CodeGenModule.cpp revision 198092
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43    VtableInfo(*this), Runtime(0),
44    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45    VMContext(M.getContext()) {
46
47  if (!Features.ObjC1)
48    Runtime = 0;
49  else if (!Features.NeXTRuntime)
50    Runtime = CreateGNUObjCRuntime(*this);
51  else if (Features.ObjCNonFragileABI)
52    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53  else
54    Runtime = CreateMacObjCRuntime(*this);
55
56  // If debug info generation is enabled, create the CGDebugInfo object.
57  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58}
59
60CodeGenModule::~CodeGenModule() {
61  delete Runtime;
62  delete DebugInfo;
63}
64
65void CodeGenModule::Release() {
66  // We need to call this first because it can add deferred declarations.
67  EmitCXXGlobalInitFunc();
68
69  EmitDeferred();
70  if (Runtime)
71    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72      AddGlobalCtor(ObjCInitFunction);
73  EmitCtorList(GlobalCtors, "llvm.global_ctors");
74  EmitCtorList(GlobalDtors, "llvm.global_dtors");
75  EmitAnnotations();
76  EmitLLVMUsed();
77}
78
79/// ErrorUnsupported - Print out an error that codegen doesn't support the
80/// specified stmt yet.
81void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                     bool OmitOnError) {
83  if (OmitOnError && getDiags().hasErrorOccurred())
84    return;
85  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                               "cannot compile this %0 yet");
87  std::string Msg = Type;
88  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89    << Msg << S->getSourceRange();
90}
91
92/// ErrorUnsupported - Print out an error that codegen doesn't support the
93/// specified decl yet.
94void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                     bool OmitOnError) {
96  if (OmitOnError && getDiags().hasErrorOccurred())
97    return;
98  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                               "cannot compile this %0 yet");
100  std::string Msg = Type;
101  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102}
103
104LangOptions::VisibilityMode
105CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107    if (VD->getStorageClass() == VarDecl::PrivateExtern)
108      return LangOptions::Hidden;
109
110  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111    switch (attr->getVisibility()) {
112    default: assert(0 && "Unknown visibility!");
113    case VisibilityAttr::DefaultVisibility:
114      return LangOptions::Default;
115    case VisibilityAttr::HiddenVisibility:
116      return LangOptions::Hidden;
117    case VisibilityAttr::ProtectedVisibility:
118      return LangOptions::Protected;
119    }
120  }
121
122  return getLangOptions().getVisibilityMode();
123}
124
125void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                        const Decl *D) const {
127  // Internal definitions always have default visibility.
128  if (GV->hasLocalLinkage()) {
129    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130    return;
131  }
132
133  switch (getDeclVisibilityMode(D)) {
134  default: assert(0 && "Unknown visibility!");
135  case LangOptions::Default:
136    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137  case LangOptions::Hidden:
138    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139  case LangOptions::Protected:
140    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141  }
142}
143
144const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146
147  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148    return getMangledCXXCtorName(D, GD.getCtorType());
149  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150    return getMangledCXXDtorName(D, GD.getDtorType());
151
152  return getMangledName(ND);
153}
154
155/// \brief Retrieves the mangled name for the given declaration.
156///
157/// If the given declaration requires a mangled name, returns an
158/// const char* containing the mangled name.  Otherwise, returns
159/// the unmangled name.
160///
161const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162  // In C, functions with no attributes never need to be mangled. Fastpath them.
163  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165    return ND->getNameAsCString();
166  }
167
168  llvm::SmallString<256> Name;
169  llvm::raw_svector_ostream Out(Name);
170  if (!mangleName(getMangleContext(), ND, Out)) {
171    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172    return ND->getNameAsCString();
173  }
174
175  Name += '\0';
176  return UniqueMangledName(Name.begin(), Name.end());
177}
178
179const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                             const char *NameEnd) {
181  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182
183  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184}
185
186/// AddGlobalCtor - Add a function to the list that will be called before
187/// main() runs.
188void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189  // FIXME: Type coercion of void()* types.
190  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191}
192
193/// AddGlobalDtor - Add a function to the list that will be called
194/// when the module is unloaded.
195void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196  // FIXME: Type coercion of void()* types.
197  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198}
199
200void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201  // Ctor function type is void()*.
202  llvm::FunctionType* CtorFTy =
203    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                            std::vector<const llvm::Type*>(),
205                            false);
206  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207
208  // Get the type of a ctor entry, { i32, void ()* }.
209  llvm::StructType* CtorStructTy =
210    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                          llvm::PointerType::getUnqual(CtorFTy), NULL);
212
213  // Construct the constructor and destructor arrays.
214  std::vector<llvm::Constant*> Ctors;
215  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216    std::vector<llvm::Constant*> S;
217    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                I->second, false));
219    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221  }
222
223  if (!Ctors.empty()) {
224    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225    new llvm::GlobalVariable(TheModule, AT, false,
226                             llvm::GlobalValue::AppendingLinkage,
227                             llvm::ConstantArray::get(AT, Ctors),
228                             GlobalName);
229  }
230}
231
232void CodeGenModule::EmitAnnotations() {
233  if (Annotations.empty())
234    return;
235
236  // Create a new global variable for the ConstantStruct in the Module.
237  llvm::Constant *Array =
238  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                Annotations.size()),
240                           Annotations);
241  llvm::GlobalValue *gv =
242  new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                           llvm::GlobalValue::AppendingLinkage, Array,
244                           "llvm.global.annotations");
245  gv->setSection("llvm.metadata");
246}
247
248static CodeGenModule::GVALinkage
249GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                      const LangOptions &Features) {
251  // Everything located semantically within an anonymous namespace is
252  // always internal.
253  if (FD->isInAnonymousNamespace())
254    return CodeGenModule::GVA_Internal;
255
256  // The kind of external linkage this function will have, if it is not
257  // inline or static.
258  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259  if (Context.getLangOptions().CPlusPlus &&
260      FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261    External = CodeGenModule::GVA_TemplateInstantiation;
262
263  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
264    // C++ member functions defined inside the class are always inline.
265    if (MD->isInline() || !MD->isOutOfLine())
266      return CodeGenModule::GVA_CXXInline;
267
268    return External;
269  }
270
271  // "static" functions get internal linkage.
272  if (FD->getStorageClass() == FunctionDecl::Static)
273    return CodeGenModule::GVA_Internal;
274
275  if (!FD->isInline())
276    return External;
277
278  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
279    // GNU or C99 inline semantics. Determine whether this symbol should be
280    // externally visible.
281    if (FD->isInlineDefinitionExternallyVisible())
282      return External;
283
284    // C99 inline semantics, where the symbol is not externally visible.
285    return CodeGenModule::GVA_C99Inline;
286  }
287
288  // C++ inline semantics
289  assert(Features.CPlusPlus && "Must be in C++ mode");
290  return CodeGenModule::GVA_CXXInline;
291}
292
293/// SetFunctionDefinitionAttributes - Set attributes for a global.
294///
295/// FIXME: This is currently only done for aliases and functions, but not for
296/// variables (these details are set in EmitGlobalVarDefinition for variables).
297void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                    llvm::GlobalValue *GV) {
299  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300
301  if (Linkage == GVA_Internal) {
302    GV->setLinkage(llvm::Function::InternalLinkage);
303  } else if (D->hasAttr<DLLExportAttr>()) {
304    GV->setLinkage(llvm::Function::DLLExportLinkage);
305  } else if (D->hasAttr<WeakAttr>()) {
306    GV->setLinkage(llvm::Function::WeakAnyLinkage);
307  } else if (Linkage == GVA_C99Inline) {
308    // In C99 mode, 'inline' functions are guaranteed to have a strong
309    // definition somewhere else, so we can use available_externally linkage.
310    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312    // In C++, the compiler has to emit a definition in every translation unit
313    // that references the function.  We should use linkonce_odr because
314    // a) if all references in this translation unit are optimized away, we
315    // don't need to codegen it.  b) if the function persists, it needs to be
316    // merged with other definitions. c) C++ has the ODR, so we know the
317    // definition is dependable.
318    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319  } else {
320    assert(Linkage == GVA_StrongExternal);
321    // Otherwise, we have strong external linkage.
322    GV->setLinkage(llvm::Function::ExternalLinkage);
323  }
324
325  SetCommonAttributes(D, GV);
326}
327
328void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                              const CGFunctionInfo &Info,
330                                              llvm::Function *F) {
331  unsigned CallingConv;
332  AttributeListType AttributeList;
333  ConstructAttributeList(Info, D, AttributeList, CallingConv);
334  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                          AttributeList.size()));
336  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337}
338
339void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                           llvm::Function *F) {
341  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342    F->addFnAttr(llvm::Attribute::NoUnwind);
343
344  if (D->hasAttr<AlwaysInlineAttr>())
345    F->addFnAttr(llvm::Attribute::AlwaysInline);
346
347  if (D->hasAttr<NoInlineAttr>())
348    F->addFnAttr(llvm::Attribute::NoInline);
349
350  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351    F->setAlignment(AA->getAlignment()/8);
352  // C++ ABI requires 2-byte alignment for member functions.
353  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354    F->setAlignment(2);
355}
356
357void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                        llvm::GlobalValue *GV) {
359  setGlobalVisibility(GV, D);
360
361  if (D->hasAttr<UsedAttr>())
362    AddUsedGlobal(GV);
363
364  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365    GV->setSection(SA->getName());
366}
367
368void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                  llvm::Function *F,
370                                                  const CGFunctionInfo &FI) {
371  SetLLVMFunctionAttributes(D, FI, F);
372  SetLLVMFunctionAttributesForDefinition(D, F);
373
374  F->setLinkage(llvm::Function::InternalLinkage);
375
376  SetCommonAttributes(D, F);
377}
378
379void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                          llvm::Function *F,
381                                          bool IsIncompleteFunction) {
382  if (!IsIncompleteFunction)
383    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384
385  // Only a few attributes are set on declarations; these may later be
386  // overridden by a definition.
387
388  if (FD->hasAttr<DLLImportAttr>()) {
389    F->setLinkage(llvm::Function::DLLImportLinkage);
390  } else if (FD->hasAttr<WeakAttr>() ||
391             FD->hasAttr<WeakImportAttr>()) {
392    // "extern_weak" is overloaded in LLVM; we probably should have
393    // separate linkage types for this.
394    F->setLinkage(llvm::Function::ExternalWeakLinkage);
395  } else {
396    F->setLinkage(llvm::Function::ExternalLinkage);
397  }
398
399  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400    F->setSection(SA->getName());
401}
402
403void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404  assert(!GV->isDeclaration() &&
405         "Only globals with definition can force usage.");
406  LLVMUsed.push_back(GV);
407}
408
409void CodeGenModule::EmitLLVMUsed() {
410  // Don't create llvm.used if there is no need.
411  if (LLVMUsed.empty())
412    return;
413
414  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
415
416  // Convert LLVMUsed to what ConstantArray needs.
417  std::vector<llvm::Constant*> UsedArray;
418  UsedArray.resize(LLVMUsed.size());
419  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420    UsedArray[i] =
421     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                      i8PTy);
423  }
424
425  if (UsedArray.empty())
426    return;
427  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428
429  llvm::GlobalVariable *GV =
430    new llvm::GlobalVariable(getModule(), ATy, false,
431                             llvm::GlobalValue::AppendingLinkage,
432                             llvm::ConstantArray::get(ATy, UsedArray),
433                             "llvm.used");
434
435  GV->setSection("llvm.metadata");
436}
437
438void CodeGenModule::EmitDeferred() {
439  // Emit code for any potentially referenced deferred decls.  Since a
440  // previously unused static decl may become used during the generation of code
441  // for a static function, iterate until no  changes are made.
442  while (!DeferredDeclsToEmit.empty()) {
443    GlobalDecl D = DeferredDeclsToEmit.back();
444    DeferredDeclsToEmit.pop_back();
445
446    // The mangled name for the decl must have been emitted in GlobalDeclMap.
447    // Look it up to see if it was defined with a stronger definition (e.g. an
448    // extern inline function with a strong function redefinition).  If so,
449    // just ignore the deferred decl.
450    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451    assert(CGRef && "Deferred decl wasn't referenced?");
452
453    if (!CGRef->isDeclaration())
454      continue;
455
456    // Otherwise, emit the definition and move on to the next one.
457    EmitGlobalDefinition(D);
458  }
459}
460
461/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462/// annotation information for a given GlobalValue.  The annotation struct is
463/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464/// GlobalValue being annotated.  The second field is the constant string
465/// created from the AnnotateAttr's annotation.  The third field is a constant
466/// string containing the name of the translation unit.  The fourth field is
467/// the line number in the file of the annotated value declaration.
468///
469/// FIXME: this does not unique the annotation string constants, as llvm-gcc
470///        appears to.
471///
472llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                const AnnotateAttr *AA,
474                                                unsigned LineNo) {
475  llvm::Module *M = &getModule();
476
477  // get [N x i8] constants for the annotation string, and the filename string
478  // which are the 2nd and 3rd elements of the global annotation structure.
479  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
480  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
481                                                  AA->getAnnotation(), true);
482  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
483                                                  M->getModuleIdentifier(),
484                                                  true);
485
486  // Get the two global values corresponding to the ConstantArrays we just
487  // created to hold the bytes of the strings.
488  llvm::GlobalValue *annoGV =
489    new llvm::GlobalVariable(*M, anno->getType(), false,
490                             llvm::GlobalValue::PrivateLinkage, anno,
491                             GV->getName());
492  // translation unit name string, emitted into the llvm.metadata section.
493  llvm::GlobalValue *unitGV =
494    new llvm::GlobalVariable(*M, unit->getType(), false,
495                             llvm::GlobalValue::PrivateLinkage, unit,
496                             ".str");
497
498  // Create the ConstantStruct for the global annotation.
499  llvm::Constant *Fields[4] = {
500    llvm::ConstantExpr::getBitCast(GV, SBP),
501    llvm::ConstantExpr::getBitCast(annoGV, SBP),
502    llvm::ConstantExpr::getBitCast(unitGV, SBP),
503    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
504  };
505  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
506}
507
508bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509  // Never defer when EmitAllDecls is specified or the decl has
510  // attribute used.
511  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
512    return false;
513
514  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515    // Constructors and destructors should never be deferred.
516    if (FD->hasAttr<ConstructorAttr>() ||
517        FD->hasAttr<DestructorAttr>())
518      return false;
519
520    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521
522    // static, static inline, always_inline, and extern inline functions can
523    // always be deferred.  Normal inline functions can be deferred in C99/C++.
524    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525        Linkage == GVA_CXXInline)
526      return true;
527    return false;
528  }
529
530  const VarDecl *VD = cast<VarDecl>(Global);
531  assert(VD->isFileVarDecl() && "Invalid decl");
532
533  // We never want to defer structs that have non-trivial constructors or
534  // destructors.
535
536  // FIXME: Handle references.
537  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
538    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
539      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
540        return false;
541    }
542  }
543
544  return VD->getStorageClass() == VarDecl::Static;
545}
546
547void CodeGenModule::EmitGlobal(GlobalDecl GD) {
548  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
549
550  // If this is an alias definition (which otherwise looks like a declaration)
551  // emit it now.
552  if (Global->hasAttr<AliasAttr>())
553    return EmitAliasDefinition(Global);
554
555  // Ignore declarations, they will be emitted on their first use.
556  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
557    // Forward declarations are emitted lazily on first use.
558    if (!FD->isThisDeclarationADefinition())
559      return;
560  } else {
561    const VarDecl *VD = cast<VarDecl>(Global);
562    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
563
564    // In C++, if this is marked "extern", defer code generation.
565    if (getLangOptions().CPlusPlus && !VD->getInit() &&
566        (VD->getStorageClass() == VarDecl::Extern ||
567         VD->isExternC()))
568      return;
569
570    // In C, if this isn't a definition, defer code generation.
571    if (!getLangOptions().CPlusPlus && !VD->getInit())
572      return;
573  }
574
575  // Defer code generation when possible if this is a static definition, inline
576  // function etc.  These we only want to emit if they are used.
577  if (MayDeferGeneration(Global)) {
578    // If the value has already been used, add it directly to the
579    // DeferredDeclsToEmit list.
580    const char *MangledName = getMangledName(GD);
581    if (GlobalDeclMap.count(MangledName))
582      DeferredDeclsToEmit.push_back(GD);
583    else {
584      // Otherwise, remember that we saw a deferred decl with this name.  The
585      // first use of the mangled name will cause it to move into
586      // DeferredDeclsToEmit.
587      DeferredDecls[MangledName] = GD;
588    }
589    return;
590  }
591
592  // Otherwise emit the definition.
593  EmitGlobalDefinition(GD);
594}
595
596void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
597  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
598
599  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
600    EmitCXXConstructor(CD, GD.getCtorType());
601  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
602    EmitCXXDestructor(DD, GD.getDtorType());
603  else if (isa<FunctionDecl>(D))
604    EmitGlobalFunctionDefinition(GD);
605  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
606    EmitGlobalVarDefinition(VD);
607  else {
608    assert(0 && "Invalid argument to EmitGlobalDefinition()");
609  }
610}
611
612/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
613/// module, create and return an llvm Function with the specified type. If there
614/// is something in the module with the specified name, return it potentially
615/// bitcasted to the right type.
616///
617/// If D is non-null, it specifies a decl that correspond to this.  This is used
618/// to set the attributes on the function when it is first created.
619llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
620                                                       const llvm::Type *Ty,
621                                                       GlobalDecl D) {
622  // Lookup the entry, lazily creating it if necessary.
623  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
624  if (Entry) {
625    if (Entry->getType()->getElementType() == Ty)
626      return Entry;
627
628    // Make sure the result is of the correct type.
629    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
630    return llvm::ConstantExpr::getBitCast(Entry, PTy);
631  }
632
633  // This is the first use or definition of a mangled name.  If there is a
634  // deferred decl with this name, remember that we need to emit it at the end
635  // of the file.
636  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
637    DeferredDecls.find(MangledName);
638  if (DDI != DeferredDecls.end()) {
639    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
640    // list, and remove it from DeferredDecls (since we don't need it anymore).
641    DeferredDeclsToEmit.push_back(DDI->second);
642    DeferredDecls.erase(DDI);
643  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
644    // If this the first reference to a C++ inline function in a class, queue up
645    // the deferred function body for emission.  These are not seen as
646    // top-level declarations.
647    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
648      DeferredDeclsToEmit.push_back(D);
649    // A called constructor which has no definition or declaration need be
650    // synthesized.
651    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
652      const CXXRecordDecl *ClassDecl =
653        cast<CXXRecordDecl>(CD->getDeclContext());
654      if (CD->isCopyConstructor(getContext()))
655        DeferredCopyConstructorToEmit(D);
656      else if (!ClassDecl->hasUserDeclaredConstructor())
657        DeferredDeclsToEmit.push_back(D);
658    }
659    else if (isa<CXXDestructorDecl>(FD))
660       DeferredDestructorToEmit(D);
661    else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
662           if (MD->isCopyAssignment())
663             DeferredCopyAssignmentToEmit(D);
664  }
665
666  // This function doesn't have a complete type (for example, the return
667  // type is an incomplete struct). Use a fake type instead, and make
668  // sure not to try to set attributes.
669  bool IsIncompleteFunction = false;
670  if (!isa<llvm::FunctionType>(Ty)) {
671    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
672                                 std::vector<const llvm::Type*>(), false);
673    IsIncompleteFunction = true;
674  }
675  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
676                                             llvm::Function::ExternalLinkage,
677                                             "", &getModule());
678  F->setName(MangledName);
679  if (D.getDecl())
680    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
681                          IsIncompleteFunction);
682  Entry = F;
683  return F;
684}
685
686/// Defer definition of copy constructor(s) which need be implicitly defined.
687void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
688  const CXXConstructorDecl *CD =
689    cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
690  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
691  if (ClassDecl->hasTrivialCopyConstructor() ||
692      ClassDecl->hasUserDeclaredCopyConstructor())
693    return;
694
695  // First make sure all direct base classes and virtual bases and non-static
696  // data mebers which need to have their copy constructors implicitly defined
697  // are defined. 12.8.p7
698  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
699       Base != ClassDecl->bases_end(); ++Base) {
700    CXXRecordDecl *BaseClassDecl
701      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
702    if (CXXConstructorDecl *BaseCopyCtor =
703        BaseClassDecl->getCopyConstructor(Context, 0))
704      GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
705  }
706
707  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
708       FieldEnd = ClassDecl->field_end();
709       Field != FieldEnd; ++Field) {
710    QualType FieldType = Context.getCanonicalType((*Field)->getType());
711    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
712      FieldType = Array->getElementType();
713    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
714      if ((*Field)->isAnonymousStructOrUnion())
715        continue;
716      CXXRecordDecl *FieldClassDecl
717        = cast<CXXRecordDecl>(FieldClassType->getDecl());
718      if (CXXConstructorDecl *FieldCopyCtor =
719          FieldClassDecl->getCopyConstructor(Context, 0))
720        GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
721    }
722  }
723  DeferredDeclsToEmit.push_back(CopyCtorDecl);
724}
725
726/// Defer definition of copy assignments which need be implicitly defined.
727void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
728  const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
729  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
730
731  if (ClassDecl->hasTrivialCopyAssignment() ||
732      ClassDecl->hasUserDeclaredCopyAssignment())
733    return;
734
735  // First make sure all direct base classes and virtual bases and non-static
736  // data mebers which need to have their copy assignments implicitly defined
737  // are defined. 12.8.p12
738  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
739       Base != ClassDecl->bases_end(); ++Base) {
740    CXXRecordDecl *BaseClassDecl
741      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
742    const CXXMethodDecl *MD = 0;
743    if (!BaseClassDecl->hasTrivialCopyAssignment() &&
744        !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
745        BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
746      GetAddrOfFunction(MD, 0);
747  }
748
749  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
750       FieldEnd = ClassDecl->field_end();
751       Field != FieldEnd; ++Field) {
752    QualType FieldType = Context.getCanonicalType((*Field)->getType());
753    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
754      FieldType = Array->getElementType();
755    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
756      if ((*Field)->isAnonymousStructOrUnion())
757        continue;
758      CXXRecordDecl *FieldClassDecl
759        = cast<CXXRecordDecl>(FieldClassType->getDecl());
760      const CXXMethodDecl *MD = 0;
761      if (!FieldClassDecl->hasTrivialCopyAssignment() &&
762          !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
763          FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
764          GetAddrOfFunction(MD, 0);
765    }
766  }
767  DeferredDeclsToEmit.push_back(CopyAssignDecl);
768}
769
770void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
771  const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
772  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
773  if (ClassDecl->hasTrivialDestructor() ||
774      ClassDecl->hasUserDeclaredDestructor())
775    return;
776
777  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
778       Base != ClassDecl->bases_end(); ++Base) {
779    CXXRecordDecl *BaseClassDecl
780      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
781    if (const CXXDestructorDecl *BaseDtor =
782          BaseClassDecl->getDestructor(Context))
783      GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
784  }
785
786  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
787       FieldEnd = ClassDecl->field_end();
788       Field != FieldEnd; ++Field) {
789    QualType FieldType = Context.getCanonicalType((*Field)->getType());
790    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
791      FieldType = Array->getElementType();
792    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
793      if ((*Field)->isAnonymousStructOrUnion())
794        continue;
795      CXXRecordDecl *FieldClassDecl
796        = cast<CXXRecordDecl>(FieldClassType->getDecl());
797      if (const CXXDestructorDecl *FieldDtor =
798            FieldClassDecl->getDestructor(Context))
799        GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
800    }
801  }
802  DeferredDeclsToEmit.push_back(DtorDecl);
803}
804
805
806/// GetAddrOfFunction - Return the address of the given function.  If Ty is
807/// non-null, then this function will use the specified type if it has to
808/// create it (this occurs when we see a definition of the function).
809llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
810                                                 const llvm::Type *Ty) {
811  // If there was no specific requested type, just convert it now.
812  if (!Ty)
813    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
814  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
815}
816
817/// CreateRuntimeFunction - Create a new runtime function with the specified
818/// type and name.
819llvm::Constant *
820CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
821                                     const char *Name) {
822  // Convert Name to be a uniqued string from the IdentifierInfo table.
823  Name = getContext().Idents.get(Name).getName();
824  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
825}
826
827/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
828/// create and return an llvm GlobalVariable with the specified type.  If there
829/// is something in the module with the specified name, return it potentially
830/// bitcasted to the right type.
831///
832/// If D is non-null, it specifies a decl that correspond to this.  This is used
833/// to set the attributes on the global when it is first created.
834llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
835                                                     const llvm::PointerType*Ty,
836                                                     const VarDecl *D) {
837  // Lookup the entry, lazily creating it if necessary.
838  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
839  if (Entry) {
840    if (Entry->getType() == Ty)
841      return Entry;
842
843    // Make sure the result is of the correct type.
844    return llvm::ConstantExpr::getBitCast(Entry, Ty);
845  }
846
847  // This is the first use or definition of a mangled name.  If there is a
848  // deferred decl with this name, remember that we need to emit it at the end
849  // of the file.
850  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
851    DeferredDecls.find(MangledName);
852  if (DDI != DeferredDecls.end()) {
853    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854    // list, and remove it from DeferredDecls (since we don't need it anymore).
855    DeferredDeclsToEmit.push_back(DDI->second);
856    DeferredDecls.erase(DDI);
857  }
858
859  llvm::GlobalVariable *GV =
860    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
861                             llvm::GlobalValue::ExternalLinkage,
862                             0, "", 0,
863                             false, Ty->getAddressSpace());
864  GV->setName(MangledName);
865
866  // Handle things which are present even on external declarations.
867  if (D) {
868    // FIXME: This code is overly simple and should be merged with other global
869    // handling.
870    GV->setConstant(D->getType().isConstant(Context));
871
872    // FIXME: Merge with other attribute handling code.
873    if (D->getStorageClass() == VarDecl::PrivateExtern)
874      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
875
876    if (D->hasAttr<WeakAttr>() ||
877        D->hasAttr<WeakImportAttr>())
878      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
879
880    GV->setThreadLocal(D->isThreadSpecified());
881  }
882
883  return Entry = GV;
884}
885
886
887/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
888/// given global variable.  If Ty is non-null and if the global doesn't exist,
889/// then it will be greated with the specified type instead of whatever the
890/// normal requested type would be.
891llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
892                                                  const llvm::Type *Ty) {
893  assert(D->hasGlobalStorage() && "Not a global variable");
894  QualType ASTTy = D->getType();
895  if (Ty == 0)
896    Ty = getTypes().ConvertTypeForMem(ASTTy);
897
898  const llvm::PointerType *PTy =
899    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
900  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
901}
902
903/// CreateRuntimeVariable - Create a new runtime global variable with the
904/// specified type and name.
905llvm::Constant *
906CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
907                                     const char *Name) {
908  // Convert Name to be a uniqued string from the IdentifierInfo table.
909  Name = getContext().Idents.get(Name).getName();
910  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
911}
912
913void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
914  assert(!D->getInit() && "Cannot emit definite definitions here!");
915
916  if (MayDeferGeneration(D)) {
917    // If we have not seen a reference to this variable yet, place it
918    // into the deferred declarations table to be emitted if needed
919    // later.
920    const char *MangledName = getMangledName(D);
921    if (GlobalDeclMap.count(MangledName) == 0) {
922      DeferredDecls[MangledName] = D;
923      return;
924    }
925  }
926
927  // The tentative definition is the only definition.
928  EmitGlobalVarDefinition(D);
929}
930
931void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
932  llvm::Constant *Init = 0;
933  QualType ASTTy = D->getType();
934
935  if (D->getInit() == 0) {
936    // This is a tentative definition; tentative definitions are
937    // implicitly initialized with { 0 }.
938    //
939    // Note that tentative definitions are only emitted at the end of
940    // a translation unit, so they should never have incomplete
941    // type. In addition, EmitTentativeDefinition makes sure that we
942    // never attempt to emit a tentative definition if a real one
943    // exists. A use may still exists, however, so we still may need
944    // to do a RAUW.
945    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
946    Init = EmitNullConstant(D->getType());
947  } else {
948    Init = EmitConstantExpr(D->getInit(), D->getType());
949
950    if (!Init) {
951      QualType T = D->getInit()->getType();
952      if (getLangOptions().CPlusPlus) {
953        CXXGlobalInits.push_back(D);
954        Init = EmitNullConstant(T);
955      } else {
956        ErrorUnsupported(D, "static initializer");
957        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
958      }
959    }
960  }
961
962  const llvm::Type* InitType = Init->getType();
963  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
964
965  // Strip off a bitcast if we got one back.
966  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
968           // all zero index gep.
969           CE->getOpcode() == llvm::Instruction::GetElementPtr);
970    Entry = CE->getOperand(0);
971  }
972
973  // Entry is now either a Function or GlobalVariable.
974  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
975
976  // We have a definition after a declaration with the wrong type.
977  // We must make a new GlobalVariable* and update everything that used OldGV
978  // (a declaration or tentative definition) with the new GlobalVariable*
979  // (which will be a definition).
980  //
981  // This happens if there is a prototype for a global (e.g.
982  // "extern int x[];") and then a definition of a different type (e.g.
983  // "int x[10];"). This also happens when an initializer has a different type
984  // from the type of the global (this happens with unions).
985  if (GV == 0 ||
986      GV->getType()->getElementType() != InitType ||
987      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
988
989    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
990    GlobalDeclMap.erase(getMangledName(D));
991
992    // Make a new global with the correct type, this is now guaranteed to work.
993    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
994    GV->takeName(cast<llvm::GlobalValue>(Entry));
995
996    // Replace all uses of the old global with the new global
997    llvm::Constant *NewPtrForOldDecl =
998        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
999    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1000
1001    // Erase the old global, since it is no longer used.
1002    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1003  }
1004
1005  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1006    SourceManager &SM = Context.getSourceManager();
1007    AddAnnotation(EmitAnnotateAttr(GV, AA,
1008                              SM.getInstantiationLineNumber(D->getLocation())));
1009  }
1010
1011  GV->setInitializer(Init);
1012
1013  // If it is safe to mark the global 'constant', do so now.
1014  GV->setConstant(false);
1015  if (D->getType().isConstant(Context)) {
1016    // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1017    // members, it cannot be declared "LLVM const".
1018    GV->setConstant(true);
1019  }
1020
1021  GV->setAlignment(getContext().getDeclAlignInBytes(D));
1022
1023  // Set the llvm linkage type as appropriate.
1024  if (D->isInAnonymousNamespace())
1025    GV->setLinkage(llvm::Function::InternalLinkage);
1026  else if (D->getStorageClass() == VarDecl::Static)
1027    GV->setLinkage(llvm::Function::InternalLinkage);
1028  else if (D->hasAttr<DLLImportAttr>())
1029    GV->setLinkage(llvm::Function::DLLImportLinkage);
1030  else if (D->hasAttr<DLLExportAttr>())
1031    GV->setLinkage(llvm::Function::DLLExportLinkage);
1032  else if (D->hasAttr<WeakAttr>()) {
1033    if (GV->isConstant())
1034      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1035    else
1036      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1037  } else if (!CompileOpts.NoCommon &&
1038           !D->hasExternalStorage() && !D->getInit() &&
1039           !D->getAttr<SectionAttr>()) {
1040    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1041    // common vars aren't constant even if declared const.
1042    GV->setConstant(false);
1043  } else
1044    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1045
1046  SetCommonAttributes(D, GV);
1047
1048  // Emit global variable debug information.
1049  if (CGDebugInfo *DI = getDebugInfo()) {
1050    DI->setLocation(D->getLocation());
1051    DI->EmitGlobalVariable(GV, D);
1052  }
1053}
1054
1055/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1056/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1057/// existing call uses of the old function in the module, this adjusts them to
1058/// call the new function directly.
1059///
1060/// This is not just a cleanup: the always_inline pass requires direct calls to
1061/// functions to be able to inline them.  If there is a bitcast in the way, it
1062/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1063/// run at -O0.
1064static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1065                                                      llvm::Function *NewFn) {
1066  // If we're redefining a global as a function, don't transform it.
1067  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1068  if (OldFn == 0) return;
1069
1070  const llvm::Type *NewRetTy = NewFn->getReturnType();
1071  llvm::SmallVector<llvm::Value*, 4> ArgList;
1072
1073  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1074       UI != E; ) {
1075    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1076    unsigned OpNo = UI.getOperandNo();
1077    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1078    if (!CI || OpNo != 0) continue;
1079
1080    // If the return types don't match exactly, and if the call isn't dead, then
1081    // we can't transform this call.
1082    if (CI->getType() != NewRetTy && !CI->use_empty())
1083      continue;
1084
1085    // If the function was passed too few arguments, don't transform.  If extra
1086    // arguments were passed, we silently drop them.  If any of the types
1087    // mismatch, we don't transform.
1088    unsigned ArgNo = 0;
1089    bool DontTransform = false;
1090    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1091         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1092      if (CI->getNumOperands()-1 == ArgNo ||
1093          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1094        DontTransform = true;
1095        break;
1096      }
1097    }
1098    if (DontTransform)
1099      continue;
1100
1101    // Okay, we can transform this.  Create the new call instruction and copy
1102    // over the required information.
1103    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1104    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1105                                                     ArgList.end(), "", CI);
1106    ArgList.clear();
1107    if (!NewCall->getType()->isVoidTy())
1108      NewCall->takeName(CI);
1109    NewCall->setAttributes(CI->getAttributes());
1110    NewCall->setCallingConv(CI->getCallingConv());
1111
1112    // Finally, remove the old call, replacing any uses with the new one.
1113    if (!CI->use_empty())
1114      CI->replaceAllUsesWith(NewCall);
1115
1116    // Copy any custom metadata attached with CI.
1117    llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1118    TheMetadata.copyMD(CI, NewCall);
1119
1120    CI->eraseFromParent();
1121  }
1122}
1123
1124
1125void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1126  const llvm::FunctionType *Ty;
1127  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1128
1129  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1130    bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1131
1132    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1133  } else {
1134    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1135
1136    // As a special case, make sure that definitions of K&R function
1137    // "type foo()" aren't declared as varargs (which forces the backend
1138    // to do unnecessary work).
1139    if (D->getType()->isFunctionNoProtoType()) {
1140      assert(Ty->isVarArg() && "Didn't lower type as expected");
1141      // Due to stret, the lowered function could have arguments.
1142      // Just create the same type as was lowered by ConvertType
1143      // but strip off the varargs bit.
1144      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1145      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1146    }
1147  }
1148
1149  // Get or create the prototype for the function.
1150  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1151
1152  // Strip off a bitcast if we got one back.
1153  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1154    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1155    Entry = CE->getOperand(0);
1156  }
1157
1158
1159  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1160    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1161
1162    // If the types mismatch then we have to rewrite the definition.
1163    assert(OldFn->isDeclaration() &&
1164           "Shouldn't replace non-declaration");
1165
1166    // F is the Function* for the one with the wrong type, we must make a new
1167    // Function* and update everything that used F (a declaration) with the new
1168    // Function* (which will be a definition).
1169    //
1170    // This happens if there is a prototype for a function
1171    // (e.g. "int f()") and then a definition of a different type
1172    // (e.g. "int f(int x)").  Start by making a new function of the
1173    // correct type, RAUW, then steal the name.
1174    GlobalDeclMap.erase(getMangledName(D));
1175    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1176    NewFn->takeName(OldFn);
1177
1178    // If this is an implementation of a function without a prototype, try to
1179    // replace any existing uses of the function (which may be calls) with uses
1180    // of the new function
1181    if (D->getType()->isFunctionNoProtoType()) {
1182      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1183      OldFn->removeDeadConstantUsers();
1184    }
1185
1186    // Replace uses of F with the Function we will endow with a body.
1187    if (!Entry->use_empty()) {
1188      llvm::Constant *NewPtrForOldDecl =
1189        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1190      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1191    }
1192
1193    // Ok, delete the old function now, which is dead.
1194    OldFn->eraseFromParent();
1195
1196    Entry = NewFn;
1197  }
1198
1199  llvm::Function *Fn = cast<llvm::Function>(Entry);
1200
1201  CodeGenFunction(*this).GenerateCode(D, Fn);
1202
1203  SetFunctionDefinitionAttributes(D, Fn);
1204  SetLLVMFunctionAttributesForDefinition(D, Fn);
1205
1206  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1207    AddGlobalCtor(Fn, CA->getPriority());
1208  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1209    AddGlobalDtor(Fn, DA->getPriority());
1210}
1211
1212void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1213  const AliasAttr *AA = D->getAttr<AliasAttr>();
1214  assert(AA && "Not an alias?");
1215
1216  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1217
1218  // Unique the name through the identifier table.
1219  const char *AliaseeName = AA->getAliasee().c_str();
1220  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1221
1222  // Create a reference to the named value.  This ensures that it is emitted
1223  // if a deferred decl.
1224  llvm::Constant *Aliasee;
1225  if (isa<llvm::FunctionType>(DeclTy))
1226    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1227  else
1228    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1229                                    llvm::PointerType::getUnqual(DeclTy), 0);
1230
1231  // Create the new alias itself, but don't set a name yet.
1232  llvm::GlobalValue *GA =
1233    new llvm::GlobalAlias(Aliasee->getType(),
1234                          llvm::Function::ExternalLinkage,
1235                          "", Aliasee, &getModule());
1236
1237  // See if there is already something with the alias' name in the module.
1238  const char *MangledName = getMangledName(D);
1239  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1240
1241  if (Entry && !Entry->isDeclaration()) {
1242    // If there is a definition in the module, then it wins over the alias.
1243    // This is dubious, but allow it to be safe.  Just ignore the alias.
1244    GA->eraseFromParent();
1245    return;
1246  }
1247
1248  if (Entry) {
1249    // If there is a declaration in the module, then we had an extern followed
1250    // by the alias, as in:
1251    //   extern int test6();
1252    //   ...
1253    //   int test6() __attribute__((alias("test7")));
1254    //
1255    // Remove it and replace uses of it with the alias.
1256
1257    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1258                                                          Entry->getType()));
1259    Entry->eraseFromParent();
1260  }
1261
1262  // Now we know that there is no conflict, set the name.
1263  Entry = GA;
1264  GA->setName(MangledName);
1265
1266  // Set attributes which are particular to an alias; this is a
1267  // specialization of the attributes which may be set on a global
1268  // variable/function.
1269  if (D->hasAttr<DLLExportAttr>()) {
1270    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1271      // The dllexport attribute is ignored for undefined symbols.
1272      if (FD->getBody())
1273        GA->setLinkage(llvm::Function::DLLExportLinkage);
1274    } else {
1275      GA->setLinkage(llvm::Function::DLLExportLinkage);
1276    }
1277  } else if (D->hasAttr<WeakAttr>() ||
1278             D->hasAttr<WeakImportAttr>()) {
1279    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1280  }
1281
1282  SetCommonAttributes(D, GA);
1283}
1284
1285/// getBuiltinLibFunction - Given a builtin id for a function like
1286/// "__builtin_fabsf", return a Function* for "fabsf".
1287llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1288                                                  unsigned BuiltinID) {
1289  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1290          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1291         "isn't a lib fn");
1292
1293  // Get the name, skip over the __builtin_ prefix (if necessary).
1294  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1295  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1296    Name += 10;
1297
1298  // Get the type for the builtin.
1299  ASTContext::GetBuiltinTypeError Error;
1300  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1301  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1302
1303  const llvm::FunctionType *Ty =
1304    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1305
1306  // Unique the name through the identifier table.
1307  Name = getContext().Idents.get(Name).getName();
1308  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1309}
1310
1311llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1312                                            unsigned NumTys) {
1313  return llvm::Intrinsic::getDeclaration(&getModule(),
1314                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1315}
1316
1317llvm::Function *CodeGenModule::getMemCpyFn() {
1318  if (MemCpyFn) return MemCpyFn;
1319  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1320  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1321}
1322
1323llvm::Function *CodeGenModule::getMemMoveFn() {
1324  if (MemMoveFn) return MemMoveFn;
1325  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1326  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1327}
1328
1329llvm::Function *CodeGenModule::getMemSetFn() {
1330  if (MemSetFn) return MemSetFn;
1331  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1332  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1333}
1334
1335static llvm::StringMapEntry<llvm::Constant*> &
1336GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1337                         const StringLiteral *Literal,
1338                         bool TargetIsLSB,
1339                         bool &IsUTF16,
1340                         unsigned &StringLength) {
1341  unsigned NumBytes = Literal->getByteLength();
1342
1343  // Check for simple case.
1344  if (!Literal->containsNonAsciiOrNull()) {
1345    StringLength = NumBytes;
1346    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1347                                                StringLength));
1348  }
1349
1350  // Otherwise, convert the UTF8 literals into a byte string.
1351  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1352  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1353  UTF16 *ToPtr = &ToBuf[0];
1354
1355  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1356                                               &ToPtr, ToPtr + NumBytes,
1357                                               strictConversion);
1358
1359  // Check for conversion failure.
1360  if (Result != conversionOK) {
1361    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1362    // this duplicate code.
1363    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1364    StringLength = NumBytes;
1365    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1366                                                StringLength));
1367  }
1368
1369  // ConvertUTF8toUTF16 returns the length in ToPtr.
1370  StringLength = ToPtr - &ToBuf[0];
1371
1372  // Render the UTF-16 string into a byte array and convert to the target byte
1373  // order.
1374  //
1375  // FIXME: This isn't something we should need to do here.
1376  llvm::SmallString<128> AsBytes;
1377  AsBytes.reserve(StringLength * 2);
1378  for (unsigned i = 0; i != StringLength; ++i) {
1379    unsigned short Val = ToBuf[i];
1380    if (TargetIsLSB) {
1381      AsBytes.push_back(Val & 0xFF);
1382      AsBytes.push_back(Val >> 8);
1383    } else {
1384      AsBytes.push_back(Val >> 8);
1385      AsBytes.push_back(Val & 0xFF);
1386    }
1387  }
1388  // Append one extra null character, the second is automatically added by our
1389  // caller.
1390  AsBytes.push_back(0);
1391
1392  IsUTF16 = true;
1393  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1394}
1395
1396llvm::Constant *
1397CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1398  unsigned StringLength = 0;
1399  bool isUTF16 = false;
1400  llvm::StringMapEntry<llvm::Constant*> &Entry =
1401    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1402                             getTargetData().isLittleEndian(),
1403                             isUTF16, StringLength);
1404
1405  if (llvm::Constant *C = Entry.getValue())
1406    return C;
1407
1408  llvm::Constant *Zero =
1409      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1410  llvm::Constant *Zeros[] = { Zero, Zero };
1411
1412  // If we don't already have it, get __CFConstantStringClassReference.
1413  if (!CFConstantStringClassRef) {
1414    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1415    Ty = llvm::ArrayType::get(Ty, 0);
1416    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1417                                           "__CFConstantStringClassReference");
1418    // Decay array -> ptr
1419    CFConstantStringClassRef =
1420      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1421  }
1422
1423  QualType CFTy = getContext().getCFConstantStringType();
1424
1425  const llvm::StructType *STy =
1426    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1427
1428  std::vector<llvm::Constant*> Fields(4);
1429
1430  // Class pointer.
1431  Fields[0] = CFConstantStringClassRef;
1432
1433  // Flags.
1434  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1435  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1436    llvm::ConstantInt::get(Ty, 0x07C8);
1437
1438  // String pointer.
1439  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1440
1441  const char *Sect = 0;
1442  llvm::GlobalValue::LinkageTypes Linkage;
1443  bool isConstant;
1444  if (isUTF16) {
1445    Sect = getContext().Target.getUnicodeStringSection();
1446    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1447    Linkage = llvm::GlobalValue::InternalLinkage;
1448    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1449    // does make plain ascii ones writable.
1450    isConstant = true;
1451  } else {
1452    Linkage = llvm::GlobalValue::PrivateLinkage;
1453    isConstant = !Features.WritableStrings;
1454  }
1455
1456  llvm::GlobalVariable *GV =
1457    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1458                             ".str");
1459  if (Sect)
1460    GV->setSection(Sect);
1461  if (isUTF16) {
1462    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1463    GV->setAlignment(Align);
1464  }
1465  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1466
1467  // String length.
1468  Ty = getTypes().ConvertType(getContext().LongTy);
1469  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1470
1471  // The struct.
1472  C = llvm::ConstantStruct::get(STy, Fields);
1473  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1474                                llvm::GlobalVariable::PrivateLinkage, C,
1475                                "_unnamed_cfstring_");
1476  if (const char *Sect = getContext().Target.getCFStringSection())
1477    GV->setSection(Sect);
1478  Entry.setValue(GV);
1479
1480  return GV;
1481}
1482
1483/// GetStringForStringLiteral - Return the appropriate bytes for a
1484/// string literal, properly padded to match the literal type.
1485std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1486  const char *StrData = E->getStrData();
1487  unsigned Len = E->getByteLength();
1488
1489  const ConstantArrayType *CAT =
1490    getContext().getAsConstantArrayType(E->getType());
1491  assert(CAT && "String isn't pointer or array!");
1492
1493  // Resize the string to the right size.
1494  std::string Str(StrData, StrData+Len);
1495  uint64_t RealLen = CAT->getSize().getZExtValue();
1496
1497  if (E->isWide())
1498    RealLen *= getContext().Target.getWCharWidth()/8;
1499
1500  Str.resize(RealLen, '\0');
1501
1502  return Str;
1503}
1504
1505/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1506/// constant array for the given string literal.
1507llvm::Constant *
1508CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1509  // FIXME: This can be more efficient.
1510  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1511}
1512
1513/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1514/// array for the given ObjCEncodeExpr node.
1515llvm::Constant *
1516CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1517  std::string Str;
1518  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1519
1520  return GetAddrOfConstantCString(Str);
1521}
1522
1523
1524/// GenerateWritableString -- Creates storage for a string literal.
1525static llvm::Constant *GenerateStringLiteral(const std::string &str,
1526                                             bool constant,
1527                                             CodeGenModule &CGM,
1528                                             const char *GlobalName) {
1529  // Create Constant for this string literal. Don't add a '\0'.
1530  llvm::Constant *C =
1531      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1532
1533  // Create a global variable for this string
1534  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1535                                  llvm::GlobalValue::PrivateLinkage,
1536                                  C, GlobalName);
1537}
1538
1539/// GetAddrOfConstantString - Returns a pointer to a character array
1540/// containing the literal. This contents are exactly that of the
1541/// given string, i.e. it will not be null terminated automatically;
1542/// see GetAddrOfConstantCString. Note that whether the result is
1543/// actually a pointer to an LLVM constant depends on
1544/// Feature.WriteableStrings.
1545///
1546/// The result has pointer to array type.
1547llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1548                                                       const char *GlobalName) {
1549  bool IsConstant = !Features.WritableStrings;
1550
1551  // Get the default prefix if a name wasn't specified.
1552  if (!GlobalName)
1553    GlobalName = ".str";
1554
1555  // Don't share any string literals if strings aren't constant.
1556  if (!IsConstant)
1557    return GenerateStringLiteral(str, false, *this, GlobalName);
1558
1559  llvm::StringMapEntry<llvm::Constant *> &Entry =
1560    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1561
1562  if (Entry.getValue())
1563    return Entry.getValue();
1564
1565  // Create a global variable for this.
1566  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1567  Entry.setValue(C);
1568  return C;
1569}
1570
1571/// GetAddrOfConstantCString - Returns a pointer to a character
1572/// array containing the literal and a terminating '\-'
1573/// character. The result has pointer to array type.
1574llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1575                                                        const char *GlobalName){
1576  return GetAddrOfConstantString(str + '\0', GlobalName);
1577}
1578
1579/// EmitObjCPropertyImplementations - Emit information for synthesized
1580/// properties for an implementation.
1581void CodeGenModule::EmitObjCPropertyImplementations(const
1582                                                    ObjCImplementationDecl *D) {
1583  for (ObjCImplementationDecl::propimpl_iterator
1584         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1585    ObjCPropertyImplDecl *PID = *i;
1586
1587    // Dynamic is just for type-checking.
1588    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1589      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1590
1591      // Determine which methods need to be implemented, some may have
1592      // been overridden. Note that ::isSynthesized is not the method
1593      // we want, that just indicates if the decl came from a
1594      // property. What we want to know is if the method is defined in
1595      // this implementation.
1596      if (!D->getInstanceMethod(PD->getGetterName()))
1597        CodeGenFunction(*this).GenerateObjCGetter(
1598                                 const_cast<ObjCImplementationDecl *>(D), PID);
1599      if (!PD->isReadOnly() &&
1600          !D->getInstanceMethod(PD->getSetterName()))
1601        CodeGenFunction(*this).GenerateObjCSetter(
1602                                 const_cast<ObjCImplementationDecl *>(D), PID);
1603    }
1604  }
1605}
1606
1607/// EmitNamespace - Emit all declarations in a namespace.
1608void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1609  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1610       I != E; ++I)
1611    EmitTopLevelDecl(*I);
1612}
1613
1614// EmitLinkageSpec - Emit all declarations in a linkage spec.
1615void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1616  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1617      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1618    ErrorUnsupported(LSD, "linkage spec");
1619    return;
1620  }
1621
1622  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1623       I != E; ++I)
1624    EmitTopLevelDecl(*I);
1625}
1626
1627/// EmitTopLevelDecl - Emit code for a single top level declaration.
1628void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1629  // If an error has occurred, stop code generation, but continue
1630  // parsing and semantic analysis (to ensure all warnings and errors
1631  // are emitted).
1632  if (Diags.hasErrorOccurred())
1633    return;
1634
1635  // Ignore dependent declarations.
1636  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1637    return;
1638
1639  switch (D->getKind()) {
1640  case Decl::CXXConversion:
1641  case Decl::CXXMethod:
1642  case Decl::Function:
1643    // Skip function templates
1644    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1645      return;
1646
1647    EmitGlobal(cast<FunctionDecl>(D));
1648    break;
1649
1650  case Decl::Var:
1651    EmitGlobal(cast<VarDecl>(D));
1652    break;
1653
1654  // C++ Decls
1655  case Decl::Namespace:
1656    EmitNamespace(cast<NamespaceDecl>(D));
1657    break;
1658    // No code generation needed.
1659  case Decl::Using:
1660  case Decl::UsingDirective:
1661  case Decl::ClassTemplate:
1662  case Decl::FunctionTemplate:
1663  case Decl::NamespaceAlias:
1664    break;
1665  case Decl::CXXConstructor:
1666    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1667    break;
1668  case Decl::CXXDestructor:
1669    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1670    break;
1671
1672  case Decl::StaticAssert:
1673    // Nothing to do.
1674    break;
1675
1676  // Objective-C Decls
1677
1678  // Forward declarations, no (immediate) code generation.
1679  case Decl::ObjCClass:
1680  case Decl::ObjCForwardProtocol:
1681  case Decl::ObjCCategory:
1682  case Decl::ObjCInterface:
1683    break;
1684
1685  case Decl::ObjCProtocol:
1686    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1687    break;
1688
1689  case Decl::ObjCCategoryImpl:
1690    // Categories have properties but don't support synthesize so we
1691    // can ignore them here.
1692    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1693    break;
1694
1695  case Decl::ObjCImplementation: {
1696    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1697    EmitObjCPropertyImplementations(OMD);
1698    Runtime->GenerateClass(OMD);
1699    break;
1700  }
1701  case Decl::ObjCMethod: {
1702    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1703    // If this is not a prototype, emit the body.
1704    if (OMD->getBody())
1705      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1706    break;
1707  }
1708  case Decl::ObjCCompatibleAlias:
1709    // compatibility-alias is a directive and has no code gen.
1710    break;
1711
1712  case Decl::LinkageSpec:
1713    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1714    break;
1715
1716  case Decl::FileScopeAsm: {
1717    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1718    std::string AsmString(AD->getAsmString()->getStrData(),
1719                          AD->getAsmString()->getByteLength());
1720
1721    const std::string &S = getModule().getModuleInlineAsm();
1722    if (S.empty())
1723      getModule().setModuleInlineAsm(AsmString);
1724    else
1725      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1726    break;
1727  }
1728
1729  default:
1730    // Make sure we handled everything we should, every other kind is a
1731    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1732    // function. Need to recode Decl::Kind to do that easily.
1733    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1734  }
1735}
1736