CodeGenModule.cpp revision 223017
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66    TBAA(0),
67    VTables(*this), Runtime(0), DebugInfo(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (Features.ObjC1)
76     createObjCRuntime();
77
78  // Enable TBAA unless it's suppressed.
79  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                           ABI.getMangleContext());
82
83  // If debug info or coverage generation is enabled, create the CGDebugInfo
84  // object.
85  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86      CodeGenOpts.EmitGcovNotes)
87    DebugInfo = new CGDebugInfo(*this);
88
89  Block.GlobalUniqueCount = 0;
90
91  // Initialize the type cache.
92  llvm::LLVMContext &LLVMContext = M.getContext();
93  VoidTy = llvm::Type::getVoidTy(LLVMContext);
94  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97  PointerWidthInBits = C.Target.getPointerWidth(0);
98  PointerAlignInBytes =
99    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
100  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
101  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
102  Int8PtrTy = Int8Ty->getPointerTo(0);
103  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
104}
105
106CodeGenModule::~CodeGenModule() {
107  delete Runtime;
108  delete &ABI;
109  delete TBAA;
110  delete DebugInfo;
111}
112
113void CodeGenModule::createObjCRuntime() {
114  if (!Features.NeXTRuntime)
115    Runtime = CreateGNUObjCRuntime(*this);
116  else
117    Runtime = CreateMacObjCRuntime(*this);
118}
119
120void CodeGenModule::Release() {
121  EmitDeferred();
122  EmitCXXGlobalInitFunc();
123  EmitCXXGlobalDtorFunc();
124  if (Runtime)
125    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
126      AddGlobalCtor(ObjCInitFunction);
127  EmitCtorList(GlobalCtors, "llvm.global_ctors");
128  EmitCtorList(GlobalDtors, "llvm.global_dtors");
129  EmitAnnotations();
130  EmitLLVMUsed();
131
132  SimplifyPersonality();
133
134  if (getCodeGenOpts().EmitDeclMetadata)
135    EmitDeclMetadata();
136
137  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
138    EmitCoverageFile();
139}
140
141void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
142  // Make sure that this type is translated.
143  Types.UpdateCompletedType(TD);
144  if (DebugInfo)
145    DebugInfo->UpdateCompletedType(TD);
146}
147
148llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
149  if (!TBAA)
150    return 0;
151  return TBAA->getTBAAInfo(QTy);
152}
153
154void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
155                                        llvm::MDNode *TBAAInfo) {
156  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
157}
158
159bool CodeGenModule::isTargetDarwin() const {
160  return getContext().Target.getTriple().isOSDarwin();
161}
162
163void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
164  unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
165  getDiags().Report(Context.getFullLoc(loc), diagID);
166}
167
168/// ErrorUnsupported - Print out an error that codegen doesn't support the
169/// specified stmt yet.
170void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
171                                     bool OmitOnError) {
172  if (OmitOnError && getDiags().hasErrorOccurred())
173    return;
174  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
175                                               "cannot compile this %0 yet");
176  std::string Msg = Type;
177  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
178    << Msg << S->getSourceRange();
179}
180
181/// ErrorUnsupported - Print out an error that codegen doesn't support the
182/// specified decl yet.
183void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
184                                     bool OmitOnError) {
185  if (OmitOnError && getDiags().hasErrorOccurred())
186    return;
187  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
188                                               "cannot compile this %0 yet");
189  std::string Msg = Type;
190  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
191}
192
193void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
194                                        const NamedDecl *D) const {
195  // Internal definitions always have default visibility.
196  if (GV->hasLocalLinkage()) {
197    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
198    return;
199  }
200
201  // Set visibility for definitions.
202  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
203  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
204    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
205}
206
207/// Set the symbol visibility of type information (vtable and RTTI)
208/// associated with the given type.
209void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
210                                      const CXXRecordDecl *RD,
211                                      TypeVisibilityKind TVK) const {
212  setGlobalVisibility(GV, RD);
213
214  if (!CodeGenOpts.HiddenWeakVTables)
215    return;
216
217  // We never want to drop the visibility for RTTI names.
218  if (TVK == TVK_ForRTTIName)
219    return;
220
221  // We want to drop the visibility to hidden for weak type symbols.
222  // This isn't possible if there might be unresolved references
223  // elsewhere that rely on this symbol being visible.
224
225  // This should be kept roughly in sync with setThunkVisibility
226  // in CGVTables.cpp.
227
228  // Preconditions.
229  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
230      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
231    return;
232
233  // Don't override an explicit visibility attribute.
234  if (RD->getExplicitVisibility())
235    return;
236
237  switch (RD->getTemplateSpecializationKind()) {
238  // We have to disable the optimization if this is an EI definition
239  // because there might be EI declarations in other shared objects.
240  case TSK_ExplicitInstantiationDefinition:
241  case TSK_ExplicitInstantiationDeclaration:
242    return;
243
244  // Every use of a non-template class's type information has to emit it.
245  case TSK_Undeclared:
246    break;
247
248  // In theory, implicit instantiations can ignore the possibility of
249  // an explicit instantiation declaration because there necessarily
250  // must be an EI definition somewhere with default visibility.  In
251  // practice, it's possible to have an explicit instantiation for
252  // an arbitrary template class, and linkers aren't necessarily able
253  // to deal with mixed-visibility symbols.
254  case TSK_ExplicitSpecialization:
255  case TSK_ImplicitInstantiation:
256    if (!CodeGenOpts.HiddenWeakTemplateVTables)
257      return;
258    break;
259  }
260
261  // If there's a key function, there may be translation units
262  // that don't have the key function's definition.  But ignore
263  // this if we're emitting RTTI under -fno-rtti.
264  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
265    if (Context.getKeyFunction(RD))
266      return;
267  }
268
269  // Otherwise, drop the visibility to hidden.
270  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
271  GV->setUnnamedAddr(true);
272}
273
274llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
275  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
276
277  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
278  if (!Str.empty())
279    return Str;
280
281  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
282    IdentifierInfo *II = ND->getIdentifier();
283    assert(II && "Attempt to mangle unnamed decl.");
284
285    Str = II->getName();
286    return Str;
287  }
288
289  llvm::SmallString<256> Buffer;
290  llvm::raw_svector_ostream Out(Buffer);
291  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
292    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
293  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
294    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
295  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
296    getCXXABI().getMangleContext().mangleBlock(BD, Out);
297  else
298    getCXXABI().getMangleContext().mangleName(ND, Out);
299
300  // Allocate space for the mangled name.
301  Out.flush();
302  size_t Length = Buffer.size();
303  char *Name = MangledNamesAllocator.Allocate<char>(Length);
304  std::copy(Buffer.begin(), Buffer.end(), Name);
305
306  Str = llvm::StringRef(Name, Length);
307
308  return Str;
309}
310
311void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
312                                        const BlockDecl *BD) {
313  MangleContext &MangleCtx = getCXXABI().getMangleContext();
314  const Decl *D = GD.getDecl();
315  llvm::raw_svector_ostream Out(Buffer.getBuffer());
316  if (D == 0)
317    MangleCtx.mangleGlobalBlock(BD, Out);
318  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
319    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
320  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
321    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
322  else
323    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
324}
325
326llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
327  return getModule().getNamedValue(Name);
328}
329
330/// AddGlobalCtor - Add a function to the list that will be called before
331/// main() runs.
332void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
333  // FIXME: Type coercion of void()* types.
334  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
335}
336
337/// AddGlobalDtor - Add a function to the list that will be called
338/// when the module is unloaded.
339void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
340  // FIXME: Type coercion of void()* types.
341  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
342}
343
344void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
345  // Ctor function type is void()*.
346  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
347  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348
349  // Get the type of a ctor entry, { i32, void ()* }.
350  llvm::StructType* CtorStructTy =
351    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                          llvm::PointerType::getUnqual(CtorFTy), NULL);
353
354  // Construct the constructor and destructor arrays.
355  std::vector<llvm::Constant*> Ctors;
356  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357    std::vector<llvm::Constant*> S;
358    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                I->second, false));
360    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362  }
363
364  if (!Ctors.empty()) {
365    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366    new llvm::GlobalVariable(TheModule, AT, false,
367                             llvm::GlobalValue::AppendingLinkage,
368                             llvm::ConstantArray::get(AT, Ctors),
369                             GlobalName);
370  }
371}
372
373void CodeGenModule::EmitAnnotations() {
374  if (Annotations.empty())
375    return;
376
377  // Create a new global variable for the ConstantStruct in the Module.
378  llvm::Constant *Array =
379  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                Annotations.size()),
381                           Annotations);
382  llvm::GlobalValue *gv =
383  new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                           llvm::GlobalValue::AppendingLinkage, Array,
385                           "llvm.global.annotations");
386  gv->setSection("llvm.metadata");
387}
388
389llvm::GlobalValue::LinkageTypes
390CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392
393  if (Linkage == GVA_Internal)
394    return llvm::Function::InternalLinkage;
395
396  if (D->hasAttr<DLLExportAttr>())
397    return llvm::Function::DLLExportLinkage;
398
399  if (D->hasAttr<WeakAttr>())
400    return llvm::Function::WeakAnyLinkage;
401
402  // In C99 mode, 'inline' functions are guaranteed to have a strong
403  // definition somewhere else, so we can use available_externally linkage.
404  if (Linkage == GVA_C99Inline)
405    return llvm::Function::AvailableExternallyLinkage;
406
407  // In C++, the compiler has to emit a definition in every translation unit
408  // that references the function.  We should use linkonce_odr because
409  // a) if all references in this translation unit are optimized away, we
410  // don't need to codegen it.  b) if the function persists, it needs to be
411  // merged with other definitions. c) C++ has the ODR, so we know the
412  // definition is dependable.
413  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414    return !Context.getLangOptions().AppleKext
415             ? llvm::Function::LinkOnceODRLinkage
416             : llvm::Function::InternalLinkage;
417
418  // An explicit instantiation of a template has weak linkage, since
419  // explicit instantiations can occur in multiple translation units
420  // and must all be equivalent. However, we are not allowed to
421  // throw away these explicit instantiations.
422  if (Linkage == GVA_ExplicitTemplateInstantiation)
423    return !Context.getLangOptions().AppleKext
424             ? llvm::Function::WeakODRLinkage
425             : llvm::Function::InternalLinkage;
426
427  // Otherwise, we have strong external linkage.
428  assert(Linkage == GVA_StrongExternal);
429  return llvm::Function::ExternalLinkage;
430}
431
432
433/// SetFunctionDefinitionAttributes - Set attributes for a global.
434///
435/// FIXME: This is currently only done for aliases and functions, but not for
436/// variables (these details are set in EmitGlobalVarDefinition for variables).
437void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                    llvm::GlobalValue *GV) {
439  SetCommonAttributes(D, GV);
440}
441
442void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                              const CGFunctionInfo &Info,
444                                              llvm::Function *F) {
445  unsigned CallingConv;
446  AttributeListType AttributeList;
447  ConstructAttributeList(Info, D, AttributeList, CallingConv);
448  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                          AttributeList.size()));
450  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451}
452
453void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                           llvm::Function *F) {
455  if (CodeGenOpts.UnwindTables)
456    F->setHasUWTable();
457
458  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
459    F->addFnAttr(llvm::Attribute::NoUnwind);
460
461  if (D->hasAttr<AlwaysInlineAttr>())
462    F->addFnAttr(llvm::Attribute::AlwaysInline);
463
464  if (D->hasAttr<NakedAttr>())
465    F->addFnAttr(llvm::Attribute::Naked);
466
467  if (D->hasAttr<NoInlineAttr>())
468    F->addFnAttr(llvm::Attribute::NoInline);
469
470  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
471    F->setUnnamedAddr(true);
472
473  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
474    F->addFnAttr(llvm::Attribute::StackProtect);
475  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
476    F->addFnAttr(llvm::Attribute::StackProtectReq);
477
478  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
479  if (alignment)
480    F->setAlignment(alignment);
481
482  // C++ ABI requires 2-byte alignment for member functions.
483  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
484    F->setAlignment(2);
485}
486
487void CodeGenModule::SetCommonAttributes(const Decl *D,
488                                        llvm::GlobalValue *GV) {
489  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
490    setGlobalVisibility(GV, ND);
491  else
492    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
493
494  if (D->hasAttr<UsedAttr>())
495    AddUsedGlobal(GV);
496
497  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
498    GV->setSection(SA->getName());
499
500  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
501}
502
503void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
504                                                  llvm::Function *F,
505                                                  const CGFunctionInfo &FI) {
506  SetLLVMFunctionAttributes(D, FI, F);
507  SetLLVMFunctionAttributesForDefinition(D, F);
508
509  F->setLinkage(llvm::Function::InternalLinkage);
510
511  SetCommonAttributes(D, F);
512}
513
514void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
515                                          llvm::Function *F,
516                                          bool IsIncompleteFunction) {
517  if (unsigned IID = F->getIntrinsicID()) {
518    // If this is an intrinsic function, set the function's attributes
519    // to the intrinsic's attributes.
520    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
521    return;
522  }
523
524  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
525
526  if (!IsIncompleteFunction)
527    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
528
529  // Only a few attributes are set on declarations; these may later be
530  // overridden by a definition.
531
532  if (FD->hasAttr<DLLImportAttr>()) {
533    F->setLinkage(llvm::Function::DLLImportLinkage);
534  } else if (FD->hasAttr<WeakAttr>() ||
535             FD->isWeakImported()) {
536    // "extern_weak" is overloaded in LLVM; we probably should have
537    // separate linkage types for this.
538    F->setLinkage(llvm::Function::ExternalWeakLinkage);
539  } else {
540    F->setLinkage(llvm::Function::ExternalLinkage);
541
542    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
543    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
544      F->setVisibility(GetLLVMVisibility(LV.visibility()));
545    }
546  }
547
548  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
549    F->setSection(SA->getName());
550}
551
552void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
553  assert(!GV->isDeclaration() &&
554         "Only globals with definition can force usage.");
555  LLVMUsed.push_back(GV);
556}
557
558void CodeGenModule::EmitLLVMUsed() {
559  // Don't create llvm.used if there is no need.
560  if (LLVMUsed.empty())
561    return;
562
563  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
564
565  // Convert LLVMUsed to what ConstantArray needs.
566  std::vector<llvm::Constant*> UsedArray;
567  UsedArray.resize(LLVMUsed.size());
568  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
569    UsedArray[i] =
570     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
571                                      i8PTy);
572  }
573
574  if (UsedArray.empty())
575    return;
576  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
577
578  llvm::GlobalVariable *GV =
579    new llvm::GlobalVariable(getModule(), ATy, false,
580                             llvm::GlobalValue::AppendingLinkage,
581                             llvm::ConstantArray::get(ATy, UsedArray),
582                             "llvm.used");
583
584  GV->setSection("llvm.metadata");
585}
586
587void CodeGenModule::EmitDeferred() {
588  // Emit code for any potentially referenced deferred decls.  Since a
589  // previously unused static decl may become used during the generation of code
590  // for a static function, iterate until no  changes are made.
591
592  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
593    if (!DeferredVTables.empty()) {
594      const CXXRecordDecl *RD = DeferredVTables.back();
595      DeferredVTables.pop_back();
596      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
597      continue;
598    }
599
600    GlobalDecl D = DeferredDeclsToEmit.back();
601    DeferredDeclsToEmit.pop_back();
602
603    // Check to see if we've already emitted this.  This is necessary
604    // for a couple of reasons: first, decls can end up in the
605    // deferred-decls queue multiple times, and second, decls can end
606    // up with definitions in unusual ways (e.g. by an extern inline
607    // function acquiring a strong function redefinition).  Just
608    // ignore these cases.
609    //
610    // TODO: That said, looking this up multiple times is very wasteful.
611    llvm::StringRef Name = getMangledName(D);
612    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
613    assert(CGRef && "Deferred decl wasn't referenced?");
614
615    if (!CGRef->isDeclaration())
616      continue;
617
618    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
619    // purposes an alias counts as a definition.
620    if (isa<llvm::GlobalAlias>(CGRef))
621      continue;
622
623    // Otherwise, emit the definition and move on to the next one.
624    EmitGlobalDefinition(D);
625  }
626}
627
628/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
629/// annotation information for a given GlobalValue.  The annotation struct is
630/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
631/// GlobalValue being annotated.  The second field is the constant string
632/// created from the AnnotateAttr's annotation.  The third field is a constant
633/// string containing the name of the translation unit.  The fourth field is
634/// the line number in the file of the annotated value declaration.
635///
636/// FIXME: this does not unique the annotation string constants, as llvm-gcc
637///        appears to.
638///
639llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
640                                                const AnnotateAttr *AA,
641                                                unsigned LineNo) {
642  llvm::Module *M = &getModule();
643
644  // get [N x i8] constants for the annotation string, and the filename string
645  // which are the 2nd and 3rd elements of the global annotation structure.
646  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
647  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
648                                                  AA->getAnnotation(), true);
649  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
650                                                  M->getModuleIdentifier(),
651                                                  true);
652
653  // Get the two global values corresponding to the ConstantArrays we just
654  // created to hold the bytes of the strings.
655  llvm::GlobalValue *annoGV =
656    new llvm::GlobalVariable(*M, anno->getType(), false,
657                             llvm::GlobalValue::PrivateLinkage, anno,
658                             GV->getName());
659  // translation unit name string, emitted into the llvm.metadata section.
660  llvm::GlobalValue *unitGV =
661    new llvm::GlobalVariable(*M, unit->getType(), false,
662                             llvm::GlobalValue::PrivateLinkage, unit,
663                             ".str");
664  unitGV->setUnnamedAddr(true);
665
666  // Create the ConstantStruct for the global annotation.
667  llvm::Constant *Fields[4] = {
668    llvm::ConstantExpr::getBitCast(GV, SBP),
669    llvm::ConstantExpr::getBitCast(annoGV, SBP),
670    llvm::ConstantExpr::getBitCast(unitGV, SBP),
671    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
672  };
673  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
674}
675
676bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
677  // Never defer when EmitAllDecls is specified.
678  if (Features.EmitAllDecls)
679    return false;
680
681  return !getContext().DeclMustBeEmitted(Global);
682}
683
684llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
685  const AliasAttr *AA = VD->getAttr<AliasAttr>();
686  assert(AA && "No alias?");
687
688  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
689
690  // See if there is already something with the target's name in the module.
691  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
692
693  llvm::Constant *Aliasee;
694  if (isa<llvm::FunctionType>(DeclTy))
695    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
696                                      /*ForVTable=*/false);
697  else
698    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
699                                    llvm::PointerType::getUnqual(DeclTy), 0);
700  if (!Entry) {
701    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
702    F->setLinkage(llvm::Function::ExternalWeakLinkage);
703    WeakRefReferences.insert(F);
704  }
705
706  return Aliasee;
707}
708
709void CodeGenModule::EmitGlobal(GlobalDecl GD) {
710  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
711
712  // Weak references don't produce any output by themselves.
713  if (Global->hasAttr<WeakRefAttr>())
714    return;
715
716  // If this is an alias definition (which otherwise looks like a declaration)
717  // emit it now.
718  if (Global->hasAttr<AliasAttr>())
719    return EmitAliasDefinition(GD);
720
721  // Ignore declarations, they will be emitted on their first use.
722  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
723    if (FD->getIdentifier()) {
724      llvm::StringRef Name = FD->getName();
725      if (Name == "_Block_object_assign") {
726        BlockObjectAssignDecl = FD;
727      } else if (Name == "_Block_object_dispose") {
728        BlockObjectDisposeDecl = FD;
729      }
730    }
731
732    // Forward declarations are emitted lazily on first use.
733    if (!FD->doesThisDeclarationHaveABody())
734      return;
735  } else {
736    const VarDecl *VD = cast<VarDecl>(Global);
737    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
738
739    if (VD->getIdentifier()) {
740      llvm::StringRef Name = VD->getName();
741      if (Name == "_NSConcreteGlobalBlock") {
742        NSConcreteGlobalBlockDecl = VD;
743      } else if (Name == "_NSConcreteStackBlock") {
744        NSConcreteStackBlockDecl = VD;
745      }
746    }
747
748
749    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
750      return;
751  }
752
753  // Defer code generation when possible if this is a static definition, inline
754  // function etc.  These we only want to emit if they are used.
755  if (!MayDeferGeneration(Global)) {
756    // Emit the definition if it can't be deferred.
757    EmitGlobalDefinition(GD);
758    return;
759  }
760
761  // If we're deferring emission of a C++ variable with an
762  // initializer, remember the order in which it appeared in the file.
763  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
764      cast<VarDecl>(Global)->hasInit()) {
765    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
766    CXXGlobalInits.push_back(0);
767  }
768
769  // If the value has already been used, add it directly to the
770  // DeferredDeclsToEmit list.
771  llvm::StringRef MangledName = getMangledName(GD);
772  if (GetGlobalValue(MangledName))
773    DeferredDeclsToEmit.push_back(GD);
774  else {
775    // Otherwise, remember that we saw a deferred decl with this name.  The
776    // first use of the mangled name will cause it to move into
777    // DeferredDeclsToEmit.
778    DeferredDecls[MangledName] = GD;
779  }
780}
781
782void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
783  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
784
785  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
786                                 Context.getSourceManager(),
787                                 "Generating code for declaration");
788
789  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
790    // At -O0, don't generate IR for functions with available_externally
791    // linkage.
792    if (CodeGenOpts.OptimizationLevel == 0 &&
793        !Function->hasAttr<AlwaysInlineAttr>() &&
794        getFunctionLinkage(Function)
795                                  == llvm::Function::AvailableExternallyLinkage)
796      return;
797
798    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
799      // Make sure to emit the definition(s) before we emit the thunks.
800      // This is necessary for the generation of certain thunks.
801      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
802        EmitCXXConstructor(CD, GD.getCtorType());
803      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
804        EmitCXXDestructor(DD, GD.getDtorType());
805      else
806        EmitGlobalFunctionDefinition(GD);
807
808      if (Method->isVirtual())
809        getVTables().EmitThunks(GD);
810
811      return;
812    }
813
814    return EmitGlobalFunctionDefinition(GD);
815  }
816
817  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
818    return EmitGlobalVarDefinition(VD);
819
820  assert(0 && "Invalid argument to EmitGlobalDefinition()");
821}
822
823/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
824/// module, create and return an llvm Function with the specified type. If there
825/// is something in the module with the specified name, return it potentially
826/// bitcasted to the right type.
827///
828/// If D is non-null, it specifies a decl that correspond to this.  This is used
829/// to set the attributes on the function when it is first created.
830llvm::Constant *
831CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
832                                       const llvm::Type *Ty,
833                                       GlobalDecl D, bool ForVTable) {
834  // Lookup the entry, lazily creating it if necessary.
835  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
836  if (Entry) {
837    if (WeakRefReferences.count(Entry)) {
838      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
839      if (FD && !FD->hasAttr<WeakAttr>())
840        Entry->setLinkage(llvm::Function::ExternalLinkage);
841
842      WeakRefReferences.erase(Entry);
843    }
844
845    if (Entry->getType()->getElementType() == Ty)
846      return Entry;
847
848    // Make sure the result is of the correct type.
849    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
850    return llvm::ConstantExpr::getBitCast(Entry, PTy);
851  }
852
853  // This function doesn't have a complete type (for example, the return
854  // type is an incomplete struct). Use a fake type instead, and make
855  // sure not to try to set attributes.
856  bool IsIncompleteFunction = false;
857
858  const llvm::FunctionType *FTy;
859  if (isa<llvm::FunctionType>(Ty)) {
860    FTy = cast<llvm::FunctionType>(Ty);
861  } else {
862    FTy = llvm::FunctionType::get(VoidTy, false);
863    IsIncompleteFunction = true;
864  }
865
866  llvm::Function *F = llvm::Function::Create(FTy,
867                                             llvm::Function::ExternalLinkage,
868                                             MangledName, &getModule());
869  assert(F->getName() == MangledName && "name was uniqued!");
870  if (D.getDecl())
871    SetFunctionAttributes(D, F, IsIncompleteFunction);
872
873  // This is the first use or definition of a mangled name.  If there is a
874  // deferred decl with this name, remember that we need to emit it at the end
875  // of the file.
876  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
877  if (DDI != DeferredDecls.end()) {
878    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
879    // list, and remove it from DeferredDecls (since we don't need it anymore).
880    DeferredDeclsToEmit.push_back(DDI->second);
881    DeferredDecls.erase(DDI);
882
883  // Otherwise, there are cases we have to worry about where we're
884  // using a declaration for which we must emit a definition but where
885  // we might not find a top-level definition:
886  //   - member functions defined inline in their classes
887  //   - friend functions defined inline in some class
888  //   - special member functions with implicit definitions
889  // If we ever change our AST traversal to walk into class methods,
890  // this will be unnecessary.
891  //
892  // We also don't emit a definition for a function if it's going to be an entry
893  // in a vtable, unless it's already marked as used.
894  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
895    // Look for a declaration that's lexically in a record.
896    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
897    do {
898      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
899        if (FD->isImplicit() && !ForVTable) {
900          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
901          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
902          break;
903        } else if (FD->doesThisDeclarationHaveABody()) {
904          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
905          break;
906        }
907      }
908      FD = FD->getPreviousDeclaration();
909    } while (FD);
910  }
911
912  // Make sure the result is of the requested type.
913  if (!IsIncompleteFunction) {
914    assert(F->getType()->getElementType() == Ty);
915    return F;
916  }
917
918  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
919  return llvm::ConstantExpr::getBitCast(F, PTy);
920}
921
922/// GetAddrOfFunction - Return the address of the given function.  If Ty is
923/// non-null, then this function will use the specified type if it has to
924/// create it (this occurs when we see a definition of the function).
925llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
926                                                 const llvm::Type *Ty,
927                                                 bool ForVTable) {
928  // If there was no specific requested type, just convert it now.
929  if (!Ty)
930    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
931
932  llvm::StringRef MangledName = getMangledName(GD);
933  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
934}
935
936/// CreateRuntimeFunction - Create a new runtime function with the specified
937/// type and name.
938llvm::Constant *
939CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
940                                     llvm::StringRef Name) {
941  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
942}
943
944static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
945                                 bool ConstantInit) {
946  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
947    return false;
948
949  if (Context.getLangOptions().CPlusPlus) {
950    if (const RecordType *Record
951          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
952      return ConstantInit &&
953             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
954             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
955  }
956
957  return true;
958}
959
960/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
961/// create and return an llvm GlobalVariable with the specified type.  If there
962/// is something in the module with the specified name, return it potentially
963/// bitcasted to the right type.
964///
965/// If D is non-null, it specifies a decl that correspond to this.  This is used
966/// to set the attributes on the global when it is first created.
967llvm::Constant *
968CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
969                                     const llvm::PointerType *Ty,
970                                     const VarDecl *D,
971                                     bool UnnamedAddr) {
972  // Lookup the entry, lazily creating it if necessary.
973  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
974  if (Entry) {
975    if (WeakRefReferences.count(Entry)) {
976      if (D && !D->hasAttr<WeakAttr>())
977        Entry->setLinkage(llvm::Function::ExternalLinkage);
978
979      WeakRefReferences.erase(Entry);
980    }
981
982    if (UnnamedAddr)
983      Entry->setUnnamedAddr(true);
984
985    if (Entry->getType() == Ty)
986      return Entry;
987
988    // Make sure the result is of the correct type.
989    return llvm::ConstantExpr::getBitCast(Entry, Ty);
990  }
991
992  // This is the first use or definition of a mangled name.  If there is a
993  // deferred decl with this name, remember that we need to emit it at the end
994  // of the file.
995  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
996  if (DDI != DeferredDecls.end()) {
997    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
998    // list, and remove it from DeferredDecls (since we don't need it anymore).
999    DeferredDeclsToEmit.push_back(DDI->second);
1000    DeferredDecls.erase(DDI);
1001  }
1002
1003  llvm::GlobalVariable *GV =
1004    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1005                             llvm::GlobalValue::ExternalLinkage,
1006                             0, MangledName, 0,
1007                             false, Ty->getAddressSpace());
1008
1009  // Handle things which are present even on external declarations.
1010  if (D) {
1011    // FIXME: This code is overly simple and should be merged with other global
1012    // handling.
1013    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1014
1015    // Set linkage and visibility in case we never see a definition.
1016    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1017    if (LV.linkage() != ExternalLinkage) {
1018      // Don't set internal linkage on declarations.
1019    } else {
1020      if (D->hasAttr<DLLImportAttr>())
1021        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1022      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1023        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1024
1025      // Set visibility on a declaration only if it's explicit.
1026      if (LV.visibilityExplicit())
1027        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1028    }
1029
1030    GV->setThreadLocal(D->isThreadSpecified());
1031  }
1032
1033  return GV;
1034}
1035
1036
1037llvm::GlobalVariable *
1038CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1039                                      const llvm::Type *Ty,
1040                                      llvm::GlobalValue::LinkageTypes Linkage) {
1041  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1042  llvm::GlobalVariable *OldGV = 0;
1043
1044
1045  if (GV) {
1046    // Check if the variable has the right type.
1047    if (GV->getType()->getElementType() == Ty)
1048      return GV;
1049
1050    // Because C++ name mangling, the only way we can end up with an already
1051    // existing global with the same name is if it has been declared extern "C".
1052      assert(GV->isDeclaration() && "Declaration has wrong type!");
1053    OldGV = GV;
1054  }
1055
1056  // Create a new variable.
1057  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1058                                Linkage, 0, Name);
1059
1060  if (OldGV) {
1061    // Replace occurrences of the old variable if needed.
1062    GV->takeName(OldGV);
1063
1064    if (!OldGV->use_empty()) {
1065      llvm::Constant *NewPtrForOldDecl =
1066      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1067      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1068    }
1069
1070    OldGV->eraseFromParent();
1071  }
1072
1073  return GV;
1074}
1075
1076/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1077/// given global variable.  If Ty is non-null and if the global doesn't exist,
1078/// then it will be greated with the specified type instead of whatever the
1079/// normal requested type would be.
1080llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1081                                                  const llvm::Type *Ty) {
1082  assert(D->hasGlobalStorage() && "Not a global variable");
1083  QualType ASTTy = D->getType();
1084  if (Ty == 0)
1085    Ty = getTypes().ConvertTypeForMem(ASTTy);
1086
1087  const llvm::PointerType *PTy =
1088    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1089
1090  llvm::StringRef MangledName = getMangledName(D);
1091  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1092}
1093
1094/// CreateRuntimeVariable - Create a new runtime global variable with the
1095/// specified type and name.
1096llvm::Constant *
1097CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1098                                     llvm::StringRef Name) {
1099  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1100                               true);
1101}
1102
1103void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1104  assert(!D->getInit() && "Cannot emit definite definitions here!");
1105
1106  if (MayDeferGeneration(D)) {
1107    // If we have not seen a reference to this variable yet, place it
1108    // into the deferred declarations table to be emitted if needed
1109    // later.
1110    llvm::StringRef MangledName = getMangledName(D);
1111    if (!GetGlobalValue(MangledName)) {
1112      DeferredDecls[MangledName] = D;
1113      return;
1114    }
1115  }
1116
1117  // The tentative definition is the only definition.
1118  EmitGlobalVarDefinition(D);
1119}
1120
1121void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1122  if (DefinitionRequired)
1123    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1124}
1125
1126llvm::GlobalVariable::LinkageTypes
1127CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1128  if (RD->getLinkage() != ExternalLinkage)
1129    return llvm::GlobalVariable::InternalLinkage;
1130
1131  if (const CXXMethodDecl *KeyFunction
1132                                    = RD->getASTContext().getKeyFunction(RD)) {
1133    // If this class has a key function, use that to determine the linkage of
1134    // the vtable.
1135    const FunctionDecl *Def = 0;
1136    if (KeyFunction->hasBody(Def))
1137      KeyFunction = cast<CXXMethodDecl>(Def);
1138
1139    switch (KeyFunction->getTemplateSpecializationKind()) {
1140      case TSK_Undeclared:
1141      case TSK_ExplicitSpecialization:
1142        // When compiling with optimizations turned on, we emit all vtables,
1143        // even if the key function is not defined in the current translation
1144        // unit. If this is the case, use available_externally linkage.
1145        if (!Def && CodeGenOpts.OptimizationLevel)
1146          return llvm::GlobalVariable::AvailableExternallyLinkage;
1147
1148        if (KeyFunction->isInlined())
1149          return !Context.getLangOptions().AppleKext ?
1150                   llvm::GlobalVariable::LinkOnceODRLinkage :
1151                   llvm::Function::InternalLinkage;
1152
1153        return llvm::GlobalVariable::ExternalLinkage;
1154
1155      case TSK_ImplicitInstantiation:
1156        return !Context.getLangOptions().AppleKext ?
1157                 llvm::GlobalVariable::LinkOnceODRLinkage :
1158                 llvm::Function::InternalLinkage;
1159
1160      case TSK_ExplicitInstantiationDefinition:
1161        return !Context.getLangOptions().AppleKext ?
1162                 llvm::GlobalVariable::WeakODRLinkage :
1163                 llvm::Function::InternalLinkage;
1164
1165      case TSK_ExplicitInstantiationDeclaration:
1166        // FIXME: Use available_externally linkage. However, this currently
1167        // breaks LLVM's build due to undefined symbols.
1168        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1169        return !Context.getLangOptions().AppleKext ?
1170                 llvm::GlobalVariable::LinkOnceODRLinkage :
1171                 llvm::Function::InternalLinkage;
1172    }
1173  }
1174
1175  if (Context.getLangOptions().AppleKext)
1176    return llvm::Function::InternalLinkage;
1177
1178  switch (RD->getTemplateSpecializationKind()) {
1179  case TSK_Undeclared:
1180  case TSK_ExplicitSpecialization:
1181  case TSK_ImplicitInstantiation:
1182    // FIXME: Use available_externally linkage. However, this currently
1183    // breaks LLVM's build due to undefined symbols.
1184    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1185  case TSK_ExplicitInstantiationDeclaration:
1186    return llvm::GlobalVariable::LinkOnceODRLinkage;
1187
1188  case TSK_ExplicitInstantiationDefinition:
1189      return llvm::GlobalVariable::WeakODRLinkage;
1190  }
1191
1192  // Silence GCC warning.
1193  return llvm::GlobalVariable::LinkOnceODRLinkage;
1194}
1195
1196CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1197    return Context.toCharUnitsFromBits(
1198      TheTargetData.getTypeStoreSizeInBits(Ty));
1199}
1200
1201void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1202  llvm::Constant *Init = 0;
1203  QualType ASTTy = D->getType();
1204  bool NonConstInit = false;
1205
1206  const Expr *InitExpr = D->getAnyInitializer();
1207
1208  if (!InitExpr) {
1209    // This is a tentative definition; tentative definitions are
1210    // implicitly initialized with { 0 }.
1211    //
1212    // Note that tentative definitions are only emitted at the end of
1213    // a translation unit, so they should never have incomplete
1214    // type. In addition, EmitTentativeDefinition makes sure that we
1215    // never attempt to emit a tentative definition if a real one
1216    // exists. A use may still exists, however, so we still may need
1217    // to do a RAUW.
1218    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1219    Init = EmitNullConstant(D->getType());
1220  } else {
1221    Init = EmitConstantExpr(InitExpr, D->getType());
1222    if (!Init) {
1223      QualType T = InitExpr->getType();
1224      if (D->getType()->isReferenceType())
1225        T = D->getType();
1226
1227      if (getLangOptions().CPlusPlus) {
1228        Init = EmitNullConstant(T);
1229        NonConstInit = true;
1230      } else {
1231        ErrorUnsupported(D, "static initializer");
1232        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1233      }
1234    } else {
1235      // We don't need an initializer, so remove the entry for the delayed
1236      // initializer position (just in case this entry was delayed).
1237      if (getLangOptions().CPlusPlus)
1238        DelayedCXXInitPosition.erase(D);
1239    }
1240  }
1241
1242  const llvm::Type* InitType = Init->getType();
1243  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1244
1245  // Strip off a bitcast if we got one back.
1246  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1247    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1248           // all zero index gep.
1249           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1250    Entry = CE->getOperand(0);
1251  }
1252
1253  // Entry is now either a Function or GlobalVariable.
1254  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1255
1256  // We have a definition after a declaration with the wrong type.
1257  // We must make a new GlobalVariable* and update everything that used OldGV
1258  // (a declaration or tentative definition) with the new GlobalVariable*
1259  // (which will be a definition).
1260  //
1261  // This happens if there is a prototype for a global (e.g.
1262  // "extern int x[];") and then a definition of a different type (e.g.
1263  // "int x[10];"). This also happens when an initializer has a different type
1264  // from the type of the global (this happens with unions).
1265  if (GV == 0 ||
1266      GV->getType()->getElementType() != InitType ||
1267      GV->getType()->getAddressSpace() !=
1268        getContext().getTargetAddressSpace(ASTTy)) {
1269
1270    // Move the old entry aside so that we'll create a new one.
1271    Entry->setName(llvm::StringRef());
1272
1273    // Make a new global with the correct type, this is now guaranteed to work.
1274    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1275
1276    // Replace all uses of the old global with the new global
1277    llvm::Constant *NewPtrForOldDecl =
1278        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1279    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1280
1281    // Erase the old global, since it is no longer used.
1282    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1283  }
1284
1285  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1286    SourceManager &SM = Context.getSourceManager();
1287    AddAnnotation(EmitAnnotateAttr(GV, AA,
1288                              SM.getInstantiationLineNumber(D->getLocation())));
1289  }
1290
1291  GV->setInitializer(Init);
1292
1293  // If it is safe to mark the global 'constant', do so now.
1294  GV->setConstant(false);
1295  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1296    GV->setConstant(true);
1297
1298  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1299
1300  // Set the llvm linkage type as appropriate.
1301  llvm::GlobalValue::LinkageTypes Linkage =
1302    GetLLVMLinkageVarDefinition(D, GV);
1303  GV->setLinkage(Linkage);
1304  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1305    // common vars aren't constant even if declared const.
1306    GV->setConstant(false);
1307
1308  SetCommonAttributes(D, GV);
1309
1310  // Emit the initializer function if necessary.
1311  if (NonConstInit)
1312    EmitCXXGlobalVarDeclInitFunc(D, GV);
1313
1314  // Emit global variable debug information.
1315  if (CGDebugInfo *DI = getModuleDebugInfo()) {
1316    DI->setLocation(D->getLocation());
1317    DI->EmitGlobalVariable(GV, D);
1318  }
1319}
1320
1321llvm::GlobalValue::LinkageTypes
1322CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1323                                           llvm::GlobalVariable *GV) {
1324  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1325  if (Linkage == GVA_Internal)
1326    return llvm::Function::InternalLinkage;
1327  else if (D->hasAttr<DLLImportAttr>())
1328    return llvm::Function::DLLImportLinkage;
1329  else if (D->hasAttr<DLLExportAttr>())
1330    return llvm::Function::DLLExportLinkage;
1331  else if (D->hasAttr<WeakAttr>()) {
1332    if (GV->isConstant())
1333      return llvm::GlobalVariable::WeakODRLinkage;
1334    else
1335      return llvm::GlobalVariable::WeakAnyLinkage;
1336  } else if (Linkage == GVA_TemplateInstantiation ||
1337             Linkage == GVA_ExplicitTemplateInstantiation)
1338    return llvm::GlobalVariable::WeakODRLinkage;
1339  else if (!getLangOptions().CPlusPlus &&
1340           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1341             D->getAttr<CommonAttr>()) &&
1342           !D->hasExternalStorage() && !D->getInit() &&
1343           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1344    // Thread local vars aren't considered common linkage.
1345    return llvm::GlobalVariable::CommonLinkage;
1346  }
1347  return llvm::GlobalVariable::ExternalLinkage;
1348}
1349
1350/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1351/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1352/// existing call uses of the old function in the module, this adjusts them to
1353/// call the new function directly.
1354///
1355/// This is not just a cleanup: the always_inline pass requires direct calls to
1356/// functions to be able to inline them.  If there is a bitcast in the way, it
1357/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1358/// run at -O0.
1359static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1360                                                      llvm::Function *NewFn) {
1361  // If we're redefining a global as a function, don't transform it.
1362  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1363  if (OldFn == 0) return;
1364
1365  const llvm::Type *NewRetTy = NewFn->getReturnType();
1366  llvm::SmallVector<llvm::Value*, 4> ArgList;
1367
1368  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1369       UI != E; ) {
1370    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1371    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1372    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1373    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1374    llvm::CallSite CS(CI);
1375    if (!CI || !CS.isCallee(I)) continue;
1376
1377    // If the return types don't match exactly, and if the call isn't dead, then
1378    // we can't transform this call.
1379    if (CI->getType() != NewRetTy && !CI->use_empty())
1380      continue;
1381
1382    // If the function was passed too few arguments, don't transform.  If extra
1383    // arguments were passed, we silently drop them.  If any of the types
1384    // mismatch, we don't transform.
1385    unsigned ArgNo = 0;
1386    bool DontTransform = false;
1387    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1388         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1389      if (CS.arg_size() == ArgNo ||
1390          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1391        DontTransform = true;
1392        break;
1393      }
1394    }
1395    if (DontTransform)
1396      continue;
1397
1398    // Okay, we can transform this.  Create the new call instruction and copy
1399    // over the required information.
1400    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1401    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1402                                                     ArgList.end(), "", CI);
1403    ArgList.clear();
1404    if (!NewCall->getType()->isVoidTy())
1405      NewCall->takeName(CI);
1406    NewCall->setAttributes(CI->getAttributes());
1407    NewCall->setCallingConv(CI->getCallingConv());
1408
1409    // Finally, remove the old call, replacing any uses with the new one.
1410    if (!CI->use_empty())
1411      CI->replaceAllUsesWith(NewCall);
1412
1413    // Copy debug location attached to CI.
1414    if (!CI->getDebugLoc().isUnknown())
1415      NewCall->setDebugLoc(CI->getDebugLoc());
1416    CI->eraseFromParent();
1417  }
1418}
1419
1420
1421void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1422  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1423
1424  // Compute the function info and LLVM type.
1425  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1426  bool variadic = false;
1427  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1428    variadic = fpt->isVariadic();
1429  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1430
1431  // Get or create the prototype for the function.
1432  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1433
1434  // Strip off a bitcast if we got one back.
1435  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1436    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1437    Entry = CE->getOperand(0);
1438  }
1439
1440
1441  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1442    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1443
1444    // If the types mismatch then we have to rewrite the definition.
1445    assert(OldFn->isDeclaration() &&
1446           "Shouldn't replace non-declaration");
1447
1448    // F is the Function* for the one with the wrong type, we must make a new
1449    // Function* and update everything that used F (a declaration) with the new
1450    // Function* (which will be a definition).
1451    //
1452    // This happens if there is a prototype for a function
1453    // (e.g. "int f()") and then a definition of a different type
1454    // (e.g. "int f(int x)").  Move the old function aside so that it
1455    // doesn't interfere with GetAddrOfFunction.
1456    OldFn->setName(llvm::StringRef());
1457    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1458
1459    // If this is an implementation of a function without a prototype, try to
1460    // replace any existing uses of the function (which may be calls) with uses
1461    // of the new function
1462    if (D->getType()->isFunctionNoProtoType()) {
1463      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1464      OldFn->removeDeadConstantUsers();
1465    }
1466
1467    // Replace uses of F with the Function we will endow with a body.
1468    if (!Entry->use_empty()) {
1469      llvm::Constant *NewPtrForOldDecl =
1470        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1471      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1472    }
1473
1474    // Ok, delete the old function now, which is dead.
1475    OldFn->eraseFromParent();
1476
1477    Entry = NewFn;
1478  }
1479
1480  // We need to set linkage and visibility on the function before
1481  // generating code for it because various parts of IR generation
1482  // want to propagate this information down (e.g. to local static
1483  // declarations).
1484  llvm::Function *Fn = cast<llvm::Function>(Entry);
1485  setFunctionLinkage(D, Fn);
1486
1487  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1488  setGlobalVisibility(Fn, D);
1489
1490  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1491
1492  SetFunctionDefinitionAttributes(D, Fn);
1493  SetLLVMFunctionAttributesForDefinition(D, Fn);
1494
1495  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1496    AddGlobalCtor(Fn, CA->getPriority());
1497  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1498    AddGlobalDtor(Fn, DA->getPriority());
1499}
1500
1501void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1502  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1503  const AliasAttr *AA = D->getAttr<AliasAttr>();
1504  assert(AA && "Not an alias?");
1505
1506  llvm::StringRef MangledName = getMangledName(GD);
1507
1508  // If there is a definition in the module, then it wins over the alias.
1509  // This is dubious, but allow it to be safe.  Just ignore the alias.
1510  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1511  if (Entry && !Entry->isDeclaration())
1512    return;
1513
1514  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1515
1516  // Create a reference to the named value.  This ensures that it is emitted
1517  // if a deferred decl.
1518  llvm::Constant *Aliasee;
1519  if (isa<llvm::FunctionType>(DeclTy))
1520    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1521                                      /*ForVTable=*/false);
1522  else
1523    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1524                                    llvm::PointerType::getUnqual(DeclTy), 0);
1525
1526  // Create the new alias itself, but don't set a name yet.
1527  llvm::GlobalValue *GA =
1528    new llvm::GlobalAlias(Aliasee->getType(),
1529                          llvm::Function::ExternalLinkage,
1530                          "", Aliasee, &getModule());
1531
1532  if (Entry) {
1533    assert(Entry->isDeclaration());
1534
1535    // If there is a declaration in the module, then we had an extern followed
1536    // by the alias, as in:
1537    //   extern int test6();
1538    //   ...
1539    //   int test6() __attribute__((alias("test7")));
1540    //
1541    // Remove it and replace uses of it with the alias.
1542    GA->takeName(Entry);
1543
1544    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1545                                                          Entry->getType()));
1546    Entry->eraseFromParent();
1547  } else {
1548    GA->setName(MangledName);
1549  }
1550
1551  // Set attributes which are particular to an alias; this is a
1552  // specialization of the attributes which may be set on a global
1553  // variable/function.
1554  if (D->hasAttr<DLLExportAttr>()) {
1555    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1556      // The dllexport attribute is ignored for undefined symbols.
1557      if (FD->hasBody())
1558        GA->setLinkage(llvm::Function::DLLExportLinkage);
1559    } else {
1560      GA->setLinkage(llvm::Function::DLLExportLinkage);
1561    }
1562  } else if (D->hasAttr<WeakAttr>() ||
1563             D->hasAttr<WeakRefAttr>() ||
1564             D->isWeakImported()) {
1565    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1566  }
1567
1568  SetCommonAttributes(D, GA);
1569}
1570
1571/// getBuiltinLibFunction - Given a builtin id for a function like
1572/// "__builtin_fabsf", return a Function* for "fabsf".
1573llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1574                                                  unsigned BuiltinID) {
1575  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1576          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1577         "isn't a lib fn");
1578
1579  // Get the name, skip over the __builtin_ prefix (if necessary).
1580  llvm::StringRef Name;
1581  GlobalDecl D(FD);
1582
1583  // If the builtin has been declared explicitly with an assembler label,
1584  // use the mangled name. This differs from the plain label on platforms
1585  // that prefix labels.
1586  if (FD->hasAttr<AsmLabelAttr>())
1587    Name = getMangledName(D);
1588  else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1589    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1590  else
1591    Name = Context.BuiltinInfo.GetName(BuiltinID);
1592
1593
1594  const llvm::FunctionType *Ty =
1595    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1596
1597  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1598}
1599
1600llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1601                                            unsigned NumTys) {
1602  return llvm::Intrinsic::getDeclaration(&getModule(),
1603                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1604}
1605
1606static llvm::StringMapEntry<llvm::Constant*> &
1607GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1608                         const StringLiteral *Literal,
1609                         bool TargetIsLSB,
1610                         bool &IsUTF16,
1611                         unsigned &StringLength) {
1612  llvm::StringRef String = Literal->getString();
1613  unsigned NumBytes = String.size();
1614
1615  // Check for simple case.
1616  if (!Literal->containsNonAsciiOrNull()) {
1617    StringLength = NumBytes;
1618    return Map.GetOrCreateValue(String);
1619  }
1620
1621  // Otherwise, convert the UTF8 literals into a byte string.
1622  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1623  const UTF8 *FromPtr = (UTF8 *)String.data();
1624  UTF16 *ToPtr = &ToBuf[0];
1625
1626  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1627                           &ToPtr, ToPtr + NumBytes,
1628                           strictConversion);
1629
1630  // ConvertUTF8toUTF16 returns the length in ToPtr.
1631  StringLength = ToPtr - &ToBuf[0];
1632
1633  // Render the UTF-16 string into a byte array and convert to the target byte
1634  // order.
1635  //
1636  // FIXME: This isn't something we should need to do here.
1637  llvm::SmallString<128> AsBytes;
1638  AsBytes.reserve(StringLength * 2);
1639  for (unsigned i = 0; i != StringLength; ++i) {
1640    unsigned short Val = ToBuf[i];
1641    if (TargetIsLSB) {
1642      AsBytes.push_back(Val & 0xFF);
1643      AsBytes.push_back(Val >> 8);
1644    } else {
1645      AsBytes.push_back(Val >> 8);
1646      AsBytes.push_back(Val & 0xFF);
1647    }
1648  }
1649  // Append one extra null character, the second is automatically added by our
1650  // caller.
1651  AsBytes.push_back(0);
1652
1653  IsUTF16 = true;
1654  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1655}
1656
1657static llvm::StringMapEntry<llvm::Constant*> &
1658GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1659		       const StringLiteral *Literal,
1660		       unsigned &StringLength)
1661{
1662	llvm::StringRef String = Literal->getString();
1663	StringLength = String.size();
1664	return Map.GetOrCreateValue(String);
1665}
1666
1667llvm::Constant *
1668CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1669  unsigned StringLength = 0;
1670  bool isUTF16 = false;
1671  llvm::StringMapEntry<llvm::Constant*> &Entry =
1672    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1673                             getTargetData().isLittleEndian(),
1674                             isUTF16, StringLength);
1675
1676  if (llvm::Constant *C = Entry.getValue())
1677    return C;
1678
1679  llvm::Constant *Zero =
1680      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1681  llvm::Constant *Zeros[] = { Zero, Zero };
1682
1683  // If we don't already have it, get __CFConstantStringClassReference.
1684  if (!CFConstantStringClassRef) {
1685    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1686    Ty = llvm::ArrayType::get(Ty, 0);
1687    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1688                                           "__CFConstantStringClassReference");
1689    // Decay array -> ptr
1690    CFConstantStringClassRef =
1691      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1692  }
1693
1694  QualType CFTy = getContext().getCFConstantStringType();
1695
1696  const llvm::StructType *STy =
1697    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1698
1699  std::vector<llvm::Constant*> Fields(4);
1700
1701  // Class pointer.
1702  Fields[0] = CFConstantStringClassRef;
1703
1704  // Flags.
1705  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1706  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1707    llvm::ConstantInt::get(Ty, 0x07C8);
1708
1709  // String pointer.
1710  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1711
1712  llvm::GlobalValue::LinkageTypes Linkage;
1713  bool isConstant;
1714  if (isUTF16) {
1715    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1716    Linkage = llvm::GlobalValue::InternalLinkage;
1717    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1718    // does make plain ascii ones writable.
1719    isConstant = true;
1720  } else {
1721    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1722    // when using private linkage. It is not clear if this is a bug in ld
1723    // or a reasonable new restriction.
1724    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1725    isConstant = !Features.WritableStrings;
1726  }
1727
1728  llvm::GlobalVariable *GV =
1729    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1730                             ".str");
1731  GV->setUnnamedAddr(true);
1732  if (isUTF16) {
1733    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1734    GV->setAlignment(Align.getQuantity());
1735  } else {
1736    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1737    GV->setAlignment(Align.getQuantity());
1738  }
1739  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1740
1741  // String length.
1742  Ty = getTypes().ConvertType(getContext().LongTy);
1743  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1744
1745  // The struct.
1746  C = llvm::ConstantStruct::get(STy, Fields);
1747  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1748                                llvm::GlobalVariable::PrivateLinkage, C,
1749                                "_unnamed_cfstring_");
1750  if (const char *Sect = getContext().Target.getCFStringSection())
1751    GV->setSection(Sect);
1752  Entry.setValue(GV);
1753
1754  return GV;
1755}
1756
1757llvm::Constant *
1758CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1759  unsigned StringLength = 0;
1760  llvm::StringMapEntry<llvm::Constant*> &Entry =
1761    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1762
1763  if (llvm::Constant *C = Entry.getValue())
1764    return C;
1765
1766  llvm::Constant *Zero =
1767  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1768  llvm::Constant *Zeros[] = { Zero, Zero };
1769
1770  // If we don't already have it, get _NSConstantStringClassReference.
1771  if (!ConstantStringClassRef) {
1772    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1773    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1774    llvm::Constant *GV;
1775    if (Features.ObjCNonFragileABI) {
1776      std::string str =
1777        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1778                            : "OBJC_CLASS_$_" + StringClass;
1779      GV = getObjCRuntime().GetClassGlobal(str);
1780      // Make sure the result is of the correct type.
1781      const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1782      ConstantStringClassRef =
1783        llvm::ConstantExpr::getBitCast(GV, PTy);
1784    } else {
1785      std::string str =
1786        StringClass.empty() ? "_NSConstantStringClassReference"
1787                            : "_" + StringClass + "ClassReference";
1788      const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1789      GV = CreateRuntimeVariable(PTy, str);
1790      // Decay array -> ptr
1791      ConstantStringClassRef =
1792        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1793    }
1794  }
1795
1796  QualType NSTy = getContext().getNSConstantStringType();
1797
1798  const llvm::StructType *STy =
1799  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1800
1801  std::vector<llvm::Constant*> Fields(3);
1802
1803  // Class pointer.
1804  Fields[0] = ConstantStringClassRef;
1805
1806  // String pointer.
1807  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1808
1809  llvm::GlobalValue::LinkageTypes Linkage;
1810  bool isConstant;
1811  Linkage = llvm::GlobalValue::PrivateLinkage;
1812  isConstant = !Features.WritableStrings;
1813
1814  llvm::GlobalVariable *GV =
1815  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1816                           ".str");
1817  GV->setUnnamedAddr(true);
1818  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1819  GV->setAlignment(Align.getQuantity());
1820  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1821
1822  // String length.
1823  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1824  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1825
1826  // The struct.
1827  C = llvm::ConstantStruct::get(STy, Fields);
1828  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1829                                llvm::GlobalVariable::PrivateLinkage, C,
1830                                "_unnamed_nsstring_");
1831  // FIXME. Fix section.
1832  if (const char *Sect =
1833        Features.ObjCNonFragileABI
1834          ? getContext().Target.getNSStringNonFragileABISection()
1835          : getContext().Target.getNSStringSection())
1836    GV->setSection(Sect);
1837  Entry.setValue(GV);
1838
1839  return GV;
1840}
1841
1842/// GetStringForStringLiteral - Return the appropriate bytes for a
1843/// string literal, properly padded to match the literal type.
1844std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1845  const ASTContext &Context = getContext();
1846  const ConstantArrayType *CAT =
1847    Context.getAsConstantArrayType(E->getType());
1848  assert(CAT && "String isn't pointer or array!");
1849
1850  // Resize the string to the right size.
1851  uint64_t RealLen = CAT->getSize().getZExtValue();
1852
1853  if (E->isWide())
1854    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1855
1856  std::string Str = E->getString().str();
1857  Str.resize(RealLen, '\0');
1858
1859  return Str;
1860}
1861
1862/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1863/// constant array for the given string literal.
1864llvm::Constant *
1865CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1866  // FIXME: This can be more efficient.
1867  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1868  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1869  if (S->isWide()) {
1870    llvm::Type *DestTy =
1871        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1872    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1873  }
1874  return C;
1875}
1876
1877/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1878/// array for the given ObjCEncodeExpr node.
1879llvm::Constant *
1880CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1881  std::string Str;
1882  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1883
1884  return GetAddrOfConstantCString(Str);
1885}
1886
1887
1888/// GenerateWritableString -- Creates storage for a string literal.
1889static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1890                                             bool constant,
1891                                             CodeGenModule &CGM,
1892                                             const char *GlobalName) {
1893  // Create Constant for this string literal. Don't add a '\0'.
1894  llvm::Constant *C =
1895      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1896
1897  // Create a global variable for this string
1898  llvm::GlobalVariable *GV =
1899    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1900                             llvm::GlobalValue::PrivateLinkage,
1901                             C, GlobalName);
1902  GV->setAlignment(1);
1903  GV->setUnnamedAddr(true);
1904  return GV;
1905}
1906
1907/// GetAddrOfConstantString - Returns a pointer to a character array
1908/// containing the literal. This contents are exactly that of the
1909/// given string, i.e. it will not be null terminated automatically;
1910/// see GetAddrOfConstantCString. Note that whether the result is
1911/// actually a pointer to an LLVM constant depends on
1912/// Feature.WriteableStrings.
1913///
1914/// The result has pointer to array type.
1915llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1916                                                       const char *GlobalName) {
1917  bool IsConstant = !Features.WritableStrings;
1918
1919  // Get the default prefix if a name wasn't specified.
1920  if (!GlobalName)
1921    GlobalName = ".str";
1922
1923  // Don't share any string literals if strings aren't constant.
1924  if (!IsConstant)
1925    return GenerateStringLiteral(Str, false, *this, GlobalName);
1926
1927  llvm::StringMapEntry<llvm::Constant *> &Entry =
1928    ConstantStringMap.GetOrCreateValue(Str);
1929
1930  if (Entry.getValue())
1931    return Entry.getValue();
1932
1933  // Create a global variable for this.
1934  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1935  Entry.setValue(C);
1936  return C;
1937}
1938
1939/// GetAddrOfConstantCString - Returns a pointer to a character
1940/// array containing the literal and a terminating '\0'
1941/// character. The result has pointer to array type.
1942llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1943                                                        const char *GlobalName){
1944  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1945  return GetAddrOfConstantString(StrWithNull, GlobalName);
1946}
1947
1948/// EmitObjCPropertyImplementations - Emit information for synthesized
1949/// properties for an implementation.
1950void CodeGenModule::EmitObjCPropertyImplementations(const
1951                                                    ObjCImplementationDecl *D) {
1952  for (ObjCImplementationDecl::propimpl_iterator
1953         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1954    ObjCPropertyImplDecl *PID = *i;
1955
1956    // Dynamic is just for type-checking.
1957    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1958      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1959
1960      // Determine which methods need to be implemented, some may have
1961      // been overridden. Note that ::isSynthesized is not the method
1962      // we want, that just indicates if the decl came from a
1963      // property. What we want to know is if the method is defined in
1964      // this implementation.
1965      if (!D->getInstanceMethod(PD->getGetterName()))
1966        CodeGenFunction(*this).GenerateObjCGetter(
1967                                 const_cast<ObjCImplementationDecl *>(D), PID);
1968      if (!PD->isReadOnly() &&
1969          !D->getInstanceMethod(PD->getSetterName()))
1970        CodeGenFunction(*this).GenerateObjCSetter(
1971                                 const_cast<ObjCImplementationDecl *>(D), PID);
1972    }
1973  }
1974}
1975
1976static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1977  ObjCInterfaceDecl *iface
1978    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1979  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1980       ivar; ivar = ivar->getNextIvar())
1981    if (ivar->getType().isDestructedType())
1982      return true;
1983
1984  return false;
1985}
1986
1987/// EmitObjCIvarInitializations - Emit information for ivar initialization
1988/// for an implementation.
1989void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1990  // We might need a .cxx_destruct even if we don't have any ivar initializers.
1991  if (needsDestructMethod(D)) {
1992    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1993    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1994    ObjCMethodDecl *DTORMethod =
1995      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1996                             cxxSelector, getContext().VoidTy, 0, D, true,
1997                             false, true, false, ObjCMethodDecl::Required);
1998    D->addInstanceMethod(DTORMethod);
1999    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2000  }
2001
2002  // If the implementation doesn't have any ivar initializers, we don't need
2003  // a .cxx_construct.
2004  if (D->getNumIvarInitializers() == 0)
2005    return;
2006
2007  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2008  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2009  // The constructor returns 'self'.
2010  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2011                                                D->getLocation(),
2012                                                D->getLocation(), cxxSelector,
2013                                                getContext().getObjCIdType(), 0,
2014                                                D, true, false, true, false,
2015                                                ObjCMethodDecl::Required);
2016  D->addInstanceMethod(CTORMethod);
2017  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2018}
2019
2020/// EmitNamespace - Emit all declarations in a namespace.
2021void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2022  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2023       I != E; ++I)
2024    EmitTopLevelDecl(*I);
2025}
2026
2027// EmitLinkageSpec - Emit all declarations in a linkage spec.
2028void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2029  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2030      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2031    ErrorUnsupported(LSD, "linkage spec");
2032    return;
2033  }
2034
2035  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2036       I != E; ++I)
2037    EmitTopLevelDecl(*I);
2038}
2039
2040/// EmitTopLevelDecl - Emit code for a single top level declaration.
2041void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2042  // If an error has occurred, stop code generation, but continue
2043  // parsing and semantic analysis (to ensure all warnings and errors
2044  // are emitted).
2045  if (Diags.hasErrorOccurred())
2046    return;
2047
2048  // Ignore dependent declarations.
2049  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2050    return;
2051
2052  switch (D->getKind()) {
2053  case Decl::CXXConversion:
2054  case Decl::CXXMethod:
2055  case Decl::Function:
2056    // Skip function templates
2057    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2058        cast<FunctionDecl>(D)->isLateTemplateParsed())
2059      return;
2060
2061    EmitGlobal(cast<FunctionDecl>(D));
2062    break;
2063
2064  case Decl::Var:
2065    EmitGlobal(cast<VarDecl>(D));
2066    break;
2067
2068  // Indirect fields from global anonymous structs and unions can be
2069  // ignored; only the actual variable requires IR gen support.
2070  case Decl::IndirectField:
2071    break;
2072
2073  // C++ Decls
2074  case Decl::Namespace:
2075    EmitNamespace(cast<NamespaceDecl>(D));
2076    break;
2077    // No code generation needed.
2078  case Decl::UsingShadow:
2079  case Decl::Using:
2080  case Decl::UsingDirective:
2081  case Decl::ClassTemplate:
2082  case Decl::FunctionTemplate:
2083  case Decl::TypeAliasTemplate:
2084  case Decl::NamespaceAlias:
2085  case Decl::Block:
2086    break;
2087  case Decl::CXXConstructor:
2088    // Skip function templates
2089    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2090        cast<FunctionDecl>(D)->isLateTemplateParsed())
2091      return;
2092
2093    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2094    break;
2095  case Decl::CXXDestructor:
2096    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2097      return;
2098    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2099    break;
2100
2101  case Decl::StaticAssert:
2102    // Nothing to do.
2103    break;
2104
2105  // Objective-C Decls
2106
2107  // Forward declarations, no (immediate) code generation.
2108  case Decl::ObjCClass:
2109  case Decl::ObjCForwardProtocol:
2110  case Decl::ObjCInterface:
2111    break;
2112
2113  case Decl::ObjCCategory: {
2114    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2115    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2116      Context.ResetObjCLayout(CD->getClassInterface());
2117    break;
2118  }
2119
2120  case Decl::ObjCProtocol:
2121    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2122    break;
2123
2124  case Decl::ObjCCategoryImpl:
2125    // Categories have properties but don't support synthesize so we
2126    // can ignore them here.
2127    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2128    break;
2129
2130  case Decl::ObjCImplementation: {
2131    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2132    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2133      Context.ResetObjCLayout(OMD->getClassInterface());
2134    EmitObjCPropertyImplementations(OMD);
2135    EmitObjCIvarInitializations(OMD);
2136    Runtime->GenerateClass(OMD);
2137    break;
2138  }
2139  case Decl::ObjCMethod: {
2140    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2141    // If this is not a prototype, emit the body.
2142    if (OMD->getBody())
2143      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2144    break;
2145  }
2146  case Decl::ObjCCompatibleAlias:
2147    // compatibility-alias is a directive and has no code gen.
2148    break;
2149
2150  case Decl::LinkageSpec:
2151    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2152    break;
2153
2154  case Decl::FileScopeAsm: {
2155    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2156    llvm::StringRef AsmString = AD->getAsmString()->getString();
2157
2158    const std::string &S = getModule().getModuleInlineAsm();
2159    if (S.empty())
2160      getModule().setModuleInlineAsm(AsmString);
2161    else
2162      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2163    break;
2164  }
2165
2166  default:
2167    // Make sure we handled everything we should, every other kind is a
2168    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2169    // function. Need to recode Decl::Kind to do that easily.
2170    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2171  }
2172}
2173
2174/// Turns the given pointer into a constant.
2175static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2176                                          const void *Ptr) {
2177  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2178  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2179  return llvm::ConstantInt::get(i64, PtrInt);
2180}
2181
2182static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2183                                   llvm::NamedMDNode *&GlobalMetadata,
2184                                   GlobalDecl D,
2185                                   llvm::GlobalValue *Addr) {
2186  if (!GlobalMetadata)
2187    GlobalMetadata =
2188      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2189
2190  // TODO: should we report variant information for ctors/dtors?
2191  llvm::Value *Ops[] = {
2192    Addr,
2193    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2194  };
2195  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2196}
2197
2198/// Emits metadata nodes associating all the global values in the
2199/// current module with the Decls they came from.  This is useful for
2200/// projects using IR gen as a subroutine.
2201///
2202/// Since there's currently no way to associate an MDNode directly
2203/// with an llvm::GlobalValue, we create a global named metadata
2204/// with the name 'clang.global.decl.ptrs'.
2205void CodeGenModule::EmitDeclMetadata() {
2206  llvm::NamedMDNode *GlobalMetadata = 0;
2207
2208  // StaticLocalDeclMap
2209  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2210         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2211       I != E; ++I) {
2212    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2213    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2214  }
2215}
2216
2217/// Emits metadata nodes for all the local variables in the current
2218/// function.
2219void CodeGenFunction::EmitDeclMetadata() {
2220  if (LocalDeclMap.empty()) return;
2221
2222  llvm::LLVMContext &Context = getLLVMContext();
2223
2224  // Find the unique metadata ID for this name.
2225  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2226
2227  llvm::NamedMDNode *GlobalMetadata = 0;
2228
2229  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2230         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2231    const Decl *D = I->first;
2232    llvm::Value *Addr = I->second;
2233
2234    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2235      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2236      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2237    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2238      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2239      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2240    }
2241  }
2242}
2243
2244void CodeGenModule::EmitCoverageFile() {
2245  if (!getCodeGenOpts().CoverageFile.empty()) {
2246    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2247      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2248      llvm::LLVMContext &Ctx = TheModule.getContext();
2249      llvm::MDString *CoverageFile =
2250          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2251      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2252        llvm::MDNode *CU = CUNode->getOperand(i);
2253        llvm::Value *node[] = { CoverageFile, CU };
2254        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2255        GCov->addOperand(N);
2256      }
2257    }
2258  }
2259}
2260
2261///@name Custom Runtime Function Interfaces
2262///@{
2263//
2264// FIXME: These can be eliminated once we can have clients just get the required
2265// AST nodes from the builtin tables.
2266
2267llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2268  if (BlockObjectDispose)
2269    return BlockObjectDispose;
2270
2271  // If we saw an explicit decl, use that.
2272  if (BlockObjectDisposeDecl) {
2273    return BlockObjectDispose = GetAddrOfFunction(
2274      BlockObjectDisposeDecl,
2275      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2276  }
2277
2278  // Otherwise construct the function by hand.
2279  const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2280  const llvm::FunctionType *fty
2281    = llvm::FunctionType::get(VoidTy, args, false);
2282  return BlockObjectDispose =
2283    CreateRuntimeFunction(fty, "_Block_object_dispose");
2284}
2285
2286llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2287  if (BlockObjectAssign)
2288    return BlockObjectAssign;
2289
2290  // If we saw an explicit decl, use that.
2291  if (BlockObjectAssignDecl) {
2292    return BlockObjectAssign = GetAddrOfFunction(
2293      BlockObjectAssignDecl,
2294      getTypes().GetFunctionType(BlockObjectAssignDecl));
2295  }
2296
2297  // Otherwise construct the function by hand.
2298  const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2299  const llvm::FunctionType *fty
2300    = llvm::FunctionType::get(VoidTy, args, false);
2301  return BlockObjectAssign =
2302    CreateRuntimeFunction(fty, "_Block_object_assign");
2303}
2304
2305llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2306  if (NSConcreteGlobalBlock)
2307    return NSConcreteGlobalBlock;
2308
2309  // If we saw an explicit decl, use that.
2310  if (NSConcreteGlobalBlockDecl) {
2311    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2312      NSConcreteGlobalBlockDecl,
2313      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2314  }
2315
2316  // Otherwise construct the variable by hand.
2317  return NSConcreteGlobalBlock =
2318    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2319}
2320
2321llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2322  if (NSConcreteStackBlock)
2323    return NSConcreteStackBlock;
2324
2325  // If we saw an explicit decl, use that.
2326  if (NSConcreteStackBlockDecl) {
2327    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2328      NSConcreteStackBlockDecl,
2329      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2330  }
2331
2332  // Otherwise construct the variable by hand.
2333  return NSConcreteStackBlock =
2334    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2335}
2336
2337///@}
2338