CodeGenModule.cpp revision 206084
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/Diagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Basic/ConvertUTF.h"
32#include "llvm/CallingConv.h"
33#include "llvm/Module.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/ADT/Triple.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Support/ErrorHandling.h"
39using namespace clang;
40using namespace CodeGen;
41
42
43CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                             llvm::Module &M, const llvm::TargetData &TD,
45                             Diagnostic &diags)
46  : BlockModule(C, M, TD, Types, *this), Context(C),
47    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50    MangleCtx(C), VTables(*this), Runtime(0),
51    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52    VMContext(M.getContext()) {
53
54  if (!Features.ObjC1)
55    Runtime = 0;
56  else if (!Features.NeXTRuntime)
57    Runtime = CreateGNUObjCRuntime(*this);
58  else if (Features.ObjCNonFragileABI)
59    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60  else
61    Runtime = CreateMacObjCRuntime(*this);
62
63  // If debug info generation is enabled, create the CGDebugInfo object.
64  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65}
66
67CodeGenModule::~CodeGenModule() {
68  delete Runtime;
69  delete DebugInfo;
70}
71
72void CodeGenModule::createObjCRuntime() {
73  if (!Features.NeXTRuntime)
74    Runtime = CreateGNUObjCRuntime(*this);
75  else if (Features.ObjCNonFragileABI)
76    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77  else
78    Runtime = CreateMacObjCRuntime(*this);
79}
80
81void CodeGenModule::Release() {
82  EmitFundamentalRTTIDescriptors();
83  EmitDeferred();
84  EmitCXXGlobalInitFunc();
85  EmitCXXGlobalDtorFunc();
86  if (Runtime)
87    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
88      AddGlobalCtor(ObjCInitFunction);
89  EmitCtorList(GlobalCtors, "llvm.global_ctors");
90  EmitCtorList(GlobalDtors, "llvm.global_dtors");
91  EmitAnnotations();
92  EmitLLVMUsed();
93}
94
95bool CodeGenModule::isTargetDarwin() const {
96  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
97}
98
99/// ErrorUnsupported - Print out an error that codegen doesn't support the
100/// specified stmt yet.
101void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
102                                     bool OmitOnError) {
103  if (OmitOnError && getDiags().hasErrorOccurred())
104    return;
105  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
106                                               "cannot compile this %0 yet");
107  std::string Msg = Type;
108  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
109    << Msg << S->getSourceRange();
110}
111
112/// ErrorUnsupported - Print out an error that codegen doesn't support the
113/// specified decl yet.
114void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
115                                     bool OmitOnError) {
116  if (OmitOnError && getDiags().hasErrorOccurred())
117    return;
118  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
119                                               "cannot compile this %0 yet");
120  std::string Msg = Type;
121  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
122}
123
124LangOptions::VisibilityMode
125CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
126  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
127    if (VD->getStorageClass() == VarDecl::PrivateExtern)
128      return LangOptions::Hidden;
129
130  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
131    switch (attr->getVisibility()) {
132    default: assert(0 && "Unknown visibility!");
133    case VisibilityAttr::DefaultVisibility:
134      return LangOptions::Default;
135    case VisibilityAttr::HiddenVisibility:
136      return LangOptions::Hidden;
137    case VisibilityAttr::ProtectedVisibility:
138      return LangOptions::Protected;
139    }
140  }
141
142  // This decl should have the same visibility as its parent.
143  if (const DeclContext *DC = D->getDeclContext())
144    return getDeclVisibilityMode(cast<Decl>(DC));
145
146  return getLangOptions().getVisibilityMode();
147}
148
149void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
150                                        const Decl *D) const {
151  // Internal definitions always have default visibility.
152  if (GV->hasLocalLinkage()) {
153    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
154    return;
155  }
156
157  switch (getDeclVisibilityMode(D)) {
158  default: assert(0 && "Unknown visibility!");
159  case LangOptions::Default:
160    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
161  case LangOptions::Hidden:
162    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
163  case LangOptions::Protected:
164    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
165  }
166}
167
168void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
169  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
170
171  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
172    return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
173  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
174    return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
175
176  return getMangledName(Buffer, ND);
177}
178
179/// \brief Retrieves the mangled name for the given declaration.
180///
181/// If the given declaration requires a mangled name, returns an
182/// const char* containing the mangled name.  Otherwise, returns
183/// the unmangled name.
184///
185void CodeGenModule::getMangledName(MangleBuffer &Buffer,
186                                   const NamedDecl *ND) {
187  if (!getMangleContext().shouldMangleDeclName(ND)) {
188    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
189    Buffer.setString(ND->getNameAsCString());
190    return;
191  }
192
193  getMangleContext().mangleName(ND, Buffer.getBuffer());
194}
195
196llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
197  return getModule().getNamedValue(Name);
198}
199
200/// AddGlobalCtor - Add a function to the list that will be called before
201/// main() runs.
202void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
203  // FIXME: Type coercion of void()* types.
204  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
205}
206
207/// AddGlobalDtor - Add a function to the list that will be called
208/// when the module is unloaded.
209void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
210  // FIXME: Type coercion of void()* types.
211  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
212}
213
214void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
215  // Ctor function type is void()*.
216  llvm::FunctionType* CtorFTy =
217    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
218                            std::vector<const llvm::Type*>(),
219                            false);
220  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
221
222  // Get the type of a ctor entry, { i32, void ()* }.
223  llvm::StructType* CtorStructTy =
224    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
225                          llvm::PointerType::getUnqual(CtorFTy), NULL);
226
227  // Construct the constructor and destructor arrays.
228  std::vector<llvm::Constant*> Ctors;
229  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
230    std::vector<llvm::Constant*> S;
231    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
232                I->second, false));
233    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
234    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
235  }
236
237  if (!Ctors.empty()) {
238    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
239    new llvm::GlobalVariable(TheModule, AT, false,
240                             llvm::GlobalValue::AppendingLinkage,
241                             llvm::ConstantArray::get(AT, Ctors),
242                             GlobalName);
243  }
244}
245
246void CodeGenModule::EmitAnnotations() {
247  if (Annotations.empty())
248    return;
249
250  // Create a new global variable for the ConstantStruct in the Module.
251  llvm::Constant *Array =
252  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
253                                                Annotations.size()),
254                           Annotations);
255  llvm::GlobalValue *gv =
256  new llvm::GlobalVariable(TheModule, Array->getType(), false,
257                           llvm::GlobalValue::AppendingLinkage, Array,
258                           "llvm.global.annotations");
259  gv->setSection("llvm.metadata");
260}
261
262static CodeGenModule::GVALinkage
263GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
264                      const LangOptions &Features) {
265  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
266
267  Linkage L = FD->getLinkage();
268  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
269      FD->getType()->getLinkage() == UniqueExternalLinkage)
270    L = UniqueExternalLinkage;
271
272  switch (L) {
273  case NoLinkage:
274  case InternalLinkage:
275  case UniqueExternalLinkage:
276    return CodeGenModule::GVA_Internal;
277
278  case ExternalLinkage:
279    switch (FD->getTemplateSpecializationKind()) {
280    case TSK_Undeclared:
281    case TSK_ExplicitSpecialization:
282      External = CodeGenModule::GVA_StrongExternal;
283      break;
284
285    case TSK_ExplicitInstantiationDefinition:
286      return CodeGenModule::GVA_ExplicitTemplateInstantiation;
287
288    case TSK_ExplicitInstantiationDeclaration:
289    case TSK_ImplicitInstantiation:
290      External = CodeGenModule::GVA_TemplateInstantiation;
291      break;
292    }
293  }
294
295  if (!FD->isInlined())
296    return External;
297
298  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
299    // GNU or C99 inline semantics. Determine whether this symbol should be
300    // externally visible.
301    if (FD->isInlineDefinitionExternallyVisible())
302      return External;
303
304    // C99 inline semantics, where the symbol is not externally visible.
305    return CodeGenModule::GVA_C99Inline;
306  }
307
308  // C++0x [temp.explicit]p9:
309  //   [ Note: The intent is that an inline function that is the subject of
310  //   an explicit instantiation declaration will still be implicitly
311  //   instantiated when used so that the body can be considered for
312  //   inlining, but that no out-of-line copy of the inline function would be
313  //   generated in the translation unit. -- end note ]
314  if (FD->getTemplateSpecializationKind()
315                                       == TSK_ExplicitInstantiationDeclaration)
316    return CodeGenModule::GVA_C99Inline;
317
318  return CodeGenModule::GVA_CXXInline;
319}
320
321llvm::GlobalValue::LinkageTypes
322CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
323  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
324
325  if (Linkage == GVA_Internal) {
326    return llvm::Function::InternalLinkage;
327  } else if (D->hasAttr<DLLExportAttr>()) {
328    return llvm::Function::DLLExportLinkage;
329  } else if (D->hasAttr<WeakAttr>()) {
330    return llvm::Function::WeakAnyLinkage;
331  } else if (Linkage == GVA_C99Inline) {
332    // In C99 mode, 'inline' functions are guaranteed to have a strong
333    // definition somewhere else, so we can use available_externally linkage.
334    return llvm::Function::AvailableExternallyLinkage;
335  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
336    // In C++, the compiler has to emit a definition in every translation unit
337    // that references the function.  We should use linkonce_odr because
338    // a) if all references in this translation unit are optimized away, we
339    // don't need to codegen it.  b) if the function persists, it needs to be
340    // merged with other definitions. c) C++ has the ODR, so we know the
341    // definition is dependable.
342    return llvm::Function::LinkOnceODRLinkage;
343  } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
344    // An explicit instantiation of a template has weak linkage, since
345    // explicit instantiations can occur in multiple translation units
346    // and must all be equivalent. However, we are not allowed to
347    // throw away these explicit instantiations.
348    return llvm::Function::WeakODRLinkage;
349  } else {
350    assert(Linkage == GVA_StrongExternal);
351    // Otherwise, we have strong external linkage.
352    return llvm::Function::ExternalLinkage;
353  }
354}
355
356
357/// SetFunctionDefinitionAttributes - Set attributes for a global.
358///
359/// FIXME: This is currently only done for aliases and functions, but not for
360/// variables (these details are set in EmitGlobalVarDefinition for variables).
361void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
362                                                    llvm::GlobalValue *GV) {
363  GV->setLinkage(getFunctionLinkage(D));
364  SetCommonAttributes(D, GV);
365}
366
367void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
368                                              const CGFunctionInfo &Info,
369                                              llvm::Function *F) {
370  unsigned CallingConv;
371  AttributeListType AttributeList;
372  ConstructAttributeList(Info, D, AttributeList, CallingConv);
373  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
374                                          AttributeList.size()));
375  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
376}
377
378void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
379                                                           llvm::Function *F) {
380  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
381    F->addFnAttr(llvm::Attribute::NoUnwind);
382
383  if (D->hasAttr<AlwaysInlineAttr>())
384    F->addFnAttr(llvm::Attribute::AlwaysInline);
385
386  if (D->hasAttr<NoInlineAttr>())
387    F->addFnAttr(llvm::Attribute::NoInline);
388
389  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
390    F->addFnAttr(llvm::Attribute::StackProtect);
391  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
392    F->addFnAttr(llvm::Attribute::StackProtectReq);
393
394  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
395    unsigned width = Context.Target.getCharWidth();
396    F->setAlignment(AA->getAlignment() / width);
397    while ((AA = AA->getNext<AlignedAttr>()))
398      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
399  }
400  // C++ ABI requires 2-byte alignment for member functions.
401  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
402    F->setAlignment(2);
403}
404
405void CodeGenModule::SetCommonAttributes(const Decl *D,
406                                        llvm::GlobalValue *GV) {
407  setGlobalVisibility(GV, D);
408
409  if (D->hasAttr<UsedAttr>())
410    AddUsedGlobal(GV);
411
412  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
413    GV->setSection(SA->getName());
414
415  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
416}
417
418void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
419                                                  llvm::Function *F,
420                                                  const CGFunctionInfo &FI) {
421  SetLLVMFunctionAttributes(D, FI, F);
422  SetLLVMFunctionAttributesForDefinition(D, F);
423
424  F->setLinkage(llvm::Function::InternalLinkage);
425
426  SetCommonAttributes(D, F);
427}
428
429void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
430                                          llvm::Function *F,
431                                          bool IsIncompleteFunction) {
432  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
433
434  if (!IsIncompleteFunction)
435    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
436
437  // Only a few attributes are set on declarations; these may later be
438  // overridden by a definition.
439
440  if (FD->hasAttr<DLLImportAttr>()) {
441    F->setLinkage(llvm::Function::DLLImportLinkage);
442  } else if (FD->hasAttr<WeakAttr>() ||
443             FD->hasAttr<WeakImportAttr>()) {
444    // "extern_weak" is overloaded in LLVM; we probably should have
445    // separate linkage types for this.
446    F->setLinkage(llvm::Function::ExternalWeakLinkage);
447  } else {
448    F->setLinkage(llvm::Function::ExternalLinkage);
449  }
450
451  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
452    F->setSection(SA->getName());
453}
454
455void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
456  assert(!GV->isDeclaration() &&
457         "Only globals with definition can force usage.");
458  LLVMUsed.push_back(GV);
459}
460
461void CodeGenModule::EmitLLVMUsed() {
462  // Don't create llvm.used if there is no need.
463  if (LLVMUsed.empty())
464    return;
465
466  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
467
468  // Convert LLVMUsed to what ConstantArray needs.
469  std::vector<llvm::Constant*> UsedArray;
470  UsedArray.resize(LLVMUsed.size());
471  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
472    UsedArray[i] =
473     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
474                                      i8PTy);
475  }
476
477  if (UsedArray.empty())
478    return;
479  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
480
481  llvm::GlobalVariable *GV =
482    new llvm::GlobalVariable(getModule(), ATy, false,
483                             llvm::GlobalValue::AppendingLinkage,
484                             llvm::ConstantArray::get(ATy, UsedArray),
485                             "llvm.used");
486
487  GV->setSection("llvm.metadata");
488}
489
490void CodeGenModule::EmitDeferred() {
491  // Emit code for any potentially referenced deferred decls.  Since a
492  // previously unused static decl may become used during the generation of code
493  // for a static function, iterate until no  changes are made.
494
495  while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
496    if (!DeferredVtables.empty()) {
497      const CXXRecordDecl *RD = DeferredVtables.back();
498      DeferredVtables.pop_back();
499      getVTables().GenerateClassData(getVtableLinkage(RD), RD);
500      continue;
501    }
502
503    GlobalDecl D = DeferredDeclsToEmit.back();
504    DeferredDeclsToEmit.pop_back();
505
506    // Look it up to see if it was defined with a stronger definition (e.g. an
507    // extern inline function with a strong function redefinition).  If so,
508    // just ignore the deferred decl.
509    MangleBuffer Name;
510    getMangledName(Name, D);
511    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
512    assert(CGRef && "Deferred decl wasn't referenced?");
513
514    if (!CGRef->isDeclaration())
515      continue;
516
517    // Otherwise, emit the definition and move on to the next one.
518    EmitGlobalDefinition(D);
519  }
520}
521
522/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
523/// annotation information for a given GlobalValue.  The annotation struct is
524/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
525/// GlobalValue being annotated.  The second field is the constant string
526/// created from the AnnotateAttr's annotation.  The third field is a constant
527/// string containing the name of the translation unit.  The fourth field is
528/// the line number in the file of the annotated value declaration.
529///
530/// FIXME: this does not unique the annotation string constants, as llvm-gcc
531///        appears to.
532///
533llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
534                                                const AnnotateAttr *AA,
535                                                unsigned LineNo) {
536  llvm::Module *M = &getModule();
537
538  // get [N x i8] constants for the annotation string, and the filename string
539  // which are the 2nd and 3rd elements of the global annotation structure.
540  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
541  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
542                                                  AA->getAnnotation(), true);
543  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
544                                                  M->getModuleIdentifier(),
545                                                  true);
546
547  // Get the two global values corresponding to the ConstantArrays we just
548  // created to hold the bytes of the strings.
549  llvm::GlobalValue *annoGV =
550    new llvm::GlobalVariable(*M, anno->getType(), false,
551                             llvm::GlobalValue::PrivateLinkage, anno,
552                             GV->getName());
553  // translation unit name string, emitted into the llvm.metadata section.
554  llvm::GlobalValue *unitGV =
555    new llvm::GlobalVariable(*M, unit->getType(), false,
556                             llvm::GlobalValue::PrivateLinkage, unit,
557                             ".str");
558
559  // Create the ConstantStruct for the global annotation.
560  llvm::Constant *Fields[4] = {
561    llvm::ConstantExpr::getBitCast(GV, SBP),
562    llvm::ConstantExpr::getBitCast(annoGV, SBP),
563    llvm::ConstantExpr::getBitCast(unitGV, SBP),
564    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
565  };
566  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
567}
568
569bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
570  // Never defer when EmitAllDecls is specified or the decl has
571  // attribute used.
572  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
573    return false;
574
575  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
576    // Constructors and destructors should never be deferred.
577    if (FD->hasAttr<ConstructorAttr>() ||
578        FD->hasAttr<DestructorAttr>())
579      return false;
580
581    // The key function for a class must never be deferred.
582    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
583      const CXXRecordDecl *RD = MD->getParent();
584      if (MD->isOutOfLine() && RD->isDynamicClass()) {
585        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
586        if (KeyFunction &&
587            KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
588          return false;
589      }
590    }
591
592    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
593
594    // static, static inline, always_inline, and extern inline functions can
595    // always be deferred.  Normal inline functions can be deferred in C99/C++.
596    // Implicit template instantiations can also be deferred in C++.
597    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
598        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
599      return true;
600    return false;
601  }
602
603  const VarDecl *VD = cast<VarDecl>(Global);
604  assert(VD->isFileVarDecl() && "Invalid decl");
605
606  // We never want to defer structs that have non-trivial constructors or
607  // destructors.
608
609  // FIXME: Handle references.
610  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
611    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
612      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
613        return false;
614    }
615  }
616
617  // Static data may be deferred, but out-of-line static data members
618  // cannot be.
619  Linkage L = VD->getLinkage();
620  if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
621      VD->getType()->getLinkage() == UniqueExternalLinkage)
622    L = UniqueExternalLinkage;
623
624  switch (L) {
625  case NoLinkage:
626  case InternalLinkage:
627  case UniqueExternalLinkage:
628    // Initializer has side effects?
629    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
630      return false;
631    return !(VD->isStaticDataMember() && VD->isOutOfLine());
632
633  case ExternalLinkage:
634    break;
635  }
636
637  return false;
638}
639
640llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
641  const AliasAttr *AA = VD->getAttr<AliasAttr>();
642  assert(AA && "No alias?");
643
644  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
645
646  // See if there is already something with the target's name in the module.
647  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
648
649  llvm::Constant *Aliasee;
650  if (isa<llvm::FunctionType>(DeclTy))
651    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
652  else
653    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
654                                    llvm::PointerType::getUnqual(DeclTy), 0);
655  if (!Entry) {
656    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
657    F->setLinkage(llvm::Function::ExternalWeakLinkage);
658    WeakRefReferences.insert(F);
659  }
660
661  return Aliasee;
662}
663
664void CodeGenModule::EmitGlobal(GlobalDecl GD) {
665  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
666
667  // Weak references don't produce any output by themselves.
668  if (Global->hasAttr<WeakRefAttr>())
669    return;
670
671  // If this is an alias definition (which otherwise looks like a declaration)
672  // emit it now.
673  if (Global->hasAttr<AliasAttr>())
674    return EmitAliasDefinition(GD);
675
676  // Ignore declarations, they will be emitted on their first use.
677  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
678    // Forward declarations are emitted lazily on first use.
679    if (!FD->isThisDeclarationADefinition())
680      return;
681  } else {
682    const VarDecl *VD = cast<VarDecl>(Global);
683    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
684
685    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
686      return;
687  }
688
689  // Defer code generation when possible if this is a static definition, inline
690  // function etc.  These we only want to emit if they are used.
691  if (MayDeferGeneration(Global)) {
692    // If the value has already been used, add it directly to the
693    // DeferredDeclsToEmit list.
694    MangleBuffer MangledName;
695    getMangledName(MangledName, GD);
696    if (GetGlobalValue(MangledName))
697      DeferredDeclsToEmit.push_back(GD);
698    else {
699      // Otherwise, remember that we saw a deferred decl with this name.  The
700      // first use of the mangled name will cause it to move into
701      // DeferredDeclsToEmit.
702      DeferredDecls[MangledName] = GD;
703    }
704    return;
705  }
706
707  // Otherwise emit the definition.
708  EmitGlobalDefinition(GD);
709}
710
711void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
712  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
713
714  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
715                                 Context.getSourceManager(),
716                                 "Generating code for declaration");
717
718  if (isa<CXXMethodDecl>(D))
719    getVTables().EmitVTableRelatedData(GD);
720
721  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
722    EmitCXXConstructor(CD, GD.getCtorType());
723  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
724    EmitCXXDestructor(DD, GD.getDtorType());
725  else if (isa<FunctionDecl>(D))
726    EmitGlobalFunctionDefinition(GD);
727  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
728    EmitGlobalVarDefinition(VD);
729  else {
730    assert(0 && "Invalid argument to EmitGlobalDefinition()");
731  }
732}
733
734/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
735/// module, create and return an llvm Function with the specified type. If there
736/// is something in the module with the specified name, return it potentially
737/// bitcasted to the right type.
738///
739/// If D is non-null, it specifies a decl that correspond to this.  This is used
740/// to set the attributes on the function when it is first created.
741llvm::Constant *
742CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
743                                       const llvm::Type *Ty,
744                                       GlobalDecl D) {
745  // Lookup the entry, lazily creating it if necessary.
746  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
747  if (Entry) {
748    if (WeakRefReferences.count(Entry)) {
749      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
750      if (FD && !FD->hasAttr<WeakAttr>())
751        Entry->setLinkage(llvm::Function::ExternalLinkage);
752
753      WeakRefReferences.erase(Entry);
754    }
755
756    if (Entry->getType()->getElementType() == Ty)
757      return Entry;
758
759    // Make sure the result is of the correct type.
760    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
761    return llvm::ConstantExpr::getBitCast(Entry, PTy);
762  }
763
764  // This function doesn't have a complete type (for example, the return
765  // type is an incomplete struct). Use a fake type instead, and make
766  // sure not to try to set attributes.
767  bool IsIncompleteFunction = false;
768  if (!isa<llvm::FunctionType>(Ty)) {
769    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
770                                 std::vector<const llvm::Type*>(), false);
771    IsIncompleteFunction = true;
772  }
773  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
774                                             llvm::Function::ExternalLinkage,
775                                             MangledName, &getModule());
776  assert(F->getName() == MangledName && "name was uniqued!");
777  if (D.getDecl())
778    SetFunctionAttributes(D, F, IsIncompleteFunction);
779
780  // This is the first use or definition of a mangled name.  If there is a
781  // deferred decl with this name, remember that we need to emit it at the end
782  // of the file.
783  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
784  if (DDI != DeferredDecls.end()) {
785    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
786    // list, and remove it from DeferredDecls (since we don't need it anymore).
787    DeferredDeclsToEmit.push_back(DDI->second);
788    DeferredDecls.erase(DDI);
789  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
790    // If this the first reference to a C++ inline function in a class, queue up
791    // the deferred function body for emission.  These are not seen as
792    // top-level declarations.
793    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
794      DeferredDeclsToEmit.push_back(D);
795    // A called constructor which has no definition or declaration need be
796    // synthesized.
797    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
798      if (CD->isImplicit()) {
799        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
800        DeferredDeclsToEmit.push_back(D);
801      }
802    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
803      if (DD->isImplicit()) {
804        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
805        DeferredDeclsToEmit.push_back(D);
806      }
807    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
808      if (MD->isCopyAssignment() && MD->isImplicit()) {
809        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
810        DeferredDeclsToEmit.push_back(D);
811      }
812    }
813  }
814
815  return F;
816}
817
818/// GetAddrOfFunction - Return the address of the given function.  If Ty is
819/// non-null, then this function will use the specified type if it has to
820/// create it (this occurs when we see a definition of the function).
821llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
822                                                 const llvm::Type *Ty) {
823  // If there was no specific requested type, just convert it now.
824  if (!Ty)
825    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
826  MangleBuffer MangledName;
827  getMangledName(MangledName, GD);
828  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
829}
830
831/// CreateRuntimeFunction - Create a new runtime function with the specified
832/// type and name.
833llvm::Constant *
834CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
835                                     llvm::StringRef Name) {
836  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
837}
838
839static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
840  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
841    return false;
842  if (Context.getLangOptions().CPlusPlus &&
843      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
844    // FIXME: We should do something fancier here!
845    return false;
846  }
847  return true;
848}
849
850/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
851/// create and return an llvm GlobalVariable with the specified type.  If there
852/// is something in the module with the specified name, return it potentially
853/// bitcasted to the right type.
854///
855/// If D is non-null, it specifies a decl that correspond to this.  This is used
856/// to set the attributes on the global when it is first created.
857llvm::Constant *
858CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
859                                     const llvm::PointerType *Ty,
860                                     const VarDecl *D) {
861  // Lookup the entry, lazily creating it if necessary.
862  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
863  if (Entry) {
864    if (WeakRefReferences.count(Entry)) {
865      if (D && !D->hasAttr<WeakAttr>())
866        Entry->setLinkage(llvm::Function::ExternalLinkage);
867
868      WeakRefReferences.erase(Entry);
869    }
870
871    if (Entry->getType() == Ty)
872      return Entry;
873
874    // Make sure the result is of the correct type.
875    return llvm::ConstantExpr::getBitCast(Entry, Ty);
876  }
877
878  // This is the first use or definition of a mangled name.  If there is a
879  // deferred decl with this name, remember that we need to emit it at the end
880  // of the file.
881  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
882  if (DDI != DeferredDecls.end()) {
883    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
884    // list, and remove it from DeferredDecls (since we don't need it anymore).
885    DeferredDeclsToEmit.push_back(DDI->second);
886    DeferredDecls.erase(DDI);
887  }
888
889  llvm::GlobalVariable *GV =
890    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
891                             llvm::GlobalValue::ExternalLinkage,
892                             0, MangledName, 0,
893                             false, Ty->getAddressSpace());
894
895  // Handle things which are present even on external declarations.
896  if (D) {
897    // FIXME: This code is overly simple and should be merged with other global
898    // handling.
899    GV->setConstant(DeclIsConstantGlobal(Context, D));
900
901    // FIXME: Merge with other attribute handling code.
902    if (D->getStorageClass() == VarDecl::PrivateExtern)
903      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
904
905    if (D->hasAttr<WeakAttr>() ||
906        D->hasAttr<WeakImportAttr>())
907      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
908
909    GV->setThreadLocal(D->isThreadSpecified());
910  }
911
912  return GV;
913}
914
915
916/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
917/// given global variable.  If Ty is non-null and if the global doesn't exist,
918/// then it will be greated with the specified type instead of whatever the
919/// normal requested type would be.
920llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
921                                                  const llvm::Type *Ty) {
922  assert(D->hasGlobalStorage() && "Not a global variable");
923  QualType ASTTy = D->getType();
924  if (Ty == 0)
925    Ty = getTypes().ConvertTypeForMem(ASTTy);
926
927  const llvm::PointerType *PTy =
928    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
929
930  MangleBuffer MangledName;
931  getMangledName(MangledName, D);
932  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
933}
934
935/// CreateRuntimeVariable - Create a new runtime global variable with the
936/// specified type and name.
937llvm::Constant *
938CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
939                                     llvm::StringRef Name) {
940  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
941}
942
943void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
944  assert(!D->getInit() && "Cannot emit definite definitions here!");
945
946  if (MayDeferGeneration(D)) {
947    // If we have not seen a reference to this variable yet, place it
948    // into the deferred declarations table to be emitted if needed
949    // later.
950    MangleBuffer MangledName;
951    getMangledName(MangledName, D);
952    if (!GetGlobalValue(MangledName)) {
953      DeferredDecls[MangledName] = D;
954      return;
955    }
956  }
957
958  // The tentative definition is the only definition.
959  EmitGlobalVarDefinition(D);
960}
961
962llvm::GlobalVariable::LinkageTypes
963CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
964  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
965    return llvm::GlobalVariable::InternalLinkage;
966
967  if (const CXXMethodDecl *KeyFunction
968                                    = RD->getASTContext().getKeyFunction(RD)) {
969    // If this class has a key function, use that to determine the linkage of
970    // the vtable.
971    const FunctionDecl *Def = 0;
972    if (KeyFunction->getBody(Def))
973      KeyFunction = cast<CXXMethodDecl>(Def);
974
975    switch (KeyFunction->getTemplateSpecializationKind()) {
976      case TSK_Undeclared:
977      case TSK_ExplicitSpecialization:
978        if (KeyFunction->isInlined())
979          return llvm::GlobalVariable::WeakODRLinkage;
980
981        return llvm::GlobalVariable::ExternalLinkage;
982
983      case TSK_ImplicitInstantiation:
984      case TSK_ExplicitInstantiationDefinition:
985        return llvm::GlobalVariable::WeakODRLinkage;
986
987      case TSK_ExplicitInstantiationDeclaration:
988        // FIXME: Use available_externally linkage. However, this currently
989        // breaks LLVM's build due to undefined symbols.
990        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
991        return llvm::GlobalVariable::WeakODRLinkage;
992    }
993  }
994
995  switch (RD->getTemplateSpecializationKind()) {
996  case TSK_Undeclared:
997  case TSK_ExplicitSpecialization:
998  case TSK_ImplicitInstantiation:
999  case TSK_ExplicitInstantiationDefinition:
1000    return llvm::GlobalVariable::WeakODRLinkage;
1001
1002  case TSK_ExplicitInstantiationDeclaration:
1003    // FIXME: Use available_externally linkage. However, this currently
1004    // breaks LLVM's build due to undefined symbols.
1005    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1006    return llvm::GlobalVariable::WeakODRLinkage;
1007  }
1008
1009  // Silence GCC warning.
1010  return llvm::GlobalVariable::WeakODRLinkage;
1011}
1012
1013static CodeGenModule::GVALinkage
1014GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1015  // If this is a static data member, compute the kind of template
1016  // specialization. Otherwise, this variable is not part of a
1017  // template.
1018  TemplateSpecializationKind TSK = TSK_Undeclared;
1019  if (VD->isStaticDataMember())
1020    TSK = VD->getTemplateSpecializationKind();
1021
1022  Linkage L = VD->getLinkage();
1023  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1024      VD->getType()->getLinkage() == UniqueExternalLinkage)
1025    L = UniqueExternalLinkage;
1026
1027  switch (L) {
1028  case NoLinkage:
1029  case InternalLinkage:
1030  case UniqueExternalLinkage:
1031    return CodeGenModule::GVA_Internal;
1032
1033  case ExternalLinkage:
1034    switch (TSK) {
1035    case TSK_Undeclared:
1036    case TSK_ExplicitSpecialization:
1037      return CodeGenModule::GVA_StrongExternal;
1038
1039    case TSK_ExplicitInstantiationDeclaration:
1040      llvm_unreachable("Variable should not be instantiated");
1041      // Fall through to treat this like any other instantiation.
1042
1043    case TSK_ExplicitInstantiationDefinition:
1044      return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1045
1046    case TSK_ImplicitInstantiation:
1047      return CodeGenModule::GVA_TemplateInstantiation;
1048    }
1049  }
1050
1051  return CodeGenModule::GVA_StrongExternal;
1052}
1053
1054CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1055    return CharUnits::fromQuantity(
1056      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1057}
1058
1059void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1060  llvm::Constant *Init = 0;
1061  QualType ASTTy = D->getType();
1062  bool NonConstInit = false;
1063
1064  const Expr *InitExpr = D->getAnyInitializer();
1065
1066  if (!InitExpr) {
1067    // This is a tentative definition; tentative definitions are
1068    // implicitly initialized with { 0 }.
1069    //
1070    // Note that tentative definitions are only emitted at the end of
1071    // a translation unit, so they should never have incomplete
1072    // type. In addition, EmitTentativeDefinition makes sure that we
1073    // never attempt to emit a tentative definition if a real one
1074    // exists. A use may still exists, however, so we still may need
1075    // to do a RAUW.
1076    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1077    Init = EmitNullConstant(D->getType());
1078  } else {
1079    Init = EmitConstantExpr(InitExpr, D->getType());
1080
1081    if (!Init) {
1082      QualType T = InitExpr->getType();
1083      if (getLangOptions().CPlusPlus) {
1084        EmitCXXGlobalVarDeclInitFunc(D);
1085        Init = EmitNullConstant(T);
1086        NonConstInit = true;
1087      } else {
1088        ErrorUnsupported(D, "static initializer");
1089        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1090      }
1091    }
1092  }
1093
1094  const llvm::Type* InitType = Init->getType();
1095  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1096
1097  // Strip off a bitcast if we got one back.
1098  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1099    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1100           // all zero index gep.
1101           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1102    Entry = CE->getOperand(0);
1103  }
1104
1105  // Entry is now either a Function or GlobalVariable.
1106  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1107
1108  // We have a definition after a declaration with the wrong type.
1109  // We must make a new GlobalVariable* and update everything that used OldGV
1110  // (a declaration or tentative definition) with the new GlobalVariable*
1111  // (which will be a definition).
1112  //
1113  // This happens if there is a prototype for a global (e.g.
1114  // "extern int x[];") and then a definition of a different type (e.g.
1115  // "int x[10];"). This also happens when an initializer has a different type
1116  // from the type of the global (this happens with unions).
1117  if (GV == 0 ||
1118      GV->getType()->getElementType() != InitType ||
1119      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1120
1121    // Move the old entry aside so that we'll create a new one.
1122    Entry->setName(llvm::StringRef());
1123
1124    // Make a new global with the correct type, this is now guaranteed to work.
1125    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1126
1127    // Replace all uses of the old global with the new global
1128    llvm::Constant *NewPtrForOldDecl =
1129        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1130    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1131
1132    // Erase the old global, since it is no longer used.
1133    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1134  }
1135
1136  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1137    SourceManager &SM = Context.getSourceManager();
1138    AddAnnotation(EmitAnnotateAttr(GV, AA,
1139                              SM.getInstantiationLineNumber(D->getLocation())));
1140  }
1141
1142  GV->setInitializer(Init);
1143
1144  // If it is safe to mark the global 'constant', do so now.
1145  GV->setConstant(false);
1146  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1147    GV->setConstant(true);
1148
1149  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1150
1151  // Set the llvm linkage type as appropriate.
1152  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1153  if (Linkage == GVA_Internal)
1154    GV->setLinkage(llvm::Function::InternalLinkage);
1155  else if (D->hasAttr<DLLImportAttr>())
1156    GV->setLinkage(llvm::Function::DLLImportLinkage);
1157  else if (D->hasAttr<DLLExportAttr>())
1158    GV->setLinkage(llvm::Function::DLLExportLinkage);
1159  else if (D->hasAttr<WeakAttr>()) {
1160    if (GV->isConstant())
1161      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1162    else
1163      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1164  } else if (Linkage == GVA_TemplateInstantiation ||
1165             Linkage == GVA_ExplicitTemplateInstantiation)
1166    // FIXME: It seems like we can provide more specific linkage here
1167    // (LinkOnceODR, WeakODR).
1168    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1169  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1170           !D->hasExternalStorage() && !D->getInit() &&
1171           !D->getAttr<SectionAttr>()) {
1172    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1173    // common vars aren't constant even if declared const.
1174    GV->setConstant(false);
1175  } else
1176    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1177
1178  SetCommonAttributes(D, GV);
1179
1180  // Emit global variable debug information.
1181  if (CGDebugInfo *DI = getDebugInfo()) {
1182    DI->setLocation(D->getLocation());
1183    DI->EmitGlobalVariable(GV, D);
1184  }
1185}
1186
1187/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1188/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1189/// existing call uses of the old function in the module, this adjusts them to
1190/// call the new function directly.
1191///
1192/// This is not just a cleanup: the always_inline pass requires direct calls to
1193/// functions to be able to inline them.  If there is a bitcast in the way, it
1194/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1195/// run at -O0.
1196static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1197                                                      llvm::Function *NewFn) {
1198  // If we're redefining a global as a function, don't transform it.
1199  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1200  if (OldFn == 0) return;
1201
1202  const llvm::Type *NewRetTy = NewFn->getReturnType();
1203  llvm::SmallVector<llvm::Value*, 4> ArgList;
1204
1205  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1206       UI != E; ) {
1207    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1208    unsigned OpNo = UI.getOperandNo();
1209    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1210    if (!CI || OpNo != 0) continue;
1211
1212    // If the return types don't match exactly, and if the call isn't dead, then
1213    // we can't transform this call.
1214    if (CI->getType() != NewRetTy && !CI->use_empty())
1215      continue;
1216
1217    // If the function was passed too few arguments, don't transform.  If extra
1218    // arguments were passed, we silently drop them.  If any of the types
1219    // mismatch, we don't transform.
1220    unsigned ArgNo = 0;
1221    bool DontTransform = false;
1222    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1223         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1224      if (CI->getNumOperands()-1 == ArgNo ||
1225          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1226        DontTransform = true;
1227        break;
1228      }
1229    }
1230    if (DontTransform)
1231      continue;
1232
1233    // Okay, we can transform this.  Create the new call instruction and copy
1234    // over the required information.
1235    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1236    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1237                                                     ArgList.end(), "", CI);
1238    ArgList.clear();
1239    if (!NewCall->getType()->isVoidTy())
1240      NewCall->takeName(CI);
1241    NewCall->setAttributes(CI->getAttributes());
1242    NewCall->setCallingConv(CI->getCallingConv());
1243
1244    // Finally, remove the old call, replacing any uses with the new one.
1245    if (!CI->use_empty())
1246      CI->replaceAllUsesWith(NewCall);
1247
1248    // Copy debug location attached to CI.
1249    if (!CI->getDebugLoc().isUnknown())
1250      NewCall->setDebugLoc(CI->getDebugLoc());
1251    CI->eraseFromParent();
1252  }
1253}
1254
1255
1256void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1257  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1258  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1259  getMangleContext().mangleInitDiscriminator();
1260  // Get or create the prototype for the function.
1261  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1262
1263  // Strip off a bitcast if we got one back.
1264  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1265    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1266    Entry = CE->getOperand(0);
1267  }
1268
1269
1270  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1271    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1272
1273    // If the types mismatch then we have to rewrite the definition.
1274    assert(OldFn->isDeclaration() &&
1275           "Shouldn't replace non-declaration");
1276
1277    // F is the Function* for the one with the wrong type, we must make a new
1278    // Function* and update everything that used F (a declaration) with the new
1279    // Function* (which will be a definition).
1280    //
1281    // This happens if there is a prototype for a function
1282    // (e.g. "int f()") and then a definition of a different type
1283    // (e.g. "int f(int x)").  Move the old function aside so that it
1284    // doesn't interfere with GetAddrOfFunction.
1285    OldFn->setName(llvm::StringRef());
1286    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1287
1288    // If this is an implementation of a function without a prototype, try to
1289    // replace any existing uses of the function (which may be calls) with uses
1290    // of the new function
1291    if (D->getType()->isFunctionNoProtoType()) {
1292      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1293      OldFn->removeDeadConstantUsers();
1294    }
1295
1296    // Replace uses of F with the Function we will endow with a body.
1297    if (!Entry->use_empty()) {
1298      llvm::Constant *NewPtrForOldDecl =
1299        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1300      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1301    }
1302
1303    // Ok, delete the old function now, which is dead.
1304    OldFn->eraseFromParent();
1305
1306    Entry = NewFn;
1307  }
1308
1309  llvm::Function *Fn = cast<llvm::Function>(Entry);
1310
1311  CodeGenFunction(*this).GenerateCode(D, Fn);
1312
1313  SetFunctionDefinitionAttributes(D, Fn);
1314  SetLLVMFunctionAttributesForDefinition(D, Fn);
1315
1316  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1317    AddGlobalCtor(Fn, CA->getPriority());
1318  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1319    AddGlobalDtor(Fn, DA->getPriority());
1320}
1321
1322void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1323  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1324  const AliasAttr *AA = D->getAttr<AliasAttr>();
1325  assert(AA && "Not an alias?");
1326
1327  MangleBuffer MangledName;
1328  getMangledName(MangledName, GD);
1329
1330  // If there is a definition in the module, then it wins over the alias.
1331  // This is dubious, but allow it to be safe.  Just ignore the alias.
1332  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1333  if (Entry && !Entry->isDeclaration())
1334    return;
1335
1336  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1337
1338  // Create a reference to the named value.  This ensures that it is emitted
1339  // if a deferred decl.
1340  llvm::Constant *Aliasee;
1341  if (isa<llvm::FunctionType>(DeclTy))
1342    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1343  else
1344    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1345                                    llvm::PointerType::getUnqual(DeclTy), 0);
1346
1347  // Create the new alias itself, but don't set a name yet.
1348  llvm::GlobalValue *GA =
1349    new llvm::GlobalAlias(Aliasee->getType(),
1350                          llvm::Function::ExternalLinkage,
1351                          "", Aliasee, &getModule());
1352
1353  if (Entry) {
1354    assert(Entry->isDeclaration());
1355
1356    // If there is a declaration in the module, then we had an extern followed
1357    // by the alias, as in:
1358    //   extern int test6();
1359    //   ...
1360    //   int test6() __attribute__((alias("test7")));
1361    //
1362    // Remove it and replace uses of it with the alias.
1363    GA->takeName(Entry);
1364
1365    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1366                                                          Entry->getType()));
1367    Entry->eraseFromParent();
1368  } else {
1369    GA->setName(MangledName.getString());
1370  }
1371
1372  // Set attributes which are particular to an alias; this is a
1373  // specialization of the attributes which may be set on a global
1374  // variable/function.
1375  if (D->hasAttr<DLLExportAttr>()) {
1376    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1377      // The dllexport attribute is ignored for undefined symbols.
1378      if (FD->getBody())
1379        GA->setLinkage(llvm::Function::DLLExportLinkage);
1380    } else {
1381      GA->setLinkage(llvm::Function::DLLExportLinkage);
1382    }
1383  } else if (D->hasAttr<WeakAttr>() ||
1384             D->hasAttr<WeakRefAttr>() ||
1385             D->hasAttr<WeakImportAttr>()) {
1386    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1387  }
1388
1389  SetCommonAttributes(D, GA);
1390}
1391
1392/// getBuiltinLibFunction - Given a builtin id for a function like
1393/// "__builtin_fabsf", return a Function* for "fabsf".
1394llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1395                                                  unsigned BuiltinID) {
1396  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1397          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1398         "isn't a lib fn");
1399
1400  // Get the name, skip over the __builtin_ prefix (if necessary).
1401  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1402  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1403    Name += 10;
1404
1405  const llvm::FunctionType *Ty =
1406    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1407
1408  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1409}
1410
1411llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1412                                            unsigned NumTys) {
1413  return llvm::Intrinsic::getDeclaration(&getModule(),
1414                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1415}
1416
1417llvm::Function *CodeGenModule::getMemCpyFn() {
1418  if (MemCpyFn) return MemCpyFn;
1419  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1420  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1421}
1422
1423llvm::Function *CodeGenModule::getMemMoveFn() {
1424  if (MemMoveFn) return MemMoveFn;
1425  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1426  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1427}
1428
1429llvm::Function *CodeGenModule::getMemSetFn() {
1430  if (MemSetFn) return MemSetFn;
1431  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1432  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1433}
1434
1435static llvm::StringMapEntry<llvm::Constant*> &
1436GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1437                         const StringLiteral *Literal,
1438                         bool TargetIsLSB,
1439                         bool &IsUTF16,
1440                         unsigned &StringLength) {
1441  unsigned NumBytes = Literal->getByteLength();
1442
1443  // Check for simple case.
1444  if (!Literal->containsNonAsciiOrNull()) {
1445    StringLength = NumBytes;
1446    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1447                                                StringLength));
1448  }
1449
1450  // Otherwise, convert the UTF8 literals into a byte string.
1451  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1452  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1453  UTF16 *ToPtr = &ToBuf[0];
1454
1455  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1456                                               &ToPtr, ToPtr + NumBytes,
1457                                               strictConversion);
1458
1459  // Check for conversion failure.
1460  if (Result != conversionOK) {
1461    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1462    // this duplicate code.
1463    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1464    StringLength = NumBytes;
1465    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1466                                                StringLength));
1467  }
1468
1469  // ConvertUTF8toUTF16 returns the length in ToPtr.
1470  StringLength = ToPtr - &ToBuf[0];
1471
1472  // Render the UTF-16 string into a byte array and convert to the target byte
1473  // order.
1474  //
1475  // FIXME: This isn't something we should need to do here.
1476  llvm::SmallString<128> AsBytes;
1477  AsBytes.reserve(StringLength * 2);
1478  for (unsigned i = 0; i != StringLength; ++i) {
1479    unsigned short Val = ToBuf[i];
1480    if (TargetIsLSB) {
1481      AsBytes.push_back(Val & 0xFF);
1482      AsBytes.push_back(Val >> 8);
1483    } else {
1484      AsBytes.push_back(Val >> 8);
1485      AsBytes.push_back(Val & 0xFF);
1486    }
1487  }
1488  // Append one extra null character, the second is automatically added by our
1489  // caller.
1490  AsBytes.push_back(0);
1491
1492  IsUTF16 = true;
1493  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1494}
1495
1496llvm::Constant *
1497CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1498  unsigned StringLength = 0;
1499  bool isUTF16 = false;
1500  llvm::StringMapEntry<llvm::Constant*> &Entry =
1501    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1502                             getTargetData().isLittleEndian(),
1503                             isUTF16, StringLength);
1504
1505  if (llvm::Constant *C = Entry.getValue())
1506    return C;
1507
1508  llvm::Constant *Zero =
1509      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1510  llvm::Constant *Zeros[] = { Zero, Zero };
1511
1512  // If we don't already have it, get __CFConstantStringClassReference.
1513  if (!CFConstantStringClassRef) {
1514    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1515    Ty = llvm::ArrayType::get(Ty, 0);
1516    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1517                                           "__CFConstantStringClassReference");
1518    // Decay array -> ptr
1519    CFConstantStringClassRef =
1520      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1521  }
1522
1523  QualType CFTy = getContext().getCFConstantStringType();
1524
1525  const llvm::StructType *STy =
1526    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1527
1528  std::vector<llvm::Constant*> Fields(4);
1529
1530  // Class pointer.
1531  Fields[0] = CFConstantStringClassRef;
1532
1533  // Flags.
1534  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1535  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1536    llvm::ConstantInt::get(Ty, 0x07C8);
1537
1538  // String pointer.
1539  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1540
1541  llvm::GlobalValue::LinkageTypes Linkage;
1542  bool isConstant;
1543  if (isUTF16) {
1544    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1545    Linkage = llvm::GlobalValue::InternalLinkage;
1546    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1547    // does make plain ascii ones writable.
1548    isConstant = true;
1549  } else {
1550    Linkage = llvm::GlobalValue::PrivateLinkage;
1551    isConstant = !Features.WritableStrings;
1552  }
1553
1554  llvm::GlobalVariable *GV =
1555    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1556                             ".str");
1557  if (isUTF16) {
1558    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1559    GV->setAlignment(Align.getQuantity());
1560  }
1561  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1562
1563  // String length.
1564  Ty = getTypes().ConvertType(getContext().LongTy);
1565  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1566
1567  // The struct.
1568  C = llvm::ConstantStruct::get(STy, Fields);
1569  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1570                                llvm::GlobalVariable::PrivateLinkage, C,
1571                                "_unnamed_cfstring_");
1572  if (const char *Sect = getContext().Target.getCFStringSection())
1573    GV->setSection(Sect);
1574  Entry.setValue(GV);
1575
1576  return GV;
1577}
1578
1579/// GetStringForStringLiteral - Return the appropriate bytes for a
1580/// string literal, properly padded to match the literal type.
1581std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1582  const char *StrData = E->getStrData();
1583  unsigned Len = E->getByteLength();
1584
1585  const ConstantArrayType *CAT =
1586    getContext().getAsConstantArrayType(E->getType());
1587  assert(CAT && "String isn't pointer or array!");
1588
1589  // Resize the string to the right size.
1590  std::string Str(StrData, StrData+Len);
1591  uint64_t RealLen = CAT->getSize().getZExtValue();
1592
1593  if (E->isWide())
1594    RealLen *= getContext().Target.getWCharWidth()/8;
1595
1596  Str.resize(RealLen, '\0');
1597
1598  return Str;
1599}
1600
1601/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1602/// constant array for the given string literal.
1603llvm::Constant *
1604CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1605  // FIXME: This can be more efficient.
1606  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1607  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1608  if (S->isWide()) {
1609    llvm::Type *DestTy =
1610        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1611    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1612  }
1613  return C;
1614}
1615
1616/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1617/// array for the given ObjCEncodeExpr node.
1618llvm::Constant *
1619CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1620  std::string Str;
1621  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1622
1623  return GetAddrOfConstantCString(Str);
1624}
1625
1626
1627/// GenerateWritableString -- Creates storage for a string literal.
1628static llvm::Constant *GenerateStringLiteral(const std::string &str,
1629                                             bool constant,
1630                                             CodeGenModule &CGM,
1631                                             const char *GlobalName) {
1632  // Create Constant for this string literal. Don't add a '\0'.
1633  llvm::Constant *C =
1634      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1635
1636  // Create a global variable for this string
1637  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1638                                  llvm::GlobalValue::PrivateLinkage,
1639                                  C, GlobalName);
1640}
1641
1642/// GetAddrOfConstantString - Returns a pointer to a character array
1643/// containing the literal. This contents are exactly that of the
1644/// given string, i.e. it will not be null terminated automatically;
1645/// see GetAddrOfConstantCString. Note that whether the result is
1646/// actually a pointer to an LLVM constant depends on
1647/// Feature.WriteableStrings.
1648///
1649/// The result has pointer to array type.
1650llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1651                                                       const char *GlobalName) {
1652  bool IsConstant = !Features.WritableStrings;
1653
1654  // Get the default prefix if a name wasn't specified.
1655  if (!GlobalName)
1656    GlobalName = ".str";
1657
1658  // Don't share any string literals if strings aren't constant.
1659  if (!IsConstant)
1660    return GenerateStringLiteral(str, false, *this, GlobalName);
1661
1662  llvm::StringMapEntry<llvm::Constant *> &Entry =
1663    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1664
1665  if (Entry.getValue())
1666    return Entry.getValue();
1667
1668  // Create a global variable for this.
1669  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1670  Entry.setValue(C);
1671  return C;
1672}
1673
1674/// GetAddrOfConstantCString - Returns a pointer to a character
1675/// array containing the literal and a terminating '\-'
1676/// character. The result has pointer to array type.
1677llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1678                                                        const char *GlobalName){
1679  return GetAddrOfConstantString(str + '\0', GlobalName);
1680}
1681
1682/// EmitObjCPropertyImplementations - Emit information for synthesized
1683/// properties for an implementation.
1684void CodeGenModule::EmitObjCPropertyImplementations(const
1685                                                    ObjCImplementationDecl *D) {
1686  for (ObjCImplementationDecl::propimpl_iterator
1687         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1688    ObjCPropertyImplDecl *PID = *i;
1689
1690    // Dynamic is just for type-checking.
1691    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1692      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1693
1694      // Determine which methods need to be implemented, some may have
1695      // been overridden. Note that ::isSynthesized is not the method
1696      // we want, that just indicates if the decl came from a
1697      // property. What we want to know is if the method is defined in
1698      // this implementation.
1699      if (!D->getInstanceMethod(PD->getGetterName()))
1700        CodeGenFunction(*this).GenerateObjCGetter(
1701                                 const_cast<ObjCImplementationDecl *>(D), PID);
1702      if (!PD->isReadOnly() &&
1703          !D->getInstanceMethod(PD->getSetterName()))
1704        CodeGenFunction(*this).GenerateObjCSetter(
1705                                 const_cast<ObjCImplementationDecl *>(D), PID);
1706    }
1707  }
1708}
1709
1710/// EmitNamespace - Emit all declarations in a namespace.
1711void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1712  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1713       I != E; ++I)
1714    EmitTopLevelDecl(*I);
1715}
1716
1717// EmitLinkageSpec - Emit all declarations in a linkage spec.
1718void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1719  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1720      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1721    ErrorUnsupported(LSD, "linkage spec");
1722    return;
1723  }
1724
1725  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1726       I != E; ++I)
1727    EmitTopLevelDecl(*I);
1728}
1729
1730/// EmitTopLevelDecl - Emit code for a single top level declaration.
1731void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1732  // If an error has occurred, stop code generation, but continue
1733  // parsing and semantic analysis (to ensure all warnings and errors
1734  // are emitted).
1735  if (Diags.hasErrorOccurred())
1736    return;
1737
1738  // Ignore dependent declarations.
1739  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1740    return;
1741
1742  switch (D->getKind()) {
1743  case Decl::CXXConversion:
1744  case Decl::CXXMethod:
1745  case Decl::Function:
1746    // Skip function templates
1747    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1748      return;
1749
1750    EmitGlobal(cast<FunctionDecl>(D));
1751    break;
1752
1753  case Decl::Var:
1754    EmitGlobal(cast<VarDecl>(D));
1755    break;
1756
1757  // C++ Decls
1758  case Decl::Namespace:
1759    EmitNamespace(cast<NamespaceDecl>(D));
1760    break;
1761    // No code generation needed.
1762  case Decl::UsingShadow:
1763  case Decl::Using:
1764  case Decl::UsingDirective:
1765  case Decl::ClassTemplate:
1766  case Decl::FunctionTemplate:
1767  case Decl::NamespaceAlias:
1768    break;
1769  case Decl::CXXConstructor:
1770    // Skip function templates
1771    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1772      return;
1773
1774    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1775    break;
1776  case Decl::CXXDestructor:
1777    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1778    break;
1779
1780  case Decl::StaticAssert:
1781    // Nothing to do.
1782    break;
1783
1784  // Objective-C Decls
1785
1786  // Forward declarations, no (immediate) code generation.
1787  case Decl::ObjCClass:
1788  case Decl::ObjCForwardProtocol:
1789  case Decl::ObjCCategory:
1790  case Decl::ObjCInterface:
1791    break;
1792
1793  case Decl::ObjCProtocol:
1794    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1795    break;
1796
1797  case Decl::ObjCCategoryImpl:
1798    // Categories have properties but don't support synthesize so we
1799    // can ignore them here.
1800    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1801    break;
1802
1803  case Decl::ObjCImplementation: {
1804    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1805    EmitObjCPropertyImplementations(OMD);
1806    Runtime->GenerateClass(OMD);
1807    break;
1808  }
1809  case Decl::ObjCMethod: {
1810    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1811    // If this is not a prototype, emit the body.
1812    if (OMD->getBody())
1813      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1814    break;
1815  }
1816  case Decl::ObjCCompatibleAlias:
1817    // compatibility-alias is a directive and has no code gen.
1818    break;
1819
1820  case Decl::LinkageSpec:
1821    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1822    break;
1823
1824  case Decl::FileScopeAsm: {
1825    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1826    llvm::StringRef AsmString = AD->getAsmString()->getString();
1827
1828    const std::string &S = getModule().getModuleInlineAsm();
1829    if (S.empty())
1830      getModule().setModuleInlineAsm(AsmString);
1831    else
1832      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1833    break;
1834  }
1835
1836  default:
1837    // Make sure we handled everything we should, every other kind is a
1838    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1839    // function. Need to recode Decl::Kind to do that easily.
1840    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1841  }
1842}
1843