CodeGenModule.cpp revision 200583
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/CodeGen/CodeGenOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Basic/ConvertUTF.h"
30#include "llvm/CallingConv.h"
31#include "llvm/Module.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36using namespace CodeGen;
37
38
39CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
40                             llvm::Module &M, const llvm::TargetData &TD,
41                             Diagnostic &diags)
42  : BlockModule(C, M, TD, Types, *this), Context(C),
43    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
44    TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
45    VtableInfo(*this), Runtime(0),
46    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
47    VMContext(M.getContext()) {
48
49  if (!Features.ObjC1)
50    Runtime = 0;
51  else if (!Features.NeXTRuntime)
52    Runtime = CreateGNUObjCRuntime(*this);
53  else if (Features.ObjCNonFragileABI)
54    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
55  else
56    Runtime = CreateMacObjCRuntime(*this);
57
58  // If debug info generation is enabled, create the CGDebugInfo object.
59  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
60}
61
62CodeGenModule::~CodeGenModule() {
63  delete Runtime;
64  delete DebugInfo;
65}
66
67void CodeGenModule::Release() {
68  // We need to call this first because it can add deferred declarations.
69  EmitCXXGlobalInitFunc();
70
71  EmitDeferred();
72  if (Runtime)
73    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
74      AddGlobalCtor(ObjCInitFunction);
75  EmitCtorList(GlobalCtors, "llvm.global_ctors");
76  EmitCtorList(GlobalDtors, "llvm.global_dtors");
77  EmitAnnotations();
78  EmitLLVMUsed();
79}
80
81/// ErrorUnsupported - Print out an error that codegen doesn't support the
82/// specified stmt yet.
83void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
84                                     bool OmitOnError) {
85  if (OmitOnError && getDiags().hasErrorOccurred())
86    return;
87  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
88                                               "cannot compile this %0 yet");
89  std::string Msg = Type;
90  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
91    << Msg << S->getSourceRange();
92}
93
94/// ErrorUnsupported - Print out an error that codegen doesn't support the
95/// specified decl yet.
96void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
97                                     bool OmitOnError) {
98  if (OmitOnError && getDiags().hasErrorOccurred())
99    return;
100  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
101                                               "cannot compile this %0 yet");
102  std::string Msg = Type;
103  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
104}
105
106LangOptions::VisibilityMode
107CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
108  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
109    if (VD->getStorageClass() == VarDecl::PrivateExtern)
110      return LangOptions::Hidden;
111
112  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
113    switch (attr->getVisibility()) {
114    default: assert(0 && "Unknown visibility!");
115    case VisibilityAttr::DefaultVisibility:
116      return LangOptions::Default;
117    case VisibilityAttr::HiddenVisibility:
118      return LangOptions::Hidden;
119    case VisibilityAttr::ProtectedVisibility:
120      return LangOptions::Protected;
121    }
122  }
123
124  return getLangOptions().getVisibilityMode();
125}
126
127void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
128                                        const Decl *D) const {
129  // Internal definitions always have default visibility.
130  if (GV->hasLocalLinkage()) {
131    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132    return;
133  }
134
135  switch (getDeclVisibilityMode(D)) {
136  default: assert(0 && "Unknown visibility!");
137  case LangOptions::Default:
138    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
139  case LangOptions::Hidden:
140    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
141  case LangOptions::Protected:
142    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
143  }
144}
145
146const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
147  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
148
149  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
150    return getMangledCXXCtorName(D, GD.getCtorType());
151  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
152    return getMangledCXXDtorName(D, GD.getDtorType());
153
154  return getMangledName(ND);
155}
156
157/// \brief Retrieves the mangled name for the given declaration.
158///
159/// If the given declaration requires a mangled name, returns an
160/// const char* containing the mangled name.  Otherwise, returns
161/// the unmangled name.
162///
163const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
164  if (!getMangleContext().shouldMangleDeclName(ND)) {
165    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166    return ND->getNameAsCString();
167  }
168
169  llvm::SmallString<256> Name;
170  getMangleContext().mangleName(ND, Name);
171  Name += '\0';
172  return UniqueMangledName(Name.begin(), Name.end());
173}
174
175const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                             const char *NameEnd) {
177  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178
179  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180}
181
182/// AddGlobalCtor - Add a function to the list that will be called before
183/// main() runs.
184void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185  // FIXME: Type coercion of void()* types.
186  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187}
188
189/// AddGlobalDtor - Add a function to the list that will be called
190/// when the module is unloaded.
191void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192  // FIXME: Type coercion of void()* types.
193  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194}
195
196void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197  // Ctor function type is void()*.
198  llvm::FunctionType* CtorFTy =
199    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
200                            std::vector<const llvm::Type*>(),
201                            false);
202  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203
204  // Get the type of a ctor entry, { i32, void ()* }.
205  llvm::StructType* CtorStructTy =
206    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
207                          llvm::PointerType::getUnqual(CtorFTy), NULL);
208
209  // Construct the constructor and destructor arrays.
210  std::vector<llvm::Constant*> Ctors;
211  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212    std::vector<llvm::Constant*> S;
213    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
214                I->second, false));
215    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217  }
218
219  if (!Ctors.empty()) {
220    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221    new llvm::GlobalVariable(TheModule, AT, false,
222                             llvm::GlobalValue::AppendingLinkage,
223                             llvm::ConstantArray::get(AT, Ctors),
224                             GlobalName);
225  }
226}
227
228void CodeGenModule::EmitAnnotations() {
229  if (Annotations.empty())
230    return;
231
232  // Create a new global variable for the ConstantStruct in the Module.
233  llvm::Constant *Array =
234  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                Annotations.size()),
236                           Annotations);
237  llvm::GlobalValue *gv =
238  new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                           llvm::GlobalValue::AppendingLinkage, Array,
240                           "llvm.global.annotations");
241  gv->setSection("llvm.metadata");
242}
243
244static CodeGenModule::GVALinkage
245GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                      const LangOptions &Features) {
247  // Everything located semantically within an anonymous namespace is
248  // always internal.
249  if (FD->isInAnonymousNamespace())
250    return CodeGenModule::GVA_Internal;
251
252  // "static" functions get internal linkage.
253  if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
254    return CodeGenModule::GVA_Internal;
255
256  // The kind of external linkage this function will have, if it is not
257  // inline or static.
258  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259  if (Context.getLangOptions().CPlusPlus) {
260    TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
261
262    if (TSK == TSK_ExplicitInstantiationDefinition) {
263      // If a function has been explicitly instantiated, then it should
264      // always have strong external linkage.
265      return CodeGenModule::GVA_StrongExternal;
266    }
267
268    if (TSK == TSK_ImplicitInstantiation)
269      External = CodeGenModule::GVA_TemplateInstantiation;
270  }
271
272  if (!FD->isInlined())
273    return External;
274
275  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
276    // GNU or C99 inline semantics. Determine whether this symbol should be
277    // externally visible.
278    if (FD->isInlineDefinitionExternallyVisible())
279      return External;
280
281    // C99 inline semantics, where the symbol is not externally visible.
282    return CodeGenModule::GVA_C99Inline;
283  }
284
285  // C++0x [temp.explicit]p9:
286  //   [ Note: The intent is that an inline function that is the subject of
287  //   an explicit instantiation declaration will still be implicitly
288  //   instantiated when used so that the body can be considered for
289  //   inlining, but that no out-of-line copy of the inline function would be
290  //   generated in the translation unit. -- end note ]
291  if (FD->getTemplateSpecializationKind()
292                                       == TSK_ExplicitInstantiationDeclaration)
293    return CodeGenModule::GVA_C99Inline;
294
295  return CodeGenModule::GVA_CXXInline;
296}
297
298/// SetFunctionDefinitionAttributes - Set attributes for a global.
299///
300/// FIXME: This is currently only done for aliases and functions, but not for
301/// variables (these details are set in EmitGlobalVarDefinition for variables).
302void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
303                                                    llvm::GlobalValue *GV) {
304  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
305
306  if (Linkage == GVA_Internal) {
307    GV->setLinkage(llvm::Function::InternalLinkage);
308  } else if (D->hasAttr<DLLExportAttr>()) {
309    GV->setLinkage(llvm::Function::DLLExportLinkage);
310  } else if (D->hasAttr<WeakAttr>()) {
311    GV->setLinkage(llvm::Function::WeakAnyLinkage);
312  } else if (Linkage == GVA_C99Inline) {
313    // In C99 mode, 'inline' functions are guaranteed to have a strong
314    // definition somewhere else, so we can use available_externally linkage.
315    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
316  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
317    // In C++, the compiler has to emit a definition in every translation unit
318    // that references the function.  We should use linkonce_odr because
319    // a) if all references in this translation unit are optimized away, we
320    // don't need to codegen it.  b) if the function persists, it needs to be
321    // merged with other definitions. c) C++ has the ODR, so we know the
322    // definition is dependable.
323    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
324  } else {
325    assert(Linkage == GVA_StrongExternal);
326    // Otherwise, we have strong external linkage.
327    GV->setLinkage(llvm::Function::ExternalLinkage);
328  }
329
330  SetCommonAttributes(D, GV);
331}
332
333void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
334                                              const CGFunctionInfo &Info,
335                                              llvm::Function *F) {
336  unsigned CallingConv;
337  AttributeListType AttributeList;
338  ConstructAttributeList(Info, D, AttributeList, CallingConv);
339  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
340                                          AttributeList.size()));
341  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
342}
343
344void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
345                                                           llvm::Function *F) {
346  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
347    F->addFnAttr(llvm::Attribute::NoUnwind);
348
349  if (D->hasAttr<AlwaysInlineAttr>())
350    F->addFnAttr(llvm::Attribute::AlwaysInline);
351
352  if (D->hasAttr<NoInlineAttr>())
353    F->addFnAttr(llvm::Attribute::NoInline);
354
355  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
356    F->addFnAttr(llvm::Attribute::StackProtect);
357  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
358    F->addFnAttr(llvm::Attribute::StackProtectReq);
359
360  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
361    unsigned width = Context.Target.getCharWidth();
362    F->setAlignment(AA->getAlignment() / width);
363    while ((AA = AA->getNext<AlignedAttr>()))
364      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
365  }
366  // C++ ABI requires 2-byte alignment for member functions.
367  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
368    F->setAlignment(2);
369}
370
371void CodeGenModule::SetCommonAttributes(const Decl *D,
372                                        llvm::GlobalValue *GV) {
373  setGlobalVisibility(GV, D);
374
375  if (D->hasAttr<UsedAttr>())
376    AddUsedGlobal(GV);
377
378  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
379    GV->setSection(SA->getName());
380}
381
382void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
383                                                  llvm::Function *F,
384                                                  const CGFunctionInfo &FI) {
385  SetLLVMFunctionAttributes(D, FI, F);
386  SetLLVMFunctionAttributesForDefinition(D, F);
387
388  F->setLinkage(llvm::Function::InternalLinkage);
389
390  SetCommonAttributes(D, F);
391}
392
393void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
394                                          llvm::Function *F,
395                                          bool IsIncompleteFunction) {
396  if (!IsIncompleteFunction)
397    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
398
399  // Only a few attributes are set on declarations; these may later be
400  // overridden by a definition.
401
402  if (FD->hasAttr<DLLImportAttr>()) {
403    F->setLinkage(llvm::Function::DLLImportLinkage);
404  } else if (FD->hasAttr<WeakAttr>() ||
405             FD->hasAttr<WeakImportAttr>()) {
406    // "extern_weak" is overloaded in LLVM; we probably should have
407    // separate linkage types for this.
408    F->setLinkage(llvm::Function::ExternalWeakLinkage);
409  } else {
410    F->setLinkage(llvm::Function::ExternalLinkage);
411  }
412
413  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
414    F->setSection(SA->getName());
415}
416
417void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
418  assert(!GV->isDeclaration() &&
419         "Only globals with definition can force usage.");
420  LLVMUsed.push_back(GV);
421}
422
423void CodeGenModule::EmitLLVMUsed() {
424  // Don't create llvm.used if there is no need.
425  if (LLVMUsed.empty())
426    return;
427
428  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
429
430  // Convert LLVMUsed to what ConstantArray needs.
431  std::vector<llvm::Constant*> UsedArray;
432  UsedArray.resize(LLVMUsed.size());
433  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
434    UsedArray[i] =
435     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
436                                      i8PTy);
437  }
438
439  if (UsedArray.empty())
440    return;
441  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
442
443  llvm::GlobalVariable *GV =
444    new llvm::GlobalVariable(getModule(), ATy, false,
445                             llvm::GlobalValue::AppendingLinkage,
446                             llvm::ConstantArray::get(ATy, UsedArray),
447                             "llvm.used");
448
449  GV->setSection("llvm.metadata");
450}
451
452void CodeGenModule::EmitDeferred() {
453  // Emit code for any potentially referenced deferred decls.  Since a
454  // previously unused static decl may become used during the generation of code
455  // for a static function, iterate until no  changes are made.
456  while (!DeferredDeclsToEmit.empty()) {
457    GlobalDecl D = DeferredDeclsToEmit.back();
458    DeferredDeclsToEmit.pop_back();
459
460    // The mangled name for the decl must have been emitted in GlobalDeclMap.
461    // Look it up to see if it was defined with a stronger definition (e.g. an
462    // extern inline function with a strong function redefinition).  If so,
463    // just ignore the deferred decl.
464    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
465    assert(CGRef && "Deferred decl wasn't referenced?");
466
467    if (!CGRef->isDeclaration())
468      continue;
469
470    // Otherwise, emit the definition and move on to the next one.
471    EmitGlobalDefinition(D);
472  }
473}
474
475/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
476/// annotation information for a given GlobalValue.  The annotation struct is
477/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
478/// GlobalValue being annotated.  The second field is the constant string
479/// created from the AnnotateAttr's annotation.  The third field is a constant
480/// string containing the name of the translation unit.  The fourth field is
481/// the line number in the file of the annotated value declaration.
482///
483/// FIXME: this does not unique the annotation string constants, as llvm-gcc
484///        appears to.
485///
486llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
487                                                const AnnotateAttr *AA,
488                                                unsigned LineNo) {
489  llvm::Module *M = &getModule();
490
491  // get [N x i8] constants for the annotation string, and the filename string
492  // which are the 2nd and 3rd elements of the global annotation structure.
493  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
494  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
495                                                  AA->getAnnotation(), true);
496  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
497                                                  M->getModuleIdentifier(),
498                                                  true);
499
500  // Get the two global values corresponding to the ConstantArrays we just
501  // created to hold the bytes of the strings.
502  llvm::GlobalValue *annoGV =
503    new llvm::GlobalVariable(*M, anno->getType(), false,
504                             llvm::GlobalValue::PrivateLinkage, anno,
505                             GV->getName());
506  // translation unit name string, emitted into the llvm.metadata section.
507  llvm::GlobalValue *unitGV =
508    new llvm::GlobalVariable(*M, unit->getType(), false,
509                             llvm::GlobalValue::PrivateLinkage, unit,
510                             ".str");
511
512  // Create the ConstantStruct for the global annotation.
513  llvm::Constant *Fields[4] = {
514    llvm::ConstantExpr::getBitCast(GV, SBP),
515    llvm::ConstantExpr::getBitCast(annoGV, SBP),
516    llvm::ConstantExpr::getBitCast(unitGV, SBP),
517    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
518  };
519  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
520}
521
522bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
523  // Never defer when EmitAllDecls is specified or the decl has
524  // attribute used.
525  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
526    return false;
527
528  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
529    // Constructors and destructors should never be deferred.
530    if (FD->hasAttr<ConstructorAttr>() ||
531        FD->hasAttr<DestructorAttr>())
532      return false;
533
534    // The key function for a class must never be deferred.
535    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
536      const CXXRecordDecl *RD = MD->getParent();
537      if (MD->isOutOfLine() && RD->isDynamicClass()) {
538        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
539        if (KeyFunction == MD->getCanonicalDecl())
540          return false;
541      }
542    }
543
544    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
545
546    // static, static inline, always_inline, and extern inline functions can
547    // always be deferred.  Normal inline functions can be deferred in C99/C++.
548    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
549        Linkage == GVA_CXXInline)
550      return true;
551    return false;
552  }
553
554  const VarDecl *VD = cast<VarDecl>(Global);
555  assert(VD->isFileVarDecl() && "Invalid decl");
556
557  // We never want to defer structs that have non-trivial constructors or
558  // destructors.
559
560  // FIXME: Handle references.
561  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
562    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
563      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
564        return false;
565    }
566  }
567
568  // Static data may be deferred, but out-of-line static data members
569  // cannot be.
570  if (VD->isInAnonymousNamespace())
571    return true;
572  if (VD->getLinkage() == VarDecl::InternalLinkage) {
573    // Initializer has side effects?
574    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
575      return false;
576    return !(VD->isStaticDataMember() && VD->isOutOfLine());
577  }
578  return false;
579}
580
581void CodeGenModule::EmitGlobal(GlobalDecl GD) {
582  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
583
584  // If this is an alias definition (which otherwise looks like a declaration)
585  // emit it now.
586  if (Global->hasAttr<AliasAttr>())
587    return EmitAliasDefinition(Global);
588
589  // Ignore declarations, they will be emitted on their first use.
590  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
591    // Forward declarations are emitted lazily on first use.
592    if (!FD->isThisDeclarationADefinition())
593      return;
594  } else {
595    const VarDecl *VD = cast<VarDecl>(Global);
596    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
597
598    if (getLangOptions().CPlusPlus && !VD->getInit()) {
599      // In C++, if this is marked "extern", defer code generation.
600      if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
601        return;
602
603      // If this is a declaration of an explicit specialization of a static
604      // data member in a class template, don't emit it.
605      if (VD->isStaticDataMember() &&
606          VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
607        return;
608    }
609
610    // In C, if this isn't a definition, defer code generation.
611    if (!getLangOptions().CPlusPlus && !VD->getInit())
612      return;
613  }
614
615  // Defer code generation when possible if this is a static definition, inline
616  // function etc.  These we only want to emit if they are used.
617  if (MayDeferGeneration(Global)) {
618    // If the value has already been used, add it directly to the
619    // DeferredDeclsToEmit list.
620    const char *MangledName = getMangledName(GD);
621    if (GlobalDeclMap.count(MangledName))
622      DeferredDeclsToEmit.push_back(GD);
623    else {
624      // Otherwise, remember that we saw a deferred decl with this name.  The
625      // first use of the mangled name will cause it to move into
626      // DeferredDeclsToEmit.
627      DeferredDecls[MangledName] = GD;
628    }
629    return;
630  }
631
632  // Otherwise emit the definition.
633  EmitGlobalDefinition(GD);
634}
635
636void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
637  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
638
639  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
640                                 Context.getSourceManager(),
641                                 "Generating code for declaration");
642
643  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
644    getVtableInfo().MaybeEmitVtable(GD);
645    if (MD->isVirtual() && MD->isOutOfLine() &&
646        (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
647      if (isa<CXXDestructorDecl>(D)) {
648        GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
649                           GD.getDtorType());
650        BuildThunksForVirtual(CanonGD);
651      } else {
652        BuildThunksForVirtual(MD->getCanonicalDecl());
653      }
654    }
655  }
656
657  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
658    EmitCXXConstructor(CD, GD.getCtorType());
659  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
660    EmitCXXDestructor(DD, GD.getDtorType());
661  else if (isa<FunctionDecl>(D))
662    EmitGlobalFunctionDefinition(GD);
663  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
664    EmitGlobalVarDefinition(VD);
665  else {
666    assert(0 && "Invalid argument to EmitGlobalDefinition()");
667  }
668}
669
670/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
671/// module, create and return an llvm Function with the specified type. If there
672/// is something in the module with the specified name, return it potentially
673/// bitcasted to the right type.
674///
675/// If D is non-null, it specifies a decl that correspond to this.  This is used
676/// to set the attributes on the function when it is first created.
677llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
678                                                       const llvm::Type *Ty,
679                                                       GlobalDecl D) {
680  // Lookup the entry, lazily creating it if necessary.
681  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
682  if (Entry) {
683    if (Entry->getType()->getElementType() == Ty)
684      return Entry;
685
686    // Make sure the result is of the correct type.
687    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
688    return llvm::ConstantExpr::getBitCast(Entry, PTy);
689  }
690
691  // This function doesn't have a complete type (for example, the return
692  // type is an incomplete struct). Use a fake type instead, and make
693  // sure not to try to set attributes.
694  bool IsIncompleteFunction = false;
695  if (!isa<llvm::FunctionType>(Ty)) {
696    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
697                                 std::vector<const llvm::Type*>(), false);
698    IsIncompleteFunction = true;
699  }
700  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
701                                             llvm::Function::ExternalLinkage,
702                                             "", &getModule());
703  F->setName(MangledName);
704  if (D.getDecl())
705    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
706                          IsIncompleteFunction);
707  Entry = F;
708
709  // This is the first use or definition of a mangled name.  If there is a
710  // deferred decl with this name, remember that we need to emit it at the end
711  // of the file.
712  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713    DeferredDecls.find(MangledName);
714  if (DDI != DeferredDecls.end()) {
715    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716    // list, and remove it from DeferredDecls (since we don't need it anymore).
717    DeferredDeclsToEmit.push_back(DDI->second);
718    DeferredDecls.erase(DDI);
719  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
720    // If this the first reference to a C++ inline function in a class, queue up
721    // the deferred function body for emission.  These are not seen as
722    // top-level declarations.
723    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
724      DeferredDeclsToEmit.push_back(D);
725    // A called constructor which has no definition or declaration need be
726    // synthesized.
727    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
728      if (CD->isImplicit())
729        DeferredDeclsToEmit.push_back(D);
730    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
731      if (DD->isImplicit())
732        DeferredDeclsToEmit.push_back(D);
733    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
734      if (MD->isCopyAssignment() && MD->isImplicit())
735        DeferredDeclsToEmit.push_back(D);
736    }
737  }
738
739  return F;
740}
741
742/// GetAddrOfFunction - Return the address of the given function.  If Ty is
743/// non-null, then this function will use the specified type if it has to
744/// create it (this occurs when we see a definition of the function).
745llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
746                                                 const llvm::Type *Ty) {
747  // If there was no specific requested type, just convert it now.
748  if (!Ty)
749    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
750  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
751}
752
753/// CreateRuntimeFunction - Create a new runtime function with the specified
754/// type and name.
755llvm::Constant *
756CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
757                                     const char *Name) {
758  // Convert Name to be a uniqued string from the IdentifierInfo table.
759  Name = getContext().Idents.get(Name).getNameStart();
760  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
761}
762
763static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
764  if (!D->getType().isConstant(Context))
765    return false;
766  if (Context.getLangOptions().CPlusPlus &&
767      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
768    // FIXME: We should do something fancier here!
769    return false;
770  }
771  return true;
772}
773
774/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
775/// create and return an llvm GlobalVariable with the specified type.  If there
776/// is something in the module with the specified name, return it potentially
777/// bitcasted to the right type.
778///
779/// If D is non-null, it specifies a decl that correspond to this.  This is used
780/// to set the attributes on the global when it is first created.
781llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
782                                                     const llvm::PointerType*Ty,
783                                                     const VarDecl *D) {
784  // Lookup the entry, lazily creating it if necessary.
785  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
786  if (Entry) {
787    if (Entry->getType() == Ty)
788      return Entry;
789
790    // Make sure the result is of the correct type.
791    return llvm::ConstantExpr::getBitCast(Entry, Ty);
792  }
793
794  // This is the first use or definition of a mangled name.  If there is a
795  // deferred decl with this name, remember that we need to emit it at the end
796  // of the file.
797  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
798    DeferredDecls.find(MangledName);
799  if (DDI != DeferredDecls.end()) {
800    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
801    // list, and remove it from DeferredDecls (since we don't need it anymore).
802    DeferredDeclsToEmit.push_back(DDI->second);
803    DeferredDecls.erase(DDI);
804  }
805
806  llvm::GlobalVariable *GV =
807    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
808                             llvm::GlobalValue::ExternalLinkage,
809                             0, "", 0,
810                             false, Ty->getAddressSpace());
811  GV->setName(MangledName);
812
813  // Handle things which are present even on external declarations.
814  if (D) {
815    // FIXME: This code is overly simple and should be merged with other global
816    // handling.
817    GV->setConstant(DeclIsConstantGlobal(Context, D));
818
819    // FIXME: Merge with other attribute handling code.
820    if (D->getStorageClass() == VarDecl::PrivateExtern)
821      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
822
823    if (D->hasAttr<WeakAttr>() ||
824        D->hasAttr<WeakImportAttr>())
825      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
826
827    GV->setThreadLocal(D->isThreadSpecified());
828  }
829
830  return Entry = GV;
831}
832
833
834/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
835/// given global variable.  If Ty is non-null and if the global doesn't exist,
836/// then it will be greated with the specified type instead of whatever the
837/// normal requested type would be.
838llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
839                                                  const llvm::Type *Ty) {
840  assert(D->hasGlobalStorage() && "Not a global variable");
841  QualType ASTTy = D->getType();
842  if (Ty == 0)
843    Ty = getTypes().ConvertTypeForMem(ASTTy);
844
845  const llvm::PointerType *PTy =
846    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
847  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
848}
849
850/// CreateRuntimeVariable - Create a new runtime global variable with the
851/// specified type and name.
852llvm::Constant *
853CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
854                                     const char *Name) {
855  // Convert Name to be a uniqued string from the IdentifierInfo table.
856  Name = getContext().Idents.get(Name).getNameStart();
857  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
858}
859
860void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
861  assert(!D->getInit() && "Cannot emit definite definitions here!");
862
863  if (MayDeferGeneration(D)) {
864    // If we have not seen a reference to this variable yet, place it
865    // into the deferred declarations table to be emitted if needed
866    // later.
867    const char *MangledName = getMangledName(D);
868    if (GlobalDeclMap.count(MangledName) == 0) {
869      DeferredDecls[MangledName] = D;
870      return;
871    }
872  }
873
874  // The tentative definition is the only definition.
875  EmitGlobalVarDefinition(D);
876}
877
878static CodeGenModule::GVALinkage
879GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
880  // Everything located semantically within an anonymous namespace is
881  // always internal.
882  if (VD->isInAnonymousNamespace())
883    return CodeGenModule::GVA_Internal;
884
885  // Handle linkage for static data members.
886  if (VD->isStaticDataMember()) {
887    switch (VD->getTemplateSpecializationKind()) {
888    case TSK_Undeclared:
889    case TSK_ExplicitSpecialization:
890    case TSK_ExplicitInstantiationDefinition:
891      return CodeGenModule::GVA_StrongExternal;
892
893    case TSK_ExplicitInstantiationDeclaration:
894      llvm_unreachable("Variable should not be instantiated");
895      // Fall through to treat this like any other instantiation.
896
897    case TSK_ImplicitInstantiation:
898      return CodeGenModule::GVA_TemplateInstantiation;
899    }
900  }
901
902  if (VD->getLinkage() == VarDecl::InternalLinkage)
903    return CodeGenModule::GVA_Internal;
904
905  return CodeGenModule::GVA_StrongExternal;
906}
907
908void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
909  llvm::Constant *Init = 0;
910  QualType ASTTy = D->getType();
911
912  if (D->getInit() == 0) {
913    // This is a tentative definition; tentative definitions are
914    // implicitly initialized with { 0 }.
915    //
916    // Note that tentative definitions are only emitted at the end of
917    // a translation unit, so they should never have incomplete
918    // type. In addition, EmitTentativeDefinition makes sure that we
919    // never attempt to emit a tentative definition if a real one
920    // exists. A use may still exists, however, so we still may need
921    // to do a RAUW.
922    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
923    Init = EmitNullConstant(D->getType());
924  } else {
925    Init = EmitConstantExpr(D->getInit(), D->getType());
926
927    if (!Init) {
928      QualType T = D->getInit()->getType();
929      if (getLangOptions().CPlusPlus) {
930        CXXGlobalInits.push_back(D);
931        Init = EmitNullConstant(T);
932      } else {
933        ErrorUnsupported(D, "static initializer");
934        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
935      }
936    }
937  }
938
939  const llvm::Type* InitType = Init->getType();
940  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
941
942  // Strip off a bitcast if we got one back.
943  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
944    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
945           // all zero index gep.
946           CE->getOpcode() == llvm::Instruction::GetElementPtr);
947    Entry = CE->getOperand(0);
948  }
949
950  // Entry is now either a Function or GlobalVariable.
951  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
952
953  // We have a definition after a declaration with the wrong type.
954  // We must make a new GlobalVariable* and update everything that used OldGV
955  // (a declaration or tentative definition) with the new GlobalVariable*
956  // (which will be a definition).
957  //
958  // This happens if there is a prototype for a global (e.g.
959  // "extern int x[];") and then a definition of a different type (e.g.
960  // "int x[10];"). This also happens when an initializer has a different type
961  // from the type of the global (this happens with unions).
962  if (GV == 0 ||
963      GV->getType()->getElementType() != InitType ||
964      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
965
966    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
967    GlobalDeclMap.erase(getMangledName(D));
968
969    // Make a new global with the correct type, this is now guaranteed to work.
970    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
971    GV->takeName(cast<llvm::GlobalValue>(Entry));
972
973    // Replace all uses of the old global with the new global
974    llvm::Constant *NewPtrForOldDecl =
975        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
976    Entry->replaceAllUsesWith(NewPtrForOldDecl);
977
978    // Erase the old global, since it is no longer used.
979    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
980  }
981
982  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
983    SourceManager &SM = Context.getSourceManager();
984    AddAnnotation(EmitAnnotateAttr(GV, AA,
985                              SM.getInstantiationLineNumber(D->getLocation())));
986  }
987
988  GV->setInitializer(Init);
989
990  // If it is safe to mark the global 'constant', do so now.
991  GV->setConstant(false);
992  if (DeclIsConstantGlobal(Context, D))
993    GV->setConstant(true);
994
995  GV->setAlignment(getContext().getDeclAlignInBytes(D));
996
997  // Set the llvm linkage type as appropriate.
998  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
999  if (Linkage == GVA_Internal)
1000    GV->setLinkage(llvm::Function::InternalLinkage);
1001  else if (D->hasAttr<DLLImportAttr>())
1002    GV->setLinkage(llvm::Function::DLLImportLinkage);
1003  else if (D->hasAttr<DLLExportAttr>())
1004    GV->setLinkage(llvm::Function::DLLExportLinkage);
1005  else if (D->hasAttr<WeakAttr>()) {
1006    if (GV->isConstant())
1007      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1008    else
1009      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1010  } else if (Linkage == GVA_TemplateInstantiation)
1011    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1012  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1013           !D->hasExternalStorage() && !D->getInit() &&
1014           !D->getAttr<SectionAttr>()) {
1015    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1016    // common vars aren't constant even if declared const.
1017    GV->setConstant(false);
1018  } else
1019    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1020
1021  SetCommonAttributes(D, GV);
1022
1023  // Emit global variable debug information.
1024  if (CGDebugInfo *DI = getDebugInfo()) {
1025    DI->setLocation(D->getLocation());
1026    DI->EmitGlobalVariable(GV, D);
1027  }
1028}
1029
1030/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1031/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1032/// existing call uses of the old function in the module, this adjusts them to
1033/// call the new function directly.
1034///
1035/// This is not just a cleanup: the always_inline pass requires direct calls to
1036/// functions to be able to inline them.  If there is a bitcast in the way, it
1037/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1038/// run at -O0.
1039static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1040                                                      llvm::Function *NewFn) {
1041  // If we're redefining a global as a function, don't transform it.
1042  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1043  if (OldFn == 0) return;
1044
1045  const llvm::Type *NewRetTy = NewFn->getReturnType();
1046  llvm::SmallVector<llvm::Value*, 4> ArgList;
1047
1048  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1049       UI != E; ) {
1050    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1051    unsigned OpNo = UI.getOperandNo();
1052    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1053    if (!CI || OpNo != 0) continue;
1054
1055    // If the return types don't match exactly, and if the call isn't dead, then
1056    // we can't transform this call.
1057    if (CI->getType() != NewRetTy && !CI->use_empty())
1058      continue;
1059
1060    // If the function was passed too few arguments, don't transform.  If extra
1061    // arguments were passed, we silently drop them.  If any of the types
1062    // mismatch, we don't transform.
1063    unsigned ArgNo = 0;
1064    bool DontTransform = false;
1065    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1066         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1067      if (CI->getNumOperands()-1 == ArgNo ||
1068          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1069        DontTransform = true;
1070        break;
1071      }
1072    }
1073    if (DontTransform)
1074      continue;
1075
1076    // Okay, we can transform this.  Create the new call instruction and copy
1077    // over the required information.
1078    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1079    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1080                                                     ArgList.end(), "", CI);
1081    ArgList.clear();
1082    if (!NewCall->getType()->isVoidTy())
1083      NewCall->takeName(CI);
1084    NewCall->setAttributes(CI->getAttributes());
1085    NewCall->setCallingConv(CI->getCallingConv());
1086
1087    // Finally, remove the old call, replacing any uses with the new one.
1088    if (!CI->use_empty())
1089      CI->replaceAllUsesWith(NewCall);
1090
1091    // Copy any custom metadata attached with CI.
1092    llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1093    TheMetadata.copyMD(CI, NewCall);
1094
1095    CI->eraseFromParent();
1096  }
1097}
1098
1099
1100void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1101  const llvm::FunctionType *Ty;
1102  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1103
1104  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1105    bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1106
1107    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1108  } else {
1109    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1110
1111    // As a special case, make sure that definitions of K&R function
1112    // "type foo()" aren't declared as varargs (which forces the backend
1113    // to do unnecessary work).
1114    if (D->getType()->isFunctionNoProtoType()) {
1115      assert(Ty->isVarArg() && "Didn't lower type as expected");
1116      // Due to stret, the lowered function could have arguments.
1117      // Just create the same type as was lowered by ConvertType
1118      // but strip off the varargs bit.
1119      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1120      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1121    }
1122  }
1123
1124  // Get or create the prototype for the function.
1125  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1126
1127  // Strip off a bitcast if we got one back.
1128  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1129    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1130    Entry = CE->getOperand(0);
1131  }
1132
1133
1134  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1135    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1136
1137    // If the types mismatch then we have to rewrite the definition.
1138    assert(OldFn->isDeclaration() &&
1139           "Shouldn't replace non-declaration");
1140
1141    // F is the Function* for the one with the wrong type, we must make a new
1142    // Function* and update everything that used F (a declaration) with the new
1143    // Function* (which will be a definition).
1144    //
1145    // This happens if there is a prototype for a function
1146    // (e.g. "int f()") and then a definition of a different type
1147    // (e.g. "int f(int x)").  Start by making a new function of the
1148    // correct type, RAUW, then steal the name.
1149    GlobalDeclMap.erase(getMangledName(D));
1150    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1151    NewFn->takeName(OldFn);
1152
1153    // If this is an implementation of a function without a prototype, try to
1154    // replace any existing uses of the function (which may be calls) with uses
1155    // of the new function
1156    if (D->getType()->isFunctionNoProtoType()) {
1157      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1158      OldFn->removeDeadConstantUsers();
1159    }
1160
1161    // Replace uses of F with the Function we will endow with a body.
1162    if (!Entry->use_empty()) {
1163      llvm::Constant *NewPtrForOldDecl =
1164        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1165      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1166    }
1167
1168    // Ok, delete the old function now, which is dead.
1169    OldFn->eraseFromParent();
1170
1171    Entry = NewFn;
1172  }
1173
1174  llvm::Function *Fn = cast<llvm::Function>(Entry);
1175
1176  CodeGenFunction(*this).GenerateCode(D, Fn);
1177
1178  SetFunctionDefinitionAttributes(D, Fn);
1179  SetLLVMFunctionAttributesForDefinition(D, Fn);
1180
1181  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1182    AddGlobalCtor(Fn, CA->getPriority());
1183  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1184    AddGlobalDtor(Fn, DA->getPriority());
1185}
1186
1187void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1188  const AliasAttr *AA = D->getAttr<AliasAttr>();
1189  assert(AA && "Not an alias?");
1190
1191  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1192
1193  // Unique the name through the identifier table.
1194  const char *AliaseeName = AA->getAliasee().c_str();
1195  AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1196
1197  // Create a reference to the named value.  This ensures that it is emitted
1198  // if a deferred decl.
1199  llvm::Constant *Aliasee;
1200  if (isa<llvm::FunctionType>(DeclTy))
1201    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1202  else
1203    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1204                                    llvm::PointerType::getUnqual(DeclTy), 0);
1205
1206  // Create the new alias itself, but don't set a name yet.
1207  llvm::GlobalValue *GA =
1208    new llvm::GlobalAlias(Aliasee->getType(),
1209                          llvm::Function::ExternalLinkage,
1210                          "", Aliasee, &getModule());
1211
1212  // See if there is already something with the alias' name in the module.
1213  const char *MangledName = getMangledName(D);
1214  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1215
1216  if (Entry && !Entry->isDeclaration()) {
1217    // If there is a definition in the module, then it wins over the alias.
1218    // This is dubious, but allow it to be safe.  Just ignore the alias.
1219    GA->eraseFromParent();
1220    return;
1221  }
1222
1223  if (Entry) {
1224    // If there is a declaration in the module, then we had an extern followed
1225    // by the alias, as in:
1226    //   extern int test6();
1227    //   ...
1228    //   int test6() __attribute__((alias("test7")));
1229    //
1230    // Remove it and replace uses of it with the alias.
1231
1232    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1233                                                          Entry->getType()));
1234    Entry->eraseFromParent();
1235  }
1236
1237  // Now we know that there is no conflict, set the name.
1238  Entry = GA;
1239  GA->setName(MangledName);
1240
1241  // Set attributes which are particular to an alias; this is a
1242  // specialization of the attributes which may be set on a global
1243  // variable/function.
1244  if (D->hasAttr<DLLExportAttr>()) {
1245    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1246      // The dllexport attribute is ignored for undefined symbols.
1247      if (FD->getBody())
1248        GA->setLinkage(llvm::Function::DLLExportLinkage);
1249    } else {
1250      GA->setLinkage(llvm::Function::DLLExportLinkage);
1251    }
1252  } else if (D->hasAttr<WeakAttr>() ||
1253             D->hasAttr<WeakImportAttr>()) {
1254    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1255  }
1256
1257  SetCommonAttributes(D, GA);
1258}
1259
1260/// getBuiltinLibFunction - Given a builtin id for a function like
1261/// "__builtin_fabsf", return a Function* for "fabsf".
1262llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1263                                                  unsigned BuiltinID) {
1264  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1265          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1266         "isn't a lib fn");
1267
1268  // Get the name, skip over the __builtin_ prefix (if necessary).
1269  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1270  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1271    Name += 10;
1272
1273  const llvm::FunctionType *Ty =
1274    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1275
1276  // Unique the name through the identifier table.
1277  Name = getContext().Idents.get(Name).getNameStart();
1278  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1279}
1280
1281llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1282                                            unsigned NumTys) {
1283  return llvm::Intrinsic::getDeclaration(&getModule(),
1284                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1285}
1286
1287llvm::Function *CodeGenModule::getMemCpyFn() {
1288  if (MemCpyFn) return MemCpyFn;
1289  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1290  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1291}
1292
1293llvm::Function *CodeGenModule::getMemMoveFn() {
1294  if (MemMoveFn) return MemMoveFn;
1295  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1296  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1297}
1298
1299llvm::Function *CodeGenModule::getMemSetFn() {
1300  if (MemSetFn) return MemSetFn;
1301  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1302  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1303}
1304
1305static llvm::StringMapEntry<llvm::Constant*> &
1306GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1307                         const StringLiteral *Literal,
1308                         bool TargetIsLSB,
1309                         bool &IsUTF16,
1310                         unsigned &StringLength) {
1311  unsigned NumBytes = Literal->getByteLength();
1312
1313  // Check for simple case.
1314  if (!Literal->containsNonAsciiOrNull()) {
1315    StringLength = NumBytes;
1316    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1317                                                StringLength));
1318  }
1319
1320  // Otherwise, convert the UTF8 literals into a byte string.
1321  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1322  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1323  UTF16 *ToPtr = &ToBuf[0];
1324
1325  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1326                                               &ToPtr, ToPtr + NumBytes,
1327                                               strictConversion);
1328
1329  // Check for conversion failure.
1330  if (Result != conversionOK) {
1331    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1332    // this duplicate code.
1333    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1334    StringLength = NumBytes;
1335    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1336                                                StringLength));
1337  }
1338
1339  // ConvertUTF8toUTF16 returns the length in ToPtr.
1340  StringLength = ToPtr - &ToBuf[0];
1341
1342  // Render the UTF-16 string into a byte array and convert to the target byte
1343  // order.
1344  //
1345  // FIXME: This isn't something we should need to do here.
1346  llvm::SmallString<128> AsBytes;
1347  AsBytes.reserve(StringLength * 2);
1348  for (unsigned i = 0; i != StringLength; ++i) {
1349    unsigned short Val = ToBuf[i];
1350    if (TargetIsLSB) {
1351      AsBytes.push_back(Val & 0xFF);
1352      AsBytes.push_back(Val >> 8);
1353    } else {
1354      AsBytes.push_back(Val >> 8);
1355      AsBytes.push_back(Val & 0xFF);
1356    }
1357  }
1358  // Append one extra null character, the second is automatically added by our
1359  // caller.
1360  AsBytes.push_back(0);
1361
1362  IsUTF16 = true;
1363  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1364}
1365
1366llvm::Constant *
1367CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1368  unsigned StringLength = 0;
1369  bool isUTF16 = false;
1370  llvm::StringMapEntry<llvm::Constant*> &Entry =
1371    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1372                             getTargetData().isLittleEndian(),
1373                             isUTF16, StringLength);
1374
1375  if (llvm::Constant *C = Entry.getValue())
1376    return C;
1377
1378  llvm::Constant *Zero =
1379      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1380  llvm::Constant *Zeros[] = { Zero, Zero };
1381
1382  // If we don't already have it, get __CFConstantStringClassReference.
1383  if (!CFConstantStringClassRef) {
1384    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1385    Ty = llvm::ArrayType::get(Ty, 0);
1386    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1387                                           "__CFConstantStringClassReference");
1388    // Decay array -> ptr
1389    CFConstantStringClassRef =
1390      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1391  }
1392
1393  QualType CFTy = getContext().getCFConstantStringType();
1394
1395  const llvm::StructType *STy =
1396    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1397
1398  std::vector<llvm::Constant*> Fields(4);
1399
1400  // Class pointer.
1401  Fields[0] = CFConstantStringClassRef;
1402
1403  // Flags.
1404  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1405  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1406    llvm::ConstantInt::get(Ty, 0x07C8);
1407
1408  // String pointer.
1409  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1410
1411  const char *Sect = 0;
1412  llvm::GlobalValue::LinkageTypes Linkage;
1413  bool isConstant;
1414  if (isUTF16) {
1415    Sect = getContext().Target.getUnicodeStringSection();
1416    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1417    Linkage = llvm::GlobalValue::InternalLinkage;
1418    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1419    // does make plain ascii ones writable.
1420    isConstant = true;
1421  } else {
1422    Linkage = llvm::GlobalValue::PrivateLinkage;
1423    isConstant = !Features.WritableStrings;
1424  }
1425
1426  llvm::GlobalVariable *GV =
1427    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1428                             ".str");
1429  if (Sect)
1430    GV->setSection(Sect);
1431  if (isUTF16) {
1432    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1433    GV->setAlignment(Align);
1434  }
1435  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1436
1437  // String length.
1438  Ty = getTypes().ConvertType(getContext().LongTy);
1439  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1440
1441  // The struct.
1442  C = llvm::ConstantStruct::get(STy, Fields);
1443  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1444                                llvm::GlobalVariable::PrivateLinkage, C,
1445                                "_unnamed_cfstring_");
1446  if (const char *Sect = getContext().Target.getCFStringSection())
1447    GV->setSection(Sect);
1448  Entry.setValue(GV);
1449
1450  return GV;
1451}
1452
1453/// GetStringForStringLiteral - Return the appropriate bytes for a
1454/// string literal, properly padded to match the literal type.
1455std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1456  const char *StrData = E->getStrData();
1457  unsigned Len = E->getByteLength();
1458
1459  const ConstantArrayType *CAT =
1460    getContext().getAsConstantArrayType(E->getType());
1461  assert(CAT && "String isn't pointer or array!");
1462
1463  // Resize the string to the right size.
1464  std::string Str(StrData, StrData+Len);
1465  uint64_t RealLen = CAT->getSize().getZExtValue();
1466
1467  if (E->isWide())
1468    RealLen *= getContext().Target.getWCharWidth()/8;
1469
1470  Str.resize(RealLen, '\0');
1471
1472  return Str;
1473}
1474
1475/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1476/// constant array for the given string literal.
1477llvm::Constant *
1478CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1479  // FIXME: This can be more efficient.
1480  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1481  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1482  if (S->isWide()) {
1483    llvm::Type *DestTy =
1484        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1485    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1486  }
1487  return C;
1488}
1489
1490/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1491/// array for the given ObjCEncodeExpr node.
1492llvm::Constant *
1493CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1494  std::string Str;
1495  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1496
1497  return GetAddrOfConstantCString(Str);
1498}
1499
1500
1501/// GenerateWritableString -- Creates storage for a string literal.
1502static llvm::Constant *GenerateStringLiteral(const std::string &str,
1503                                             bool constant,
1504                                             CodeGenModule &CGM,
1505                                             const char *GlobalName) {
1506  // Create Constant for this string literal. Don't add a '\0'.
1507  llvm::Constant *C =
1508      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1509
1510  // Create a global variable for this string
1511  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1512                                  llvm::GlobalValue::PrivateLinkage,
1513                                  C, GlobalName);
1514}
1515
1516/// GetAddrOfConstantString - Returns a pointer to a character array
1517/// containing the literal. This contents are exactly that of the
1518/// given string, i.e. it will not be null terminated automatically;
1519/// see GetAddrOfConstantCString. Note that whether the result is
1520/// actually a pointer to an LLVM constant depends on
1521/// Feature.WriteableStrings.
1522///
1523/// The result has pointer to array type.
1524llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1525                                                       const char *GlobalName) {
1526  bool IsConstant = !Features.WritableStrings;
1527
1528  // Get the default prefix if a name wasn't specified.
1529  if (!GlobalName)
1530    GlobalName = ".str";
1531
1532  // Don't share any string literals if strings aren't constant.
1533  if (!IsConstant)
1534    return GenerateStringLiteral(str, false, *this, GlobalName);
1535
1536  llvm::StringMapEntry<llvm::Constant *> &Entry =
1537    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1538
1539  if (Entry.getValue())
1540    return Entry.getValue();
1541
1542  // Create a global variable for this.
1543  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1544  Entry.setValue(C);
1545  return C;
1546}
1547
1548/// GetAddrOfConstantCString - Returns a pointer to a character
1549/// array containing the literal and a terminating '\-'
1550/// character. The result has pointer to array type.
1551llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1552                                                        const char *GlobalName){
1553  return GetAddrOfConstantString(str + '\0', GlobalName);
1554}
1555
1556/// EmitObjCPropertyImplementations - Emit information for synthesized
1557/// properties for an implementation.
1558void CodeGenModule::EmitObjCPropertyImplementations(const
1559                                                    ObjCImplementationDecl *D) {
1560  for (ObjCImplementationDecl::propimpl_iterator
1561         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1562    ObjCPropertyImplDecl *PID = *i;
1563
1564    // Dynamic is just for type-checking.
1565    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1566      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1567
1568      // Determine which methods need to be implemented, some may have
1569      // been overridden. Note that ::isSynthesized is not the method
1570      // we want, that just indicates if the decl came from a
1571      // property. What we want to know is if the method is defined in
1572      // this implementation.
1573      if (!D->getInstanceMethod(PD->getGetterName()))
1574        CodeGenFunction(*this).GenerateObjCGetter(
1575                                 const_cast<ObjCImplementationDecl *>(D), PID);
1576      if (!PD->isReadOnly() &&
1577          !D->getInstanceMethod(PD->getSetterName()))
1578        CodeGenFunction(*this).GenerateObjCSetter(
1579                                 const_cast<ObjCImplementationDecl *>(D), PID);
1580    }
1581  }
1582}
1583
1584/// EmitNamespace - Emit all declarations in a namespace.
1585void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1586  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1587       I != E; ++I)
1588    EmitTopLevelDecl(*I);
1589}
1590
1591// EmitLinkageSpec - Emit all declarations in a linkage spec.
1592void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1593  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1594      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1595    ErrorUnsupported(LSD, "linkage spec");
1596    return;
1597  }
1598
1599  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1600       I != E; ++I)
1601    EmitTopLevelDecl(*I);
1602}
1603
1604/// EmitTopLevelDecl - Emit code for a single top level declaration.
1605void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1606  // If an error has occurred, stop code generation, but continue
1607  // parsing and semantic analysis (to ensure all warnings and errors
1608  // are emitted).
1609  if (Diags.hasErrorOccurred())
1610    return;
1611
1612  // Ignore dependent declarations.
1613  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1614    return;
1615
1616  switch (D->getKind()) {
1617  case Decl::CXXConversion:
1618  case Decl::CXXMethod:
1619  case Decl::Function:
1620    // Skip function templates
1621    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1622      return;
1623
1624    EmitGlobal(cast<FunctionDecl>(D));
1625    break;
1626
1627  case Decl::Var:
1628    EmitGlobal(cast<VarDecl>(D));
1629    break;
1630
1631  // C++ Decls
1632  case Decl::Namespace:
1633    EmitNamespace(cast<NamespaceDecl>(D));
1634    break;
1635    // No code generation needed.
1636  case Decl::UsingShadow:
1637  case Decl::Using:
1638  case Decl::UsingDirective:
1639  case Decl::ClassTemplate:
1640  case Decl::FunctionTemplate:
1641  case Decl::NamespaceAlias:
1642    break;
1643  case Decl::CXXConstructor:
1644    // Skip function templates
1645    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1646      return;
1647
1648    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1649    break;
1650  case Decl::CXXDestructor:
1651    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1652    break;
1653
1654  case Decl::StaticAssert:
1655    // Nothing to do.
1656    break;
1657
1658  // Objective-C Decls
1659
1660  // Forward declarations, no (immediate) code generation.
1661  case Decl::ObjCClass:
1662  case Decl::ObjCForwardProtocol:
1663  case Decl::ObjCCategory:
1664  case Decl::ObjCInterface:
1665    break;
1666
1667  case Decl::ObjCProtocol:
1668    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1669    break;
1670
1671  case Decl::ObjCCategoryImpl:
1672    // Categories have properties but don't support synthesize so we
1673    // can ignore them here.
1674    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1675    break;
1676
1677  case Decl::ObjCImplementation: {
1678    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1679    EmitObjCPropertyImplementations(OMD);
1680    Runtime->GenerateClass(OMD);
1681    break;
1682  }
1683  case Decl::ObjCMethod: {
1684    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1685    // If this is not a prototype, emit the body.
1686    if (OMD->getBody())
1687      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1688    break;
1689  }
1690  case Decl::ObjCCompatibleAlias:
1691    // compatibility-alias is a directive and has no code gen.
1692    break;
1693
1694  case Decl::LinkageSpec:
1695    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1696    break;
1697
1698  case Decl::FileScopeAsm: {
1699    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1700    llvm::StringRef AsmString = AD->getAsmString()->getString();
1701
1702    const std::string &S = getModule().getModuleInlineAsm();
1703    if (S.empty())
1704      getModule().setModuleInlineAsm(AsmString);
1705    else
1706      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1707    break;
1708  }
1709
1710  default:
1711    // Make sure we handled everything we should, every other kind is a
1712    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1713    // function. Need to recode Decl::Kind to do that easily.
1714    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1715  }
1716}
1717