const CXXRecordDecl *RD,
1611                                            llvm::GlobalVariable *GV) const {
1612  const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1613
1614  assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
1615         "should only emit vbtables for classes with vbtables");
1616
1617  const ASTRecordLayout &BaseLayout =
1618      CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr);
1619  const ASTRecordLayout &DerivedLayout =
1620    CGM.getContext().getASTRecordLayout(RD);
1621
1622  SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
1623                                           nullptr);
1624
1625  // The offset from ReusingBase's vbptr to itself always leads.
1626  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
1627  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
1628
1629  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1630  for (const auto &I : ReusingBase->vbases()) {
1631    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
1632    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
1633    assert(!Offset.isNegative());
1634
1635    // Make it relative to the subobject vbptr.
1636    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
1637    if (VBT.getVBaseWithVPtr())
1638      CompleteVBPtrOffset +=
1639          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
1640    Offset -= CompleteVBPtrOffset;
1641
1642    unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
1643    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
1644    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
1645  }
1646
1647  assert(Offsets.size() ==
1648         cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
1649                               ->getElementType())->getNumElements());
1650  llvm::ArrayType *VBTableType =
1651    llvm::ArrayType::get(CGM.IntTy, Offsets.size());
1652  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
1653  GV->setInitializer(Init);
1654
1655  // Set the right visibility.
1656  CGM.setGlobalVisibility(GV, RD);
1657}
1658
1659llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
1660                                                    llvm::Value *This,
1661                                                    const ThisAdjustment &TA) {
1662  if (TA.isEmpty())
1663    return This;
1664
1665  llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
1666
1667  if (!TA.Virtual.isEmpty()) {
1668    assert(TA.Virtual.Microsoft.VtordispOffset < 0);
1669    // Adjust the this argument based on the vtordisp value.
1670    llvm::Value *VtorDispPtr =
1671        CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
1672    VtorDispPtr =
1673        CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
1674    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
1675    V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
1676
1677    if (TA.Virtual.Microsoft.VBPtrOffset) {
1678      // If the final overrider is defined in a virtual base other than the one
1679      // that holds the vfptr, we have to use a vtordispex thunk which looks up
1680      // the vbtable of the derived class.
1681      assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
1682      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
1683      llvm::Value *VBPtr;
1684      llvm::Value *VBaseOffset =
1685          GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
1686                                  TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
1687      V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1688    }
1689  }
1690
1691  if (TA.NonVirtual) {
1692    // Non-virtual adjustment might result in a pointer outside the allocated
1693    // object, e.g. if the final overrider class is laid out after the virtual
1694    // base that declares a method in the most derived class.
1695    V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
1696  }
1697
1698  // Don't need to bitcast back, the call CodeGen will handle this.
1699  return V;
1700}
1701
1702llvm::Value *
1703MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
1704                                         const ReturnAdjustment &RA) {
1705  if (RA.isEmpty())
1706    return Ret;
1707
1708  llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
1709
1710  if (RA.Virtual.Microsoft.VBIndex) {
1711    assert(RA.Virtual.Microsoft.VBIndex > 0);
1712    int32_t IntSize =
1713        getContext().getTypeSizeInChars(getContext().IntTy).getQuantity();
1714    llvm::Value *VBPtr;
1715    llvm::Value *VBaseOffset =
1716        GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
1717                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
1718    V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
1719  }
1720
1721  if (RA.NonVirtual)
1722    V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual);
1723
1724  // Cast back to the original type.
1725  return CGF.Builder.CreateBitCast(V, Ret->getType());
1726}
1727
1728bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
1729                                   QualType elementType) {
1730  // Microsoft seems to completely ignore the possibility of a
1731  // two-argument usual deallocation function.
1732  return elementType.isDestructedType();
1733}
1734
1735bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
1736  // Microsoft seems to completely ignore the possibility of a
1737  // two-argument usual deallocation function.
1738  return expr->getAllocatedType().isDestructedType();
1739}
1740
1741CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
1742  // The array cookie is always a size_t; we then pad that out to the
1743  // alignment of the element type.
1744  ASTContext &Ctx = getContext();
1745  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
1746                  Ctx.getTypeAlignInChars(type));
1747}
1748
1749llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
1750                                                  llvm::Value *allocPtr,
1751                                                  CharUnits cookieSize) {
1752  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1753  llvm::Value *numElementsPtr =
1754    CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
1755  return CGF.Builder.CreateLoad(numElementsPtr);
1756}
1757
1758llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
1759                                                    llvm::Value *newPtr,
1760                                                    llvm::Value *numElements,
1761                                                    const CXXNewExpr *expr,
1762                                                    QualType elementType) {
1763  assert(requiresArrayCookie(expr));
1764
1765  // The size of the cookie.
1766  CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
1767
1768  // Compute an offset to the cookie.
1769  llvm::Value *cookiePtr = newPtr;
1770
1771  // Write the number of elements into the appropriate slot.
1772  unsigned AS = newPtr->getType()->getPointerAddressSpace();
1773  llvm::Value *numElementsPtr
1774    = CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
1775  CGF.Builder.CreateStore(numElements, numElementsPtr);
1776
1777  // Finally, compute a pointer to the actual data buffer by skipping
1778  // over the cookie completely.
1779  return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
1780                                                cookieSize.getQuantity());
1781}
1782
1783static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
1784                                        llvm::Constant *Dtor,
1785                                        llvm::Constant *Addr) {
1786  // Create a function which calls the destructor.
1787  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
1788
1789  // extern "C" int __tlregdtor(void (*f)(void));
1790  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
1791      CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
1792
1793  llvm::Constant *TLRegDtor =
1794      CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
1795  if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
1796    TLRegDtorFn->setDoesNotThrow();
1797
1798  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
1799}
1800
1801void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
1802                                         llvm::Constant *Dtor,
1803                                         llvm::Constant *Addr) {
1804  if (D.getTLSKind())
1805    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
1806
1807  // The default behavior is to use atexit.
1808  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
1809}
1810
1811void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
1812    CodeGenModule &CGM,
1813    ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
1814        CXXThreadLocals,
1815    ArrayRef<llvm::Function *> CXXThreadLocalInits,
1816    ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
1817  // This will create a GV in the .CRT$XDU section.  It will point to our
1818  // initialization function.  The CRT will call all of these function
1819  // pointers at start-up time and, eventually, at thread-creation time.
1820  auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
1821    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
1822        CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
1823        llvm::GlobalVariable::InternalLinkage, InitFunc,
1824        Twine(InitFunc->getName(), "$initializer$"));
1825    InitFuncPtr->setSection(".CRT$XDU");
1826    // This variable has discardable linkage, we have to add it to @llvm.used to
1827    // ensure it won't get discarded.
1828    CGM.addUsedGlobal(InitFuncPtr);
1829    return InitFuncPtr;
1830  };
1831
1832  std::vector<llvm::Function *> NonComdatInits;
1833  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
1834    llvm::GlobalVariable *GV = CXXThreadLocalInitVars[I];
1835    llvm::Function *F = CXXThreadLocalInits[I];
1836
1837    // If the GV is already in a comdat group, then we have to join it.
1838    llvm::Comdat *C = GV->getComdat();
1839
1840    // LinkOnce and Weak linkage are lowered down to a single-member comdat
1841    // group.
1842    // Make an explicit group so we can join it.
1843    if (!C && (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage())) {
1844      C = CGM.getModule().getOrInsertComdat(GV->getName());
1845      GV->setComdat(C);
1846      AddToXDU(F)->setComdat(C);
1847    } else {
1848      NonComdatInits.push_back(F);
1849    }
1850  }
1851
1852  if (!NonComdatInits.empty()) {
1853    llvm::FunctionType *FTy =
1854        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1855    llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
1856        FTy, "__tls_init", SourceLocation(),
1857        /*TLS=*/true);
1858    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
1859
1860    AddToXDU(InitFunc);
1861  }
1862}
1863
1864LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
1865                                                     const VarDecl *VD,
1866                                                     QualType LValType) {
1867  CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
1868  return LValue();
1869}
1870
1871void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
1872                                      llvm::GlobalVariable *GV,
1873                                      bool PerformInit) {
1874  // MSVC only uses guards for static locals.
1875  if (!D.isStaticLocal()) {
1876    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
1877    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
1878    CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
1879    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1880    return;
1881  }
1882
1883  // MSVC always uses an i32 bitfield to guard initialization, which is *not*
1884  // threadsafe.  Since the user may be linking in inline functions compiled by
1885  // cl.exe, there's no reason to provide a false sense of security by using
1886  // critical sections here.
1887
1888  if (D.getTLSKind())
1889    CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
1890
1891  CGBuilderTy &Builder = CGF.Builder;
1892  llvm::IntegerType *GuardTy = CGF.Int32Ty;
1893  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
1894
1895  // Get the guard variable for this function if we have one already.
1896  GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
1897
1898  unsigned BitIndex;
1899  if (D.isStaticLocal() && D.isExternallyVisible()) {
1900    // Externally visible variables have to be numbered in Sema to properly
1901    // handle unreachable VarDecls.
1902    BitIndex = getContext().getStaticLocalNumber(&D);
1903    assert(BitIndex > 0);
1904    BitIndex--;
1905  } else {
1906    // Non-externally visible variables are numbered here in CodeGen.
1907    BitIndex = GI->BitIndex++;
1908  }
1909
1910  if (BitIndex >= 32) {
1911    if (D.isExternallyVisible())
1912      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
1913    BitIndex %= 32;
1914    GI->Guard = nullptr;
1915  }
1916
1917  // Lazily create the i32 bitfield for this function.
1918  if (!GI->Guard) {
1919    // Mangle the name for the guard.
1920    SmallString<256> GuardName;
1921    {
1922      llvm::raw_svector_ostream Out(GuardName);
1923      getMangleContext().mangleStaticGuardVariable(&D, Out);
1924      Out.flush();
1925    }
1926
1927    // Create the guard variable with a zero-initializer. Just absorb linkage,
1928    // visibility and dll storage class from the guarded variable.
1929    GI->Guard =
1930        new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
1931                                 GV->getLinkage(), Zero, GuardName.str());
1932    GI->Guard->setVisibility(GV->getVisibility());
1933    GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
1934  } else {
1935    assert(GI->Guard->getLinkage() == GV->getLinkage() &&
1936           "static local from the same function had different linkage");
1937  }
1938
1939  // Pseudo code for the test:
1940  // if (!(GuardVar & MyGuardBit)) {
1941  //   GuardVar |= MyGuardBit;
1942  //   ... initialize the object ...;
1943  // }
1944
1945  // Test our bit from the guard variable.
1946  llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
1947  llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
1948  llvm::Value *IsInitialized =
1949      Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
1950  llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1951  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1952  Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
1953
1954  // Set our bit in the guard variable and emit the initializer and add a global
1955  // destructor if appropriate.
1956  CGF.EmitBlock(InitBlock);
1957  Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
1958  CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
1959  Builder.CreateBr(EndBlock);
1960
1961  // Continue.
1962  CGF.EmitBlock(EndBlock);
1963}
1964
1965bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
1966  // Null-ness for function memptrs only depends on the first field, which is
1967  // the function pointer.  The rest don't matter, so we can zero initialize.
1968  if (MPT->isMemberFunctionPointer())
1969    return true;
1970
1971  // The virtual base adjustment field is always -1 for null, so if we have one
1972  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
1973  // valid field offset.
1974  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1975  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1976  return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
1977          RD->nullFieldOffsetIsZero());
1978}
1979
1980llvm::Type *
1981MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
1982  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1983  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
1984  llvm::SmallVector<llvm::Type *, 4> fields;
1985  if (MPT->isMemberFunctionPointer())
1986    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
1987  else
1988    fields.push_back(CGM.IntTy);  // FieldOffset
1989
1990  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
1991                                          Inheritance))
1992    fields.push_back(CGM.IntTy);
1993  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
1994    fields.push_back(CGM.IntTy);
1995  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
1996    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
1997
1998  if (fields.size() == 1)
1999    return fields[0];
2000  return llvm::StructType::get(CGM.getLLVMContext(), fields);
2001}
2002
2003void MicrosoftCXXABI::
2004GetNullMemberPointerFields(const MemberPointerType *MPT,
2005                           llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2006  assert(fields.empty());
2007  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2008  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2009  if (MPT->isMemberFunctionPointer()) {
2010    // FunctionPointerOrVirtualThunk
2011    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2012  } else {
2013    if (RD->nullFieldOffsetIsZero())
2014      fields.push_back(getZeroInt());  // FieldOffset
2015    else
2016      fields.push_back(getAllOnesInt());  // FieldOffset
2017  }
2018
2019  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2020                                          Inheritance))
2021    fields.push_back(getZeroInt());
2022  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2023    fields.push_back(getZeroInt());
2024  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2025    fields.push_back(getAllOnesInt());
2026}
2027
2028llvm::Constant *
2029MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2030  llvm::SmallVector<llvm::Constant *, 4> fields;
2031  GetNullMemberPointerFields(MPT, fields);
2032  if (fields.size() == 1)
2033    return fields[0];
2034  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2035  assert(Res->getType() == ConvertMemberPointerType(MPT));
2036  return Res;
2037}
2038
2039llvm::Constant *
2040MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2041                                       bool IsMemberFunction,
2042                                       const CXXRecordDecl *RD,
2043                                       CharUnits NonVirtualBaseAdjustment)
2044{
2045  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2046
2047  // Single inheritance class member pointer are represented as scalars instead
2048  // of aggregates.
2049  if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2050    return FirstField;
2051
2052  llvm::SmallVector<llvm::Constant *, 4> fields;
2053  fields.push_back(FirstField);
2054
2055  if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2056    fields.push_back(llvm::ConstantInt::get(
2057      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2058
2059  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2060    CharUnits Offs = CharUnits::Zero();
2061    if (RD->getNumVBases())
2062      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2063    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2064  }
2065
2066  // The rest of the fields are adjusted by conversions to a more derived class.
2067  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2068    fields.push_back(getZeroInt());
2069
2070  return llvm::ConstantStruct::getAnon(fields);
2071}
2072
2073llvm::Constant *
2074MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2075                                       CharUnits offset) {
2076  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2077  llvm::Constant *FirstField =
2078    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2079  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2080                               CharUnits::Zero());
2081}
2082
2083llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
2084  return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
2085}
2086
2087llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2088                                                   QualType MPType) {
2089  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
2090  const ValueDecl *MPD = MP.getMemberPointerDecl();
2091  if (!MPD)
2092    return EmitNullMemberPointer(MPT);
2093
2094  CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
2095
2096  // FIXME PR15713: Support virtual inheritance paths.
2097
2098  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
2099    return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
2100                              ThisAdjustment);
2101
2102  CharUnits FieldOffset =
2103    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
2104  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
2105}
2106
2107llvm::Constant *
2108MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
2109                                    const CXXMethodDecl *MD,
2110                                    CharUnits NonVirtualBaseAdjustment) {
2111  assert(MD->isInstance() && "Member function must not be static!");
2112  MD = MD->getCanonicalDecl();
2113  RD = RD->getMostRecentDecl();
2114  CodeGenTypes &Types = CGM.getTypes();
2115
2116  llvm::Constant *FirstField;
2117  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2118  if (!MD->isVirtual()) {
2119    llvm::Type *Ty;
2120    // Check whether the function has a computable LLVM signature.
2121    if (Types.isFuncTypeConvertible(FPT)) {
2122      // The function has a computable LLVM signature; use the correct type.
2123      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2124    } else {
2125      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2126      // function type is incomplete.
2127      Ty = CGM.PtrDiffTy;
2128    }
2129    FirstField = CGM.GetAddrOfFunction(MD, Ty);
2130    FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2131  } else {
2132    MicrosoftVTableContext::MethodVFTableLocation ML =
2133        CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
2134    if (!CGM.getTypes().isFuncTypeConvertible(
2135            MD->getType()->castAs<FunctionType>())) {
2136      CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
2137                               "incomplete return or parameter type");
2138      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2139    } else if (FPT->getCallConv() == CC_X86FastCall) {
2140      CGM.ErrorUnsupported(MD, "pointer to fastcall virtual member function");
2141      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2142    } else if (ML.VBase) {
2143      CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
2144                               "member function in virtual base class");
2145      FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
2146    } else {
2147      llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
2148      FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
2149      // Include the vfptr adjustment if the method is in a non-primary vftable.
2150      NonVirtualBaseAdjustment += ML.VFPtrOffset;
2151    }
2152  }
2153
2154  // The rest of the fields are common with data member pointers.
2155  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2156                               NonVirtualBaseAdjustment);
2157}
2158
2159/// Member pointers are the same if they're either bitwise identical *or* both
2160/// null.  Null-ness for function members is determined by the first field,
2161/// while for data member pointers we must compare all fields.
2162llvm::Value *
2163MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2164                                             llvm::Value *L,
2165                                             llvm::Value *R,
2166                                             const MemberPointerType *MPT,
2167                                             bool Inequality) {
2168  CGBuilderTy &Builder = CGF.Builder;
2169
2170  // Handle != comparisons by switching the sense of all boolean operations.
2171  llvm::ICmpInst::Predicate Eq;
2172  llvm::Instruction::BinaryOps And, Or;
2173  if (Inequality) {
2174    Eq = llvm::ICmpInst::ICMP_NE;
2175    And = llvm::Instruction::Or;
2176    Or = llvm::Instruction::And;
2177  } else {
2178    Eq = llvm::ICmpInst::ICMP_EQ;
2179    And = llvm::Instruction::And;
2180    Or = llvm::Instruction::Or;
2181  }
2182
2183  // If this is a single field member pointer (single inheritance), this is a
2184  // single icmp.
2185  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2186  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2187  if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2188                                         Inheritance))
2189    return Builder.CreateICmp(Eq, L, R);
2190
2191  // Compare the first field.
2192  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2193  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2194  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2195
2196  // Compare everything other than the first field.
2197  llvm::Value *Res = nullptr;
2198  llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2199  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2200    llvm::Value *LF = Builder.CreateExtractValue(L, I);
2201    llvm::Value *RF = Builder.CreateExtractValue(R, I);
2202    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2203    if (Res)
2204      Res = Builder.CreateBinOp(And, Res, Cmp);
2205    else
2206      Res = Cmp;
2207  }
2208
2209  // Check if the first field is 0 if this is a function pointer.
2210  if (MPT->isMemberFunctionPointer()) {
2211    // (l1 == r1 && ...) || l0 == 0
2212    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2213    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2214    Res = Builder.CreateBinOp(Or, Res, IsZero);
2215  }
2216
2217  // Combine the comparison of the first field, which must always be true for
2218  // this comparison to succeeed.
2219  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2220}
2221
2222llvm::Value *
2223MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2224                                            llvm::Value *MemPtr,
2225                                            const MemberPointerType *MPT) {
2226  CGBuilderTy &Builder = CGF.Builder;
2227  llvm::SmallVector<llvm::Constant *, 4> fields;
2228  // We only need one field for member functions.
2229  if (MPT->isMemberFunctionPointer())
2230    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2231  else
2232    GetNullMemberPointerFields(MPT, fields);
2233  assert(!fields.empty());
2234  llvm::Value *FirstField = MemPtr;
2235  if (MemPtr->getType()->isStructTy())
2236    FirstField = Builder.CreateExtractValue(MemPtr, 0);
2237  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2238
2239  // For function member pointers, we only need to test the function pointer
2240  // field.  The other fields if any can be garbage.
2241  if (MPT->isMemberFunctionPointer())
2242    return Res;
2243
2244  // Otherwise, emit a series of compares and combine the results.
2245  for (int I = 1, E = fields.size(); I < E; ++I) {
2246    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2247    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2248    Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2249  }
2250  return Res;
2251}
2252
2253bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2254                                                  llvm::Constant *Val) {
2255  // Function pointers are null if the pointer in the first field is null.
2256  if (MPT->isMemberFunctionPointer()) {
2257    llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2258      Val->getAggregateElement(0U) : Val;
2259    return FirstField->isNullValue();
2260  }
2261
2262  // If it's not a function pointer and it's zero initializable, we can easily
2263  // check zero.
2264  if (isZeroInitializable(MPT) && Val->isNullValue())
2265    return true;
2266
2267  // Otherwise, break down all the fields for comparison.  Hopefully these
2268  // little Constants are reused, while a big null struct might not be.
2269  llvm::SmallVector<llvm::Constant *, 4> Fields;
2270  GetNullMemberPointerFields(MPT, Fields);
2271  if (Fields.size() == 1) {
2272    assert(Val->getType()->isIntegerTy());
2273    return Val == Fields[0];
2274  }
2275
2276  unsigned I, E;
2277  for (I = 0, E = Fields.size(); I != E; ++I) {
2278    if (Val->getAggregateElement(I) != Fields[I])
2279      break;
2280  }
2281  return I == E;
2282}
2283
2284llvm::Value *
2285MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2286                                         llvm::Value *This,
2287                                         llvm::Value *VBPtrOffset,
2288                                         llvm::Value *VBTableOffset,
2289                                         llvm::Value **VBPtrOut) {
2290  CGBuilderTy &Builder = CGF.Builder;
2291  // Load the vbtable pointer from the vbptr in the instance.
2292  This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
2293  llvm::Value *VBPtr =
2294    Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
2295  if (VBPtrOut) *VBPtrOut = VBPtr;
2296  VBPtr = Builder.CreateBitCast(VBPtr,
2297                                CGM.Int32Ty->getPointerTo(0)->getPointerTo(0));
2298  llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
2299
2300  // Translate from byte offset to table index. It improves analyzability.
2301  llvm::Value *VBTableIndex = Builder.CreateAShr(
2302      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2303      "vbtindex", /*isExact=*/true);
2304
2305  // Load an i32 offset from the vb-table.
2306  llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2307  VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2308  return Builder.CreateLoad(VBaseOffs, "vbase_offs");
2309}
2310
2311// Returns an adjusted base cast to i8*, since we do more address arithmetic on
2312// it.
2313llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2314    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2315    llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2316  CGBuilderTy &Builder = CGF.Builder;
2317  Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
2318  llvm::BasicBlock *OriginalBB = nullptr;
2319  llvm::BasicBlock *SkipAdjustBB = nullptr;
2320  llvm::BasicBlock *VBaseAdjustBB = nullptr;
2321
2322  // In the unspecified inheritance model, there might not be a vbtable at all,
2323  // in which case we need to skip the virtual base lookup.  If there is a
2324  // vbtable, the first entry is a no-op entry that gives back the original
2325  // base, so look for a virtual base adjustment offset of zero.
2326  if (VBPtrOffset) {
2327    OriginalBB = Builder.GetInsertBlock();
2328    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2329    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2330    llvm::Value *IsVirtual =
2331      Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2332                           "memptr.is_vbase");
2333    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2334    CGF.EmitBlock(VBaseAdjustBB);
2335  }
2336
2337  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2338  // know the vbptr offset.
2339  if (!VBPtrOffset) {
2340    CharUnits offs = CharUnits::Zero();
2341    if (!RD->hasDefinition()) {
2342      DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2343      unsigned DiagID = Diags.getCustomDiagID(
2344          DiagnosticsEngine::Error,
2345          "member pointer representation requires a "
2346          "complete class type for %0 to perform this expression");
2347      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2348    } else if (RD->getNumVBases())
2349      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2350    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2351  }
2352  llvm::Value *VBPtr = nullptr;
2353  llvm::Value *VBaseOffs =
2354    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2355  llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2356
2357  // Merge control flow with the case where we didn't have to adjust.
2358  if (VBaseAdjustBB) {
2359    Builder.CreateBr(SkipAdjustBB);
2360    CGF.EmitBlock(SkipAdjustBB);
2361    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2362    Phi->addIncoming(Base, OriginalBB);
2363    Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2364    return Phi;
2365  }
2366  return AdjustedBase;
2367}
2368
2369llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2370    CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
2371    const MemberPointerType *MPT) {
2372  assert(MPT->isMemberDataPointer());
2373  unsigned AS = Base->getType()->getPointerAddressSpace();
2374  llvm::Type *PType =
2375      CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2376  CGBuilderTy &Builder = CGF.Builder;
2377  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2378  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2379
2380  // Extract the fields we need, regardless of model.  We'll apply them if we
2381  // have them.
2382  llvm::Value *FieldOffset = MemPtr;
2383  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2384  llvm::Value *VBPtrOffset = nullptr;
2385  if (MemPtr->getType()->isStructTy()) {
2386    // We need to extract values.
2387    unsigned I = 0;
2388    FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2389    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2390      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2391    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2392      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2393  }
2394
2395  if (VirtualBaseAdjustmentOffset) {
2396    Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2397                             VBPtrOffset);
2398  }
2399
2400  // Cast to char*.
2401  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
2402
2403  // Apply the offset, which we assume is non-null.
2404  llvm::Value *Addr =
2405    Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
2406
2407  // Cast the address to the appropriate pointer type, adopting the address
2408  // space of the base pointer.
2409  return Builder.CreateBitCast(Addr, PType);
2410}
2411
2412static MSInheritanceAttr::Spelling
2413getInheritanceFromMemptr(const MemberPointerType *MPT) {
2414  return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
2415}
2416
2417llvm::Value *
2418MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2419                                             const CastExpr *E,
2420                                             llvm::Value *Src) {
2421  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2422         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2423         E->getCastKind() == CK_ReinterpretMemberPointer);
2424
2425  // Use constant emission if we can.
2426  if (isa<llvm::Constant>(Src))
2427    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2428
2429  // We may be adding or dropping fields from the member pointer, so we need
2430  // both types and the inheritance models of both records.
2431  const MemberPointerType *SrcTy =
2432    E->getSubExpr()->getType()->castAs<MemberPointerType>();
2433  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2434  bool IsFunc = SrcTy->isMemberFunctionPointer();
2435
2436  // If the classes use the same null representation, reinterpret_cast is a nop.
2437  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
2438  if (IsReinterpret && IsFunc)
2439    return Src;
2440
2441  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
2442  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
2443  if (IsReinterpret &&
2444      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
2445    return Src;
2446
2447  CGBuilderTy &Builder = CGF.Builder;
2448
2449  // Branch past the conversion if Src is null.
2450  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
2451  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
2452
2453  // C++ 5.2.10p9: The null member pointer value is converted to the null member
2454  //   pointer value of the destination type.
2455  if (IsReinterpret) {
2456    // For reinterpret casts, sema ensures that src and dst are both functions
2457    // or data and have the same size, which means the LLVM types should match.
2458    assert(Src->getType() == DstNull->getType());
2459    return Builder.CreateSelect(IsNotNull, Src, DstNull);
2460  }
2461
2462  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
2463  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
2464  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
2465  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
2466  CGF.EmitBlock(ConvertBB);
2467
2468  // Decompose src.
2469  llvm::Value *FirstField = Src;
2470  llvm::Value *NonVirtualBaseAdjustment = nullptr;
2471  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2472  llvm::Value *VBPtrOffset = nullptr;
2473  MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
2474  if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2475    // We need to extract values.
2476    unsigned I = 0;
2477    FirstField = Builder.CreateExtractValue(Src, I++);
2478    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2479      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
2480    if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2481      VBPtrOffset = Builder.CreateExtractValue(Src, I++);
2482    if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2483      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
2484  }
2485
2486  // For data pointers, we adjust the field offset directly.  For functions, we
2487  // have a separate field.
2488  llvm::Constant *Adj = getMemberPointerAdjustment(E);
2489  if (Adj) {
2490    Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2491    llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
2492    bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2493    if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2494      NVAdjustField = getZeroInt();
2495    if (isDerivedToBase)
2496      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
2497    else
2498      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
2499  }
2500
2501  // FIXME PR15713: Support conversions through virtually derived classes.
2502
2503  // Recompose dst from the null struct and the adjusted fields from src.
2504  MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
2505  llvm::Value *Dst;
2506  if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
2507    Dst = FirstField;
2508  } else {
2509    Dst = llvm::UndefValue::get(DstNull->getType());
2510    unsigned Idx = 0;
2511    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
2512    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2513      Dst = Builder.CreateInsertValue(
2514        Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
2515    if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2516      Dst = Builder.CreateInsertValue(
2517        Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
2518    if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2519      Dst = Builder.CreateInsertValue(
2520        Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
2521  }
2522  Builder.CreateBr(ContinueBB);
2523
2524  // In the continuation, choose between DstNull and Dst.
2525  CGF.EmitBlock(ContinueBB);
2526  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
2527  Phi->addIncoming(DstNull, OriginalBB);
2528  Phi->addIncoming(Dst, ConvertBB);
2529  return Phi;
2530}
2531
2532llvm::Constant *
2533MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
2534                                             llvm::Constant *Src) {
2535  const MemberPointerType *SrcTy =
2536    E->getSubExpr()->getType()->castAs<MemberPointerType>();
2537  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2538
2539  // If src is null, emit a new null for dst.  We can't return src because dst
2540  // might have a new representation.
2541  if (MemberPointerConstantIsNull(SrcTy, Src))
2542    return EmitNullMemberPointer(DstTy);
2543
2544  // We don't need to do anything for reinterpret_casts of non-null member
2545  // pointers.  We should only get here when the two type representations have
2546  // the same size.
2547  if (E->getCastKind() == CK_ReinterpretMemberPointer)
2548    return Src;
2549
2550  MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
2551  MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
2552
2553  // Decompose src.
2554  llvm::Constant *FirstField = Src;
2555  llvm::Constant *NonVirtualBaseAdjustment = nullptr;
2556  llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
2557  llvm::Constant *VBPtrOffset = nullptr;
2558  bool IsFunc = SrcTy->isMemberFunctionPointer();
2559  if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
2560    // We need to extract values.
2561    unsigned I = 0;
2562    FirstField = Src->getAggregateElement(I++);
2563    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
2564      NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
2565    if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
2566      VBPtrOffset = Src->getAggregateElement(I++);
2567    if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
2568      VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
2569  }
2570
2571  // For data pointers, we adjust the field offset directly.  For functions, we
2572  // have a separate field.
2573  llvm::Constant *Adj = getMemberPointerAdjustment(E);
2574  if (Adj) {
2575    Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
2576    llvm::Constant *&NVAdjustField =
2577      IsFunc ? NonVirtualBaseAdjustment : FirstField;
2578    bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
2579    if (!NVAdjustField)  // If this field didn't exist in src, it's zero.
2580      NVAdjustField = getZeroInt();
2581    if (IsDerivedToBase)
2582      NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
2583    else
2584      NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
2585  }
2586
2587  // FIXME PR15713: Support conversions through virtually derived classes.
2588
2589  // Recompose dst from the null struct and the adjusted fields from src.
2590  if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
2591    return FirstField;
2592
2593  llvm::SmallVector<llvm::Constant *, 4> Fields;
2594  Fields.push_back(FirstField);
2595  if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
2596    Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
2597  if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
2598    Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
2599  if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
2600    Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
2601  return llvm::ConstantStruct::getAnon(Fields);
2602}
2603
2604llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
2605    CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
2606    llvm::Value *MemPtr, const MemberPointerType *MPT) {
2607  assert(MPT->isMemberFunctionPointer());
2608  const FunctionProtoType *FPT =
2609    MPT->getPointeeType()->castAs<FunctionProtoType>();
2610  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2611  llvm::FunctionType *FTy =
2612    CGM.getTypes().GetFunctionType(
2613      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
2614  CGBuilderTy &Builder = CGF.Builder;
2615
2616  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2617
2618  // Extract the fields we need, regardless of model.  We'll apply them if we
2619  // have them.
2620  llvm::Value *FunctionPointer = MemPtr;
2621  llvm::Value *NonVirtualBaseAdjustment = nullptr;
2622  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2623  llvm::Value *VBPtrOffset = nullptr;
2624  if (MemPtr->getType()->isStructTy()) {
2625    // We need to extract values.
2626    unsigned I = 0;
2627    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
2628    if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
2629      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
2630    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2631      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2632    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2633      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2634  }
2635
2636  if (VirtualBaseAdjustmentOffset) {
2637    This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
2638                             VBPtrOffset);
2639  }
2640
2641  if (NonVirtualBaseAdjustment) {
2642    // Apply the adjustment and cast back to the original struct type.
2643    llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
2644    Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
2645    This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
2646  }
2647
2648  return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
2649}
2650
2651CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
2652  return new MicrosoftCXXABI(CGM);
2653}
2654
2655// MS RTTI Overview:
2656// The run time type information emitted by cl.exe contains 5 distinct types of
2657// structures.  Many of them reference each other.
2658//
2659// TypeInfo:  Static classes that are returned by typeid.
2660//
2661// CompleteObjectLocator:  Referenced by vftables.  They contain information
2662//   required for dynamic casting, including OffsetFromTop.  They also contain
2663//   a reference to the TypeInfo for the type and a reference to the
2664//   CompleteHierarchyDescriptor for the type.
2665//
2666// ClassHieararchyDescriptor: Contains information about a class hierarchy.
2667//   Used during dynamic_cast to walk a class hierarchy.  References a base
2668//   class array and the size of said array.
2669//
2670// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
2671//   somewhat of a misnomer because the most derived class is also in the list
2672//   as well as multiple copies of virtual bases (if they occur multiple times
2673//   in the hiearchy.)  The BaseClassArray contains one BaseClassDescriptor for
2674//   every path in the hierarchy, in pre-order depth first order.  Note, we do
2675//   not declare a specific llvm type for BaseClassArray, it's merely an array
2676//   of BaseClassDescriptor pointers.
2677//
2678// BaseClassDescriptor: Contains information about a class in a class hierarchy.
2679//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
2680//   BaseClassArray is.  It contains information about a class within a
2681//   hierarchy such as: is this base is ambiguous and what is its offset in the
2682//   vbtable.  The names of the BaseClassDescriptors have all of their fields
2683//   mangled into them so they can be aggressively deduplicated by the linker.
2684
2685static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
2686  StringRef MangledName("\01??_7type_info@@6B@");
2687  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
2688    return VTable;
2689  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
2690                                  /*Constant=*/true,
2691                                  llvm::GlobalVariable::ExternalLinkage,
2692                                  /*Initializer=*/nullptr, MangledName);
2693}
2694
2695namespace {
2696
2697/// \brief A Helper struct that stores information about a class in a class
2698/// hierarchy.  The information stored in these structs struct is used during
2699/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
2700// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
2701// implicit depth first pre-order tree connectivity.  getFirstChild and
2702// getNextSibling allow us to walk the tree efficiently.
2703struct MSRTTIClass {
2704  enum {
2705    IsPrivateOnPath = 1 | 8,
2706    IsAmbiguous = 2,
2707    IsPrivate = 4,
2708    IsVirtual = 16,
2709    HasHierarchyDescriptor = 64
2710  };
2711  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
2712  uint32_t initialize(const MSRTTIClass *Parent,
2713                      const CXXBaseSpecifier *Specifier);
2714
2715  MSRTTIClass *getFirstChild() { return this + 1; }
2716  static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
2717    return Child + 1 + Child->NumBases;
2718  }
2719
2720  const CXXRecordDecl *RD, *VirtualRoot;
2721  uint32_t Flags, NumBases, OffsetInVBase;
2722};
2723
2724/// \brief Recursively initialize the base class array.
2725uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
2726                                 const CXXBaseSpecifier *Specifier) {
2727  Flags = HasHierarchyDescriptor;
2728  if (!Parent) {
2729    VirtualRoot = nullptr;
2730    OffsetInVBase = 0;
2731  } else {
2732    if (Specifier->getAccessSpecifier() != AS_public)
2733      Flags |= IsPrivate | IsPrivateOnPath;
2734    if (Specifier->isVirtual()) {
2735      Flags |= IsVirtual;
2736      VirtualRoot = RD;
2737      OffsetInVBase = 0;
2738    } else {
2739      if (Parent->Flags & IsPrivateOnPath)
2740        Flags |= IsPrivateOnPath;
2741      VirtualRoot = Parent->VirtualRoot;
2742      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
2743          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
2744    }
2745  }
2746  NumBases = 0;
2747  MSRTTIClass *Child = getFirstChild();
2748  for (const CXXBaseSpecifier &Base : RD->bases()) {
2749    NumBases += Child->initialize(this, &Base) + 1;
2750    Child = getNextChild(Child);
2751  }
2752  return NumBases;
2753}
2754
2755static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
2756  switch (Ty->getLinkage()) {
2757  case NoLinkage:
2758  case InternalLinkage:
2759  case UniqueExternalLinkage:
2760    return llvm::GlobalValue::InternalLinkage;
2761
2762  case VisibleNoLinkage:
2763  case ExternalLinkage:
2764    return llvm::GlobalValue::LinkOnceODRLinkage;
2765  }
2766  llvm_unreachable("Invalid linkage!");
2767}
2768
2769/// \brief An ephemeral helper class for building MS RTTI types.  It caches some
2770/// calls to the module and information about the most derived class in a
2771/// hierarchy.
2772struct MSRTTIBuilder {
2773  enum {
2774    HasBranchingHierarchy = 1,
2775    HasVirtualBranchingHierarchy = 2,
2776    HasAmbiguousBases = 4
2777  };
2778
2779  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
2780      : CGM(ABI.CGM), Context(CGM.getContext()),
2781        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
2782        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
2783        ABI(ABI) {}
2784
2785  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
2786  llvm::GlobalVariable *
2787  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
2788  llvm::GlobalVariable *getClassHierarchyDescriptor();
2789  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
2790
2791  CodeGenModule &CGM;
2792  ASTContext &Context;
2793  llvm::LLVMContext &VMContext;
2794  llvm::Module &Module;
2795  const CXXRecordDecl *RD;
2796  llvm::GlobalVariable::LinkageTypes Linkage;
2797  MicrosoftCXXABI &ABI;
2798};
2799
2800} // namespace
2801
2802/// \brief Recursively serializes a class hierarchy in pre-order depth first
2803/// order.
2804static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
2805                                    const CXXRecordDecl *RD) {
2806  Classes.push_back(MSRTTIClass(RD));
2807  for (const CXXBaseSpecifier &Base : RD->bases())
2808    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
2809}
2810
2811/// \brief Find ambiguity among base classes.
2812static void
2813detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
2814  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
2815  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
2816  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
2817  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
2818    if ((Class->Flags & MSRTTIClass::IsVirtual) &&
2819        !VirtualBases.insert(Class->RD).second) {
2820      Class = MSRTTIClass::getNextChild(Class);
2821      continue;
2822    }
2823    if (!UniqueBases.insert(Class->RD).second)
2824      AmbiguousBases.insert(Class->RD);
2825    Class++;
2826  }
2827  if (AmbiguousBases.empty())
2828    return;
2829  for (MSRTTIClass &Class : Classes)
2830    if (AmbiguousBases.count(Class.RD))
2831      Class.Flags |= MSRTTIClass::IsAmbiguous;
2832}
2833
2834llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
2835  SmallString<256> MangledName;
2836  {
2837    llvm::raw_svector_ostream Out(MangledName);
2838    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
2839  }
2840
2841  // Check to see if we've already declared this ClassHierarchyDescriptor.
2842  if (auto CHD = Module.getNamedGlobal(MangledName))
2843    return CHD;
2844
2845  // Serialize the class hierarchy and initialize the CHD Fields.
2846  SmallVector<MSRTTIClass, 8> Classes;
2847  serializeClassHierarchy(Classes, RD);
2848  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
2849  detectAmbiguousBases(Classes);
2850  int Flags = 0;
2851  for (auto Class : Classes) {
2852    if (Class.RD->getNumBases() > 1)
2853      Flags |= HasBranchingHierarchy;
2854    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
2855    // believe the field isn't actually used.
2856    if (Class.Flags & MSRTTIClass::IsAmbiguous)
2857      Flags |= HasAmbiguousBases;
2858  }
2859  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
2860    Flags |= HasVirtualBranchingHierarchy;
2861  // These gep indices are used to get the address of the first element of the
2862  // base class array.
2863  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
2864                               llvm::ConstantInt::get(CGM.IntTy, 0)};
2865
2866  // Forward-declare the class hierarchy descriptor
2867  auto Type = ABI.getClassHierarchyDescriptorType();
2868  auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2869                                      /*Initializer=*/nullptr,
2870                                      MangledName.c_str());
2871
2872  // Initialize the base class ClassHierarchyDescriptor.
2873  llvm::Constant *Fields[] = {
2874      llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
2875      llvm::ConstantInt::get(CGM.IntTy, Flags),
2876      llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
2877      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
2878          getBaseClassArray(Classes),
2879          llvm::ArrayRef<llvm::Value *>(GEPIndices))),
2880  };
2881  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2882  return CHD;
2883}
2884
2885llvm::GlobalVariable *
2886MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
2887  SmallString<256> MangledName;
2888  {
2889    llvm::raw_svector_ostream Out(MangledName);
2890    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
2891  }
2892
2893  // Forward-declare the base class array.
2894  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
2895  // mode) bytes of padding.  We provide a pointer sized amount of padding by
2896  // adding +1 to Classes.size().  The sections have pointer alignment and are
2897  // marked pick-any so it shouldn't matter.
2898  llvm::Type *PtrType = ABI.getImageRelativeType(
2899      ABI.getBaseClassDescriptorType()->getPointerTo());
2900  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
2901  auto *BCA = new llvm::GlobalVariable(
2902      Module, ArrType,
2903      /*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str());
2904
2905  // Initialize the BaseClassArray.
2906  SmallVector<llvm::Constant *, 8> BaseClassArrayData;
2907  for (MSRTTIClass &Class : Classes)
2908    BaseClassArrayData.push_back(
2909        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
2910  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
2911  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
2912  return BCA;
2913}
2914
2915llvm::GlobalVariable *
2916MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
2917  // Compute the fields for the BaseClassDescriptor.  They are computed up front
2918  // because they are mangled into the name of the object.
2919  uint32_t OffsetInVBTable = 0;
2920  int32_t VBPtrOffset = -1;
2921  if (Class.VirtualRoot) {
2922    auto &VTableContext = CGM.getMicrosoftVTableContext();
2923    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
2924    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
2925  }
2926
2927  SmallString<256> MangledName;
2928  {
2929    llvm::raw_svector_ostream Out(MangledName);
2930    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
2931        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
2932        Class.Flags, Out);
2933  }
2934
2935  // Check to see if we've already declared this object.
2936  if (auto BCD = Module.getNamedGlobal(MangledName))
2937    return BCD;
2938
2939  // Forward-declare the base class descriptor.
2940  auto Type = ABI.getBaseClassDescriptorType();
2941  auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2942                                      /*Initializer=*/nullptr,
2943                                      MangledName.c_str());
2944
2945  // Initialize the BaseClassDescriptor.
2946  llvm::Constant *Fields[] = {
2947      ABI.getImageRelativeConstant(
2948          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
2949      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
2950      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
2951      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
2952      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
2953      llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
2954      ABI.getImageRelativeConstant(
2955          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
2956  };
2957  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
2958  return BCD;
2959}
2960
2961llvm::GlobalVariable *
2962MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
2963  SmallString<256> MangledName;
2964  {
2965    llvm::raw_svector_ostream Out(MangledName);
2966    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
2967  }
2968
2969  // Check to see if we've already computed this complete object locator.
2970  if (auto COL = Module.getNamedGlobal(MangledName))
2971    return COL;
2972
2973  // Compute the fields of the complete object locator.
2974  int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
2975  int VFPtrOffset = 0;
2976  // The offset includes the vtordisp if one exists.
2977  if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
2978    if (Context.getASTRecordLayout(RD)
2979      .getVBaseOffsetsMap()
2980      .find(VBase)
2981      ->second.hasVtorDisp())
2982      VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
2983
2984  // Forward-declare the complete object locator.
2985  llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
2986  auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
2987    /*Initializer=*/nullptr, MangledName.c_str());
2988
2989  // Initialize the CompleteObjectLocator.
2990  llvm::Constant *Fields[] = {
2991      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
2992      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
2993      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
2994      ABI.getImageRelativeConstant(
2995          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
2996      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
2997      ABI.getImageRelativeConstant(COL),
2998  };
2999  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3000  if (!ABI.isImageRelative())
3001    FieldsRef = FieldsRef.drop_back();
3002  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3003  return COL;
3004}
3005
3006/// \brief Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3007/// llvm::GlobalVariable * because different type descriptors have different
3008/// types, and need to be abstracted.  They are abstracting by casting the
3009/// address to an Int8PtrTy.
3010llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3011  SmallString<256> MangledName, TypeInfoString;
3012  {
3013    llvm::raw_svector_ostream Out(MangledName);
3014    getMangleContext().mangleCXXRTTI(Type, Out);
3015  }
3016
3017  // Check to see if we've already declared this TypeDescriptor.
3018  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3019    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3020
3021  // Compute the fields for the TypeDescriptor.
3022  {
3023    llvm::raw_svector_ostream Out(TypeInfoString);
3024    getMangleContext().mangleCXXRTTIName(Type, Out);
3025  }
3026
3027  // Declare and initialize the TypeDescriptor.
3028  llvm::Constant *Fields[] = {
3029    getTypeInfoVTable(CGM),                        // VFPtr
3030    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3031    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3032  llvm::StructType *TypeDescriptorType =
3033      getTypeDescriptorType(TypeInfoString);
3034  return llvm::ConstantExpr::getBitCast(
3035      new llvm::GlobalVariable(
3036          CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3037          getLinkageForRTTI(Type),
3038          llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3039          MangledName.c_str()),
3040      CGM.Int8PtrTy);
3041}
3042
3043/// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3044llvm::GlobalVariable *
3045MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3046                                            const VPtrInfo *Info) {
3047  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3048}
3049
3050static void emitCXXConstructor(CodeGenModule &CGM,
3051                               const CXXConstructorDecl *ctor,
3052                               StructorType ctorType) {
3053  // There are no constructor variants, always emit the complete destructor.
3054  CGM.codegenCXXStructor(ctor, StructorType::Complete);
3055}
3056
3057static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3058                              StructorType dtorType) {
3059  // The complete destructor is equivalent to the base destructor for
3060  // classes with no virtual bases, so try to emit it as an alias.
3061  if (!dtor->getParent()->getNumVBases() &&
3062      (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3063    bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3064        GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3065    if (ProducedAlias) {
3066      if (dtorType == StructorType::Complete)
3067        return;
3068      if (dtor->isVirtual())
3069        CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3070    }
3071  }
3072
3073  // The base destructor is equivalent to the base destructor of its
3074  // base class if there is exactly one non-virtual base class with a
3075  // non-trivial destructor, there are no fields with a non-trivial
3076  // destructor, and the body of the destructor is trivial.
3077  if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3078    return;
3079
3080  CGM.codegenCXXStructor(dtor, dtorType);
3081}
3082
3083void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3084                                      StructorType Type) {
3085  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3086    emitCXXConstructor(CGM, CD, Type);
3087    return;
3088  }
3089  emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3090}
3091