CodeGenModule.cpp revision 219077
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66    TBAA(0),
67    VTables(*this), Runtime(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (!Features.ObjC1)
76    Runtime = 0;
77  else if (!Features.NeXTRuntime)
78    Runtime = CreateGNUObjCRuntime(*this);
79  else if (Features.ObjCNonFragileABI)
80    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81  else
82    Runtime = CreateMacObjCRuntime(*this);
83
84  // Enable TBAA unless it's suppressed.
85  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                           ABI.getMangleContext());
88
89  // If debug info generation is enabled, create the CGDebugInfo object.
90  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91
92  Block.GlobalUniqueCount = 0;
93
94  // Initialize the type cache.
95  llvm::LLVMContext &LLVMContext = M.getContext();
96  Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
97  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
98  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
99  PointerWidthInBits = C.Target.getPointerWidth(0);
100  PointerAlignInBytes =
101    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
102  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
103  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104  Int8PtrTy = Int8Ty->getPointerTo(0);
105  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106}
107
108CodeGenModule::~CodeGenModule() {
109  delete Runtime;
110  delete &ABI;
111  delete TBAA;
112  delete DebugInfo;
113}
114
115void CodeGenModule::createObjCRuntime() {
116  if (!Features.NeXTRuntime)
117    Runtime = CreateGNUObjCRuntime(*this);
118  else if (Features.ObjCNonFragileABI)
119    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
120  else
121    Runtime = CreateMacObjCRuntime(*this);
122}
123
124void CodeGenModule::Release() {
125  EmitDeferred();
126  EmitCXXGlobalInitFunc();
127  EmitCXXGlobalDtorFunc();
128  if (Runtime)
129    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
130      AddGlobalCtor(ObjCInitFunction);
131  EmitCtorList(GlobalCtors, "llvm.global_ctors");
132  EmitCtorList(GlobalDtors, "llvm.global_dtors");
133  EmitAnnotations();
134  EmitLLVMUsed();
135
136  SimplifyPersonality();
137
138  if (getCodeGenOpts().EmitDeclMetadata)
139    EmitDeclMetadata();
140}
141
142llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
143  if (!TBAA)
144    return 0;
145  return TBAA->getTBAAInfo(QTy);
146}
147
148void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
149                                        llvm::MDNode *TBAAInfo) {
150  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
151}
152
153bool CodeGenModule::isTargetDarwin() const {
154  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
155}
156
157/// ErrorUnsupported - Print out an error that codegen doesn't support the
158/// specified stmt yet.
159void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
160                                     bool OmitOnError) {
161  if (OmitOnError && getDiags().hasErrorOccurred())
162    return;
163  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
164                                               "cannot compile this %0 yet");
165  std::string Msg = Type;
166  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
167    << Msg << S->getSourceRange();
168}
169
170/// ErrorUnsupported - Print out an error that codegen doesn't support the
171/// specified decl yet.
172void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
173                                     bool OmitOnError) {
174  if (OmitOnError && getDiags().hasErrorOccurred())
175    return;
176  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
177                                               "cannot compile this %0 yet");
178  std::string Msg = Type;
179  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
180}
181
182void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
183                                        const NamedDecl *D) const {
184  // Internal definitions always have default visibility.
185  if (GV->hasLocalLinkage()) {
186    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
187    return;
188  }
189
190  // Set visibility for definitions.
191  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
192  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
193    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
194}
195
196/// Set the symbol visibility of type information (vtable and RTTI)
197/// associated with the given type.
198void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
199                                      const CXXRecordDecl *RD,
200                                      TypeVisibilityKind TVK) const {
201  setGlobalVisibility(GV, RD);
202
203  if (!CodeGenOpts.HiddenWeakVTables)
204    return;
205
206  // We never want to drop the visibility for RTTI names.
207  if (TVK == TVK_ForRTTIName)
208    return;
209
210  // We want to drop the visibility to hidden for weak type symbols.
211  // This isn't possible if there might be unresolved references
212  // elsewhere that rely on this symbol being visible.
213
214  // This should be kept roughly in sync with setThunkVisibility
215  // in CGVTables.cpp.
216
217  // Preconditions.
218  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
219      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
220    return;
221
222  // Don't override an explicit visibility attribute.
223  if (RD->hasAttr<VisibilityAttr>())
224    return;
225
226  switch (RD->getTemplateSpecializationKind()) {
227  // We have to disable the optimization if this is an EI definition
228  // because there might be EI declarations in other shared objects.
229  case TSK_ExplicitInstantiationDefinition:
230  case TSK_ExplicitInstantiationDeclaration:
231    return;
232
233  // Every use of a non-template class's type information has to emit it.
234  case TSK_Undeclared:
235    break;
236
237  // In theory, implicit instantiations can ignore the possibility of
238  // an explicit instantiation declaration because there necessarily
239  // must be an EI definition somewhere with default visibility.  In
240  // practice, it's possible to have an explicit instantiation for
241  // an arbitrary template class, and linkers aren't necessarily able
242  // to deal with mixed-visibility symbols.
243  case TSK_ExplicitSpecialization:
244  case TSK_ImplicitInstantiation:
245    if (!CodeGenOpts.HiddenWeakTemplateVTables)
246      return;
247    break;
248  }
249
250  // If there's a key function, there may be translation units
251  // that don't have the key function's definition.  But ignore
252  // this if we're emitting RTTI under -fno-rtti.
253  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
254    if (Context.getKeyFunction(RD))
255      return;
256  }
257
258  // Otherwise, drop the visibility to hidden.
259  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
260  GV->setUnnamedAddr(true);
261}
262
263llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
264  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
265
266  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
267  if (!Str.empty())
268    return Str;
269
270  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
271    IdentifierInfo *II = ND->getIdentifier();
272    assert(II && "Attempt to mangle unnamed decl.");
273
274    Str = II->getName();
275    return Str;
276  }
277
278  llvm::SmallString<256> Buffer;
279  llvm::raw_svector_ostream Out(Buffer);
280  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
281    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
282  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
283    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
284  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
285    getCXXABI().getMangleContext().mangleBlock(BD, Out);
286  else
287    getCXXABI().getMangleContext().mangleName(ND, Out);
288
289  // Allocate space for the mangled name.
290  Out.flush();
291  size_t Length = Buffer.size();
292  char *Name = MangledNamesAllocator.Allocate<char>(Length);
293  std::copy(Buffer.begin(), Buffer.end(), Name);
294
295  Str = llvm::StringRef(Name, Length);
296
297  return Str;
298}
299
300void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
301                                        const BlockDecl *BD) {
302  MangleContext &MangleCtx = getCXXABI().getMangleContext();
303  const Decl *D = GD.getDecl();
304  llvm::raw_svector_ostream Out(Buffer.getBuffer());
305  if (D == 0)
306    MangleCtx.mangleGlobalBlock(BD, Out);
307  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
308    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
309  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
310    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
311  else
312    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
313}
314
315llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
316  return getModule().getNamedValue(Name);
317}
318
319/// AddGlobalCtor - Add a function to the list that will be called before
320/// main() runs.
321void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
322  // FIXME: Type coercion of void()* types.
323  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
324}
325
326/// AddGlobalDtor - Add a function to the list that will be called
327/// when the module is unloaded.
328void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
329  // FIXME: Type coercion of void()* types.
330  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
331}
332
333void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
334  // Ctor function type is void()*.
335  llvm::FunctionType* CtorFTy =
336    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
337  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
338
339  // Get the type of a ctor entry, { i32, void ()* }.
340  llvm::StructType* CtorStructTy =
341    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
342                          llvm::PointerType::getUnqual(CtorFTy), NULL);
343
344  // Construct the constructor and destructor arrays.
345  std::vector<llvm::Constant*> Ctors;
346  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
347    std::vector<llvm::Constant*> S;
348    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
349                I->second, false));
350    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
351    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
352  }
353
354  if (!Ctors.empty()) {
355    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
356    new llvm::GlobalVariable(TheModule, AT, false,
357                             llvm::GlobalValue::AppendingLinkage,
358                             llvm::ConstantArray::get(AT, Ctors),
359                             GlobalName);
360  }
361}
362
363void CodeGenModule::EmitAnnotations() {
364  if (Annotations.empty())
365    return;
366
367  // Create a new global variable for the ConstantStruct in the Module.
368  llvm::Constant *Array =
369  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
370                                                Annotations.size()),
371                           Annotations);
372  llvm::GlobalValue *gv =
373  new llvm::GlobalVariable(TheModule, Array->getType(), false,
374                           llvm::GlobalValue::AppendingLinkage, Array,
375                           "llvm.global.annotations");
376  gv->setSection("llvm.metadata");
377}
378
379llvm::GlobalValue::LinkageTypes
380CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
381  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
382
383  if (Linkage == GVA_Internal)
384    return llvm::Function::InternalLinkage;
385
386  if (D->hasAttr<DLLExportAttr>())
387    return llvm::Function::DLLExportLinkage;
388
389  if (D->hasAttr<WeakAttr>())
390    return llvm::Function::WeakAnyLinkage;
391
392  // In C99 mode, 'inline' functions are guaranteed to have a strong
393  // definition somewhere else, so we can use available_externally linkage.
394  if (Linkage == GVA_C99Inline)
395    return llvm::Function::AvailableExternallyLinkage;
396
397  // In C++, the compiler has to emit a definition in every translation unit
398  // that references the function.  We should use linkonce_odr because
399  // a) if all references in this translation unit are optimized away, we
400  // don't need to codegen it.  b) if the function persists, it needs to be
401  // merged with other definitions. c) C++ has the ODR, so we know the
402  // definition is dependable.
403  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
404    return !Context.getLangOptions().AppleKext
405             ? llvm::Function::LinkOnceODRLinkage
406             : llvm::Function::InternalLinkage;
407
408  // An explicit instantiation of a template has weak linkage, since
409  // explicit instantiations can occur in multiple translation units
410  // and must all be equivalent. However, we are not allowed to
411  // throw away these explicit instantiations.
412  if (Linkage == GVA_ExplicitTemplateInstantiation)
413    return !Context.getLangOptions().AppleKext
414             ? llvm::Function::WeakODRLinkage
415             : llvm::Function::InternalLinkage;
416
417  // Otherwise, we have strong external linkage.
418  assert(Linkage == GVA_StrongExternal);
419  return llvm::Function::ExternalLinkage;
420}
421
422
423/// SetFunctionDefinitionAttributes - Set attributes for a global.
424///
425/// FIXME: This is currently only done for aliases and functions, but not for
426/// variables (these details are set in EmitGlobalVarDefinition for variables).
427void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
428                                                    llvm::GlobalValue *GV) {
429  SetCommonAttributes(D, GV);
430}
431
432void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
433                                              const CGFunctionInfo &Info,
434                                              llvm::Function *F) {
435  unsigned CallingConv;
436  AttributeListType AttributeList;
437  ConstructAttributeList(Info, D, AttributeList, CallingConv);
438  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
439                                          AttributeList.size()));
440  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
441}
442
443void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
444                                                           llvm::Function *F) {
445  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
446    F->addFnAttr(llvm::Attribute::NoUnwind);
447
448  if (D->hasAttr<AlwaysInlineAttr>())
449    F->addFnAttr(llvm::Attribute::AlwaysInline);
450
451  if (D->hasAttr<NakedAttr>())
452    F->addFnAttr(llvm::Attribute::Naked);
453
454  if (D->hasAttr<NoInlineAttr>())
455    F->addFnAttr(llvm::Attribute::NoInline);
456
457  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
458    F->setUnnamedAddr(true);
459
460  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
461    F->addFnAttr(llvm::Attribute::StackProtect);
462  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
463    F->addFnAttr(llvm::Attribute::StackProtectReq);
464
465  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
466  if (alignment)
467    F->setAlignment(alignment);
468
469  // C++ ABI requires 2-byte alignment for member functions.
470  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
471    F->setAlignment(2);
472}
473
474void CodeGenModule::SetCommonAttributes(const Decl *D,
475                                        llvm::GlobalValue *GV) {
476  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
477    setGlobalVisibility(GV, ND);
478  else
479    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
480
481  if (D->hasAttr<UsedAttr>())
482    AddUsedGlobal(GV);
483
484  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
485    GV->setSection(SA->getName());
486
487  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
488}
489
490void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
491                                                  llvm::Function *F,
492                                                  const CGFunctionInfo &FI) {
493  SetLLVMFunctionAttributes(D, FI, F);
494  SetLLVMFunctionAttributesForDefinition(D, F);
495
496  F->setLinkage(llvm::Function::InternalLinkage);
497
498  SetCommonAttributes(D, F);
499}
500
501void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
502                                          llvm::Function *F,
503                                          bool IsIncompleteFunction) {
504  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
505
506  if (!IsIncompleteFunction)
507    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
508
509  // Only a few attributes are set on declarations; these may later be
510  // overridden by a definition.
511
512  if (FD->hasAttr<DLLImportAttr>()) {
513    F->setLinkage(llvm::Function::DLLImportLinkage);
514  } else if (FD->hasAttr<WeakAttr>() ||
515             FD->hasAttr<WeakImportAttr>()) {
516    // "extern_weak" is overloaded in LLVM; we probably should have
517    // separate linkage types for this.
518    F->setLinkage(llvm::Function::ExternalWeakLinkage);
519  } else {
520    F->setLinkage(llvm::Function::ExternalLinkage);
521
522    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
523    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
524      F->setVisibility(GetLLVMVisibility(LV.visibility()));
525    }
526  }
527
528  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
529    F->setSection(SA->getName());
530}
531
532void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
533  assert(!GV->isDeclaration() &&
534         "Only globals with definition can force usage.");
535  LLVMUsed.push_back(GV);
536}
537
538void CodeGenModule::EmitLLVMUsed() {
539  // Don't create llvm.used if there is no need.
540  if (LLVMUsed.empty())
541    return;
542
543  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
544
545  // Convert LLVMUsed to what ConstantArray needs.
546  std::vector<llvm::Constant*> UsedArray;
547  UsedArray.resize(LLVMUsed.size());
548  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
549    UsedArray[i] =
550     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
551                                      i8PTy);
552  }
553
554  if (UsedArray.empty())
555    return;
556  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
557
558  llvm::GlobalVariable *GV =
559    new llvm::GlobalVariable(getModule(), ATy, false,
560                             llvm::GlobalValue::AppendingLinkage,
561                             llvm::ConstantArray::get(ATy, UsedArray),
562                             "llvm.used");
563
564  GV->setSection("llvm.metadata");
565}
566
567void CodeGenModule::EmitDeferred() {
568  // Emit code for any potentially referenced deferred decls.  Since a
569  // previously unused static decl may become used during the generation of code
570  // for a static function, iterate until no  changes are made.
571
572  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
573    if (!DeferredVTables.empty()) {
574      const CXXRecordDecl *RD = DeferredVTables.back();
575      DeferredVTables.pop_back();
576      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
577      continue;
578    }
579
580    GlobalDecl D = DeferredDeclsToEmit.back();
581    DeferredDeclsToEmit.pop_back();
582
583    // Check to see if we've already emitted this.  This is necessary
584    // for a couple of reasons: first, decls can end up in the
585    // deferred-decls queue multiple times, and second, decls can end
586    // up with definitions in unusual ways (e.g. by an extern inline
587    // function acquiring a strong function redefinition).  Just
588    // ignore these cases.
589    //
590    // TODO: That said, looking this up multiple times is very wasteful.
591    llvm::StringRef Name = getMangledName(D);
592    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
593    assert(CGRef && "Deferred decl wasn't referenced?");
594
595    if (!CGRef->isDeclaration())
596      continue;
597
598    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
599    // purposes an alias counts as a definition.
600    if (isa<llvm::GlobalAlias>(CGRef))
601      continue;
602
603    // Otherwise, emit the definition and move on to the next one.
604    EmitGlobalDefinition(D);
605  }
606}
607
608/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
609/// annotation information for a given GlobalValue.  The annotation struct is
610/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
611/// GlobalValue being annotated.  The second field is the constant string
612/// created from the AnnotateAttr's annotation.  The third field is a constant
613/// string containing the name of the translation unit.  The fourth field is
614/// the line number in the file of the annotated value declaration.
615///
616/// FIXME: this does not unique the annotation string constants, as llvm-gcc
617///        appears to.
618///
619llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
620                                                const AnnotateAttr *AA,
621                                                unsigned LineNo) {
622  llvm::Module *M = &getModule();
623
624  // get [N x i8] constants for the annotation string, and the filename string
625  // which are the 2nd and 3rd elements of the global annotation structure.
626  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
627  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
628                                                  AA->getAnnotation(), true);
629  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
630                                                  M->getModuleIdentifier(),
631                                                  true);
632
633  // Get the two global values corresponding to the ConstantArrays we just
634  // created to hold the bytes of the strings.
635  llvm::GlobalValue *annoGV =
636    new llvm::GlobalVariable(*M, anno->getType(), false,
637                             llvm::GlobalValue::PrivateLinkage, anno,
638                             GV->getName());
639  // translation unit name string, emitted into the llvm.metadata section.
640  llvm::GlobalValue *unitGV =
641    new llvm::GlobalVariable(*M, unit->getType(), false,
642                             llvm::GlobalValue::PrivateLinkage, unit,
643                             ".str");
644  unitGV->setUnnamedAddr(true);
645
646  // Create the ConstantStruct for the global annotation.
647  llvm::Constant *Fields[4] = {
648    llvm::ConstantExpr::getBitCast(GV, SBP),
649    llvm::ConstantExpr::getBitCast(annoGV, SBP),
650    llvm::ConstantExpr::getBitCast(unitGV, SBP),
651    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
652  };
653  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
654}
655
656bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
657  // Never defer when EmitAllDecls is specified.
658  if (Features.EmitAllDecls)
659    return false;
660
661  return !getContext().DeclMustBeEmitted(Global);
662}
663
664llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
665  const AliasAttr *AA = VD->getAttr<AliasAttr>();
666  assert(AA && "No alias?");
667
668  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
669
670  // See if there is already something with the target's name in the module.
671  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
672
673  llvm::Constant *Aliasee;
674  if (isa<llvm::FunctionType>(DeclTy))
675    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
676                                      /*ForVTable=*/false);
677  else
678    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
679                                    llvm::PointerType::getUnqual(DeclTy), 0);
680  if (!Entry) {
681    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
682    F->setLinkage(llvm::Function::ExternalWeakLinkage);
683    WeakRefReferences.insert(F);
684  }
685
686  return Aliasee;
687}
688
689void CodeGenModule::EmitGlobal(GlobalDecl GD) {
690  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
691
692  // Weak references don't produce any output by themselves.
693  if (Global->hasAttr<WeakRefAttr>())
694    return;
695
696  // If this is an alias definition (which otherwise looks like a declaration)
697  // emit it now.
698  if (Global->hasAttr<AliasAttr>())
699    return EmitAliasDefinition(GD);
700
701  // Ignore declarations, they will be emitted on their first use.
702  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
703    if (FD->getIdentifier()) {
704      llvm::StringRef Name = FD->getName();
705      if (Name == "_Block_object_assign") {
706        BlockObjectAssignDecl = FD;
707      } else if (Name == "_Block_object_dispose") {
708        BlockObjectDisposeDecl = FD;
709      }
710    }
711
712    // Forward declarations are emitted lazily on first use.
713    if (!FD->isThisDeclarationADefinition())
714      return;
715  } else {
716    const VarDecl *VD = cast<VarDecl>(Global);
717    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
718
719    if (VD->getIdentifier()) {
720      llvm::StringRef Name = VD->getName();
721      if (Name == "_NSConcreteGlobalBlock") {
722        NSConcreteGlobalBlockDecl = VD;
723      } else if (Name == "_NSConcreteStackBlock") {
724        NSConcreteStackBlockDecl = VD;
725      }
726    }
727
728
729    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
730      return;
731  }
732
733  // Defer code generation when possible if this is a static definition, inline
734  // function etc.  These we only want to emit if they are used.
735  if (!MayDeferGeneration(Global)) {
736    // Emit the definition if it can't be deferred.
737    EmitGlobalDefinition(GD);
738    return;
739  }
740
741  // If we're deferring emission of a C++ variable with an
742  // initializer, remember the order in which it appeared in the file.
743  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
744      cast<VarDecl>(Global)->hasInit()) {
745    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
746    CXXGlobalInits.push_back(0);
747  }
748
749  // If the value has already been used, add it directly to the
750  // DeferredDeclsToEmit list.
751  llvm::StringRef MangledName = getMangledName(GD);
752  if (GetGlobalValue(MangledName))
753    DeferredDeclsToEmit.push_back(GD);
754  else {
755    // Otherwise, remember that we saw a deferred decl with this name.  The
756    // first use of the mangled name will cause it to move into
757    // DeferredDeclsToEmit.
758    DeferredDecls[MangledName] = GD;
759  }
760}
761
762void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
763  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
764
765  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
766                                 Context.getSourceManager(),
767                                 "Generating code for declaration");
768
769  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
770    // At -O0, don't generate IR for functions with available_externally
771    // linkage.
772    if (CodeGenOpts.OptimizationLevel == 0 &&
773        !Function->hasAttr<AlwaysInlineAttr>() &&
774        getFunctionLinkage(Function)
775                                  == llvm::Function::AvailableExternallyLinkage)
776      return;
777
778    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
779      if (Method->isVirtual())
780        getVTables().EmitThunks(GD);
781
782      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
783        return EmitCXXConstructor(CD, GD.getCtorType());
784
785      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
786        return EmitCXXDestructor(DD, GD.getDtorType());
787    }
788
789    return EmitGlobalFunctionDefinition(GD);
790  }
791
792  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
793    return EmitGlobalVarDefinition(VD);
794
795  assert(0 && "Invalid argument to EmitGlobalDefinition()");
796}
797
798/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
799/// module, create and return an llvm Function with the specified type. If there
800/// is something in the module with the specified name, return it potentially
801/// bitcasted to the right type.
802///
803/// If D is non-null, it specifies a decl that correspond to this.  This is used
804/// to set the attributes on the function when it is first created.
805llvm::Constant *
806CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
807                                       const llvm::Type *Ty,
808                                       GlobalDecl D, bool ForVTable) {
809  // Lookup the entry, lazily creating it if necessary.
810  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
811  if (Entry) {
812    if (WeakRefReferences.count(Entry)) {
813      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
814      if (FD && !FD->hasAttr<WeakAttr>())
815        Entry->setLinkage(llvm::Function::ExternalLinkage);
816
817      WeakRefReferences.erase(Entry);
818    }
819
820    if (Entry->getType()->getElementType() == Ty)
821      return Entry;
822
823    // Make sure the result is of the correct type.
824    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
825    return llvm::ConstantExpr::getBitCast(Entry, PTy);
826  }
827
828  // This function doesn't have a complete type (for example, the return
829  // type is an incomplete struct). Use a fake type instead, and make
830  // sure not to try to set attributes.
831  bool IsIncompleteFunction = false;
832
833  const llvm::FunctionType *FTy;
834  if (isa<llvm::FunctionType>(Ty)) {
835    FTy = cast<llvm::FunctionType>(Ty);
836  } else {
837    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
838    IsIncompleteFunction = true;
839  }
840
841  llvm::Function *F = llvm::Function::Create(FTy,
842                                             llvm::Function::ExternalLinkage,
843                                             MangledName, &getModule());
844  assert(F->getName() == MangledName && "name was uniqued!");
845  if (D.getDecl())
846    SetFunctionAttributes(D, F, IsIncompleteFunction);
847
848  // This is the first use or definition of a mangled name.  If there is a
849  // deferred decl with this name, remember that we need to emit it at the end
850  // of the file.
851  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
852  if (DDI != DeferredDecls.end()) {
853    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854    // list, and remove it from DeferredDecls (since we don't need it anymore).
855    DeferredDeclsToEmit.push_back(DDI->second);
856    DeferredDecls.erase(DDI);
857
858  // Otherwise, there are cases we have to worry about where we're
859  // using a declaration for which we must emit a definition but where
860  // we might not find a top-level definition:
861  //   - member functions defined inline in their classes
862  //   - friend functions defined inline in some class
863  //   - special member functions with implicit definitions
864  // If we ever change our AST traversal to walk into class methods,
865  // this will be unnecessary.
866  //
867  // We also don't emit a definition for a function if it's going to be an entry
868  // in a vtable, unless it's already marked as used.
869  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
870    // Look for a declaration that's lexically in a record.
871    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
872    do {
873      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
874        if (FD->isImplicit() && !ForVTable) {
875          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
876          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
877          break;
878        } else if (FD->isThisDeclarationADefinition()) {
879          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
880          break;
881        }
882      }
883      FD = FD->getPreviousDeclaration();
884    } while (FD);
885  }
886
887  // Make sure the result is of the requested type.
888  if (!IsIncompleteFunction) {
889    assert(F->getType()->getElementType() == Ty);
890    return F;
891  }
892
893  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
894  return llvm::ConstantExpr::getBitCast(F, PTy);
895}
896
897/// GetAddrOfFunction - Return the address of the given function.  If Ty is
898/// non-null, then this function will use the specified type if it has to
899/// create it (this occurs when we see a definition of the function).
900llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
901                                                 const llvm::Type *Ty,
902                                                 bool ForVTable) {
903  // If there was no specific requested type, just convert it now.
904  if (!Ty)
905    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
906
907  llvm::StringRef MangledName = getMangledName(GD);
908  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
909}
910
911/// CreateRuntimeFunction - Create a new runtime function with the specified
912/// type and name.
913llvm::Constant *
914CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
915                                     llvm::StringRef Name) {
916  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
917}
918
919static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
920  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
921    return false;
922  if (Context.getLangOptions().CPlusPlus &&
923      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
924    // FIXME: We should do something fancier here!
925    return false;
926  }
927  return true;
928}
929
930/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
931/// create and return an llvm GlobalVariable with the specified type.  If there
932/// is something in the module with the specified name, return it potentially
933/// bitcasted to the right type.
934///
935/// If D is non-null, it specifies a decl that correspond to this.  This is used
936/// to set the attributes on the global when it is first created.
937llvm::Constant *
938CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
939                                     const llvm::PointerType *Ty,
940                                     const VarDecl *D,
941                                     bool UnnamedAddr) {
942  // Lookup the entry, lazily creating it if necessary.
943  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
944  if (Entry) {
945    if (WeakRefReferences.count(Entry)) {
946      if (D && !D->hasAttr<WeakAttr>())
947        Entry->setLinkage(llvm::Function::ExternalLinkage);
948
949      WeakRefReferences.erase(Entry);
950    }
951
952    if (UnnamedAddr)
953      Entry->setUnnamedAddr(true);
954
955    if (Entry->getType() == Ty)
956      return Entry;
957
958    // Make sure the result is of the correct type.
959    return llvm::ConstantExpr::getBitCast(Entry, Ty);
960  }
961
962  // This is the first use or definition of a mangled name.  If there is a
963  // deferred decl with this name, remember that we need to emit it at the end
964  // of the file.
965  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
966  if (DDI != DeferredDecls.end()) {
967    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
968    // list, and remove it from DeferredDecls (since we don't need it anymore).
969    DeferredDeclsToEmit.push_back(DDI->second);
970    DeferredDecls.erase(DDI);
971  }
972
973  llvm::GlobalVariable *GV =
974    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
975                             llvm::GlobalValue::ExternalLinkage,
976                             0, MangledName, 0,
977                             false, Ty->getAddressSpace());
978
979  // Handle things which are present even on external declarations.
980  if (D) {
981    // FIXME: This code is overly simple and should be merged with other global
982    // handling.
983    GV->setConstant(DeclIsConstantGlobal(Context, D));
984
985    // Set linkage and visibility in case we never see a definition.
986    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
987    if (LV.linkage() != ExternalLinkage) {
988      // Don't set internal linkage on declarations.
989    } else {
990      if (D->hasAttr<DLLImportAttr>())
991        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
992      else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
993        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
994
995      // Set visibility on a declaration only if it's explicit.
996      if (LV.visibilityExplicit())
997        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
998    }
999
1000    GV->setThreadLocal(D->isThreadSpecified());
1001  }
1002
1003  return GV;
1004}
1005
1006
1007llvm::GlobalVariable *
1008CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1009                                      const llvm::Type *Ty,
1010                                      llvm::GlobalValue::LinkageTypes Linkage) {
1011  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1012  llvm::GlobalVariable *OldGV = 0;
1013
1014
1015  if (GV) {
1016    // Check if the variable has the right type.
1017    if (GV->getType()->getElementType() == Ty)
1018      return GV;
1019
1020    // Because C++ name mangling, the only way we can end up with an already
1021    // existing global with the same name is if it has been declared extern "C".
1022      assert(GV->isDeclaration() && "Declaration has wrong type!");
1023    OldGV = GV;
1024  }
1025
1026  // Create a new variable.
1027  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1028                                Linkage, 0, Name);
1029
1030  if (OldGV) {
1031    // Replace occurrences of the old variable if needed.
1032    GV->takeName(OldGV);
1033
1034    if (!OldGV->use_empty()) {
1035      llvm::Constant *NewPtrForOldDecl =
1036      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1037      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1038    }
1039
1040    OldGV->eraseFromParent();
1041  }
1042
1043  return GV;
1044}
1045
1046/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1047/// given global variable.  If Ty is non-null and if the global doesn't exist,
1048/// then it will be greated with the specified type instead of whatever the
1049/// normal requested type would be.
1050llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1051                                                  const llvm::Type *Ty) {
1052  assert(D->hasGlobalStorage() && "Not a global variable");
1053  QualType ASTTy = D->getType();
1054  if (Ty == 0)
1055    Ty = getTypes().ConvertTypeForMem(ASTTy);
1056
1057  const llvm::PointerType *PTy =
1058    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1059
1060  llvm::StringRef MangledName = getMangledName(D);
1061  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1062}
1063
1064/// CreateRuntimeVariable - Create a new runtime global variable with the
1065/// specified type and name.
1066llvm::Constant *
1067CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1068                                     llvm::StringRef Name) {
1069  return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1070                               true);
1071}
1072
1073void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1074  assert(!D->getInit() && "Cannot emit definite definitions here!");
1075
1076  if (MayDeferGeneration(D)) {
1077    // If we have not seen a reference to this variable yet, place it
1078    // into the deferred declarations table to be emitted if needed
1079    // later.
1080    llvm::StringRef MangledName = getMangledName(D);
1081    if (!GetGlobalValue(MangledName)) {
1082      DeferredDecls[MangledName] = D;
1083      return;
1084    }
1085  }
1086
1087  // The tentative definition is the only definition.
1088  EmitGlobalVarDefinition(D);
1089}
1090
1091void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1092  if (DefinitionRequired)
1093    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1094}
1095
1096llvm::GlobalVariable::LinkageTypes
1097CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1098  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1099    return llvm::GlobalVariable::InternalLinkage;
1100
1101  if (const CXXMethodDecl *KeyFunction
1102                                    = RD->getASTContext().getKeyFunction(RD)) {
1103    // If this class has a key function, use that to determine the linkage of
1104    // the vtable.
1105    const FunctionDecl *Def = 0;
1106    if (KeyFunction->hasBody(Def))
1107      KeyFunction = cast<CXXMethodDecl>(Def);
1108
1109    switch (KeyFunction->getTemplateSpecializationKind()) {
1110      case TSK_Undeclared:
1111      case TSK_ExplicitSpecialization:
1112        // When compiling with optimizations turned on, we emit all vtables,
1113        // even if the key function is not defined in the current translation
1114        // unit. If this is the case, use available_externally linkage.
1115        if (!Def && CodeGenOpts.OptimizationLevel)
1116          return llvm::GlobalVariable::AvailableExternallyLinkage;
1117
1118        if (KeyFunction->isInlined())
1119          return !Context.getLangOptions().AppleKext ?
1120                   llvm::GlobalVariable::LinkOnceODRLinkage :
1121                   llvm::Function::InternalLinkage;
1122
1123        return llvm::GlobalVariable::ExternalLinkage;
1124
1125      case TSK_ImplicitInstantiation:
1126        return !Context.getLangOptions().AppleKext ?
1127                 llvm::GlobalVariable::LinkOnceODRLinkage :
1128                 llvm::Function::InternalLinkage;
1129
1130      case TSK_ExplicitInstantiationDefinition:
1131        return !Context.getLangOptions().AppleKext ?
1132                 llvm::GlobalVariable::WeakODRLinkage :
1133                 llvm::Function::InternalLinkage;
1134
1135      case TSK_ExplicitInstantiationDeclaration:
1136        // FIXME: Use available_externally linkage. However, this currently
1137        // breaks LLVM's build due to undefined symbols.
1138        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1139        return !Context.getLangOptions().AppleKext ?
1140                 llvm::GlobalVariable::LinkOnceODRLinkage :
1141                 llvm::Function::InternalLinkage;
1142    }
1143  }
1144
1145  if (Context.getLangOptions().AppleKext)
1146    return llvm::Function::InternalLinkage;
1147
1148  switch (RD->getTemplateSpecializationKind()) {
1149  case TSK_Undeclared:
1150  case TSK_ExplicitSpecialization:
1151  case TSK_ImplicitInstantiation:
1152    // FIXME: Use available_externally linkage. However, this currently
1153    // breaks LLVM's build due to undefined symbols.
1154    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1155  case TSK_ExplicitInstantiationDeclaration:
1156    return llvm::GlobalVariable::LinkOnceODRLinkage;
1157
1158  case TSK_ExplicitInstantiationDefinition:
1159      return llvm::GlobalVariable::WeakODRLinkage;
1160  }
1161
1162  // Silence GCC warning.
1163  return llvm::GlobalVariable::LinkOnceODRLinkage;
1164}
1165
1166CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1167    return Context.toCharUnitsFromBits(
1168      TheTargetData.getTypeStoreSizeInBits(Ty));
1169}
1170
1171void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1172  llvm::Constant *Init = 0;
1173  QualType ASTTy = D->getType();
1174  bool NonConstInit = false;
1175
1176  const Expr *InitExpr = D->getAnyInitializer();
1177
1178  if (!InitExpr) {
1179    // This is a tentative definition; tentative definitions are
1180    // implicitly initialized with { 0 }.
1181    //
1182    // Note that tentative definitions are only emitted at the end of
1183    // a translation unit, so they should never have incomplete
1184    // type. In addition, EmitTentativeDefinition makes sure that we
1185    // never attempt to emit a tentative definition if a real one
1186    // exists. A use may still exists, however, so we still may need
1187    // to do a RAUW.
1188    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1189    Init = EmitNullConstant(D->getType());
1190  } else {
1191    Init = EmitConstantExpr(InitExpr, D->getType());
1192    if (!Init) {
1193      QualType T = InitExpr->getType();
1194      if (D->getType()->isReferenceType())
1195        T = D->getType();
1196
1197      if (getLangOptions().CPlusPlus) {
1198        Init = EmitNullConstant(T);
1199        NonConstInit = true;
1200      } else {
1201        ErrorUnsupported(D, "static initializer");
1202        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1203      }
1204    } else {
1205      // We don't need an initializer, so remove the entry for the delayed
1206      // initializer position (just in case this entry was delayed).
1207      if (getLangOptions().CPlusPlus)
1208        DelayedCXXInitPosition.erase(D);
1209    }
1210  }
1211
1212  const llvm::Type* InitType = Init->getType();
1213  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1214
1215  // Strip off a bitcast if we got one back.
1216  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1217    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1218           // all zero index gep.
1219           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1220    Entry = CE->getOperand(0);
1221  }
1222
1223  // Entry is now either a Function or GlobalVariable.
1224  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1225
1226  // We have a definition after a declaration with the wrong type.
1227  // We must make a new GlobalVariable* and update everything that used OldGV
1228  // (a declaration or tentative definition) with the new GlobalVariable*
1229  // (which will be a definition).
1230  //
1231  // This happens if there is a prototype for a global (e.g.
1232  // "extern int x[];") and then a definition of a different type (e.g.
1233  // "int x[10];"). This also happens when an initializer has a different type
1234  // from the type of the global (this happens with unions).
1235  if (GV == 0 ||
1236      GV->getType()->getElementType() != InitType ||
1237      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1238
1239    // Move the old entry aside so that we'll create a new one.
1240    Entry->setName(llvm::StringRef());
1241
1242    // Make a new global with the correct type, this is now guaranteed to work.
1243    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1244
1245    // Replace all uses of the old global with the new global
1246    llvm::Constant *NewPtrForOldDecl =
1247        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1248    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1249
1250    // Erase the old global, since it is no longer used.
1251    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1252  }
1253
1254  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1255    SourceManager &SM = Context.getSourceManager();
1256    AddAnnotation(EmitAnnotateAttr(GV, AA,
1257                              SM.getInstantiationLineNumber(D->getLocation())));
1258  }
1259
1260  GV->setInitializer(Init);
1261
1262  // If it is safe to mark the global 'constant', do so now.
1263  GV->setConstant(false);
1264  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1265    GV->setConstant(true);
1266
1267  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1268
1269  // Set the llvm linkage type as appropriate.
1270  llvm::GlobalValue::LinkageTypes Linkage =
1271    GetLLVMLinkageVarDefinition(D, GV);
1272  GV->setLinkage(Linkage);
1273  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1274    // common vars aren't constant even if declared const.
1275    GV->setConstant(false);
1276
1277  SetCommonAttributes(D, GV);
1278
1279  // Emit the initializer function if necessary.
1280  if (NonConstInit)
1281    EmitCXXGlobalVarDeclInitFunc(D, GV);
1282
1283  // Emit global variable debug information.
1284  if (CGDebugInfo *DI = getDebugInfo()) {
1285    DI->setLocation(D->getLocation());
1286    DI->EmitGlobalVariable(GV, D);
1287  }
1288}
1289
1290llvm::GlobalValue::LinkageTypes
1291CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1292                                           llvm::GlobalVariable *GV) {
1293  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1294  if (Linkage == GVA_Internal)
1295    return llvm::Function::InternalLinkage;
1296  else if (D->hasAttr<DLLImportAttr>())
1297    return llvm::Function::DLLImportLinkage;
1298  else if (D->hasAttr<DLLExportAttr>())
1299    return llvm::Function::DLLExportLinkage;
1300  else if (D->hasAttr<WeakAttr>()) {
1301    if (GV->isConstant())
1302      return llvm::GlobalVariable::WeakODRLinkage;
1303    else
1304      return llvm::GlobalVariable::WeakAnyLinkage;
1305  } else if (Linkage == GVA_TemplateInstantiation ||
1306             Linkage == GVA_ExplicitTemplateInstantiation)
1307    // FIXME: It seems like we can provide more specific linkage here
1308    // (LinkOnceODR, WeakODR).
1309    return llvm::GlobalVariable::WeakAnyLinkage;
1310  else if (!getLangOptions().CPlusPlus &&
1311           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1312             D->getAttr<CommonAttr>()) &&
1313           !D->hasExternalStorage() && !D->getInit() &&
1314           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1315    // Thread local vars aren't considered common linkage.
1316    return llvm::GlobalVariable::CommonLinkage;
1317  }
1318  return llvm::GlobalVariable::ExternalLinkage;
1319}
1320
1321/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1322/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1323/// existing call uses of the old function in the module, this adjusts them to
1324/// call the new function directly.
1325///
1326/// This is not just a cleanup: the always_inline pass requires direct calls to
1327/// functions to be able to inline them.  If there is a bitcast in the way, it
1328/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1329/// run at -O0.
1330static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1331                                                      llvm::Function *NewFn) {
1332  // If we're redefining a global as a function, don't transform it.
1333  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1334  if (OldFn == 0) return;
1335
1336  const llvm::Type *NewRetTy = NewFn->getReturnType();
1337  llvm::SmallVector<llvm::Value*, 4> ArgList;
1338
1339  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1340       UI != E; ) {
1341    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1342    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1343    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1344    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1345    llvm::CallSite CS(CI);
1346    if (!CI || !CS.isCallee(I)) continue;
1347
1348    // If the return types don't match exactly, and if the call isn't dead, then
1349    // we can't transform this call.
1350    if (CI->getType() != NewRetTy && !CI->use_empty())
1351      continue;
1352
1353    // If the function was passed too few arguments, don't transform.  If extra
1354    // arguments were passed, we silently drop them.  If any of the types
1355    // mismatch, we don't transform.
1356    unsigned ArgNo = 0;
1357    bool DontTransform = false;
1358    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1359         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1360      if (CS.arg_size() == ArgNo ||
1361          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1362        DontTransform = true;
1363        break;
1364      }
1365    }
1366    if (DontTransform)
1367      continue;
1368
1369    // Okay, we can transform this.  Create the new call instruction and copy
1370    // over the required information.
1371    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1372    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1373                                                     ArgList.end(), "", CI);
1374    ArgList.clear();
1375    if (!NewCall->getType()->isVoidTy())
1376      NewCall->takeName(CI);
1377    NewCall->setAttributes(CI->getAttributes());
1378    NewCall->setCallingConv(CI->getCallingConv());
1379
1380    // Finally, remove the old call, replacing any uses with the new one.
1381    if (!CI->use_empty())
1382      CI->replaceAllUsesWith(NewCall);
1383
1384    // Copy debug location attached to CI.
1385    if (!CI->getDebugLoc().isUnknown())
1386      NewCall->setDebugLoc(CI->getDebugLoc());
1387    CI->eraseFromParent();
1388  }
1389}
1390
1391
1392void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1393  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1394  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1395  // Get or create the prototype for the function.
1396  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1397
1398  // Strip off a bitcast if we got one back.
1399  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1400    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1401    Entry = CE->getOperand(0);
1402  }
1403
1404
1405  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1406    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1407
1408    // If the types mismatch then we have to rewrite the definition.
1409    assert(OldFn->isDeclaration() &&
1410           "Shouldn't replace non-declaration");
1411
1412    // F is the Function* for the one with the wrong type, we must make a new
1413    // Function* and update everything that used F (a declaration) with the new
1414    // Function* (which will be a definition).
1415    //
1416    // This happens if there is a prototype for a function
1417    // (e.g. "int f()") and then a definition of a different type
1418    // (e.g. "int f(int x)").  Move the old function aside so that it
1419    // doesn't interfere with GetAddrOfFunction.
1420    OldFn->setName(llvm::StringRef());
1421    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1422
1423    // If this is an implementation of a function without a prototype, try to
1424    // replace any existing uses of the function (which may be calls) with uses
1425    // of the new function
1426    if (D->getType()->isFunctionNoProtoType()) {
1427      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1428      OldFn->removeDeadConstantUsers();
1429    }
1430
1431    // Replace uses of F with the Function we will endow with a body.
1432    if (!Entry->use_empty()) {
1433      llvm::Constant *NewPtrForOldDecl =
1434        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1435      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1436    }
1437
1438    // Ok, delete the old function now, which is dead.
1439    OldFn->eraseFromParent();
1440
1441    Entry = NewFn;
1442  }
1443
1444  // We need to set linkage and visibility on the function before
1445  // generating code for it because various parts of IR generation
1446  // want to propagate this information down (e.g. to local static
1447  // declarations).
1448  llvm::Function *Fn = cast<llvm::Function>(Entry);
1449  setFunctionLinkage(D, Fn);
1450
1451  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1452  setGlobalVisibility(Fn, D);
1453
1454  CodeGenFunction(*this).GenerateCode(D, Fn);
1455
1456  SetFunctionDefinitionAttributes(D, Fn);
1457  SetLLVMFunctionAttributesForDefinition(D, Fn);
1458
1459  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1460    AddGlobalCtor(Fn, CA->getPriority());
1461  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1462    AddGlobalDtor(Fn, DA->getPriority());
1463}
1464
1465void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1466  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1467  const AliasAttr *AA = D->getAttr<AliasAttr>();
1468  assert(AA && "Not an alias?");
1469
1470  llvm::StringRef MangledName = getMangledName(GD);
1471
1472  // If there is a definition in the module, then it wins over the alias.
1473  // This is dubious, but allow it to be safe.  Just ignore the alias.
1474  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1475  if (Entry && !Entry->isDeclaration())
1476    return;
1477
1478  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1479
1480  // Create a reference to the named value.  This ensures that it is emitted
1481  // if a deferred decl.
1482  llvm::Constant *Aliasee;
1483  if (isa<llvm::FunctionType>(DeclTy))
1484    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1485                                      /*ForVTable=*/false);
1486  else
1487    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1488                                    llvm::PointerType::getUnqual(DeclTy), 0);
1489
1490  // Create the new alias itself, but don't set a name yet.
1491  llvm::GlobalValue *GA =
1492    new llvm::GlobalAlias(Aliasee->getType(),
1493                          llvm::Function::ExternalLinkage,
1494                          "", Aliasee, &getModule());
1495
1496  if (Entry) {
1497    assert(Entry->isDeclaration());
1498
1499    // If there is a declaration in the module, then we had an extern followed
1500    // by the alias, as in:
1501    //   extern int test6();
1502    //   ...
1503    //   int test6() __attribute__((alias("test7")));
1504    //
1505    // Remove it and replace uses of it with the alias.
1506    GA->takeName(Entry);
1507
1508    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1509                                                          Entry->getType()));
1510    Entry->eraseFromParent();
1511  } else {
1512    GA->setName(MangledName);
1513  }
1514
1515  // Set attributes which are particular to an alias; this is a
1516  // specialization of the attributes which may be set on a global
1517  // variable/function.
1518  if (D->hasAttr<DLLExportAttr>()) {
1519    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1520      // The dllexport attribute is ignored for undefined symbols.
1521      if (FD->hasBody())
1522        GA->setLinkage(llvm::Function::DLLExportLinkage);
1523    } else {
1524      GA->setLinkage(llvm::Function::DLLExportLinkage);
1525    }
1526  } else if (D->hasAttr<WeakAttr>() ||
1527             D->hasAttr<WeakRefAttr>() ||
1528             D->hasAttr<WeakImportAttr>()) {
1529    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1530  }
1531
1532  SetCommonAttributes(D, GA);
1533}
1534
1535/// getBuiltinLibFunction - Given a builtin id for a function like
1536/// "__builtin_fabsf", return a Function* for "fabsf".
1537llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1538                                                  unsigned BuiltinID) {
1539  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1540          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1541         "isn't a lib fn");
1542
1543  // Get the name, skip over the __builtin_ prefix (if necessary).
1544  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1545  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1546    Name += 10;
1547
1548  const llvm::FunctionType *Ty =
1549    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1550
1551  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1552}
1553
1554llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1555                                            unsigned NumTys) {
1556  return llvm::Intrinsic::getDeclaration(&getModule(),
1557                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1558}
1559
1560static llvm::StringMapEntry<llvm::Constant*> &
1561GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1562                         const StringLiteral *Literal,
1563                         bool TargetIsLSB,
1564                         bool &IsUTF16,
1565                         unsigned &StringLength) {
1566  llvm::StringRef String = Literal->getString();
1567  unsigned NumBytes = String.size();
1568
1569  // Check for simple case.
1570  if (!Literal->containsNonAsciiOrNull()) {
1571    StringLength = NumBytes;
1572    return Map.GetOrCreateValue(String);
1573  }
1574
1575  // Otherwise, convert the UTF8 literals into a byte string.
1576  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1577  const UTF8 *FromPtr = (UTF8 *)String.data();
1578  UTF16 *ToPtr = &ToBuf[0];
1579
1580  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1581                           &ToPtr, ToPtr + NumBytes,
1582                           strictConversion);
1583
1584  // ConvertUTF8toUTF16 returns the length in ToPtr.
1585  StringLength = ToPtr - &ToBuf[0];
1586
1587  // Render the UTF-16 string into a byte array and convert to the target byte
1588  // order.
1589  //
1590  // FIXME: This isn't something we should need to do here.
1591  llvm::SmallString<128> AsBytes;
1592  AsBytes.reserve(StringLength * 2);
1593  for (unsigned i = 0; i != StringLength; ++i) {
1594    unsigned short Val = ToBuf[i];
1595    if (TargetIsLSB) {
1596      AsBytes.push_back(Val & 0xFF);
1597      AsBytes.push_back(Val >> 8);
1598    } else {
1599      AsBytes.push_back(Val >> 8);
1600      AsBytes.push_back(Val & 0xFF);
1601    }
1602  }
1603  // Append one extra null character, the second is automatically added by our
1604  // caller.
1605  AsBytes.push_back(0);
1606
1607  IsUTF16 = true;
1608  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1609}
1610
1611llvm::Constant *
1612CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1613  unsigned StringLength = 0;
1614  bool isUTF16 = false;
1615  llvm::StringMapEntry<llvm::Constant*> &Entry =
1616    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1617                             getTargetData().isLittleEndian(),
1618                             isUTF16, StringLength);
1619
1620  if (llvm::Constant *C = Entry.getValue())
1621    return C;
1622
1623  llvm::Constant *Zero =
1624      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1625  llvm::Constant *Zeros[] = { Zero, Zero };
1626
1627  // If we don't already have it, get __CFConstantStringClassReference.
1628  if (!CFConstantStringClassRef) {
1629    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1630    Ty = llvm::ArrayType::get(Ty, 0);
1631    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1632                                           "__CFConstantStringClassReference");
1633    // Decay array -> ptr
1634    CFConstantStringClassRef =
1635      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1636  }
1637
1638  QualType CFTy = getContext().getCFConstantStringType();
1639
1640  const llvm::StructType *STy =
1641    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1642
1643  std::vector<llvm::Constant*> Fields(4);
1644
1645  // Class pointer.
1646  Fields[0] = CFConstantStringClassRef;
1647
1648  // Flags.
1649  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1650  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1651    llvm::ConstantInt::get(Ty, 0x07C8);
1652
1653  // String pointer.
1654  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1655
1656  llvm::GlobalValue::LinkageTypes Linkage;
1657  bool isConstant;
1658  if (isUTF16) {
1659    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1660    Linkage = llvm::GlobalValue::InternalLinkage;
1661    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1662    // does make plain ascii ones writable.
1663    isConstant = true;
1664  } else {
1665    Linkage = llvm::GlobalValue::PrivateLinkage;
1666    isConstant = !Features.WritableStrings;
1667  }
1668
1669  llvm::GlobalVariable *GV =
1670    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1671                             ".str");
1672  GV->setUnnamedAddr(true);
1673  if (isUTF16) {
1674    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1675    GV->setAlignment(Align.getQuantity());
1676  }
1677  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1678
1679  // String length.
1680  Ty = getTypes().ConvertType(getContext().LongTy);
1681  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1682
1683  // The struct.
1684  C = llvm::ConstantStruct::get(STy, Fields);
1685  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1686                                llvm::GlobalVariable::PrivateLinkage, C,
1687                                "_unnamed_cfstring_");
1688  if (const char *Sect = getContext().Target.getCFStringSection())
1689    GV->setSection(Sect);
1690  Entry.setValue(GV);
1691
1692  return GV;
1693}
1694
1695llvm::Constant *
1696CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1697  unsigned StringLength = 0;
1698  bool isUTF16 = false;
1699  llvm::StringMapEntry<llvm::Constant*> &Entry =
1700    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1701                             getTargetData().isLittleEndian(),
1702                             isUTF16, StringLength);
1703
1704  if (llvm::Constant *C = Entry.getValue())
1705    return C;
1706
1707  llvm::Constant *Zero =
1708  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1709  llvm::Constant *Zeros[] = { Zero, Zero };
1710
1711  // If we don't already have it, get _NSConstantStringClassReference.
1712  if (!ConstantStringClassRef) {
1713    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1714    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1715    Ty = llvm::ArrayType::get(Ty, 0);
1716    llvm::Constant *GV;
1717    if (StringClass.empty())
1718      GV = CreateRuntimeVariable(Ty,
1719                                 Features.ObjCNonFragileABI ?
1720                                 "OBJC_CLASS_$_NSConstantString" :
1721                                 "_NSConstantStringClassReference");
1722    else {
1723      std::string str;
1724      if (Features.ObjCNonFragileABI)
1725        str = "OBJC_CLASS_$_" + StringClass;
1726      else
1727        str = "_" + StringClass + "ClassReference";
1728      GV = CreateRuntimeVariable(Ty, str);
1729    }
1730    // Decay array -> ptr
1731    ConstantStringClassRef =
1732    llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1733  }
1734
1735  QualType NSTy = getContext().getNSConstantStringType();
1736
1737  const llvm::StructType *STy =
1738  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1739
1740  std::vector<llvm::Constant*> Fields(3);
1741
1742  // Class pointer.
1743  Fields[0] = ConstantStringClassRef;
1744
1745  // String pointer.
1746  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1747
1748  llvm::GlobalValue::LinkageTypes Linkage;
1749  bool isConstant;
1750  if (isUTF16) {
1751    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1752    Linkage = llvm::GlobalValue::InternalLinkage;
1753    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1754    // does make plain ascii ones writable.
1755    isConstant = true;
1756  } else {
1757    Linkage = llvm::GlobalValue::PrivateLinkage;
1758    isConstant = !Features.WritableStrings;
1759  }
1760
1761  llvm::GlobalVariable *GV =
1762  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1763                           ".str");
1764  GV->setUnnamedAddr(true);
1765  if (isUTF16) {
1766    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1767    GV->setAlignment(Align.getQuantity());
1768  }
1769  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1770
1771  // String length.
1772  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1773  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1774
1775  // The struct.
1776  C = llvm::ConstantStruct::get(STy, Fields);
1777  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1778                                llvm::GlobalVariable::PrivateLinkage, C,
1779                                "_unnamed_nsstring_");
1780  // FIXME. Fix section.
1781  if (const char *Sect =
1782        Features.ObjCNonFragileABI
1783          ? getContext().Target.getNSStringNonFragileABISection()
1784          : getContext().Target.getNSStringSection())
1785    GV->setSection(Sect);
1786  Entry.setValue(GV);
1787
1788  return GV;
1789}
1790
1791/// GetStringForStringLiteral - Return the appropriate bytes for a
1792/// string literal, properly padded to match the literal type.
1793std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1794  const ASTContext &Context = getContext();
1795  const ConstantArrayType *CAT =
1796    Context.getAsConstantArrayType(E->getType());
1797  assert(CAT && "String isn't pointer or array!");
1798
1799  // Resize the string to the right size.
1800  uint64_t RealLen = CAT->getSize().getZExtValue();
1801
1802  if (E->isWide())
1803    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1804
1805  std::string Str = E->getString().str();
1806  Str.resize(RealLen, '\0');
1807
1808  return Str;
1809}
1810
1811/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1812/// constant array for the given string literal.
1813llvm::Constant *
1814CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1815  // FIXME: This can be more efficient.
1816  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1817  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1818  if (S->isWide()) {
1819    llvm::Type *DestTy =
1820        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1821    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1822  }
1823  return C;
1824}
1825
1826/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1827/// array for the given ObjCEncodeExpr node.
1828llvm::Constant *
1829CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1830  std::string Str;
1831  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1832
1833  return GetAddrOfConstantCString(Str);
1834}
1835
1836
1837/// GenerateWritableString -- Creates storage for a string literal.
1838static llvm::Constant *GenerateStringLiteral(const std::string &str,
1839                                             bool constant,
1840                                             CodeGenModule &CGM,
1841                                             const char *GlobalName) {
1842  // Create Constant for this string literal. Don't add a '\0'.
1843  llvm::Constant *C =
1844      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1845
1846  // Create a global variable for this string
1847  llvm::GlobalVariable *GV =
1848    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1849                             llvm::GlobalValue::PrivateLinkage,
1850                             C, GlobalName);
1851  GV->setUnnamedAddr(true);
1852  return GV;
1853}
1854
1855/// GetAddrOfConstantString - Returns a pointer to a character array
1856/// containing the literal. This contents are exactly that of the
1857/// given string, i.e. it will not be null terminated automatically;
1858/// see GetAddrOfConstantCString. Note that whether the result is
1859/// actually a pointer to an LLVM constant depends on
1860/// Feature.WriteableStrings.
1861///
1862/// The result has pointer to array type.
1863llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1864                                                       const char *GlobalName) {
1865  bool IsConstant = !Features.WritableStrings;
1866
1867  // Get the default prefix if a name wasn't specified.
1868  if (!GlobalName)
1869    GlobalName = ".str";
1870
1871  // Don't share any string literals if strings aren't constant.
1872  if (!IsConstant)
1873    return GenerateStringLiteral(str, false, *this, GlobalName);
1874
1875  llvm::StringMapEntry<llvm::Constant *> &Entry =
1876    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1877
1878  if (Entry.getValue())
1879    return Entry.getValue();
1880
1881  // Create a global variable for this.
1882  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1883  Entry.setValue(C);
1884  return C;
1885}
1886
1887/// GetAddrOfConstantCString - Returns a pointer to a character
1888/// array containing the literal and a terminating '\-'
1889/// character. The result has pointer to array type.
1890llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1891                                                        const char *GlobalName){
1892  return GetAddrOfConstantString(str + '\0', GlobalName);
1893}
1894
1895/// EmitObjCPropertyImplementations - Emit information for synthesized
1896/// properties for an implementation.
1897void CodeGenModule::EmitObjCPropertyImplementations(const
1898                                                    ObjCImplementationDecl *D) {
1899  for (ObjCImplementationDecl::propimpl_iterator
1900         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1901    ObjCPropertyImplDecl *PID = *i;
1902
1903    // Dynamic is just for type-checking.
1904    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1905      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1906
1907      // Determine which methods need to be implemented, some may have
1908      // been overridden. Note that ::isSynthesized is not the method
1909      // we want, that just indicates if the decl came from a
1910      // property. What we want to know is if the method is defined in
1911      // this implementation.
1912      if (!D->getInstanceMethod(PD->getGetterName()))
1913        CodeGenFunction(*this).GenerateObjCGetter(
1914                                 const_cast<ObjCImplementationDecl *>(D), PID);
1915      if (!PD->isReadOnly() &&
1916          !D->getInstanceMethod(PD->getSetterName()))
1917        CodeGenFunction(*this).GenerateObjCSetter(
1918                                 const_cast<ObjCImplementationDecl *>(D), PID);
1919    }
1920  }
1921}
1922
1923/// EmitObjCIvarInitializations - Emit information for ivar initialization
1924/// for an implementation.
1925void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1926  if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1927    return;
1928  DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1929  assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1930  IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1931  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1932  ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1933                                                  D->getLocation(),
1934                                                  D->getLocation(), cxxSelector,
1935                                                  getContext().VoidTy, 0,
1936                                                  DC, true, false, true, false,
1937                                                  ObjCMethodDecl::Required);
1938  D->addInstanceMethod(DTORMethod);
1939  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1940
1941  II = &getContext().Idents.get(".cxx_construct");
1942  cxxSelector = getContext().Selectors.getSelector(0, &II);
1943  // The constructor returns 'self'.
1944  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1945                                                D->getLocation(),
1946                                                D->getLocation(), cxxSelector,
1947                                                getContext().getObjCIdType(), 0,
1948                                                DC, true, false, true, false,
1949                                                ObjCMethodDecl::Required);
1950  D->addInstanceMethod(CTORMethod);
1951  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1952
1953
1954}
1955
1956/// EmitNamespace - Emit all declarations in a namespace.
1957void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1958  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1959       I != E; ++I)
1960    EmitTopLevelDecl(*I);
1961}
1962
1963// EmitLinkageSpec - Emit all declarations in a linkage spec.
1964void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1965  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1966      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1967    ErrorUnsupported(LSD, "linkage spec");
1968    return;
1969  }
1970
1971  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1972       I != E; ++I)
1973    EmitTopLevelDecl(*I);
1974}
1975
1976/// EmitTopLevelDecl - Emit code for a single top level declaration.
1977void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1978  // If an error has occurred, stop code generation, but continue
1979  // parsing and semantic analysis (to ensure all warnings and errors
1980  // are emitted).
1981  if (Diags.hasErrorOccurred())
1982    return;
1983
1984  // Ignore dependent declarations.
1985  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1986    return;
1987
1988  switch (D->getKind()) {
1989  case Decl::CXXConversion:
1990  case Decl::CXXMethod:
1991  case Decl::Function:
1992    // Skip function templates
1993    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1994      return;
1995
1996    EmitGlobal(cast<FunctionDecl>(D));
1997    break;
1998
1999  case Decl::Var:
2000    EmitGlobal(cast<VarDecl>(D));
2001    break;
2002
2003  // C++ Decls
2004  case Decl::Namespace:
2005    EmitNamespace(cast<NamespaceDecl>(D));
2006    break;
2007    // No code generation needed.
2008  case Decl::UsingShadow:
2009  case Decl::Using:
2010  case Decl::UsingDirective:
2011  case Decl::ClassTemplate:
2012  case Decl::FunctionTemplate:
2013  case Decl::NamespaceAlias:
2014    break;
2015  case Decl::CXXConstructor:
2016    // Skip function templates
2017    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2018      return;
2019
2020    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2021    break;
2022  case Decl::CXXDestructor:
2023    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2024    break;
2025
2026  case Decl::StaticAssert:
2027    // Nothing to do.
2028    break;
2029
2030  // Objective-C Decls
2031
2032  // Forward declarations, no (immediate) code generation.
2033  case Decl::ObjCClass:
2034  case Decl::ObjCForwardProtocol:
2035  case Decl::ObjCInterface:
2036    break;
2037
2038    case Decl::ObjCCategory: {
2039      ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2040      if (CD->IsClassExtension() && CD->hasSynthBitfield())
2041        Context.ResetObjCLayout(CD->getClassInterface());
2042      break;
2043    }
2044
2045
2046  case Decl::ObjCProtocol:
2047    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2048    break;
2049
2050  case Decl::ObjCCategoryImpl:
2051    // Categories have properties but don't support synthesize so we
2052    // can ignore them here.
2053    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2054    break;
2055
2056  case Decl::ObjCImplementation: {
2057    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2058    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2059      Context.ResetObjCLayout(OMD->getClassInterface());
2060    EmitObjCPropertyImplementations(OMD);
2061    EmitObjCIvarInitializations(OMD);
2062    Runtime->GenerateClass(OMD);
2063    break;
2064  }
2065  case Decl::ObjCMethod: {
2066    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2067    // If this is not a prototype, emit the body.
2068    if (OMD->getBody())
2069      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2070    break;
2071  }
2072  case Decl::ObjCCompatibleAlias:
2073    // compatibility-alias is a directive and has no code gen.
2074    break;
2075
2076  case Decl::LinkageSpec:
2077    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2078    break;
2079
2080  case Decl::FileScopeAsm: {
2081    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2082    llvm::StringRef AsmString = AD->getAsmString()->getString();
2083
2084    const std::string &S = getModule().getModuleInlineAsm();
2085    if (S.empty())
2086      getModule().setModuleInlineAsm(AsmString);
2087    else
2088      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2089    break;
2090  }
2091
2092  default:
2093    // Make sure we handled everything we should, every other kind is a
2094    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2095    // function. Need to recode Decl::Kind to do that easily.
2096    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2097  }
2098}
2099
2100/// Turns the given pointer into a constant.
2101static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2102                                          const void *Ptr) {
2103  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2104  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2105  return llvm::ConstantInt::get(i64, PtrInt);
2106}
2107
2108static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2109                                   llvm::NamedMDNode *&GlobalMetadata,
2110                                   GlobalDecl D,
2111                                   llvm::GlobalValue *Addr) {
2112  if (!GlobalMetadata)
2113    GlobalMetadata =
2114      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2115
2116  // TODO: should we report variant information for ctors/dtors?
2117  llvm::Value *Ops[] = {
2118    Addr,
2119    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2120  };
2121  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2122}
2123
2124/// Emits metadata nodes associating all the global values in the
2125/// current module with the Decls they came from.  This is useful for
2126/// projects using IR gen as a subroutine.
2127///
2128/// Since there's currently no way to associate an MDNode directly
2129/// with an llvm::GlobalValue, we create a global named metadata
2130/// with the name 'clang.global.decl.ptrs'.
2131void CodeGenModule::EmitDeclMetadata() {
2132  llvm::NamedMDNode *GlobalMetadata = 0;
2133
2134  // StaticLocalDeclMap
2135  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2136         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2137       I != E; ++I) {
2138    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2139    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2140  }
2141}
2142
2143/// Emits metadata nodes for all the local variables in the current
2144/// function.
2145void CodeGenFunction::EmitDeclMetadata() {
2146  if (LocalDeclMap.empty()) return;
2147
2148  llvm::LLVMContext &Context = getLLVMContext();
2149
2150  // Find the unique metadata ID for this name.
2151  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2152
2153  llvm::NamedMDNode *GlobalMetadata = 0;
2154
2155  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2156         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2157    const Decl *D = I->first;
2158    llvm::Value *Addr = I->second;
2159
2160    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2161      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2162      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2163    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2164      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2165      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2166    }
2167  }
2168}
2169
2170///@name Custom Runtime Function Interfaces
2171///@{
2172//
2173// FIXME: These can be eliminated once we can have clients just get the required
2174// AST nodes from the builtin tables.
2175
2176llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2177  if (BlockObjectDispose)
2178    return BlockObjectDispose;
2179
2180  // If we saw an explicit decl, use that.
2181  if (BlockObjectDisposeDecl) {
2182    return BlockObjectDispose = GetAddrOfFunction(
2183      BlockObjectDisposeDecl,
2184      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2185  }
2186
2187  // Otherwise construct the function by hand.
2188  const llvm::FunctionType *FTy;
2189  std::vector<const llvm::Type*> ArgTys;
2190  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2191  ArgTys.push_back(Int8PtrTy);
2192  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2193  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2194  return BlockObjectDispose =
2195    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2196}
2197
2198llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2199  if (BlockObjectAssign)
2200    return BlockObjectAssign;
2201
2202  // If we saw an explicit decl, use that.
2203  if (BlockObjectAssignDecl) {
2204    return BlockObjectAssign = GetAddrOfFunction(
2205      BlockObjectAssignDecl,
2206      getTypes().GetFunctionType(BlockObjectAssignDecl));
2207  }
2208
2209  // Otherwise construct the function by hand.
2210  const llvm::FunctionType *FTy;
2211  std::vector<const llvm::Type*> ArgTys;
2212  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2213  ArgTys.push_back(Int8PtrTy);
2214  ArgTys.push_back(Int8PtrTy);
2215  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2216  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2217  return BlockObjectAssign =
2218    CreateRuntimeFunction(FTy, "_Block_object_assign");
2219}
2220
2221llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2222  if (NSConcreteGlobalBlock)
2223    return NSConcreteGlobalBlock;
2224
2225  // If we saw an explicit decl, use that.
2226  if (NSConcreteGlobalBlockDecl) {
2227    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2228      NSConcreteGlobalBlockDecl,
2229      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2230  }
2231
2232  // Otherwise construct the variable by hand.
2233  return NSConcreteGlobalBlock =
2234    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2235}
2236
2237llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2238  if (NSConcreteStackBlock)
2239    return NSConcreteStackBlock;
2240
2241  // If we saw an explicit decl, use that.
2242  if (NSConcreteStackBlockDecl) {
2243    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2244      NSConcreteStackBlockDecl,
2245      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2246  }
2247
2248  // Otherwise construct the variable by hand.
2249  return NSConcreteStackBlock =
2250    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2251}
2252
2253///@}
2254