CodeGenFunction.h revision 288943
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGLoopInfo.h"
20#include "CGValue.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "EHScopeStack.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/ABI.h"
29#include "clang/Basic/CapturedStmt.h"
30#include "clang/Basic/OpenMPKinds.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Frontend/CodeGenOptions.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/Support/Debug.h"
38
39namespace llvm {
40class BasicBlock;
41class LLVMContext;
42class MDNode;
43class Module;
44class SwitchInst;
45class Twine;
46class Value;
47class CallSite;
48}
49
50namespace clang {
51class ASTContext;
52class BlockDecl;
53class CXXDestructorDecl;
54class CXXForRangeStmt;
55class CXXTryStmt;
56class Decl;
57class LabelDecl;
58class EnumConstantDecl;
59class FunctionDecl;
60class FunctionProtoType;
61class LabelStmt;
62class ObjCContainerDecl;
63class ObjCInterfaceDecl;
64class ObjCIvarDecl;
65class ObjCMethodDecl;
66class ObjCImplementationDecl;
67class ObjCPropertyImplDecl;
68class TargetInfo;
69class TargetCodeGenInfo;
70class VarDecl;
71class ObjCForCollectionStmt;
72class ObjCAtTryStmt;
73class ObjCAtThrowStmt;
74class ObjCAtSynchronizedStmt;
75class ObjCAutoreleasePoolStmt;
76
77namespace CodeGen {
78class CodeGenTypes;
79class CGFunctionInfo;
80class CGRecordLayout;
81class CGBlockInfo;
82class CGCXXABI;
83class BlockFlags;
84class BlockFieldFlags;
85
86/// The kind of evaluation to perform on values of a particular
87/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88/// CGExprAgg?
89///
90/// TODO: should vectors maybe be split out into their own thing?
91enum TypeEvaluationKind {
92  TEK_Scalar,
93  TEK_Complex,
94  TEK_Aggregate
95};
96
97/// CodeGenFunction - This class organizes the per-function state that is used
98/// while generating LLVM code.
99class CodeGenFunction : public CodeGenTypeCache {
100  CodeGenFunction(const CodeGenFunction &) = delete;
101  void operator=(const CodeGenFunction &) = delete;
102
103  friend class CGCXXABI;
104public:
105  /// A jump destination is an abstract label, branching to which may
106  /// require a jump out through normal cleanups.
107  struct JumpDest {
108    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109    JumpDest(llvm::BasicBlock *Block,
110             EHScopeStack::stable_iterator Depth,
111             unsigned Index)
112      : Block(Block), ScopeDepth(Depth), Index(Index) {}
113
114    bool isValid() const { return Block != nullptr; }
115    llvm::BasicBlock *getBlock() const { return Block; }
116    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117    unsigned getDestIndex() const { return Index; }
118
119    // This should be used cautiously.
120    void setScopeDepth(EHScopeStack::stable_iterator depth) {
121      ScopeDepth = depth;
122    }
123
124  private:
125    llvm::BasicBlock *Block;
126    EHScopeStack::stable_iterator ScopeDepth;
127    unsigned Index;
128  };
129
130  CodeGenModule &CGM;  // Per-module state.
131  const TargetInfo &Target;
132
133  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134  LoopInfoStack LoopStack;
135  CGBuilderTy Builder;
136
137  /// \brief CGBuilder insert helper. This function is called after an
138  /// instruction is created using Builder.
139  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                    llvm::BasicBlock *BB,
141                    llvm::BasicBlock::iterator InsertPt) const;
142
143  /// CurFuncDecl - Holds the Decl for the current outermost
144  /// non-closure context.
145  const Decl *CurFuncDecl;
146  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147  const Decl *CurCodeDecl;
148  const CGFunctionInfo *CurFnInfo;
149  QualType FnRetTy;
150  llvm::Function *CurFn;
151
152  /// CurGD - The GlobalDecl for the current function being compiled.
153  GlobalDecl CurGD;
154
155  /// PrologueCleanupDepth - The cleanup depth enclosing all the
156  /// cleanups associated with the parameters.
157  EHScopeStack::stable_iterator PrologueCleanupDepth;
158
159  /// ReturnBlock - Unified return block.
160  JumpDest ReturnBlock;
161
162  /// ReturnValue - The temporary alloca to hold the return value. This is null
163  /// iff the function has no return value.
164  llvm::Value *ReturnValue;
165
166  /// AllocaInsertPoint - This is an instruction in the entry block before which
167  /// we prefer to insert allocas.
168  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169
170  /// \brief API for captured statement code generation.
171  class CGCapturedStmtInfo {
172  public:
173    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175    explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                CapturedRegionKind K = CR_Default)
177      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178
179      RecordDecl::field_iterator Field =
180        S.getCapturedRecordDecl()->field_begin();
181      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                E = S.capture_end();
183           I != E; ++I, ++Field) {
184        if (I->capturesThis())
185          CXXThisFieldDecl = *Field;
186        else if (I->capturesVariable())
187          CaptureFields[I->getCapturedVar()] = *Field;
188      }
189    }
190
191    virtual ~CGCapturedStmtInfo();
192
193    CapturedRegionKind getKind() const { return Kind; }
194
195    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
196    // \brief Retrieve the value of the context parameter.
197    virtual llvm::Value *getContextValue() const { return ThisValue; }
198
199    /// \brief Lookup the captured field decl for a variable.
200    virtual const FieldDecl *lookup(const VarDecl *VD) const {
201      return CaptureFields.lookup(VD);
202    }
203
204    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
205    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206
207    static bool classof(const CGCapturedStmtInfo *) {
208      return true;
209    }
210
211    /// \brief Emit the captured statement body.
212    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
213      CGF.incrementProfileCounter(S);
214      CGF.EmitStmt(S);
215    }
216
217    /// \brief Get the name of the capture helper.
218    virtual StringRef getHelperName() const { return "__captured_stmt"; }
219
220  private:
221    /// \brief The kind of captured statement being generated.
222    CapturedRegionKind Kind;
223
224    /// \brief Keep the map between VarDecl and FieldDecl.
225    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
226
227    /// \brief The base address of the captured record, passed in as the first
228    /// argument of the parallel region function.
229    llvm::Value *ThisValue;
230
231    /// \brief Captured 'this' type.
232    FieldDecl *CXXThisFieldDecl;
233  };
234  CGCapturedStmtInfo *CapturedStmtInfo;
235
236  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
237  class CGCapturedStmtRAII {
238  private:
239    CodeGenFunction &CGF;
240    CGCapturedStmtInfo *PrevCapturedStmtInfo;
241  public:
242    CGCapturedStmtRAII(CodeGenFunction &CGF,
243                       CGCapturedStmtInfo *NewCapturedStmtInfo)
244        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
245      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
246    }
247    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
248  };
249
250  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
251  /// potentially higher performance penalties.
252  unsigned char BoundsChecking;
253
254  /// \brief Sanitizers enabled for this function.
255  SanitizerSet SanOpts;
256
257  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
258  bool IsSanitizerScope;
259
260  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
261  class SanitizerScope {
262    CodeGenFunction *CGF;
263  public:
264    SanitizerScope(CodeGenFunction *CGF);
265    ~SanitizerScope();
266  };
267
268  /// In C++, whether we are code generating a thunk.  This controls whether we
269  /// should emit cleanups.
270  bool CurFuncIsThunk;
271
272  /// In ARC, whether we should autorelease the return value.
273  bool AutoreleaseResult;
274
275  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
276  /// potentially set the return value.
277  bool SawAsmBlock;
278
279  /// True if the current function is an outlined SEH helper. This can be a
280  /// finally block or filter expression.
281  bool IsOutlinedSEHHelper;
282
283  const CodeGen::CGBlockInfo *BlockInfo;
284  llvm::Value *BlockPointer;
285
286  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
287  FieldDecl *LambdaThisCaptureField;
288
289  /// \brief A mapping from NRVO variables to the flags used to indicate
290  /// when the NRVO has been applied to this variable.
291  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
292
293  EHScopeStack EHStack;
294  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
295  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
296
297  /// Header for data within LifetimeExtendedCleanupStack.
298  struct LifetimeExtendedCleanupHeader {
299    /// The size of the following cleanup object.
300    unsigned Size;
301    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
302    CleanupKind Kind;
303
304    size_t getSize() const { return Size; }
305    CleanupKind getKind() const { return Kind; }
306  };
307
308  /// i32s containing the indexes of the cleanup destinations.
309  llvm::AllocaInst *NormalCleanupDest;
310
311  unsigned NextCleanupDestIndex;
312
313  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
314  CGBlockInfo *FirstBlockInfo;
315
316  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
317  llvm::BasicBlock *EHResumeBlock;
318
319  /// The exception slot.  All landing pads write the current exception pointer
320  /// into this alloca.
321  llvm::Value *ExceptionSlot;
322
323  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
324  /// write the current selector value into this alloca.
325  llvm::AllocaInst *EHSelectorSlot;
326
327  /// A stack of exception code slots. Entering an __except block pushes a slot
328  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
329  /// a value from the top of the stack.
330  SmallVector<llvm::Value *, 1> SEHCodeSlotStack;
331
332  /// Value returned by __exception_info intrinsic.
333  llvm::Value *SEHInfo = nullptr;
334
335  /// Emits a landing pad for the current EH stack.
336  llvm::BasicBlock *EmitLandingPad();
337
338  llvm::BasicBlock *getInvokeDestImpl();
339
340  template <class T>
341  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
342    return DominatingValue<T>::save(*this, value);
343  }
344
345public:
346  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
347  /// rethrows.
348  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
349
350  /// A class controlling the emission of a finally block.
351  class FinallyInfo {
352    /// Where the catchall's edge through the cleanup should go.
353    JumpDest RethrowDest;
354
355    /// A function to call to enter the catch.
356    llvm::Constant *BeginCatchFn;
357
358    /// An i1 variable indicating whether or not the @finally is
359    /// running for an exception.
360    llvm::AllocaInst *ForEHVar;
361
362    /// An i8* variable into which the exception pointer to rethrow
363    /// has been saved.
364    llvm::AllocaInst *SavedExnVar;
365
366  public:
367    void enter(CodeGenFunction &CGF, const Stmt *Finally,
368               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
369               llvm::Constant *rethrowFn);
370    void exit(CodeGenFunction &CGF);
371  };
372
373  /// Returns true inside SEH __try blocks.
374  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
375
376  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
377  /// current full-expression.  Safe against the possibility that
378  /// we're currently inside a conditionally-evaluated expression.
379  template <class T, class... As>
380  void pushFullExprCleanup(CleanupKind kind, As... A) {
381    // If we're not in a conditional branch, or if none of the
382    // arguments requires saving, then use the unconditional cleanup.
383    if (!isInConditionalBranch())
384      return EHStack.pushCleanup<T>(kind, A...);
385
386    // Stash values in a tuple so we can guarantee the order of saves.
387    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
388    SavedTuple Saved{saveValueInCond(A)...};
389
390    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
391    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
392    initFullExprCleanup();
393  }
394
395  /// \brief Queue a cleanup to be pushed after finishing the current
396  /// full-expression.
397  template <class T, class... As>
398  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
399    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
400
401    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
402
403    size_t OldSize = LifetimeExtendedCleanupStack.size();
404    LifetimeExtendedCleanupStack.resize(
405        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
406
407    static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
408                  "Cleanup will be allocated on misaligned address");
409    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
410    new (Buffer) LifetimeExtendedCleanupHeader(Header);
411    new (Buffer + sizeof(Header)) T(A...);
412  }
413
414  /// Set up the last cleaup that was pushed as a conditional
415  /// full-expression cleanup.
416  void initFullExprCleanup();
417
418  /// PushDestructorCleanup - Push a cleanup to call the
419  /// complete-object destructor of an object of the given type at the
420  /// given address.  Does nothing if T is not a C++ class type with a
421  /// non-trivial destructor.
422  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
423
424  /// PushDestructorCleanup - Push a cleanup to call the
425  /// complete-object variant of the given destructor on the object at
426  /// the given address.
427  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
428                             llvm::Value *Addr);
429
430  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
431  /// process all branch fixups.
432  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
433
434  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
435  /// The block cannot be reactivated.  Pops it if it's the top of the
436  /// stack.
437  ///
438  /// \param DominatingIP - An instruction which is known to
439  ///   dominate the current IP (if set) and which lies along
440  ///   all paths of execution between the current IP and the
441  ///   the point at which the cleanup comes into scope.
442  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
443                              llvm::Instruction *DominatingIP);
444
445  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
446  /// Cannot be used to resurrect a deactivated cleanup.
447  ///
448  /// \param DominatingIP - An instruction which is known to
449  ///   dominate the current IP (if set) and which lies along
450  ///   all paths of execution between the current IP and the
451  ///   the point at which the cleanup comes into scope.
452  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
453                            llvm::Instruction *DominatingIP);
454
455  /// \brief Enters a new scope for capturing cleanups, all of which
456  /// will be executed once the scope is exited.
457  class RunCleanupsScope {
458    EHScopeStack::stable_iterator CleanupStackDepth;
459    size_t LifetimeExtendedCleanupStackSize;
460    bool OldDidCallStackSave;
461  protected:
462    bool PerformCleanup;
463  private:
464
465    RunCleanupsScope(const RunCleanupsScope &) = delete;
466    void operator=(const RunCleanupsScope &) = delete;
467
468  protected:
469    CodeGenFunction& CGF;
470
471  public:
472    /// \brief Enter a new cleanup scope.
473    explicit RunCleanupsScope(CodeGenFunction &CGF)
474      : PerformCleanup(true), CGF(CGF)
475    {
476      CleanupStackDepth = CGF.EHStack.stable_begin();
477      LifetimeExtendedCleanupStackSize =
478          CGF.LifetimeExtendedCleanupStack.size();
479      OldDidCallStackSave = CGF.DidCallStackSave;
480      CGF.DidCallStackSave = false;
481    }
482
483    /// \brief Exit this cleanup scope, emitting any accumulated
484    /// cleanups.
485    ~RunCleanupsScope() {
486      if (PerformCleanup) {
487        CGF.DidCallStackSave = OldDidCallStackSave;
488        CGF.PopCleanupBlocks(CleanupStackDepth,
489                             LifetimeExtendedCleanupStackSize);
490      }
491    }
492
493    /// \brief Determine whether this scope requires any cleanups.
494    bool requiresCleanups() const {
495      return CGF.EHStack.stable_begin() != CleanupStackDepth;
496    }
497
498    /// \brief Force the emission of cleanups now, instead of waiting
499    /// until this object is destroyed.
500    void ForceCleanup() {
501      assert(PerformCleanup && "Already forced cleanup");
502      CGF.DidCallStackSave = OldDidCallStackSave;
503      CGF.PopCleanupBlocks(CleanupStackDepth,
504                           LifetimeExtendedCleanupStackSize);
505      PerformCleanup = false;
506    }
507  };
508
509  class LexicalScope : public RunCleanupsScope {
510    SourceRange Range;
511    SmallVector<const LabelDecl*, 4> Labels;
512    LexicalScope *ParentScope;
513
514    LexicalScope(const LexicalScope &) = delete;
515    void operator=(const LexicalScope &) = delete;
516
517  public:
518    /// \brief Enter a new cleanup scope.
519    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
520      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
521      CGF.CurLexicalScope = this;
522      if (CGDebugInfo *DI = CGF.getDebugInfo())
523        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
524    }
525
526    void addLabel(const LabelDecl *label) {
527      assert(PerformCleanup && "adding label to dead scope?");
528      Labels.push_back(label);
529    }
530
531    /// \brief Exit this cleanup scope, emitting any accumulated
532    /// cleanups.
533    ~LexicalScope() {
534      if (CGDebugInfo *DI = CGF.getDebugInfo())
535        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
536
537      // If we should perform a cleanup, force them now.  Note that
538      // this ends the cleanup scope before rescoping any labels.
539      if (PerformCleanup) {
540        ApplyDebugLocation DL(CGF, Range.getEnd());
541        ForceCleanup();
542      }
543    }
544
545    /// \brief Force the emission of cleanups now, instead of waiting
546    /// until this object is destroyed.
547    void ForceCleanup() {
548      CGF.CurLexicalScope = ParentScope;
549      RunCleanupsScope::ForceCleanup();
550
551      if (!Labels.empty())
552        rescopeLabels();
553    }
554
555    void rescopeLabels();
556  };
557
558  /// \brief The scope used to remap some variables as private in the OpenMP
559  /// loop body (or other captured region emitted without outlining), and to
560  /// restore old vars back on exit.
561  class OMPPrivateScope : public RunCleanupsScope {
562    typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
563    VarDeclMapTy SavedLocals;
564    VarDeclMapTy SavedPrivates;
565
566  private:
567    OMPPrivateScope(const OMPPrivateScope &) = delete;
568    void operator=(const OMPPrivateScope &) = delete;
569
570  public:
571    /// \brief Enter a new OpenMP private scope.
572    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
573
574    /// \brief Registers \a LocalVD variable as a private and apply \a
575    /// PrivateGen function for it to generate corresponding private variable.
576    /// \a PrivateGen returns an address of the generated private variable.
577    /// \return true if the variable is registered as private, false if it has
578    /// been privatized already.
579    bool
580    addPrivate(const VarDecl *LocalVD,
581               const std::function<llvm::Value *()> &PrivateGen) {
582      assert(PerformCleanup && "adding private to dead scope");
583      if (SavedLocals.count(LocalVD) > 0) return false;
584      SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
585      CGF.LocalDeclMap.erase(LocalVD);
586      SavedPrivates[LocalVD] = PrivateGen();
587      CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
588      return true;
589    }
590
591    /// \brief Privatizes local variables previously registered as private.
592    /// Registration is separate from the actual privatization to allow
593    /// initializers use values of the original variables, not the private one.
594    /// This is important, for example, if the private variable is a class
595    /// variable initialized by a constructor that references other private
596    /// variables. But at initialization original variables must be used, not
597    /// private copies.
598    /// \return true if at least one variable was privatized, false otherwise.
599    bool Privatize() {
600      for (auto VDPair : SavedPrivates) {
601        CGF.LocalDeclMap[VDPair.first] = VDPair.second;
602      }
603      SavedPrivates.clear();
604      return !SavedLocals.empty();
605    }
606
607    void ForceCleanup() {
608      RunCleanupsScope::ForceCleanup();
609      // Remap vars back to the original values.
610      for (auto I : SavedLocals) {
611        CGF.LocalDeclMap[I.first] = I.second;
612      }
613      SavedLocals.clear();
614    }
615
616    /// \brief Exit scope - all the mapped variables are restored.
617    ~OMPPrivateScope() {
618      if (PerformCleanup)
619        ForceCleanup();
620    }
621  };
622
623  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
624  /// that have been added.
625  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
626
627  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
628  /// that have been added, then adds all lifetime-extended cleanups from
629  /// the given position to the stack.
630  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
631                        size_t OldLifetimeExtendedStackSize);
632
633  void ResolveBranchFixups(llvm::BasicBlock *Target);
634
635  /// The given basic block lies in the current EH scope, but may be a
636  /// target of a potentially scope-crossing jump; get a stable handle
637  /// to which we can perform this jump later.
638  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
639    return JumpDest(Target,
640                    EHStack.getInnermostNormalCleanup(),
641                    NextCleanupDestIndex++);
642  }
643
644  /// The given basic block lies in the current EH scope, but may be a
645  /// target of a potentially scope-crossing jump; get a stable handle
646  /// to which we can perform this jump later.
647  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
648    return getJumpDestInCurrentScope(createBasicBlock(Name));
649  }
650
651  /// EmitBranchThroughCleanup - Emit a branch from the current insert
652  /// block through the normal cleanup handling code (if any) and then
653  /// on to \arg Dest.
654  void EmitBranchThroughCleanup(JumpDest Dest);
655
656  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
657  /// specified destination obviously has no cleanups to run.  'false' is always
658  /// a conservatively correct answer for this method.
659  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
660
661  /// popCatchScope - Pops the catch scope at the top of the EHScope
662  /// stack, emitting any required code (other than the catch handlers
663  /// themselves).
664  void popCatchScope();
665
666  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
667  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
668
669  /// An object to manage conditionally-evaluated expressions.
670  class ConditionalEvaluation {
671    llvm::BasicBlock *StartBB;
672
673  public:
674    ConditionalEvaluation(CodeGenFunction &CGF)
675      : StartBB(CGF.Builder.GetInsertBlock()) {}
676
677    void begin(CodeGenFunction &CGF) {
678      assert(CGF.OutermostConditional != this);
679      if (!CGF.OutermostConditional)
680        CGF.OutermostConditional = this;
681    }
682
683    void end(CodeGenFunction &CGF) {
684      assert(CGF.OutermostConditional != nullptr);
685      if (CGF.OutermostConditional == this)
686        CGF.OutermostConditional = nullptr;
687    }
688
689    /// Returns a block which will be executed prior to each
690    /// evaluation of the conditional code.
691    llvm::BasicBlock *getStartingBlock() const {
692      return StartBB;
693    }
694  };
695
696  /// isInConditionalBranch - Return true if we're currently emitting
697  /// one branch or the other of a conditional expression.
698  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
699
700  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
701    assert(isInConditionalBranch());
702    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
703    new llvm::StoreInst(value, addr, &block->back());
704  }
705
706  /// An RAII object to record that we're evaluating a statement
707  /// expression.
708  class StmtExprEvaluation {
709    CodeGenFunction &CGF;
710
711    /// We have to save the outermost conditional: cleanups in a
712    /// statement expression aren't conditional just because the
713    /// StmtExpr is.
714    ConditionalEvaluation *SavedOutermostConditional;
715
716  public:
717    StmtExprEvaluation(CodeGenFunction &CGF)
718      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
719      CGF.OutermostConditional = nullptr;
720    }
721
722    ~StmtExprEvaluation() {
723      CGF.OutermostConditional = SavedOutermostConditional;
724      CGF.EnsureInsertPoint();
725    }
726  };
727
728  /// An object which temporarily prevents a value from being
729  /// destroyed by aggressive peephole optimizations that assume that
730  /// all uses of a value have been realized in the IR.
731  class PeepholeProtection {
732    llvm::Instruction *Inst;
733    friend class CodeGenFunction;
734
735  public:
736    PeepholeProtection() : Inst(nullptr) {}
737  };
738
739  /// A non-RAII class containing all the information about a bound
740  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
741  /// this which makes individual mappings very simple; using this
742  /// class directly is useful when you have a variable number of
743  /// opaque values or don't want the RAII functionality for some
744  /// reason.
745  class OpaqueValueMappingData {
746    const OpaqueValueExpr *OpaqueValue;
747    bool BoundLValue;
748    CodeGenFunction::PeepholeProtection Protection;
749
750    OpaqueValueMappingData(const OpaqueValueExpr *ov,
751                           bool boundLValue)
752      : OpaqueValue(ov), BoundLValue(boundLValue) {}
753  public:
754    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
755
756    static bool shouldBindAsLValue(const Expr *expr) {
757      // gl-values should be bound as l-values for obvious reasons.
758      // Records should be bound as l-values because IR generation
759      // always keeps them in memory.  Expressions of function type
760      // act exactly like l-values but are formally required to be
761      // r-values in C.
762      return expr->isGLValue() ||
763             expr->getType()->isFunctionType() ||
764             hasAggregateEvaluationKind(expr->getType());
765    }
766
767    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
768                                       const OpaqueValueExpr *ov,
769                                       const Expr *e) {
770      if (shouldBindAsLValue(ov))
771        return bind(CGF, ov, CGF.EmitLValue(e));
772      return bind(CGF, ov, CGF.EmitAnyExpr(e));
773    }
774
775    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
776                                       const OpaqueValueExpr *ov,
777                                       const LValue &lv) {
778      assert(shouldBindAsLValue(ov));
779      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
780      return OpaqueValueMappingData(ov, true);
781    }
782
783    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
784                                       const OpaqueValueExpr *ov,
785                                       const RValue &rv) {
786      assert(!shouldBindAsLValue(ov));
787      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
788
789      OpaqueValueMappingData data(ov, false);
790
791      // Work around an extremely aggressive peephole optimization in
792      // EmitScalarConversion which assumes that all other uses of a
793      // value are extant.
794      data.Protection = CGF.protectFromPeepholes(rv);
795
796      return data;
797    }
798
799    bool isValid() const { return OpaqueValue != nullptr; }
800    void clear() { OpaqueValue = nullptr; }
801
802    void unbind(CodeGenFunction &CGF) {
803      assert(OpaqueValue && "no data to unbind!");
804
805      if (BoundLValue) {
806        CGF.OpaqueLValues.erase(OpaqueValue);
807      } else {
808        CGF.OpaqueRValues.erase(OpaqueValue);
809        CGF.unprotectFromPeepholes(Protection);
810      }
811    }
812  };
813
814  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
815  class OpaqueValueMapping {
816    CodeGenFunction &CGF;
817    OpaqueValueMappingData Data;
818
819  public:
820    static bool shouldBindAsLValue(const Expr *expr) {
821      return OpaqueValueMappingData::shouldBindAsLValue(expr);
822    }
823
824    /// Build the opaque value mapping for the given conditional
825    /// operator if it's the GNU ?: extension.  This is a common
826    /// enough pattern that the convenience operator is really
827    /// helpful.
828    ///
829    OpaqueValueMapping(CodeGenFunction &CGF,
830                       const AbstractConditionalOperator *op) : CGF(CGF) {
831      if (isa<ConditionalOperator>(op))
832        // Leave Data empty.
833        return;
834
835      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
836      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
837                                          e->getCommon());
838    }
839
840    OpaqueValueMapping(CodeGenFunction &CGF,
841                       const OpaqueValueExpr *opaqueValue,
842                       LValue lvalue)
843      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
844    }
845
846    OpaqueValueMapping(CodeGenFunction &CGF,
847                       const OpaqueValueExpr *opaqueValue,
848                       RValue rvalue)
849      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
850    }
851
852    void pop() {
853      Data.unbind(CGF);
854      Data.clear();
855    }
856
857    ~OpaqueValueMapping() {
858      if (Data.isValid()) Data.unbind(CGF);
859    }
860  };
861
862  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
863  /// number that holds the value.
864  std::pair<llvm::Type *, unsigned>
865  getByRefValueLLVMField(const ValueDecl *VD) const;
866
867  /// BuildBlockByrefAddress - Computes address location of the
868  /// variable which is declared as __block.
869  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
870                                      const VarDecl *V);
871private:
872  CGDebugInfo *DebugInfo;
873  bool DisableDebugInfo;
874
875  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
876  /// calling llvm.stacksave for multiple VLAs in the same scope.
877  bool DidCallStackSave;
878
879  /// IndirectBranch - The first time an indirect goto is seen we create a block
880  /// with an indirect branch.  Every time we see the address of a label taken,
881  /// we add the label to the indirect goto.  Every subsequent indirect goto is
882  /// codegen'd as a jump to the IndirectBranch's basic block.
883  llvm::IndirectBrInst *IndirectBranch;
884
885  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
886  /// decls.
887  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
888  DeclMapTy LocalDeclMap;
889
890  /// Track escaped local variables with auto storage. Used during SEH
891  /// outlining to produce a call to llvm.localescape.
892  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
893
894  /// LabelMap - This keeps track of the LLVM basic block for each C label.
895  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
896
897  // BreakContinueStack - This keeps track of where break and continue
898  // statements should jump to.
899  struct BreakContinue {
900    BreakContinue(JumpDest Break, JumpDest Continue)
901      : BreakBlock(Break), ContinueBlock(Continue) {}
902
903    JumpDest BreakBlock;
904    JumpDest ContinueBlock;
905  };
906  SmallVector<BreakContinue, 8> BreakContinueStack;
907
908  CodeGenPGO PGO;
909
910  /// Calculate branch weights appropriate for PGO data
911  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
912  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
913  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
914                                            uint64_t LoopCount);
915
916public:
917  /// Increment the profiler's counter for the given statement.
918  void incrementProfileCounter(const Stmt *S) {
919    if (CGM.getCodeGenOpts().ProfileInstrGenerate)
920      PGO.emitCounterIncrement(Builder, S);
921    PGO.setCurrentStmt(S);
922  }
923
924  /// Get the profiler's count for the given statement.
925  uint64_t getProfileCount(const Stmt *S) {
926    Optional<uint64_t> Count = PGO.getStmtCount(S);
927    if (!Count.hasValue())
928      return 0;
929    return *Count;
930  }
931
932  /// Set the profiler's current count.
933  void setCurrentProfileCount(uint64_t Count) {
934    PGO.setCurrentRegionCount(Count);
935  }
936
937  /// Get the profiler's current count. This is generally the count for the most
938  /// recently incremented counter.
939  uint64_t getCurrentProfileCount() {
940    return PGO.getCurrentRegionCount();
941  }
942
943private:
944
945  /// SwitchInsn - This is nearest current switch instruction. It is null if
946  /// current context is not in a switch.
947  llvm::SwitchInst *SwitchInsn;
948  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
949  SmallVector<uint64_t, 16> *SwitchWeights;
950
951  /// CaseRangeBlock - This block holds if condition check for last case
952  /// statement range in current switch instruction.
953  llvm::BasicBlock *CaseRangeBlock;
954
955  /// OpaqueLValues - Keeps track of the current set of opaque value
956  /// expressions.
957  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
958  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
959
960  // VLASizeMap - This keeps track of the associated size for each VLA type.
961  // We track this by the size expression rather than the type itself because
962  // in certain situations, like a const qualifier applied to an VLA typedef,
963  // multiple VLA types can share the same size expression.
964  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
965  // enter/leave scopes.
966  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
967
968  /// A block containing a single 'unreachable' instruction.  Created
969  /// lazily by getUnreachableBlock().
970  llvm::BasicBlock *UnreachableBlock;
971
972  /// Counts of the number return expressions in the function.
973  unsigned NumReturnExprs;
974
975  /// Count the number of simple (constant) return expressions in the function.
976  unsigned NumSimpleReturnExprs;
977
978  /// The last regular (non-return) debug location (breakpoint) in the function.
979  SourceLocation LastStopPoint;
980
981public:
982  /// A scope within which we are constructing the fields of an object which
983  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
984  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
985  class FieldConstructionScope {
986  public:
987    FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
988        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
989      CGF.CXXDefaultInitExprThis = This;
990    }
991    ~FieldConstructionScope() {
992      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
993    }
994
995  private:
996    CodeGenFunction &CGF;
997    llvm::Value *OldCXXDefaultInitExprThis;
998  };
999
1000  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1001  /// is overridden to be the object under construction.
1002  class CXXDefaultInitExprScope {
1003  public:
1004    CXXDefaultInitExprScope(CodeGenFunction &CGF)
1005        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
1006      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
1007    }
1008    ~CXXDefaultInitExprScope() {
1009      CGF.CXXThisValue = OldCXXThisValue;
1010    }
1011
1012  public:
1013    CodeGenFunction &CGF;
1014    llvm::Value *OldCXXThisValue;
1015  };
1016
1017private:
1018  /// CXXThisDecl - When generating code for a C++ member function,
1019  /// this will hold the implicit 'this' declaration.
1020  ImplicitParamDecl *CXXABIThisDecl;
1021  llvm::Value *CXXABIThisValue;
1022  llvm::Value *CXXThisValue;
1023
1024  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1025  /// this expression.
1026  llvm::Value *CXXDefaultInitExprThis;
1027
1028  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1029  /// destructor, this will hold the implicit argument (e.g. VTT).
1030  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1031  llvm::Value *CXXStructorImplicitParamValue;
1032
1033  /// OutermostConditional - Points to the outermost active
1034  /// conditional control.  This is used so that we know if a
1035  /// temporary should be destroyed conditionally.
1036  ConditionalEvaluation *OutermostConditional;
1037
1038  /// The current lexical scope.
1039  LexicalScope *CurLexicalScope;
1040
1041  /// The current source location that should be used for exception
1042  /// handling code.
1043  SourceLocation CurEHLocation;
1044
1045  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1046  /// type as well as the field number that contains the actual data.
1047  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1048                                              unsigned> > ByRefValueInfo;
1049
1050  llvm::BasicBlock *TerminateLandingPad;
1051  llvm::BasicBlock *TerminateHandler;
1052  llvm::BasicBlock *TrapBB;
1053
1054  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1055  /// In the kernel metadata node, reference the kernel function and metadata
1056  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1057  /// - A node for the vec_type_hint(<type>) qualifier contains string
1058  ///   "vec_type_hint", an undefined value of the <type> data type,
1059  ///   and a Boolean that is true if the <type> is integer and signed.
1060  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1061  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1062  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1063  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1064  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1065                                llvm::Function *Fn);
1066
1067public:
1068  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1069  ~CodeGenFunction();
1070
1071  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1072  ASTContext &getContext() const { return CGM.getContext(); }
1073  CGDebugInfo *getDebugInfo() {
1074    if (DisableDebugInfo)
1075      return nullptr;
1076    return DebugInfo;
1077  }
1078  void disableDebugInfo() { DisableDebugInfo = true; }
1079  void enableDebugInfo() { DisableDebugInfo = false; }
1080
1081  bool shouldUseFusedARCCalls() {
1082    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1083  }
1084
1085  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1086
1087  /// Returns a pointer to the function's exception object and selector slot,
1088  /// which is assigned in every landing pad.
1089  llvm::Value *getExceptionSlot();
1090  llvm::Value *getEHSelectorSlot();
1091
1092  /// Returns the contents of the function's exception object and selector
1093  /// slots.
1094  llvm::Value *getExceptionFromSlot();
1095  llvm::Value *getSelectorFromSlot();
1096
1097  llvm::Value *getNormalCleanupDestSlot();
1098
1099  llvm::BasicBlock *getUnreachableBlock() {
1100    if (!UnreachableBlock) {
1101      UnreachableBlock = createBasicBlock("unreachable");
1102      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1103    }
1104    return UnreachableBlock;
1105  }
1106
1107  llvm::BasicBlock *getInvokeDest() {
1108    if (!EHStack.requiresLandingPad()) return nullptr;
1109    return getInvokeDestImpl();
1110  }
1111
1112  bool currentFunctionUsesSEHTry() const {
1113    const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1114    return FD && FD->usesSEHTry();
1115  }
1116
1117  const TargetInfo &getTarget() const { return Target; }
1118  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1119
1120  //===--------------------------------------------------------------------===//
1121  //                                  Cleanups
1122  //===--------------------------------------------------------------------===//
1123
1124  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1125
1126  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1127                                        llvm::Value *arrayEndPointer,
1128                                        QualType elementType,
1129                                        Destroyer *destroyer);
1130  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1131                                      llvm::Value *arrayEnd,
1132                                      QualType elementType,
1133                                      Destroyer *destroyer);
1134
1135  void pushDestroy(QualType::DestructionKind dtorKind,
1136                   llvm::Value *addr, QualType type);
1137  void pushEHDestroy(QualType::DestructionKind dtorKind,
1138                     llvm::Value *addr, QualType type);
1139  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1140                   Destroyer *destroyer, bool useEHCleanupForArray);
1141  void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1142                                   QualType type, Destroyer *destroyer,
1143                                   bool useEHCleanupForArray);
1144  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1145                                   llvm::Value *CompletePtr,
1146                                   QualType ElementType);
1147  void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1148  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1149                   bool useEHCleanupForArray);
1150  llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1151                                        Destroyer *destroyer,
1152                                        bool useEHCleanupForArray,
1153                                        const VarDecl *VD);
1154  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1155                        QualType type, Destroyer *destroyer,
1156                        bool checkZeroLength, bool useEHCleanup);
1157
1158  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1159
1160  /// Determines whether an EH cleanup is required to destroy a type
1161  /// with the given destruction kind.
1162  bool needsEHCleanup(QualType::DestructionKind kind) {
1163    switch (kind) {
1164    case QualType::DK_none:
1165      return false;
1166    case QualType::DK_cxx_destructor:
1167    case QualType::DK_objc_weak_lifetime:
1168      return getLangOpts().Exceptions;
1169    case QualType::DK_objc_strong_lifetime:
1170      return getLangOpts().Exceptions &&
1171             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1172    }
1173    llvm_unreachable("bad destruction kind");
1174  }
1175
1176  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1177    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1178  }
1179
1180  //===--------------------------------------------------------------------===//
1181  //                                  Objective-C
1182  //===--------------------------------------------------------------------===//
1183
1184  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1185
1186  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1187
1188  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1189  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1190                          const ObjCPropertyImplDecl *PID);
1191  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1192                              const ObjCPropertyImplDecl *propImpl,
1193                              const ObjCMethodDecl *GetterMothodDecl,
1194                              llvm::Constant *AtomicHelperFn);
1195
1196  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1197                                  ObjCMethodDecl *MD, bool ctor);
1198
1199  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1200  /// for the given property.
1201  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1202                          const ObjCPropertyImplDecl *PID);
1203  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1204                              const ObjCPropertyImplDecl *propImpl,
1205                              llvm::Constant *AtomicHelperFn);
1206  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1207  bool IvarTypeWithAggrGCObjects(QualType Ty);
1208
1209  //===--------------------------------------------------------------------===//
1210  //                                  Block Bits
1211  //===--------------------------------------------------------------------===//
1212
1213  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1214  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1215  static void destroyBlockInfos(CGBlockInfo *info);
1216  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1217                                           const CGBlockInfo &Info,
1218                                           llvm::StructType *,
1219                                           llvm::Constant *BlockVarLayout);
1220
1221  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1222                                        const CGBlockInfo &Info,
1223                                        const DeclMapTy &ldm,
1224                                        bool IsLambdaConversionToBlock);
1225
1226  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1227  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1228  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1229                                             const ObjCPropertyImplDecl *PID);
1230  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1231                                             const ObjCPropertyImplDecl *PID);
1232  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1233
1234  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1235
1236  class AutoVarEmission;
1237
1238  void emitByrefStructureInit(const AutoVarEmission &emission);
1239  void enterByrefCleanup(const AutoVarEmission &emission);
1240
1241  llvm::Value *LoadBlockStruct() {
1242    assert(BlockPointer && "no block pointer set!");
1243    return BlockPointer;
1244  }
1245
1246  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1247  void AllocateBlockDecl(const DeclRefExpr *E);
1248  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1249  llvm::Type *BuildByRefType(const VarDecl *var);
1250
1251  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1252                    const CGFunctionInfo &FnInfo);
1253  /// \brief Emit code for the start of a function.
1254  /// \param Loc       The location to be associated with the function.
1255  /// \param StartLoc  The location of the function body.
1256  void StartFunction(GlobalDecl GD,
1257                     QualType RetTy,
1258                     llvm::Function *Fn,
1259                     const CGFunctionInfo &FnInfo,
1260                     const FunctionArgList &Args,
1261                     SourceLocation Loc = SourceLocation(),
1262                     SourceLocation StartLoc = SourceLocation());
1263
1264  void EmitConstructorBody(FunctionArgList &Args);
1265  void EmitDestructorBody(FunctionArgList &Args);
1266  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1267  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1268  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1269
1270  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1271                                  CallArgList &CallArgs);
1272  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1273  void EmitLambdaBlockInvokeBody();
1274  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1275  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1276  void EmitAsanPrologueOrEpilogue(bool Prologue);
1277
1278  /// \brief Emit the unified return block, trying to avoid its emission when
1279  /// possible.
1280  /// \return The debug location of the user written return statement if the
1281  /// return block is is avoided.
1282  llvm::DebugLoc EmitReturnBlock();
1283
1284  /// FinishFunction - Complete IR generation of the current function. It is
1285  /// legal to call this function even if there is no current insertion point.
1286  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1287
1288  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1289                  const CGFunctionInfo &FnInfo);
1290
1291  void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1292
1293  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1294  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1295                         llvm::Value *Callee);
1296
1297  /// Generate a thunk for the given method.
1298  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1299                     GlobalDecl GD, const ThunkInfo &Thunk);
1300
1301  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1302                                       const CGFunctionInfo &FnInfo,
1303                                       GlobalDecl GD, const ThunkInfo &Thunk);
1304
1305  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1306                        FunctionArgList &Args);
1307
1308  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1309                               ArrayRef<VarDecl *> ArrayIndexes);
1310
1311  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1312  /// subobject.
1313  ///
1314  void InitializeVTablePointer(BaseSubobject Base,
1315                               const CXXRecordDecl *NearestVBase,
1316                               CharUnits OffsetFromNearestVBase,
1317                               const CXXRecordDecl *VTableClass);
1318
1319  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1320  void InitializeVTablePointers(BaseSubobject Base,
1321                                const CXXRecordDecl *NearestVBase,
1322                                CharUnits OffsetFromNearestVBase,
1323                                bool BaseIsNonVirtualPrimaryBase,
1324                                const CXXRecordDecl *VTableClass,
1325                                VisitedVirtualBasesSetTy& VBases);
1326
1327  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1328
1329  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1330  /// to by This.
1331  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1332
1333  enum CFITypeCheckKind {
1334    CFITCK_VCall,
1335    CFITCK_NVCall,
1336    CFITCK_DerivedCast,
1337    CFITCK_UnrelatedCast,
1338  };
1339
1340  /// \brief Derived is the presumed address of an object of type T after a
1341  /// cast. If T is a polymorphic class type, emit a check that the virtual
1342  /// table for Derived belongs to a class derived from T.
1343  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1344                                 bool MayBeNull, CFITypeCheckKind TCK,
1345                                 SourceLocation Loc);
1346
1347  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1348  /// If vptr CFI is enabled, emit a check that VTable is valid.
1349  void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1350                                 CFITypeCheckKind TCK, SourceLocation Loc);
1351
1352  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1353  /// RD using llvm.bitset.test.
1354  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1355                          CFITypeCheckKind TCK, SourceLocation Loc);
1356
1357  /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1358  /// expr can be devirtualized.
1359  bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1360                                         const CXXMethodDecl *MD);
1361
1362  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1363  /// given phase of destruction for a destructor.  The end result
1364  /// should call destructors on members and base classes in reverse
1365  /// order of their construction.
1366  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1367
1368  /// ShouldInstrumentFunction - Return true if the current function should be
1369  /// instrumented with __cyg_profile_func_* calls
1370  bool ShouldInstrumentFunction();
1371
1372  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1373  /// instrumentation function with the current function and the call site, if
1374  /// function instrumentation is enabled.
1375  void EmitFunctionInstrumentation(const char *Fn);
1376
1377  /// EmitMCountInstrumentation - Emit call to .mcount.
1378  void EmitMCountInstrumentation();
1379
1380  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1381  /// arguments for the given function. This is also responsible for naming the
1382  /// LLVM function arguments.
1383  void EmitFunctionProlog(const CGFunctionInfo &FI,
1384                          llvm::Function *Fn,
1385                          const FunctionArgList &Args);
1386
1387  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1388  /// given temporary.
1389  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1390                          SourceLocation EndLoc);
1391
1392  /// EmitStartEHSpec - Emit the start of the exception spec.
1393  void EmitStartEHSpec(const Decl *D);
1394
1395  /// EmitEndEHSpec - Emit the end of the exception spec.
1396  void EmitEndEHSpec(const Decl *D);
1397
1398  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1399  llvm::BasicBlock *getTerminateLandingPad();
1400
1401  /// getTerminateHandler - Return a handler (not a landing pad, just
1402  /// a catch handler) that just calls terminate.  This is used when
1403  /// a terminate scope encloses a try.
1404  llvm::BasicBlock *getTerminateHandler();
1405
1406  llvm::Type *ConvertTypeForMem(QualType T);
1407  llvm::Type *ConvertType(QualType T);
1408  llvm::Type *ConvertType(const TypeDecl *T) {
1409    return ConvertType(getContext().getTypeDeclType(T));
1410  }
1411
1412  /// LoadObjCSelf - Load the value of self. This function is only valid while
1413  /// generating code for an Objective-C method.
1414  llvm::Value *LoadObjCSelf();
1415
1416  /// TypeOfSelfObject - Return type of object that this self represents.
1417  QualType TypeOfSelfObject();
1418
1419  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1420  /// an aggregate LLVM type or is void.
1421  static TypeEvaluationKind getEvaluationKind(QualType T);
1422
1423  static bool hasScalarEvaluationKind(QualType T) {
1424    return getEvaluationKind(T) == TEK_Scalar;
1425  }
1426
1427  static bool hasAggregateEvaluationKind(QualType T) {
1428    return getEvaluationKind(T) == TEK_Aggregate;
1429  }
1430
1431  /// createBasicBlock - Create an LLVM basic block.
1432  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1433                                     llvm::Function *parent = nullptr,
1434                                     llvm::BasicBlock *before = nullptr) {
1435#ifdef NDEBUG
1436    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1437#else
1438    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1439#endif
1440  }
1441
1442  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1443  /// label maps to.
1444  JumpDest getJumpDestForLabel(const LabelDecl *S);
1445
1446  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1447  /// another basic block, simplify it. This assumes that no other code could
1448  /// potentially reference the basic block.
1449  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1450
1451  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1452  /// adding a fall-through branch from the current insert block if
1453  /// necessary. It is legal to call this function even if there is no current
1454  /// insertion point.
1455  ///
1456  /// IsFinished - If true, indicates that the caller has finished emitting
1457  /// branches to the given block and does not expect to emit code into it. This
1458  /// means the block can be ignored if it is unreachable.
1459  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1460
1461  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1462  /// near its uses, and leave the insertion point in it.
1463  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1464
1465  /// EmitBranch - Emit a branch to the specified basic block from the current
1466  /// insert block, taking care to avoid creation of branches from dummy
1467  /// blocks. It is legal to call this function even if there is no current
1468  /// insertion point.
1469  ///
1470  /// This function clears the current insertion point. The caller should follow
1471  /// calls to this function with calls to Emit*Block prior to generation new
1472  /// code.
1473  void EmitBranch(llvm::BasicBlock *Block);
1474
1475  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1476  /// indicates that the current code being emitted is unreachable.
1477  bool HaveInsertPoint() const {
1478    return Builder.GetInsertBlock() != nullptr;
1479  }
1480
1481  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1482  /// emitted IR has a place to go. Note that by definition, if this function
1483  /// creates a block then that block is unreachable; callers may do better to
1484  /// detect when no insertion point is defined and simply skip IR generation.
1485  void EnsureInsertPoint() {
1486    if (!HaveInsertPoint())
1487      EmitBlock(createBasicBlock());
1488  }
1489
1490  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1491  /// specified stmt yet.
1492  void ErrorUnsupported(const Stmt *S, const char *Type);
1493
1494  //===--------------------------------------------------------------------===//
1495  //                                  Helpers
1496  //===--------------------------------------------------------------------===//
1497
1498  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1499                        CharUnits Alignment = CharUnits()) {
1500    return LValue::MakeAddr(V, T, Alignment, getContext(),
1501                            CGM.getTBAAInfo(T));
1502  }
1503
1504  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1505
1506  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1507  /// block. The caller is responsible for setting an appropriate alignment on
1508  /// the alloca.
1509  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1510                                     const Twine &Name = "tmp");
1511
1512  /// InitTempAlloca - Provide an initial value for the given alloca.
1513  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1514
1515  /// CreateIRTemp - Create a temporary IR object of the given type, with
1516  /// appropriate alignment. This routine should only be used when an temporary
1517  /// value needs to be stored into an alloca (for example, to avoid explicit
1518  /// PHI construction), but the type is the IR type, not the type appropriate
1519  /// for storing in memory.
1520  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1521
1522  /// CreateMemTemp - Create a temporary memory object of the given type, with
1523  /// appropriate alignment.
1524  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1525
1526  /// CreateAggTemp - Create a temporary memory object for the given
1527  /// aggregate type.
1528  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1529    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1530    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1531                                 T.getQualifiers(),
1532                                 AggValueSlot::IsNotDestructed,
1533                                 AggValueSlot::DoesNotNeedGCBarriers,
1534                                 AggValueSlot::IsNotAliased);
1535  }
1536
1537  /// CreateInAllocaTmp - Create a temporary memory object for the given
1538  /// aggregate type.
1539  AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1540
1541  /// Emit a cast to void* in the appropriate address space.
1542  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1543
1544  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1545  /// expression and compare the result against zero, returning an Int1Ty value.
1546  llvm::Value *EvaluateExprAsBool(const Expr *E);
1547
1548  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1549  void EmitIgnoredExpr(const Expr *E);
1550
1551  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1552  /// any type.  The result is returned as an RValue struct.  If this is an
1553  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1554  /// the result should be returned.
1555  ///
1556  /// \param ignoreResult True if the resulting value isn't used.
1557  RValue EmitAnyExpr(const Expr *E,
1558                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1559                     bool ignoreResult = false);
1560
1561  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1562  // or the value of the expression, depending on how va_list is defined.
1563  llvm::Value *EmitVAListRef(const Expr *E);
1564
1565  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1566  /// always be accessible even if no aggregate location is provided.
1567  RValue EmitAnyExprToTemp(const Expr *E);
1568
1569  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1570  /// arbitrary expression into the given memory location.
1571  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1572                        Qualifiers Quals, bool IsInitializer);
1573
1574  void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
1575
1576  /// EmitExprAsInit - Emits the code necessary to initialize a
1577  /// location in memory with the given initializer.
1578  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1579                      bool capturedByInit);
1580
1581  /// hasVolatileMember - returns true if aggregate type has a volatile
1582  /// member.
1583  bool hasVolatileMember(QualType T) {
1584    if (const RecordType *RT = T->getAs<RecordType>()) {
1585      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1586      return RD->hasVolatileMember();
1587    }
1588    return false;
1589  }
1590  /// EmitAggregateCopy - Emit an aggregate assignment.
1591  ///
1592  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1593  /// This is required for correctness when assigning non-POD structures in C++.
1594  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1595                           QualType EltTy) {
1596    bool IsVolatile = hasVolatileMember(EltTy);
1597    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1598                      true);
1599  }
1600
1601  void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1602                           QualType DestTy, QualType SrcTy) {
1603    CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1604    CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1605    EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1606                      std::min(DestTypeAlign, SrcTypeAlign),
1607                      /*IsAssignment=*/false);
1608  }
1609
1610  /// EmitAggregateCopy - Emit an aggregate copy.
1611  ///
1612  /// \param isVolatile - True iff either the source or the destination is
1613  /// volatile.
1614  /// \param isAssignment - If false, allow padding to be copied.  This often
1615  /// yields more efficient.
1616  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1617                         QualType EltTy, bool isVolatile=false,
1618                         CharUnits Alignment = CharUnits::Zero(),
1619                         bool isAssignment = false);
1620
1621  /// StartBlock - Start new block named N. If insert block is a dummy block
1622  /// then reuse it.
1623  void StartBlock(const char *N);
1624
1625  /// GetAddrOfLocalVar - Return the address of a local variable.
1626  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1627    llvm::Value *Res = LocalDeclMap[VD];
1628    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1629    return Res;
1630  }
1631
1632  /// getOpaqueLValueMapping - Given an opaque value expression (which
1633  /// must be mapped to an l-value), return its mapping.
1634  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1635    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1636
1637    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1638      it = OpaqueLValues.find(e);
1639    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1640    return it->second;
1641  }
1642
1643  /// getOpaqueRValueMapping - Given an opaque value expression (which
1644  /// must be mapped to an r-value), return its mapping.
1645  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1646    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1647
1648    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1649      it = OpaqueRValues.find(e);
1650    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1651    return it->second;
1652  }
1653
1654  /// getAccessedFieldNo - Given an encoded value and a result number, return
1655  /// the input field number being accessed.
1656  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1657
1658  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1659  llvm::BasicBlock *GetIndirectGotoBlock();
1660
1661  /// EmitNullInitialization - Generate code to set a value of the given type to
1662  /// null, If the type contains data member pointers, they will be initialized
1663  /// to -1 in accordance with the Itanium C++ ABI.
1664  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1665
1666  // EmitVAArg - Generate code to get an argument from the passed in pointer
1667  // and update it accordingly. The return value is a pointer to the argument.
1668  // FIXME: We should be able to get rid of this method and use the va_arg
1669  // instruction in LLVM instead once it works well enough.
1670  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1671
1672  /// emitArrayLength - Compute the length of an array, even if it's a
1673  /// VLA, and drill down to the base element type.
1674  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1675                               QualType &baseType,
1676                               llvm::Value *&addr);
1677
1678  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1679  /// the given variably-modified type and store them in the VLASizeMap.
1680  ///
1681  /// This function can be called with a null (unreachable) insert point.
1682  void EmitVariablyModifiedType(QualType Ty);
1683
1684  /// getVLASize - Returns an LLVM value that corresponds to the size,
1685  /// in non-variably-sized elements, of a variable length array type,
1686  /// plus that largest non-variably-sized element type.  Assumes that
1687  /// the type has already been emitted with EmitVariablyModifiedType.
1688  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1689  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1690
1691  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1692  /// generating code for an C++ member function.
1693  llvm::Value *LoadCXXThis() {
1694    assert(CXXThisValue && "no 'this' value for this function");
1695    return CXXThisValue;
1696  }
1697
1698  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1699  /// virtual bases.
1700  // FIXME: Every place that calls LoadCXXVTT is something
1701  // that needs to be abstracted properly.
1702  llvm::Value *LoadCXXVTT() {
1703    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1704    return CXXStructorImplicitParamValue;
1705  }
1706
1707  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1708  /// for a constructor/destructor.
1709  llvm::Value *LoadCXXStructorImplicitParam() {
1710    assert(CXXStructorImplicitParamValue &&
1711           "no implicit argument value for this function");
1712    return CXXStructorImplicitParamValue;
1713  }
1714
1715  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1716  /// complete class to the given direct base.
1717  llvm::Value *
1718  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1719                                        const CXXRecordDecl *Derived,
1720                                        const CXXRecordDecl *Base,
1721                                        bool BaseIsVirtual);
1722
1723  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1724  /// load of 'this' and returns address of the base class.
1725  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1726                                     const CXXRecordDecl *Derived,
1727                                     CastExpr::path_const_iterator PathBegin,
1728                                     CastExpr::path_const_iterator PathEnd,
1729                                     bool NullCheckValue, SourceLocation Loc);
1730
1731  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1732                                        const CXXRecordDecl *Derived,
1733                                        CastExpr::path_const_iterator PathBegin,
1734                                        CastExpr::path_const_iterator PathEnd,
1735                                        bool NullCheckValue);
1736
1737  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1738  /// base constructor/destructor with virtual bases.
1739  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1740  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1741  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1742                               bool Delegating);
1743
1744  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1745                                      CXXCtorType CtorType,
1746                                      const FunctionArgList &Args,
1747                                      SourceLocation Loc);
1748  // It's important not to confuse this and the previous function. Delegating
1749  // constructors are the C++0x feature. The constructor delegate optimization
1750  // is used to reduce duplication in the base and complete consturctors where
1751  // they are substantially the same.
1752  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1753                                        const FunctionArgList &Args);
1754  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1755                              bool ForVirtualBase, bool Delegating,
1756                              llvm::Value *This, const CXXConstructExpr *E);
1757
1758  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1759                              llvm::Value *This, llvm::Value *Src,
1760                              const CXXConstructExpr *E);
1761
1762  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1763                                  const ConstantArrayType *ArrayTy,
1764                                  llvm::Value *ArrayPtr,
1765                                  const CXXConstructExpr *E,
1766                                  bool ZeroInitialization = false);
1767
1768  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1769                                  llvm::Value *NumElements,
1770                                  llvm::Value *ArrayPtr,
1771                                  const CXXConstructExpr *E,
1772                                  bool ZeroInitialization = false);
1773
1774  static Destroyer destroyCXXObject;
1775
1776  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1777                             bool ForVirtualBase, bool Delegating,
1778                             llvm::Value *This);
1779
1780  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1781                               llvm::Type *ElementTy, llvm::Value *NewPtr,
1782                               llvm::Value *NumElements,
1783                               llvm::Value *AllocSizeWithoutCookie);
1784
1785  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1786                        llvm::Value *Ptr);
1787
1788  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1789  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1790
1791  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1792  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1793
1794  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1795                      QualType DeleteTy);
1796
1797  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1798                                  const Expr *Arg, bool IsDelete);
1799
1800  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1801  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1802  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1803
1804  /// \brief Situations in which we might emit a check for the suitability of a
1805  ///        pointer or glvalue.
1806  enum TypeCheckKind {
1807    /// Checking the operand of a load. Must be suitably sized and aligned.
1808    TCK_Load,
1809    /// Checking the destination of a store. Must be suitably sized and aligned.
1810    TCK_Store,
1811    /// Checking the bound value in a reference binding. Must be suitably sized
1812    /// and aligned, but is not required to refer to an object (until the
1813    /// reference is used), per core issue 453.
1814    TCK_ReferenceBinding,
1815    /// Checking the object expression in a non-static data member access. Must
1816    /// be an object within its lifetime.
1817    TCK_MemberAccess,
1818    /// Checking the 'this' pointer for a call to a non-static member function.
1819    /// Must be an object within its lifetime.
1820    TCK_MemberCall,
1821    /// Checking the 'this' pointer for a constructor call.
1822    TCK_ConstructorCall,
1823    /// Checking the operand of a static_cast to a derived pointer type. Must be
1824    /// null or an object within its lifetime.
1825    TCK_DowncastPointer,
1826    /// Checking the operand of a static_cast to a derived reference type. Must
1827    /// be an object within its lifetime.
1828    TCK_DowncastReference,
1829    /// Checking the operand of a cast to a base object. Must be suitably sized
1830    /// and aligned.
1831    TCK_Upcast,
1832    /// Checking the operand of a cast to a virtual base object. Must be an
1833    /// object within its lifetime.
1834    TCK_UpcastToVirtualBase
1835  };
1836
1837  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1838  /// calls to EmitTypeCheck can be skipped.
1839  bool sanitizePerformTypeCheck() const;
1840
1841  /// \brief Emit a check that \p V is the address of storage of the
1842  /// appropriate size and alignment for an object of type \p Type.
1843  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1844                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
1845                     bool SkipNullCheck = false);
1846
1847  /// \brief Emit a check that \p Base points into an array object, which
1848  /// we can access at index \p Index. \p Accessed should be \c false if we
1849  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1850  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1851                       QualType IndexType, bool Accessed);
1852
1853  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1854                                       bool isInc, bool isPre);
1855  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1856                                         bool isInc, bool isPre);
1857
1858  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1859                               llvm::Value *OffsetValue = nullptr) {
1860    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1861                                      OffsetValue);
1862  }
1863
1864  //===--------------------------------------------------------------------===//
1865  //                            Declaration Emission
1866  //===--------------------------------------------------------------------===//
1867
1868  /// EmitDecl - Emit a declaration.
1869  ///
1870  /// This function can be called with a null (unreachable) insert point.
1871  void EmitDecl(const Decl &D);
1872
1873  /// EmitVarDecl - Emit a local variable declaration.
1874  ///
1875  /// This function can be called with a null (unreachable) insert point.
1876  void EmitVarDecl(const VarDecl &D);
1877
1878  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1879                      bool capturedByInit);
1880  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1881
1882  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1883                             llvm::Value *Address);
1884
1885  /// \brief Determine whether the given initializer is trivial in the sense
1886  /// that it requires no code to be generated.
1887  bool isTrivialInitializer(const Expr *Init);
1888
1889  /// EmitAutoVarDecl - Emit an auto variable declaration.
1890  ///
1891  /// This function can be called with a null (unreachable) insert point.
1892  void EmitAutoVarDecl(const VarDecl &D);
1893
1894  class AutoVarEmission {
1895    friend class CodeGenFunction;
1896
1897    const VarDecl *Variable;
1898
1899    /// The alignment of the variable.
1900    CharUnits Alignment;
1901
1902    /// The address of the alloca.  Null if the variable was emitted
1903    /// as a global constant.
1904    llvm::Value *Address;
1905
1906    llvm::Value *NRVOFlag;
1907
1908    /// True if the variable is a __block variable.
1909    bool IsByRef;
1910
1911    /// True if the variable is of aggregate type and has a constant
1912    /// initializer.
1913    bool IsConstantAggregate;
1914
1915    /// Non-null if we should use lifetime annotations.
1916    llvm::Value *SizeForLifetimeMarkers;
1917
1918    struct Invalid {};
1919    AutoVarEmission(Invalid) : Variable(nullptr) {}
1920
1921    AutoVarEmission(const VarDecl &variable)
1922      : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1923        IsByRef(false), IsConstantAggregate(false),
1924        SizeForLifetimeMarkers(nullptr) {}
1925
1926    bool wasEmittedAsGlobal() const { return Address == nullptr; }
1927
1928  public:
1929    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1930
1931    bool useLifetimeMarkers() const {
1932      return SizeForLifetimeMarkers != nullptr;
1933    }
1934    llvm::Value *getSizeForLifetimeMarkers() const {
1935      assert(useLifetimeMarkers());
1936      return SizeForLifetimeMarkers;
1937    }
1938
1939    /// Returns the raw, allocated address, which is not necessarily
1940    /// the address of the object itself.
1941    llvm::Value *getAllocatedAddress() const {
1942      return Address;
1943    }
1944
1945    /// Returns the address of the object within this declaration.
1946    /// Note that this does not chase the forwarding pointer for
1947    /// __block decls.
1948    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1949      if (!IsByRef) return Address;
1950
1951      auto F = CGF.getByRefValueLLVMField(Variable);
1952      return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
1953                                         Variable->getNameAsString());
1954    }
1955  };
1956  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1957  void EmitAutoVarInit(const AutoVarEmission &emission);
1958  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1959  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1960                              QualType::DestructionKind dtorKind);
1961
1962  void EmitStaticVarDecl(const VarDecl &D,
1963                         llvm::GlobalValue::LinkageTypes Linkage);
1964
1965  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1966  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1967                    unsigned ArgNo);
1968
1969  /// protectFromPeepholes - Protect a value that we're intending to
1970  /// store to the side, but which will probably be used later, from
1971  /// aggressive peepholing optimizations that might delete it.
1972  ///
1973  /// Pass the result to unprotectFromPeepholes to declare that
1974  /// protection is no longer required.
1975  ///
1976  /// There's no particular reason why this shouldn't apply to
1977  /// l-values, it's just that no existing peepholes work on pointers.
1978  PeepholeProtection protectFromPeepholes(RValue rvalue);
1979  void unprotectFromPeepholes(PeepholeProtection protection);
1980
1981  //===--------------------------------------------------------------------===//
1982  //                             Statement Emission
1983  //===--------------------------------------------------------------------===//
1984
1985  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1986  void EmitStopPoint(const Stmt *S);
1987
1988  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1989  /// this function even if there is no current insertion point.
1990  ///
1991  /// This function may clear the current insertion point; callers should use
1992  /// EnsureInsertPoint if they wish to subsequently generate code without first
1993  /// calling EmitBlock, EmitBranch, or EmitStmt.
1994  void EmitStmt(const Stmt *S);
1995
1996  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1997  /// necessarily require an insertion point or debug information; typically
1998  /// because the statement amounts to a jump or a container of other
1999  /// statements.
2000  ///
2001  /// \return True if the statement was handled.
2002  bool EmitSimpleStmt(const Stmt *S);
2003
2004  llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2005                                AggValueSlot AVS = AggValueSlot::ignored());
2006  llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2007                                            bool GetLast = false,
2008                                            AggValueSlot AVS =
2009                                                AggValueSlot::ignored());
2010
2011  /// EmitLabel - Emit the block for the given label. It is legal to call this
2012  /// function even if there is no current insertion point.
2013  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2014
2015  void EmitLabelStmt(const LabelStmt &S);
2016  void EmitAttributedStmt(const AttributedStmt &S);
2017  void EmitGotoStmt(const GotoStmt &S);
2018  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2019  void EmitIfStmt(const IfStmt &S);
2020
2021  void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
2022                       ArrayRef<const Attr *> Attrs);
2023  void EmitWhileStmt(const WhileStmt &S,
2024                     ArrayRef<const Attr *> Attrs = None);
2025  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2026  void EmitForStmt(const ForStmt &S,
2027                   ArrayRef<const Attr *> Attrs = None);
2028  void EmitReturnStmt(const ReturnStmt &S);
2029  void EmitDeclStmt(const DeclStmt &S);
2030  void EmitBreakStmt(const BreakStmt &S);
2031  void EmitContinueStmt(const ContinueStmt &S);
2032  void EmitSwitchStmt(const SwitchStmt &S);
2033  void EmitDefaultStmt(const DefaultStmt &S);
2034  void EmitCaseStmt(const CaseStmt &S);
2035  void EmitCaseStmtRange(const CaseStmt &S);
2036  void EmitAsmStmt(const AsmStmt &S);
2037
2038  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2039  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2040  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2041  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2042  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2043
2044  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2045  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2046
2047  void EmitCXXTryStmt(const CXXTryStmt &S);
2048  void EmitSEHTryStmt(const SEHTryStmt &S);
2049  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2050  void EnterSEHTryStmt(const SEHTryStmt &S);
2051  void ExitSEHTryStmt(const SEHTryStmt &S);
2052
2053  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2054                              const Stmt *OutlinedStmt);
2055
2056  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2057                                            const SEHExceptStmt &Except);
2058
2059  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2060                                             const SEHFinallyStmt &Finally);
2061
2062  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2063                                llvm::Value *ParentFP,
2064                                llvm::Value *EntryEBP);
2065  llvm::Value *EmitSEHExceptionCode();
2066  llvm::Value *EmitSEHExceptionInfo();
2067  llvm::Value *EmitSEHAbnormalTermination();
2068
2069  /// Scan the outlined statement for captures from the parent function. For
2070  /// each capture, mark the capture as escaped and emit a call to
2071  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2072  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2073                          bool IsFilter);
2074
2075  /// Recovers the address of a local in a parent function. ParentVar is the
2076  /// address of the variable used in the immediate parent function. It can
2077  /// either be an alloca or a call to llvm.localrecover if there are nested
2078  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2079  /// frame.
2080  llvm::Value *recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2081                                         llvm::Value *ParentVar,
2082                                         llvm::Value *ParentFP);
2083
2084  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2085                           ArrayRef<const Attr *> Attrs = None);
2086
2087  LValue InitCapturedStruct(const CapturedStmt &S);
2088  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2089  void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2090  llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2091  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2092  llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2093  /// \brief Perform element by element copying of arrays with type \a
2094  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2095  /// generated by \a CopyGen.
2096  ///
2097  /// \param DestAddr Address of the destination array.
2098  /// \param SrcAddr Address of the source array.
2099  /// \param OriginalType Type of destination and source arrays.
2100  /// \param CopyGen Copying procedure that copies value of single array element
2101  /// to another single array element.
2102  void EmitOMPAggregateAssign(
2103      llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
2104      const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
2105  /// \brief Emit proper copying of data from one variable to another.
2106  ///
2107  /// \param OriginalType Original type of the copied variables.
2108  /// \param DestAddr Destination address.
2109  /// \param SrcAddr Source address.
2110  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2111  /// type of the base array element).
2112  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2113  /// the base array element).
2114  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2115  /// DestVD.
2116  void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
2117                   llvm::Value *DestAddr, llvm::Value *SrcAddr,
2118                   const VarDecl *DestVD, const VarDecl *SrcVD,
2119                   const Expr *Copy);
2120  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2121  /// \a X = \a E \a BO \a E.
2122  ///
2123  /// \param X Value to be updated.
2124  /// \param E Update value.
2125  /// \param BO Binary operation for update operation.
2126  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2127  /// expression, false otherwise.
2128  /// \param AO Atomic ordering of the generated atomic instructions.
2129  /// \param CommonGen Code generator for complex expressions that cannot be
2130  /// expressed through atomicrmw instruction.
2131  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2132  /// generated, <false, RValue::get(nullptr)> otherwise.
2133  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2134      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2135      llvm::AtomicOrdering AO, SourceLocation Loc,
2136      const llvm::function_ref<RValue(RValue)> &CommonGen);
2137  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2138                                 OMPPrivateScope &PrivateScope);
2139  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2140                            OMPPrivateScope &PrivateScope);
2141  /// \brief Emit code for copyin clause in \a D directive. The next code is
2142  /// generated at the start of outlined functions for directives:
2143  /// \code
2144  /// threadprivate_var1 = master_threadprivate_var1;
2145  /// operator=(threadprivate_var2, master_threadprivate_var2);
2146  /// ...
2147  /// __kmpc_barrier(&loc, global_tid);
2148  /// \endcode
2149  ///
2150  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2151  /// \returns true if at least one copyin variable is found, false otherwise.
2152  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2153  /// \brief Emit initial code for lastprivate variables. If some variable is
2154  /// not also firstprivate, then the default initialization is used. Otherwise
2155  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2156  /// method.
2157  ///
2158  /// \param D Directive that may have 'lastprivate' directives.
2159  /// \param PrivateScope Private scope for capturing lastprivate variables for
2160  /// proper codegen in internal captured statement.
2161  ///
2162  /// \returns true if there is at least one lastprivate variable, false
2163  /// otherwise.
2164  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2165                                    OMPPrivateScope &PrivateScope);
2166  /// \brief Emit final copying of lastprivate values to original variables at
2167  /// the end of the worksharing or simd directive.
2168  ///
2169  /// \param D Directive that has at least one 'lastprivate' directives.
2170  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2171  /// it is the last iteration of the loop code in associated directive, or to
2172  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2173  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2174                                     llvm::Value *IsLastIterCond = nullptr);
2175  /// \brief Emit initial code for reduction variables. Creates reduction copies
2176  /// and initializes them with the values according to OpenMP standard.
2177  ///
2178  /// \param D Directive (possibly) with the 'reduction' clause.
2179  /// \param PrivateScope Private scope for capturing reduction variables for
2180  /// proper codegen in internal captured statement.
2181  ///
2182  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2183                                  OMPPrivateScope &PrivateScope);
2184  /// \brief Emit final update of reduction values to original variables at
2185  /// the end of the directive.
2186  ///
2187  /// \param D Directive that has at least one 'reduction' directives.
2188  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2189  /// \brief Emit initial code for linear variables. Creates private copies
2190  /// and initializes them with the values according to OpenMP standard.
2191  ///
2192  /// \param D Directive (possibly) with the 'linear' clause.
2193  void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2194
2195  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2196  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2197  void EmitOMPForDirective(const OMPForDirective &S);
2198  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2199  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2200  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2201  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2202  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2203  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2204  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2205  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2206  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2207  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2208  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2209  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2210  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2211  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2212  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2213  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2214  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2215  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2216  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2217  void
2218  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2219  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2220
2221  /// \brief Emit inner loop of the worksharing/simd construct.
2222  ///
2223  /// \param S Directive, for which the inner loop must be emitted.
2224  /// \param RequiresCleanup true, if directive has some associated private
2225  /// variables.
2226  /// \param LoopCond Bollean condition for loop continuation.
2227  /// \param IncExpr Increment expression for loop control variable.
2228  /// \param BodyGen Generator for the inner body of the inner loop.
2229  /// \param PostIncGen Genrator for post-increment code (required for ordered
2230  /// loop directvies).
2231  void EmitOMPInnerLoop(
2232      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2233      const Expr *IncExpr,
2234      const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2235      const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2236
2237  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2238
2239private:
2240
2241  /// Helpers for the OpenMP loop directives.
2242  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2243  void EmitOMPSimdInit(const OMPLoopDirective &D);
2244  void EmitOMPSimdFinal(const OMPLoopDirective &D);
2245  /// \brief Emit code for the worksharing loop-based directive.
2246  /// \return true, if this construct has any lastprivate clause, false -
2247  /// otherwise.
2248  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2249  void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2250                           const OMPLoopDirective &S,
2251                           OMPPrivateScope &LoopScope, bool Ordered,
2252                           llvm::Value *LB, llvm::Value *UB, llvm::Value *ST,
2253                           llvm::Value *IL, llvm::Value *Chunk);
2254  /// \brief Emit code for sections directive.
2255  OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2256
2257public:
2258
2259  //===--------------------------------------------------------------------===//
2260  //                         LValue Expression Emission
2261  //===--------------------------------------------------------------------===//
2262
2263  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2264  RValue GetUndefRValue(QualType Ty);
2265
2266  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2267  /// and issue an ErrorUnsupported style diagnostic (using the
2268  /// provided Name).
2269  RValue EmitUnsupportedRValue(const Expr *E,
2270                               const char *Name);
2271
2272  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2273  /// an ErrorUnsupported style diagnostic (using the provided Name).
2274  LValue EmitUnsupportedLValue(const Expr *E,
2275                               const char *Name);
2276
2277  /// EmitLValue - Emit code to compute a designator that specifies the location
2278  /// of the expression.
2279  ///
2280  /// This can return one of two things: a simple address or a bitfield
2281  /// reference.  In either case, the LLVM Value* in the LValue structure is
2282  /// guaranteed to be an LLVM pointer type.
2283  ///
2284  /// If this returns a bitfield reference, nothing about the pointee type of
2285  /// the LLVM value is known: For example, it may not be a pointer to an
2286  /// integer.
2287  ///
2288  /// If this returns a normal address, and if the lvalue's C type is fixed
2289  /// size, this method guarantees that the returned pointer type will point to
2290  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2291  /// variable length type, this is not possible.
2292  ///
2293  LValue EmitLValue(const Expr *E);
2294
2295  /// \brief Same as EmitLValue but additionally we generate checking code to
2296  /// guard against undefined behavior.  This is only suitable when we know
2297  /// that the address will be used to access the object.
2298  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2299
2300  RValue convertTempToRValue(llvm::Value *addr, QualType type,
2301                             SourceLocation Loc);
2302
2303  void EmitAtomicInit(Expr *E, LValue lvalue);
2304
2305  bool LValueIsSuitableForInlineAtomic(LValue Src);
2306  bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2307
2308  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2309                        AggValueSlot Slot = AggValueSlot::ignored());
2310
2311  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2312                        llvm::AtomicOrdering AO, bool IsVolatile = false,
2313                        AggValueSlot slot = AggValueSlot::ignored());
2314
2315  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2316
2317  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2318                       bool IsVolatile, bool isInit);
2319
2320  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2321      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2322      llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2323      llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2324      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2325
2326  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2327                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
2328                        bool IsVolatile);
2329
2330  /// EmitToMemory - Change a scalar value from its value
2331  /// representation to its in-memory representation.
2332  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2333
2334  /// EmitFromMemory - Change a scalar value from its memory
2335  /// representation to its value representation.
2336  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2337
2338  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2339  /// care to appropriately convert from the memory representation to
2340  /// the LLVM value representation.
2341  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2342                                unsigned Alignment, QualType Ty,
2343                                SourceLocation Loc,
2344                                llvm::MDNode *TBAAInfo = nullptr,
2345                                QualType TBAABaseTy = QualType(),
2346                                uint64_t TBAAOffset = 0);
2347
2348  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2349  /// care to appropriately convert from the memory representation to
2350  /// the LLVM value representation.  The l-value must be a simple
2351  /// l-value.
2352  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2353
2354  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2355  /// care to appropriately convert from the memory representation to
2356  /// the LLVM value representation.
2357  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2358                         bool Volatile, unsigned Alignment, QualType Ty,
2359                         llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2360                         QualType TBAABaseTy = QualType(),
2361                         uint64_t TBAAOffset = 0);
2362
2363  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2364  /// care to appropriately convert from the memory representation to
2365  /// the LLVM value representation.  The l-value must be a simple
2366  /// l-value.  The isInit flag indicates whether this is an initialization.
2367  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2368  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2369
2370  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2371  /// this method emits the address of the lvalue, then loads the result as an
2372  /// rvalue, returning the rvalue.
2373  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2374  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2375  RValue EmitLoadOfBitfieldLValue(LValue LV);
2376  RValue EmitLoadOfGlobalRegLValue(LValue LV);
2377
2378  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2379  /// lvalue, where both are guaranteed to the have the same type, and that type
2380  /// is 'Ty'.
2381  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2382  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2383  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2384
2385  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2386  /// as EmitStoreThroughLValue.
2387  ///
2388  /// \param Result [out] - If non-null, this will be set to a Value* for the
2389  /// bit-field contents after the store, appropriate for use as the result of
2390  /// an assignment to the bit-field.
2391  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2392                                      llvm::Value **Result=nullptr);
2393
2394  /// Emit an l-value for an assignment (simple or compound) of complex type.
2395  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2396  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2397  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2398                                             llvm::Value *&Result);
2399
2400  // Note: only available for agg return types
2401  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2402  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2403  // Note: only available for agg return types
2404  LValue EmitCallExprLValue(const CallExpr *E);
2405  // Note: only available for agg return types
2406  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2407  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2408  LValue EmitReadRegister(const VarDecl *VD);
2409  LValue EmitStringLiteralLValue(const StringLiteral *E);
2410  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2411  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2412  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2413  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2414                                bool Accessed = false);
2415  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2416  LValue EmitMemberExpr(const MemberExpr *E);
2417  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2418  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2419  LValue EmitInitListLValue(const InitListExpr *E);
2420  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2421  LValue EmitCastLValue(const CastExpr *E);
2422  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2423  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2424
2425  llvm::Value *EmitExtVectorElementLValue(LValue V);
2426
2427  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2428
2429  class ConstantEmission {
2430    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2431    ConstantEmission(llvm::Constant *C, bool isReference)
2432      : ValueAndIsReference(C, isReference) {}
2433  public:
2434    ConstantEmission() {}
2435    static ConstantEmission forReference(llvm::Constant *C) {
2436      return ConstantEmission(C, true);
2437    }
2438    static ConstantEmission forValue(llvm::Constant *C) {
2439      return ConstantEmission(C, false);
2440    }
2441
2442    explicit operator bool() const {
2443      return ValueAndIsReference.getOpaqueValue() != nullptr;
2444    }
2445
2446    bool isReference() const { return ValueAndIsReference.getInt(); }
2447    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2448      assert(isReference());
2449      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2450                                            refExpr->getType());
2451    }
2452
2453    llvm::Constant *getValue() const {
2454      assert(!isReference());
2455      return ValueAndIsReference.getPointer();
2456    }
2457  };
2458
2459  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2460
2461  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2462                                AggValueSlot slot = AggValueSlot::ignored());
2463  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2464
2465  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2466                              const ObjCIvarDecl *Ivar);
2467  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2468  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2469
2470  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2471  /// if the Field is a reference, this will return the address of the reference
2472  /// and not the address of the value stored in the reference.
2473  LValue EmitLValueForFieldInitialization(LValue Base,
2474                                          const FieldDecl* Field);
2475
2476  LValue EmitLValueForIvar(QualType ObjectTy,
2477                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2478                           unsigned CVRQualifiers);
2479
2480  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2481  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2482  LValue EmitLambdaLValue(const LambdaExpr *E);
2483  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2484  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2485
2486  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2487  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2488  LValue EmitStmtExprLValue(const StmtExpr *E);
2489  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2490  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2491  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2492
2493  //===--------------------------------------------------------------------===//
2494  //                         Scalar Expression Emission
2495  //===--------------------------------------------------------------------===//
2496
2497  /// EmitCall - Generate a call of the given function, expecting the given
2498  /// result type, and using the given argument list which specifies both the
2499  /// LLVM arguments and the types they were derived from.
2500  ///
2501  /// \param TargetDecl - If given, the decl of the function in a direct call;
2502  /// used to set attributes on the call (noreturn, etc.).
2503  RValue EmitCall(const CGFunctionInfo &FnInfo,
2504                  llvm::Value *Callee,
2505                  ReturnValueSlot ReturnValue,
2506                  const CallArgList &Args,
2507                  const Decl *TargetDecl = nullptr,
2508                  llvm::Instruction **callOrInvoke = nullptr);
2509
2510  RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2511                  ReturnValueSlot ReturnValue,
2512                  const Decl *TargetDecl = nullptr,
2513                  llvm::Value *Chain = nullptr);
2514  RValue EmitCallExpr(const CallExpr *E,
2515                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2516
2517  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2518                                  const Twine &name = "");
2519  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2520                                  ArrayRef<llvm::Value*> args,
2521                                  const Twine &name = "");
2522  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2523                                          const Twine &name = "");
2524  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2525                                          ArrayRef<llvm::Value*> args,
2526                                          const Twine &name = "");
2527
2528  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2529                                  ArrayRef<llvm::Value *> Args,
2530                                  const Twine &Name = "");
2531  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2532                                  const Twine &Name = "");
2533  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2534                                         ArrayRef<llvm::Value*> args,
2535                                         const Twine &name = "");
2536  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2537                                         const Twine &name = "");
2538  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2539                                       ArrayRef<llvm::Value*> args);
2540
2541  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2542                                         NestedNameSpecifier *Qual,
2543                                         llvm::Type *Ty);
2544
2545  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2546                                                   CXXDtorType Type,
2547                                                   const CXXRecordDecl *RD);
2548
2549  RValue
2550  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2551                              ReturnValueSlot ReturnValue, llvm::Value *This,
2552                              llvm::Value *ImplicitParam,
2553                              QualType ImplicitParamTy, const CallExpr *E);
2554  RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2555                             ReturnValueSlot ReturnValue, llvm::Value *This,
2556                             llvm::Value *ImplicitParam,
2557                             QualType ImplicitParamTy, const CallExpr *E,
2558                             StructorType Type);
2559  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2560                               ReturnValueSlot ReturnValue);
2561  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2562                                               const CXXMethodDecl *MD,
2563                                               ReturnValueSlot ReturnValue,
2564                                               bool HasQualifier,
2565                                               NestedNameSpecifier *Qualifier,
2566                                               bool IsArrow, const Expr *Base);
2567  // Compute the object pointer.
2568  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2569                                      ReturnValueSlot ReturnValue);
2570
2571  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2572                                       const CXXMethodDecl *MD,
2573                                       ReturnValueSlot ReturnValue);
2574
2575  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2576                                ReturnValueSlot ReturnValue);
2577
2578
2579  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2580                         unsigned BuiltinID, const CallExpr *E,
2581                         ReturnValueSlot ReturnValue);
2582
2583  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2584
2585  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2586  /// is unhandled by the current target.
2587  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2588
2589  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2590                                             const llvm::CmpInst::Predicate Fp,
2591                                             const llvm::CmpInst::Predicate Ip,
2592                                             const llvm::Twine &Name = "");
2593  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2594
2595  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2596                                         unsigned LLVMIntrinsic,
2597                                         unsigned AltLLVMIntrinsic,
2598                                         const char *NameHint,
2599                                         unsigned Modifier,
2600                                         const CallExpr *E,
2601                                         SmallVectorImpl<llvm::Value *> &Ops,
2602                                         llvm::Value *Align = nullptr);
2603  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2604                                          unsigned Modifier, llvm::Type *ArgTy,
2605                                          const CallExpr *E);
2606  llvm::Value *EmitNeonCall(llvm::Function *F,
2607                            SmallVectorImpl<llvm::Value*> &O,
2608                            const char *name,
2609                            unsigned shift = 0, bool rightshift = false);
2610  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2611  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2612                                   bool negateForRightShift);
2613  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2614                                 llvm::Type *Ty, bool usgn, const char *name);
2615  // Helper functions for EmitAArch64BuiltinExpr.
2616  llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2617  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2618  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2619
2620  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2621  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2622  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2623  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2624  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2625  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2626
2627  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2628  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2629  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2630  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2631  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2632  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2633                                const ObjCMethodDecl *MethodWithObjects);
2634  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2635  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2636                             ReturnValueSlot Return = ReturnValueSlot());
2637
2638  /// Retrieves the default cleanup kind for an ARC cleanup.
2639  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2640  CleanupKind getARCCleanupKind() {
2641    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2642             ? NormalAndEHCleanup : NormalCleanup;
2643  }
2644
2645  // ARC primitives.
2646  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2647  void EmitARCDestroyWeak(llvm::Value *addr);
2648  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2649  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2650  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2651                                bool ignored);
2652  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2653  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2654  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2655  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2656  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2657                                  bool resultIgnored);
2658  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2659                                      bool resultIgnored);
2660  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2661  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2662  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2663  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2664  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2665  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2666  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2667  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2668  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2669
2670  std::pair<LValue,llvm::Value*>
2671  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2672  std::pair<LValue,llvm::Value*>
2673  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2674
2675  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2676
2677  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2678  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2679  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2680
2681  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2682  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2683  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2684
2685  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2686
2687  static Destroyer destroyARCStrongImprecise;
2688  static Destroyer destroyARCStrongPrecise;
2689  static Destroyer destroyARCWeak;
2690
2691  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2692  llvm::Value *EmitObjCAutoreleasePoolPush();
2693  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2694  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2695  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2696
2697  /// \brief Emits a reference binding to the passed in expression.
2698  RValue EmitReferenceBindingToExpr(const Expr *E);
2699
2700  //===--------------------------------------------------------------------===//
2701  //                           Expression Emission
2702  //===--------------------------------------------------------------------===//
2703
2704  // Expressions are broken into three classes: scalar, complex, aggregate.
2705
2706  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2707  /// scalar type, returning the result.
2708  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2709
2710  /// EmitScalarConversion - Emit a conversion from the specified type to the
2711  /// specified destination type, both of which are LLVM scalar types.
2712  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2713                                    QualType DstTy);
2714
2715  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2716  /// complex type to the specified destination type, where the destination type
2717  /// is an LLVM scalar type.
2718  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2719                                             QualType DstTy);
2720
2721
2722  /// EmitAggExpr - Emit the computation of the specified expression
2723  /// of aggregate type.  The result is computed into the given slot,
2724  /// which may be null to indicate that the value is not needed.
2725  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2726
2727  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2728  /// aggregate type into a temporary LValue.
2729  LValue EmitAggExprToLValue(const Expr *E);
2730
2731  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2732  /// pointers.
2733  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2734                                QualType Ty);
2735
2736  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2737  /// make sure it survives garbage collection until this point.
2738  void EmitExtendGCLifetime(llvm::Value *object);
2739
2740  /// EmitComplexExpr - Emit the computation of the specified expression of
2741  /// complex type, returning the result.
2742  ComplexPairTy EmitComplexExpr(const Expr *E,
2743                                bool IgnoreReal = false,
2744                                bool IgnoreImag = false);
2745
2746  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2747  /// type and place its result into the specified l-value.
2748  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2749
2750  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2751  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2752
2753  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2754  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2755
2756  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2757  /// global variable that has already been created for it.  If the initializer
2758  /// has a different type than GV does, this may free GV and return a different
2759  /// one.  Otherwise it just returns GV.
2760  llvm::GlobalVariable *
2761  AddInitializerToStaticVarDecl(const VarDecl &D,
2762                                llvm::GlobalVariable *GV);
2763
2764
2765  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2766  /// variable with global storage.
2767  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2768                                bool PerformInit);
2769
2770  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2771                                   llvm::Constant *Addr);
2772
2773  /// Call atexit() with a function that passes the given argument to
2774  /// the given function.
2775  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2776                                    llvm::Constant *addr);
2777
2778  /// Emit code in this function to perform a guarded variable
2779  /// initialization.  Guarded initializations are used when it's not
2780  /// possible to prove that an initialization will be done exactly
2781  /// once, e.g. with a static local variable or a static data member
2782  /// of a class template.
2783  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2784                          bool PerformInit);
2785
2786  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2787  /// variables.
2788  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2789                                 ArrayRef<llvm::Function *> CXXThreadLocals,
2790                                 llvm::GlobalVariable *Guard = nullptr);
2791
2792  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2793  /// variables.
2794  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2795                                  const std::vector<std::pair<llvm::WeakVH,
2796                                  llvm::Constant*> > &DtorsAndObjects);
2797
2798  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2799                                        const VarDecl *D,
2800                                        llvm::GlobalVariable *Addr,
2801                                        bool PerformInit);
2802
2803  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2804
2805  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2806                                  const Expr *Exp);
2807
2808  void enterFullExpression(const ExprWithCleanups *E) {
2809    if (E->getNumObjects() == 0) return;
2810    enterNonTrivialFullExpression(E);
2811  }
2812  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2813
2814  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2815
2816  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2817
2818  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2819
2820  //===--------------------------------------------------------------------===//
2821  //                         Annotations Emission
2822  //===--------------------------------------------------------------------===//
2823
2824  /// Emit an annotation call (intrinsic or builtin).
2825  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2826                                  llvm::Value *AnnotatedVal,
2827                                  StringRef AnnotationStr,
2828                                  SourceLocation Location);
2829
2830  /// Emit local annotations for the local variable V, declared by D.
2831  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2832
2833  /// Emit field annotations for the given field & value. Returns the
2834  /// annotation result.
2835  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2836
2837  //===--------------------------------------------------------------------===//
2838  //                             Internal Helpers
2839  //===--------------------------------------------------------------------===//
2840
2841  /// ContainsLabel - Return true if the statement contains a label in it.  If
2842  /// this statement is not executed normally, it not containing a label means
2843  /// that we can just remove the code.
2844  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2845
2846  /// containsBreak - Return true if the statement contains a break out of it.
2847  /// If the statement (recursively) contains a switch or loop with a break
2848  /// inside of it, this is fine.
2849  static bool containsBreak(const Stmt *S);
2850
2851  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2852  /// to a constant, or if it does but contains a label, return false.  If it
2853  /// constant folds return true and set the boolean result in Result.
2854  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2855
2856  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2857  /// to a constant, or if it does but contains a label, return false.  If it
2858  /// constant folds return true and set the folded value.
2859  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2860
2861  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2862  /// if statement) to the specified blocks.  Based on the condition, this might
2863  /// try to simplify the codegen of the conditional based on the branch.
2864  /// TrueCount should be the number of times we expect the condition to
2865  /// evaluate to true based on PGO data.
2866  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2867                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2868
2869  /// \brief Emit a description of a type in a format suitable for passing to
2870  /// a runtime sanitizer handler.
2871  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2872
2873  /// \brief Convert a value into a format suitable for passing to a runtime
2874  /// sanitizer handler.
2875  llvm::Value *EmitCheckValue(llvm::Value *V);
2876
2877  /// \brief Emit a description of a source location in a format suitable for
2878  /// passing to a runtime sanitizer handler.
2879  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2880
2881  /// \brief Create a basic block that will call a handler function in a
2882  /// sanitizer runtime with the provided arguments, and create a conditional
2883  /// branch to it.
2884  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2885                 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2886                 ArrayRef<llvm::Value *> DynamicArgs);
2887
2888  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2889  /// conditional branch to it, for the -ftrapv checks.
2890  void EmitTrapCheck(llvm::Value *Checked);
2891
2892  /// \brief Emit a call to trap or debugtrap and attach function attribute
2893  /// "trap-func-name" if specified.
2894  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
2895
2896  /// \brief Create a check for a function parameter that may potentially be
2897  /// declared as non-null.
2898  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
2899                           const FunctionDecl *FD, unsigned ParmNum);
2900
2901  /// EmitCallArg - Emit a single call argument.
2902  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2903
2904  /// EmitDelegateCallArg - We are performing a delegate call; that
2905  /// is, the current function is delegating to another one.  Produce
2906  /// a r-value suitable for passing the given parameter.
2907  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2908                           SourceLocation loc);
2909
2910  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2911  /// point operation, expressed as the maximum relative error in ulp.
2912  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2913
2914private:
2915  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2916  void EmitReturnOfRValue(RValue RV, QualType Ty);
2917
2918  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2919
2920  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2921  DeferredReplacements;
2922
2923  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2924  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2925  ///
2926  /// \param AI - The first function argument of the expansion.
2927  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2928                          SmallVectorImpl<llvm::Argument *>::iterator &AI);
2929
2930  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2931  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2932  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2933  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2934                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
2935                        unsigned &IRCallArgPos);
2936
2937  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2938                            const Expr *InputExpr, std::string &ConstraintStr);
2939
2940  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2941                                  LValue InputValue, QualType InputType,
2942                                  std::string &ConstraintStr,
2943                                  SourceLocation Loc);
2944
2945public:
2946#ifndef NDEBUG
2947  // Determine whether the given argument is an Objective-C method
2948  // that may have type parameters in its signature.
2949  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
2950    const DeclContext *dc = method->getDeclContext();
2951    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
2952      return classDecl->getTypeParamListAsWritten();
2953    }
2954
2955    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
2956      return catDecl->getTypeParamList();
2957    }
2958
2959    return false;
2960  }
2961
2962  template<typename T>
2963  static bool isObjCMethodWithTypeParams(const T *) { return false; }
2964#endif
2965
2966  /// EmitCallArgs - Emit call arguments for a function.
2967  template <typename T>
2968  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2969                    CallExpr::const_arg_iterator ArgBeg,
2970                    CallExpr::const_arg_iterator ArgEnd,
2971                    const FunctionDecl *CalleeDecl = nullptr,
2972                    unsigned ParamsToSkip = 0) {
2973    SmallVector<QualType, 16> ArgTypes;
2974    CallExpr::const_arg_iterator Arg = ArgBeg;
2975
2976    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2977           "Can't skip parameters if type info is not provided");
2978    if (CallArgTypeInfo) {
2979#ifndef NDEBUG
2980      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
2981#endif
2982
2983      // First, use the argument types that the type info knows about
2984      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2985                E = CallArgTypeInfo->param_type_end();
2986           I != E; ++I, ++Arg) {
2987        assert(Arg != ArgEnd && "Running over edge of argument list!");
2988        assert((isGenericMethod ||
2989                ((*I)->isVariablyModifiedType() ||
2990                 (*I).getNonReferenceType()->isObjCRetainableType() ||
2991                 getContext()
2992                         .getCanonicalType((*I).getNonReferenceType())
2993                         .getTypePtr() ==
2994                     getContext()
2995                         .getCanonicalType(Arg->getType())
2996                         .getTypePtr())) &&
2997               "type mismatch in call argument!");
2998        ArgTypes.push_back(*I);
2999      }
3000    }
3001
3002    // Either we've emitted all the call args, or we have a call to variadic
3003    // function.
3004    assert(
3005        (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
3006        "Extra arguments in non-variadic function!");
3007
3008    // If we still have any arguments, emit them using the type of the argument.
3009    for (; Arg != ArgEnd; ++Arg)
3010      ArgTypes.push_back(getVarArgType(*Arg));
3011
3012    EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
3013  }
3014
3015  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3016                    CallExpr::const_arg_iterator ArgBeg,
3017                    CallExpr::const_arg_iterator ArgEnd,
3018                    const FunctionDecl *CalleeDecl = nullptr,
3019                    unsigned ParamsToSkip = 0);
3020
3021private:
3022  QualType getVarArgType(const Expr *Arg);
3023
3024  const TargetCodeGenInfo &getTargetHooks() const {
3025    return CGM.getTargetCodeGenInfo();
3026  }
3027
3028  void EmitDeclMetadata();
3029
3030  CodeGenModule::ByrefHelpers *
3031  buildByrefHelpers(llvm::StructType &byrefType,
3032                    const AutoVarEmission &emission);
3033
3034  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3035
3036  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
3037  /// value and compute our best estimate of the alignment of the pointee.
3038  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
3039
3040  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3041};
3042
3043/// Helper class with most of the code for saving a value for a
3044/// conditional expression cleanup.
3045struct DominatingLLVMValue {
3046  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3047
3048  /// Answer whether the given value needs extra work to be saved.
3049  static bool needsSaving(llvm::Value *value) {
3050    // If it's not an instruction, we don't need to save.
3051    if (!isa<llvm::Instruction>(value)) return false;
3052
3053    // If it's an instruction in the entry block, we don't need to save.
3054    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3055    return (block != &block->getParent()->getEntryBlock());
3056  }
3057
3058  /// Try to save the given value.
3059  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3060    if (!needsSaving(value)) return saved_type(value, false);
3061
3062    // Otherwise we need an alloca.
3063    llvm::Value *alloca =
3064      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
3065    CGF.Builder.CreateStore(value, alloca);
3066
3067    return saved_type(alloca, true);
3068  }
3069
3070  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3071    if (!value.getInt()) return value.getPointer();
3072    return CGF.Builder.CreateLoad(value.getPointer());
3073  }
3074};
3075
3076/// A partial specialization of DominatingValue for llvm::Values that
3077/// might be llvm::Instructions.
3078template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3079  typedef T *type;
3080  static type restore(CodeGenFunction &CGF, saved_type value) {
3081    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3082  }
3083};
3084
3085/// A specialization of DominatingValue for RValue.
3086template <> struct DominatingValue<RValue> {
3087  typedef RValue type;
3088  class saved_type {
3089    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3090                AggregateAddress, ComplexAddress };
3091
3092    llvm::Value *Value;
3093    Kind K;
3094    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
3095
3096  public:
3097    static bool needsSaving(RValue value);
3098    static saved_type save(CodeGenFunction &CGF, RValue value);
3099    RValue restore(CodeGenFunction &CGF);
3100
3101    // implementations in CGExprCXX.cpp
3102  };
3103
3104  static bool needsSaving(type value) {
3105    return saved_type::needsSaving(value);
3106  }
3107  static saved_type save(CodeGenFunction &CGF, type value) {
3108    return saved_type::save(CGF, value);
3109  }
3110  static type restore(CodeGenFunction &CGF, saved_type value) {
3111    return value.restore(CGF);
3112  }
3113};
3114
3115}  // end namespace CodeGen
3116}  // end namespace clang
3117
3118#endif
3119