CodeGenFunction.h revision 249423
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGValue.h"
20#include "CodeGenModule.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/ABI.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// The kind of evaluation to perform on values of a particular
82/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
83/// CGExprAgg?
84///
85/// TODO: should vectors maybe be split out into their own thing?
86enum TypeEvaluationKind {
87  TEK_Scalar,
88  TEK_Complex,
89  TEK_Aggregate
90};
91
92/// A branch fixup.  These are required when emitting a goto to a
93/// label which hasn't been emitted yet.  The goto is optimistically
94/// emitted as a branch to the basic block for the label, and (if it
95/// occurs in a scope with non-trivial cleanups) a fixup is added to
96/// the innermost cleanup.  When a (normal) cleanup is popped, any
97/// unresolved fixups in that scope are threaded through the cleanup.
98struct BranchFixup {
99  /// The block containing the terminator which needs to be modified
100  /// into a switch if this fixup is resolved into the current scope.
101  /// If null, LatestBranch points directly to the destination.
102  llvm::BasicBlock *OptimisticBranchBlock;
103
104  /// The ultimate destination of the branch.
105  ///
106  /// This can be set to null to indicate that this fixup was
107  /// successfully resolved.
108  llvm::BasicBlock *Destination;
109
110  /// The destination index value.
111  unsigned DestinationIndex;
112
113  /// The initial branch of the fixup.
114  llvm::BranchInst *InitialBranch;
115};
116
117template <class T> struct InvariantValue {
118  typedef T type;
119  typedef T saved_type;
120  static bool needsSaving(type value) { return false; }
121  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
122  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
123};
124
125/// A metaprogramming class for ensuring that a value will dominate an
126/// arbitrary position in a function.
127template <class T> struct DominatingValue : InvariantValue<T> {};
128
129template <class T, bool mightBeInstruction =
130            llvm::is_base_of<llvm::Value, T>::value &&
131            !llvm::is_base_of<llvm::Constant, T>::value &&
132            !llvm::is_base_of<llvm::BasicBlock, T>::value>
133struct DominatingPointer;
134template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
135// template <class T> struct DominatingPointer<T,true> at end of file
136
137template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
138
139enum CleanupKind {
140  EHCleanup = 0x1,
141  NormalCleanup = 0x2,
142  NormalAndEHCleanup = EHCleanup | NormalCleanup,
143
144  InactiveCleanup = 0x4,
145  InactiveEHCleanup = EHCleanup | InactiveCleanup,
146  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
147  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
148};
149
150/// A stack of scopes which respond to exceptions, including cleanups
151/// and catch blocks.
152class EHScopeStack {
153public:
154  /// A saved depth on the scope stack.  This is necessary because
155  /// pushing scopes onto the stack invalidates iterators.
156  class stable_iterator {
157    friend class EHScopeStack;
158
159    /// Offset from StartOfData to EndOfBuffer.
160    ptrdiff_t Size;
161
162    stable_iterator(ptrdiff_t Size) : Size(Size) {}
163
164  public:
165    static stable_iterator invalid() { return stable_iterator(-1); }
166    stable_iterator() : Size(-1) {}
167
168    bool isValid() const { return Size >= 0; }
169
170    /// Returns true if this scope encloses I.
171    /// Returns false if I is invalid.
172    /// This scope must be valid.
173    bool encloses(stable_iterator I) const { return Size <= I.Size; }
174
175    /// Returns true if this scope strictly encloses I: that is,
176    /// if it encloses I and is not I.
177    /// Returns false is I is invalid.
178    /// This scope must be valid.
179    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
180
181    friend bool operator==(stable_iterator A, stable_iterator B) {
182      return A.Size == B.Size;
183    }
184    friend bool operator!=(stable_iterator A, stable_iterator B) {
185      return A.Size != B.Size;
186    }
187  };
188
189  /// Information for lazily generating a cleanup.  Subclasses must be
190  /// POD-like: cleanups will not be destructed, and they will be
191  /// allocated on the cleanup stack and freely copied and moved
192  /// around.
193  ///
194  /// Cleanup implementations should generally be declared in an
195  /// anonymous namespace.
196  class Cleanup {
197    // Anchor the construction vtable.
198    virtual void anchor();
199  public:
200    /// Generation flags.
201    class Flags {
202      enum {
203        F_IsForEH             = 0x1,
204        F_IsNormalCleanupKind = 0x2,
205        F_IsEHCleanupKind     = 0x4
206      };
207      unsigned flags;
208
209    public:
210      Flags() : flags(0) {}
211
212      /// isForEH - true if the current emission is for an EH cleanup.
213      bool isForEHCleanup() const { return flags & F_IsForEH; }
214      bool isForNormalCleanup() const { return !isForEHCleanup(); }
215      void setIsForEHCleanup() { flags |= F_IsForEH; }
216
217      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
218      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
219
220      /// isEHCleanupKind - true if the cleanup was pushed as an EH
221      /// cleanup.
222      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
223      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
224    };
225
226    // Provide a virtual destructor to suppress a very common warning
227    // that unfortunately cannot be suppressed without this.  Cleanups
228    // should not rely on this destructor ever being called.
229    virtual ~Cleanup() {}
230
231    /// Emit the cleanup.  For normal cleanups, this is run in the
232    /// same EH context as when the cleanup was pushed, i.e. the
233    /// immediately-enclosing context of the cleanup scope.  For
234    /// EH cleanups, this is run in a terminate context.
235    ///
236    // \param flags cleanup kind.
237    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
238  };
239
240  /// ConditionalCleanupN stores the saved form of its N parameters,
241  /// then restores them and performs the cleanup.
242  template <class T, class A0>
243  class ConditionalCleanup1 : public Cleanup {
244    typedef typename DominatingValue<A0>::saved_type A0_saved;
245    A0_saved a0_saved;
246
247    void Emit(CodeGenFunction &CGF, Flags flags) {
248      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249      T(a0).Emit(CGF, flags);
250    }
251
252  public:
253    ConditionalCleanup1(A0_saved a0)
254      : a0_saved(a0) {}
255  };
256
257  template <class T, class A0, class A1>
258  class ConditionalCleanup2 : public Cleanup {
259    typedef typename DominatingValue<A0>::saved_type A0_saved;
260    typedef typename DominatingValue<A1>::saved_type A1_saved;
261    A0_saved a0_saved;
262    A1_saved a1_saved;
263
264    void Emit(CodeGenFunction &CGF, Flags flags) {
265      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
266      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
267      T(a0, a1).Emit(CGF, flags);
268    }
269
270  public:
271    ConditionalCleanup2(A0_saved a0, A1_saved a1)
272      : a0_saved(a0), a1_saved(a1) {}
273  };
274
275  template <class T, class A0, class A1, class A2>
276  class ConditionalCleanup3 : public Cleanup {
277    typedef typename DominatingValue<A0>::saved_type A0_saved;
278    typedef typename DominatingValue<A1>::saved_type A1_saved;
279    typedef typename DominatingValue<A2>::saved_type A2_saved;
280    A0_saved a0_saved;
281    A1_saved a1_saved;
282    A2_saved a2_saved;
283
284    void Emit(CodeGenFunction &CGF, Flags flags) {
285      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
286      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
287      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
288      T(a0, a1, a2).Emit(CGF, flags);
289    }
290
291  public:
292    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
293      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
294  };
295
296  template <class T, class A0, class A1, class A2, class A3>
297  class ConditionalCleanup4 : public Cleanup {
298    typedef typename DominatingValue<A0>::saved_type A0_saved;
299    typedef typename DominatingValue<A1>::saved_type A1_saved;
300    typedef typename DominatingValue<A2>::saved_type A2_saved;
301    typedef typename DominatingValue<A3>::saved_type A3_saved;
302    A0_saved a0_saved;
303    A1_saved a1_saved;
304    A2_saved a2_saved;
305    A3_saved a3_saved;
306
307    void Emit(CodeGenFunction &CGF, Flags flags) {
308      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
309      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
310      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
311      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
312      T(a0, a1, a2, a3).Emit(CGF, flags);
313    }
314
315  public:
316    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
317      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
318  };
319
320private:
321  // The implementation for this class is in CGException.h and
322  // CGException.cpp; the definition is here because it's used as a
323  // member of CodeGenFunction.
324
325  /// The start of the scope-stack buffer, i.e. the allocated pointer
326  /// for the buffer.  All of these pointers are either simultaneously
327  /// null or simultaneously valid.
328  char *StartOfBuffer;
329
330  /// The end of the buffer.
331  char *EndOfBuffer;
332
333  /// The first valid entry in the buffer.
334  char *StartOfData;
335
336  /// The innermost normal cleanup on the stack.
337  stable_iterator InnermostNormalCleanup;
338
339  /// The innermost EH scope on the stack.
340  stable_iterator InnermostEHScope;
341
342  /// The current set of branch fixups.  A branch fixup is a jump to
343  /// an as-yet unemitted label, i.e. a label for which we don't yet
344  /// know the EH stack depth.  Whenever we pop a cleanup, we have
345  /// to thread all the current branch fixups through it.
346  ///
347  /// Fixups are recorded as the Use of the respective branch or
348  /// switch statement.  The use points to the final destination.
349  /// When popping out of a cleanup, these uses are threaded through
350  /// the cleanup and adjusted to point to the new cleanup.
351  ///
352  /// Note that branches are allowed to jump into protected scopes
353  /// in certain situations;  e.g. the following code is legal:
354  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
355  ///     goto foo;
356  ///     A a;
357  ///    foo:
358  ///     bar();
359  SmallVector<BranchFixup, 8> BranchFixups;
360
361  char *allocate(size_t Size);
362
363  void *pushCleanup(CleanupKind K, size_t DataSize);
364
365public:
366  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
367                   InnermostNormalCleanup(stable_end()),
368                   InnermostEHScope(stable_end()) {}
369  ~EHScopeStack() { delete[] StartOfBuffer; }
370
371  // Variadic templates would make this not terrible.
372
373  /// Push a lazily-created cleanup on the stack.
374  template <class T>
375  void pushCleanup(CleanupKind Kind) {
376    void *Buffer = pushCleanup(Kind, sizeof(T));
377    Cleanup *Obj = new(Buffer) T();
378    (void) Obj;
379  }
380
381  /// Push a lazily-created cleanup on the stack.
382  template <class T, class A0>
383  void pushCleanup(CleanupKind Kind, A0 a0) {
384    void *Buffer = pushCleanup(Kind, sizeof(T));
385    Cleanup *Obj = new(Buffer) T(a0);
386    (void) Obj;
387  }
388
389  /// Push a lazily-created cleanup on the stack.
390  template <class T, class A0, class A1>
391  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
392    void *Buffer = pushCleanup(Kind, sizeof(T));
393    Cleanup *Obj = new(Buffer) T(a0, a1);
394    (void) Obj;
395  }
396
397  /// Push a lazily-created cleanup on the stack.
398  template <class T, class A0, class A1, class A2>
399  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
400    void *Buffer = pushCleanup(Kind, sizeof(T));
401    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
402    (void) Obj;
403  }
404
405  /// Push a lazily-created cleanup on the stack.
406  template <class T, class A0, class A1, class A2, class A3>
407  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
408    void *Buffer = pushCleanup(Kind, sizeof(T));
409    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
410    (void) Obj;
411  }
412
413  /// Push a lazily-created cleanup on the stack.
414  template <class T, class A0, class A1, class A2, class A3, class A4>
415  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
416    void *Buffer = pushCleanup(Kind, sizeof(T));
417    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
418    (void) Obj;
419  }
420
421  // Feel free to add more variants of the following:
422
423  /// Push a cleanup with non-constant storage requirements on the
424  /// stack.  The cleanup type must provide an additional static method:
425  ///   static size_t getExtraSize(size_t);
426  /// The argument to this method will be the value N, which will also
427  /// be passed as the first argument to the constructor.
428  ///
429  /// The data stored in the extra storage must obey the same
430  /// restrictions as normal cleanup member data.
431  ///
432  /// The pointer returned from this method is valid until the cleanup
433  /// stack is modified.
434  template <class T, class A0, class A1, class A2>
435  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
436    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
437    return new (Buffer) T(N, a0, a1, a2);
438  }
439
440  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
441  void popCleanup();
442
443  /// Push a set of catch handlers on the stack.  The catch is
444  /// uninitialized and will need to have the given number of handlers
445  /// set on it.
446  class EHCatchScope *pushCatch(unsigned NumHandlers);
447
448  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
449  void popCatch();
450
451  /// Push an exceptions filter on the stack.
452  class EHFilterScope *pushFilter(unsigned NumFilters);
453
454  /// Pops an exceptions filter off the stack.
455  void popFilter();
456
457  /// Push a terminate handler on the stack.
458  void pushTerminate();
459
460  /// Pops a terminate handler off the stack.
461  void popTerminate();
462
463  /// Determines whether the exception-scopes stack is empty.
464  bool empty() const { return StartOfData == EndOfBuffer; }
465
466  bool requiresLandingPad() const {
467    return InnermostEHScope != stable_end();
468  }
469
470  /// Determines whether there are any normal cleanups on the stack.
471  bool hasNormalCleanups() const {
472    return InnermostNormalCleanup != stable_end();
473  }
474
475  /// Returns the innermost normal cleanup on the stack, or
476  /// stable_end() if there are no normal cleanups.
477  stable_iterator getInnermostNormalCleanup() const {
478    return InnermostNormalCleanup;
479  }
480  stable_iterator getInnermostActiveNormalCleanup() const;
481
482  stable_iterator getInnermostEHScope() const {
483    return InnermostEHScope;
484  }
485
486  stable_iterator getInnermostActiveEHScope() const;
487
488  /// An unstable reference to a scope-stack depth.  Invalidated by
489  /// pushes but not pops.
490  class iterator;
491
492  /// Returns an iterator pointing to the innermost EH scope.
493  iterator begin() const;
494
495  /// Returns an iterator pointing to the outermost EH scope.
496  iterator end() const;
497
498  /// Create a stable reference to the top of the EH stack.  The
499  /// returned reference is valid until that scope is popped off the
500  /// stack.
501  stable_iterator stable_begin() const {
502    return stable_iterator(EndOfBuffer - StartOfData);
503  }
504
505  /// Create a stable reference to the bottom of the EH stack.
506  static stable_iterator stable_end() {
507    return stable_iterator(0);
508  }
509
510  /// Translates an iterator into a stable_iterator.
511  stable_iterator stabilize(iterator it) const;
512
513  /// Turn a stable reference to a scope depth into a unstable pointer
514  /// to the EH stack.
515  iterator find(stable_iterator save) const;
516
517  /// Removes the cleanup pointed to by the given stable_iterator.
518  void removeCleanup(stable_iterator save);
519
520  /// Add a branch fixup to the current cleanup scope.
521  BranchFixup &addBranchFixup() {
522    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
523    BranchFixups.push_back(BranchFixup());
524    return BranchFixups.back();
525  }
526
527  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
528  BranchFixup &getBranchFixup(unsigned I) {
529    assert(I < getNumBranchFixups());
530    return BranchFixups[I];
531  }
532
533  /// Pops lazily-removed fixups from the end of the list.  This
534  /// should only be called by procedures which have just popped a
535  /// cleanup or resolved one or more fixups.
536  void popNullFixups();
537
538  /// Clears the branch-fixups list.  This should only be called by
539  /// ResolveAllBranchFixups.
540  void clearFixups() { BranchFixups.clear(); }
541};
542
543/// CodeGenFunction - This class organizes the per-function state that is used
544/// while generating LLVM code.
545class CodeGenFunction : public CodeGenTypeCache {
546  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
547  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
548
549  friend class CGCXXABI;
550public:
551  /// A jump destination is an abstract label, branching to which may
552  /// require a jump out through normal cleanups.
553  struct JumpDest {
554    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
555    JumpDest(llvm::BasicBlock *Block,
556             EHScopeStack::stable_iterator Depth,
557             unsigned Index)
558      : Block(Block), ScopeDepth(Depth), Index(Index) {}
559
560    bool isValid() const { return Block != 0; }
561    llvm::BasicBlock *getBlock() const { return Block; }
562    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
563    unsigned getDestIndex() const { return Index; }
564
565    // This should be used cautiously.
566    void setScopeDepth(EHScopeStack::stable_iterator depth) {
567      ScopeDepth = depth;
568    }
569
570  private:
571    llvm::BasicBlock *Block;
572    EHScopeStack::stable_iterator ScopeDepth;
573    unsigned Index;
574  };
575
576  CodeGenModule &CGM;  // Per-module state.
577  const TargetInfo &Target;
578
579  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
580  CGBuilderTy Builder;
581
582  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
583  /// This excludes BlockDecls.
584  const Decl *CurFuncDecl;
585  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
586  const Decl *CurCodeDecl;
587  const CGFunctionInfo *CurFnInfo;
588  QualType FnRetTy;
589  llvm::Function *CurFn;
590
591  /// CurGD - The GlobalDecl for the current function being compiled.
592  GlobalDecl CurGD;
593
594  /// PrologueCleanupDepth - The cleanup depth enclosing all the
595  /// cleanups associated with the parameters.
596  EHScopeStack::stable_iterator PrologueCleanupDepth;
597
598  /// ReturnBlock - Unified return block.
599  JumpDest ReturnBlock;
600
601  /// ReturnValue - The temporary alloca to hold the return value. This is null
602  /// iff the function has no return value.
603  llvm::Value *ReturnValue;
604
605  /// AllocaInsertPoint - This is an instruction in the entry block before which
606  /// we prefer to insert allocas.
607  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
608
609  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
610  /// potentially higher performance penalties.
611  unsigned char BoundsChecking;
612
613  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
614  /// calls to EmitTypeCheck can be skipped.
615  bool SanitizePerformTypeCheck;
616
617  /// \brief Sanitizer options to use for this function.
618  const SanitizerOptions *SanOpts;
619
620  /// In ARC, whether we should autorelease the return value.
621  bool AutoreleaseResult;
622
623  const CodeGen::CGBlockInfo *BlockInfo;
624  llvm::Value *BlockPointer;
625
626  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
627  FieldDecl *LambdaThisCaptureField;
628
629  /// \brief A mapping from NRVO variables to the flags used to indicate
630  /// when the NRVO has been applied to this variable.
631  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
632
633  EHScopeStack EHStack;
634
635  /// i32s containing the indexes of the cleanup destinations.
636  llvm::AllocaInst *NormalCleanupDest;
637
638  unsigned NextCleanupDestIndex;
639
640  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
641  CGBlockInfo *FirstBlockInfo;
642
643  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
644  llvm::BasicBlock *EHResumeBlock;
645
646  /// The exception slot.  All landing pads write the current exception pointer
647  /// into this alloca.
648  llvm::Value *ExceptionSlot;
649
650  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
651  /// write the current selector value into this alloca.
652  llvm::AllocaInst *EHSelectorSlot;
653
654  /// Emits a landing pad for the current EH stack.
655  llvm::BasicBlock *EmitLandingPad();
656
657  llvm::BasicBlock *getInvokeDestImpl();
658
659  template <class T>
660  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
661    return DominatingValue<T>::save(*this, value);
662  }
663
664public:
665  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
666  /// rethrows.
667  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
668
669  /// A class controlling the emission of a finally block.
670  class FinallyInfo {
671    /// Where the catchall's edge through the cleanup should go.
672    JumpDest RethrowDest;
673
674    /// A function to call to enter the catch.
675    llvm::Constant *BeginCatchFn;
676
677    /// An i1 variable indicating whether or not the @finally is
678    /// running for an exception.
679    llvm::AllocaInst *ForEHVar;
680
681    /// An i8* variable into which the exception pointer to rethrow
682    /// has been saved.
683    llvm::AllocaInst *SavedExnVar;
684
685  public:
686    void enter(CodeGenFunction &CGF, const Stmt *Finally,
687               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
688               llvm::Constant *rethrowFn);
689    void exit(CodeGenFunction &CGF);
690  };
691
692  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
693  /// current full-expression.  Safe against the possibility that
694  /// we're currently inside a conditionally-evaluated expression.
695  template <class T, class A0>
696  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
697    // If we're not in a conditional branch, or if none of the
698    // arguments requires saving, then use the unconditional cleanup.
699    if (!isInConditionalBranch())
700      return EHStack.pushCleanup<T>(kind, a0);
701
702    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
703
704    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
705    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
706    initFullExprCleanup();
707  }
708
709  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
710  /// current full-expression.  Safe against the possibility that
711  /// we're currently inside a conditionally-evaluated expression.
712  template <class T, class A0, class A1>
713  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
714    // If we're not in a conditional branch, or if none of the
715    // arguments requires saving, then use the unconditional cleanup.
716    if (!isInConditionalBranch())
717      return EHStack.pushCleanup<T>(kind, a0, a1);
718
719    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721
722    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
723    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
724    initFullExprCleanup();
725  }
726
727  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728  /// current full-expression.  Safe against the possibility that
729  /// we're currently inside a conditionally-evaluated expression.
730  template <class T, class A0, class A1, class A2>
731  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
732    // If we're not in a conditional branch, or if none of the
733    // arguments requires saving, then use the unconditional cleanup.
734    if (!isInConditionalBranch()) {
735      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
736    }
737
738    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741
742    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
743    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
744    initFullExprCleanup();
745  }
746
747  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
748  /// current full-expression.  Safe against the possibility that
749  /// we're currently inside a conditionally-evaluated expression.
750  template <class T, class A0, class A1, class A2, class A3>
751  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
752    // If we're not in a conditional branch, or if none of the
753    // arguments requires saving, then use the unconditional cleanup.
754    if (!isInConditionalBranch()) {
755      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
756    }
757
758    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
759    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
760    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
761    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
762
763    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
764    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
765                                     a2_saved, a3_saved);
766    initFullExprCleanup();
767  }
768
769  /// Set up the last cleaup that was pushed as a conditional
770  /// full-expression cleanup.
771  void initFullExprCleanup();
772
773  /// PushDestructorCleanup - Push a cleanup to call the
774  /// complete-object destructor of an object of the given type at the
775  /// given address.  Does nothing if T is not a C++ class type with a
776  /// non-trivial destructor.
777  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
778
779  /// PushDestructorCleanup - Push a cleanup to call the
780  /// complete-object variant of the given destructor on the object at
781  /// the given address.
782  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
783                             llvm::Value *Addr);
784
785  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
786  /// process all branch fixups.
787  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
788
789  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
790  /// The block cannot be reactivated.  Pops it if it's the top of the
791  /// stack.
792  ///
793  /// \param DominatingIP - An instruction which is known to
794  ///   dominate the current IP (if set) and which lies along
795  ///   all paths of execution between the current IP and the
796  ///   the point at which the cleanup comes into scope.
797  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
798                              llvm::Instruction *DominatingIP);
799
800  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
801  /// Cannot be used to resurrect a deactivated cleanup.
802  ///
803  /// \param DominatingIP - An instruction which is known to
804  ///   dominate the current IP (if set) and which lies along
805  ///   all paths of execution between the current IP and the
806  ///   the point at which the cleanup comes into scope.
807  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
808                            llvm::Instruction *DominatingIP);
809
810  /// \brief Enters a new scope for capturing cleanups, all of which
811  /// will be executed once the scope is exited.
812  class RunCleanupsScope {
813    EHScopeStack::stable_iterator CleanupStackDepth;
814    bool OldDidCallStackSave;
815  protected:
816    bool PerformCleanup;
817  private:
818
819    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
820    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
821
822  protected:
823    CodeGenFunction& CGF;
824
825  public:
826    /// \brief Enter a new cleanup scope.
827    explicit RunCleanupsScope(CodeGenFunction &CGF)
828      : PerformCleanup(true), CGF(CGF)
829    {
830      CleanupStackDepth = CGF.EHStack.stable_begin();
831      OldDidCallStackSave = CGF.DidCallStackSave;
832      CGF.DidCallStackSave = false;
833    }
834
835    /// \brief Exit this cleanup scope, emitting any accumulated
836    /// cleanups.
837    ~RunCleanupsScope() {
838      if (PerformCleanup) {
839        CGF.DidCallStackSave = OldDidCallStackSave;
840        CGF.PopCleanupBlocks(CleanupStackDepth);
841      }
842    }
843
844    /// \brief Determine whether this scope requires any cleanups.
845    bool requiresCleanups() const {
846      return CGF.EHStack.stable_begin() != CleanupStackDepth;
847    }
848
849    /// \brief Force the emission of cleanups now, instead of waiting
850    /// until this object is destroyed.
851    void ForceCleanup() {
852      assert(PerformCleanup && "Already forced cleanup");
853      CGF.DidCallStackSave = OldDidCallStackSave;
854      CGF.PopCleanupBlocks(CleanupStackDepth);
855      PerformCleanup = false;
856    }
857  };
858
859  class LexicalScope: protected RunCleanupsScope {
860    SourceRange Range;
861    SmallVector<const LabelDecl*, 4> Labels;
862    LexicalScope *ParentScope;
863
864    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
865    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
866
867  public:
868    /// \brief Enter a new cleanup scope.
869    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
870      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
871      CGF.CurLexicalScope = this;
872      if (CGDebugInfo *DI = CGF.getDebugInfo())
873        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
874    }
875
876    void addLabel(const LabelDecl *label) {
877      assert(PerformCleanup && "adding label to dead scope?");
878      Labels.push_back(label);
879    }
880
881    /// \brief Exit this cleanup scope, emitting any accumulated
882    /// cleanups.
883    ~LexicalScope() {
884      if (CGDebugInfo *DI = CGF.getDebugInfo())
885        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
886
887      // If we should perform a cleanup, force them now.  Note that
888      // this ends the cleanup scope before rescoping any labels.
889      if (PerformCleanup) ForceCleanup();
890    }
891
892    /// \brief Force the emission of cleanups now, instead of waiting
893    /// until this object is destroyed.
894    void ForceCleanup() {
895      CGF.CurLexicalScope = ParentScope;
896      RunCleanupsScope::ForceCleanup();
897
898      if (!Labels.empty())
899        rescopeLabels();
900    }
901
902    void rescopeLabels();
903  };
904
905
906  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
907  /// the cleanup blocks that have been added.
908  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
909
910  void ResolveBranchFixups(llvm::BasicBlock *Target);
911
912  /// The given basic block lies in the current EH scope, but may be a
913  /// target of a potentially scope-crossing jump; get a stable handle
914  /// to which we can perform this jump later.
915  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
916    return JumpDest(Target,
917                    EHStack.getInnermostNormalCleanup(),
918                    NextCleanupDestIndex++);
919  }
920
921  /// The given basic block lies in the current EH scope, but may be a
922  /// target of a potentially scope-crossing jump; get a stable handle
923  /// to which we can perform this jump later.
924  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
925    return getJumpDestInCurrentScope(createBasicBlock(Name));
926  }
927
928  /// EmitBranchThroughCleanup - Emit a branch from the current insert
929  /// block through the normal cleanup handling code (if any) and then
930  /// on to \arg Dest.
931  void EmitBranchThroughCleanup(JumpDest Dest);
932
933  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
934  /// specified destination obviously has no cleanups to run.  'false' is always
935  /// a conservatively correct answer for this method.
936  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
937
938  /// popCatchScope - Pops the catch scope at the top of the EHScope
939  /// stack, emitting any required code (other than the catch handlers
940  /// themselves).
941  void popCatchScope();
942
943  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
944  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
945
946  /// An object to manage conditionally-evaluated expressions.
947  class ConditionalEvaluation {
948    llvm::BasicBlock *StartBB;
949
950  public:
951    ConditionalEvaluation(CodeGenFunction &CGF)
952      : StartBB(CGF.Builder.GetInsertBlock()) {}
953
954    void begin(CodeGenFunction &CGF) {
955      assert(CGF.OutermostConditional != this);
956      if (!CGF.OutermostConditional)
957        CGF.OutermostConditional = this;
958    }
959
960    void end(CodeGenFunction &CGF) {
961      assert(CGF.OutermostConditional != 0);
962      if (CGF.OutermostConditional == this)
963        CGF.OutermostConditional = 0;
964    }
965
966    /// Returns a block which will be executed prior to each
967    /// evaluation of the conditional code.
968    llvm::BasicBlock *getStartingBlock() const {
969      return StartBB;
970    }
971  };
972
973  /// isInConditionalBranch - Return true if we're currently emitting
974  /// one branch or the other of a conditional expression.
975  bool isInConditionalBranch() const { return OutermostConditional != 0; }
976
977  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
978    assert(isInConditionalBranch());
979    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
980    new llvm::StoreInst(value, addr, &block->back());
981  }
982
983  /// An RAII object to record that we're evaluating a statement
984  /// expression.
985  class StmtExprEvaluation {
986    CodeGenFunction &CGF;
987
988    /// We have to save the outermost conditional: cleanups in a
989    /// statement expression aren't conditional just because the
990    /// StmtExpr is.
991    ConditionalEvaluation *SavedOutermostConditional;
992
993  public:
994    StmtExprEvaluation(CodeGenFunction &CGF)
995      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
996      CGF.OutermostConditional = 0;
997    }
998
999    ~StmtExprEvaluation() {
1000      CGF.OutermostConditional = SavedOutermostConditional;
1001      CGF.EnsureInsertPoint();
1002    }
1003  };
1004
1005  /// An object which temporarily prevents a value from being
1006  /// destroyed by aggressive peephole optimizations that assume that
1007  /// all uses of a value have been realized in the IR.
1008  class PeepholeProtection {
1009    llvm::Instruction *Inst;
1010    friend class CodeGenFunction;
1011
1012  public:
1013    PeepholeProtection() : Inst(0) {}
1014  };
1015
1016  /// A non-RAII class containing all the information about a bound
1017  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1018  /// this which makes individual mappings very simple; using this
1019  /// class directly is useful when you have a variable number of
1020  /// opaque values or don't want the RAII functionality for some
1021  /// reason.
1022  class OpaqueValueMappingData {
1023    const OpaqueValueExpr *OpaqueValue;
1024    bool BoundLValue;
1025    CodeGenFunction::PeepholeProtection Protection;
1026
1027    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1028                           bool boundLValue)
1029      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1030  public:
1031    OpaqueValueMappingData() : OpaqueValue(0) {}
1032
1033    static bool shouldBindAsLValue(const Expr *expr) {
1034      // gl-values should be bound as l-values for obvious reasons.
1035      // Records should be bound as l-values because IR generation
1036      // always keeps them in memory.  Expressions of function type
1037      // act exactly like l-values but are formally required to be
1038      // r-values in C.
1039      return expr->isGLValue() ||
1040             expr->getType()->isRecordType() ||
1041             expr->getType()->isFunctionType();
1042    }
1043
1044    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1045                                       const OpaqueValueExpr *ov,
1046                                       const Expr *e) {
1047      if (shouldBindAsLValue(ov))
1048        return bind(CGF, ov, CGF.EmitLValue(e));
1049      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1050    }
1051
1052    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1053                                       const OpaqueValueExpr *ov,
1054                                       const LValue &lv) {
1055      assert(shouldBindAsLValue(ov));
1056      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1057      return OpaqueValueMappingData(ov, true);
1058    }
1059
1060    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1061                                       const OpaqueValueExpr *ov,
1062                                       const RValue &rv) {
1063      assert(!shouldBindAsLValue(ov));
1064      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1065
1066      OpaqueValueMappingData data(ov, false);
1067
1068      // Work around an extremely aggressive peephole optimization in
1069      // EmitScalarConversion which assumes that all other uses of a
1070      // value are extant.
1071      data.Protection = CGF.protectFromPeepholes(rv);
1072
1073      return data;
1074    }
1075
1076    bool isValid() const { return OpaqueValue != 0; }
1077    void clear() { OpaqueValue = 0; }
1078
1079    void unbind(CodeGenFunction &CGF) {
1080      assert(OpaqueValue && "no data to unbind!");
1081
1082      if (BoundLValue) {
1083        CGF.OpaqueLValues.erase(OpaqueValue);
1084      } else {
1085        CGF.OpaqueRValues.erase(OpaqueValue);
1086        CGF.unprotectFromPeepholes(Protection);
1087      }
1088    }
1089  };
1090
1091  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1092  class OpaqueValueMapping {
1093    CodeGenFunction &CGF;
1094    OpaqueValueMappingData Data;
1095
1096  public:
1097    static bool shouldBindAsLValue(const Expr *expr) {
1098      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1099    }
1100
1101    /// Build the opaque value mapping for the given conditional
1102    /// operator if it's the GNU ?: extension.  This is a common
1103    /// enough pattern that the convenience operator is really
1104    /// helpful.
1105    ///
1106    OpaqueValueMapping(CodeGenFunction &CGF,
1107                       const AbstractConditionalOperator *op) : CGF(CGF) {
1108      if (isa<ConditionalOperator>(op))
1109        // Leave Data empty.
1110        return;
1111
1112      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1113      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1114                                          e->getCommon());
1115    }
1116
1117    OpaqueValueMapping(CodeGenFunction &CGF,
1118                       const OpaqueValueExpr *opaqueValue,
1119                       LValue lvalue)
1120      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1121    }
1122
1123    OpaqueValueMapping(CodeGenFunction &CGF,
1124                       const OpaqueValueExpr *opaqueValue,
1125                       RValue rvalue)
1126      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1127    }
1128
1129    void pop() {
1130      Data.unbind(CGF);
1131      Data.clear();
1132    }
1133
1134    ~OpaqueValueMapping() {
1135      if (Data.isValid()) Data.unbind(CGF);
1136    }
1137  };
1138
1139  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1140  /// number that holds the value.
1141  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1142
1143  /// BuildBlockByrefAddress - Computes address location of the
1144  /// variable which is declared as __block.
1145  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1146                                      const VarDecl *V);
1147private:
1148  CGDebugInfo *DebugInfo;
1149  bool DisableDebugInfo;
1150
1151  /// If the current function returns 'this', use the field to keep track of
1152  /// the callee that returns 'this'.
1153  llvm::Value *CalleeWithThisReturn;
1154
1155  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1156  /// calling llvm.stacksave for multiple VLAs in the same scope.
1157  bool DidCallStackSave;
1158
1159  /// IndirectBranch - The first time an indirect goto is seen we create a block
1160  /// with an indirect branch.  Every time we see the address of a label taken,
1161  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1162  /// codegen'd as a jump to the IndirectBranch's basic block.
1163  llvm::IndirectBrInst *IndirectBranch;
1164
1165  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1166  /// decls.
1167  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1168  DeclMapTy LocalDeclMap;
1169
1170  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1171  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1172
1173  // BreakContinueStack - This keeps track of where break and continue
1174  // statements should jump to.
1175  struct BreakContinue {
1176    BreakContinue(JumpDest Break, JumpDest Continue)
1177      : BreakBlock(Break), ContinueBlock(Continue) {}
1178
1179    JumpDest BreakBlock;
1180    JumpDest ContinueBlock;
1181  };
1182  SmallVector<BreakContinue, 8> BreakContinueStack;
1183
1184  /// SwitchInsn - This is nearest current switch instruction. It is null if
1185  /// current context is not in a switch.
1186  llvm::SwitchInst *SwitchInsn;
1187
1188  /// CaseRangeBlock - This block holds if condition check for last case
1189  /// statement range in current switch instruction.
1190  llvm::BasicBlock *CaseRangeBlock;
1191
1192  /// OpaqueLValues - Keeps track of the current set of opaque value
1193  /// expressions.
1194  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1195  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1196
1197  // VLASizeMap - This keeps track of the associated size for each VLA type.
1198  // We track this by the size expression rather than the type itself because
1199  // in certain situations, like a const qualifier applied to an VLA typedef,
1200  // multiple VLA types can share the same size expression.
1201  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1202  // enter/leave scopes.
1203  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1204
1205  /// A block containing a single 'unreachable' instruction.  Created
1206  /// lazily by getUnreachableBlock().
1207  llvm::BasicBlock *UnreachableBlock;
1208
1209  /// CXXThisDecl - When generating code for a C++ member function,
1210  /// this will hold the implicit 'this' declaration.
1211  ImplicitParamDecl *CXXABIThisDecl;
1212  llvm::Value *CXXABIThisValue;
1213  llvm::Value *CXXThisValue;
1214
1215  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1216  /// destructor, this will hold the implicit argument (e.g. VTT).
1217  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1218  llvm::Value *CXXStructorImplicitParamValue;
1219
1220  /// OutermostConditional - Points to the outermost active
1221  /// conditional control.  This is used so that we know if a
1222  /// temporary should be destroyed conditionally.
1223  ConditionalEvaluation *OutermostConditional;
1224
1225  /// The current lexical scope.
1226  LexicalScope *CurLexicalScope;
1227
1228  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1229  /// type as well as the field number that contains the actual data.
1230  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1231                                              unsigned> > ByRefValueInfo;
1232
1233  llvm::BasicBlock *TerminateLandingPad;
1234  llvm::BasicBlock *TerminateHandler;
1235  llvm::BasicBlock *TrapBB;
1236
1237  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1238  /// In the kernel metadata node, reference the kernel function and metadata
1239  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1240  /// - A node for the vec_type_hint(<type>) qualifier contains string
1241  ///   "vec_type_hint", an undefined value of the <type> data type,
1242  ///   and a Boolean that is true if the <type> is integer and signed.
1243  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1244  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1245  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1246  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1247  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1248                                llvm::Function *Fn);
1249
1250public:
1251  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1252  ~CodeGenFunction();
1253
1254  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1255  ASTContext &getContext() const { return CGM.getContext(); }
1256  /// Returns true if DebugInfo is actually initialized.
1257  bool maybeInitializeDebugInfo() {
1258    if (CGM.getModuleDebugInfo()) {
1259      DebugInfo = CGM.getModuleDebugInfo();
1260      return true;
1261    }
1262    return false;
1263  }
1264  CGDebugInfo *getDebugInfo() {
1265    if (DisableDebugInfo)
1266      return NULL;
1267    return DebugInfo;
1268  }
1269  void disableDebugInfo() { DisableDebugInfo = true; }
1270  void enableDebugInfo() { DisableDebugInfo = false; }
1271
1272  bool shouldUseFusedARCCalls() {
1273    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1274  }
1275
1276  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1277
1278  /// Returns a pointer to the function's exception object and selector slot,
1279  /// which is assigned in every landing pad.
1280  llvm::Value *getExceptionSlot();
1281  llvm::Value *getEHSelectorSlot();
1282
1283  /// Returns the contents of the function's exception object and selector
1284  /// slots.
1285  llvm::Value *getExceptionFromSlot();
1286  llvm::Value *getSelectorFromSlot();
1287
1288  llvm::Value *getNormalCleanupDestSlot();
1289
1290  llvm::BasicBlock *getUnreachableBlock() {
1291    if (!UnreachableBlock) {
1292      UnreachableBlock = createBasicBlock("unreachable");
1293      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1294    }
1295    return UnreachableBlock;
1296  }
1297
1298  llvm::BasicBlock *getInvokeDest() {
1299    if (!EHStack.requiresLandingPad()) return 0;
1300    return getInvokeDestImpl();
1301  }
1302
1303  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1304
1305  //===--------------------------------------------------------------------===//
1306  //                                  Cleanups
1307  //===--------------------------------------------------------------------===//
1308
1309  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1310
1311  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1312                                        llvm::Value *arrayEndPointer,
1313                                        QualType elementType,
1314                                        Destroyer *destroyer);
1315  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1316                                      llvm::Value *arrayEnd,
1317                                      QualType elementType,
1318                                      Destroyer *destroyer);
1319
1320  void pushDestroy(QualType::DestructionKind dtorKind,
1321                   llvm::Value *addr, QualType type);
1322  void pushEHDestroy(QualType::DestructionKind dtorKind,
1323                     llvm::Value *addr, QualType type);
1324  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1325                   Destroyer *destroyer, bool useEHCleanupForArray);
1326  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1327                   bool useEHCleanupForArray);
1328  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1329                                        QualType type,
1330                                        Destroyer *destroyer,
1331                                        bool useEHCleanupForArray);
1332  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1333                        QualType type, Destroyer *destroyer,
1334                        bool checkZeroLength, bool useEHCleanup);
1335
1336  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1337
1338  /// Determines whether an EH cleanup is required to destroy a type
1339  /// with the given destruction kind.
1340  bool needsEHCleanup(QualType::DestructionKind kind) {
1341    switch (kind) {
1342    case QualType::DK_none:
1343      return false;
1344    case QualType::DK_cxx_destructor:
1345    case QualType::DK_objc_weak_lifetime:
1346      return getLangOpts().Exceptions;
1347    case QualType::DK_objc_strong_lifetime:
1348      return getLangOpts().Exceptions &&
1349             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1350    }
1351    llvm_unreachable("bad destruction kind");
1352  }
1353
1354  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1355    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1356  }
1357
1358  //===--------------------------------------------------------------------===//
1359  //                                  Objective-C
1360  //===--------------------------------------------------------------------===//
1361
1362  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1363
1364  void StartObjCMethod(const ObjCMethodDecl *MD,
1365                       const ObjCContainerDecl *CD,
1366                       SourceLocation StartLoc);
1367
1368  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1369  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1370                          const ObjCPropertyImplDecl *PID);
1371  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1372                              const ObjCPropertyImplDecl *propImpl,
1373                              const ObjCMethodDecl *GetterMothodDecl,
1374                              llvm::Constant *AtomicHelperFn);
1375
1376  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1377                                  ObjCMethodDecl *MD, bool ctor);
1378
1379  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1380  /// for the given property.
1381  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1382                          const ObjCPropertyImplDecl *PID);
1383  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1384                              const ObjCPropertyImplDecl *propImpl,
1385                              llvm::Constant *AtomicHelperFn);
1386  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1387  bool IvarTypeWithAggrGCObjects(QualType Ty);
1388
1389  //===--------------------------------------------------------------------===//
1390  //                                  Block Bits
1391  //===--------------------------------------------------------------------===//
1392
1393  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1394  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1395  static void destroyBlockInfos(CGBlockInfo *info);
1396  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1397                                           const CGBlockInfo &Info,
1398                                           llvm::StructType *,
1399                                           llvm::Constant *BlockVarLayout);
1400
1401  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1402                                        const CGBlockInfo &Info,
1403                                        const Decl *OuterFuncDecl,
1404                                        const DeclMapTy &ldm,
1405                                        bool IsLambdaConversionToBlock);
1406
1407  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1408  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1409  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1410                                             const ObjCPropertyImplDecl *PID);
1411  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1412                                             const ObjCPropertyImplDecl *PID);
1413  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1414
1415  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1416
1417  class AutoVarEmission;
1418
1419  void emitByrefStructureInit(const AutoVarEmission &emission);
1420  void enterByrefCleanup(const AutoVarEmission &emission);
1421
1422  llvm::Value *LoadBlockStruct() {
1423    assert(BlockPointer && "no block pointer set!");
1424    return BlockPointer;
1425  }
1426
1427  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1428  void AllocateBlockDecl(const DeclRefExpr *E);
1429  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1430  llvm::Type *BuildByRefType(const VarDecl *var);
1431
1432  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1433                    const CGFunctionInfo &FnInfo);
1434  void StartFunction(GlobalDecl GD, QualType RetTy,
1435                     llvm::Function *Fn,
1436                     const CGFunctionInfo &FnInfo,
1437                     const FunctionArgList &Args,
1438                     SourceLocation StartLoc);
1439
1440  void EmitConstructorBody(FunctionArgList &Args);
1441  void EmitDestructorBody(FunctionArgList &Args);
1442  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1443  void EmitFunctionBody(FunctionArgList &Args);
1444
1445  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1446                                  CallArgList &CallArgs);
1447  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1448  void EmitLambdaBlockInvokeBody();
1449  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1450  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1451
1452  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1453  /// emission when possible.
1454  void EmitReturnBlock();
1455
1456  /// FinishFunction - Complete IR generation of the current function. It is
1457  /// legal to call this function even if there is no current insertion point.
1458  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1459
1460  /// GenerateThunk - Generate a thunk for the given method.
1461  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1462                     GlobalDecl GD, const ThunkInfo &Thunk);
1463
1464  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1465                            GlobalDecl GD, const ThunkInfo &Thunk);
1466
1467  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1468                        FunctionArgList &Args);
1469
1470  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1471                               ArrayRef<VarDecl *> ArrayIndexes);
1472
1473  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1474  /// subobject.
1475  ///
1476  void InitializeVTablePointer(BaseSubobject Base,
1477                               const CXXRecordDecl *NearestVBase,
1478                               CharUnits OffsetFromNearestVBase,
1479                               llvm::Constant *VTable,
1480                               const CXXRecordDecl *VTableClass);
1481
1482  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1483  void InitializeVTablePointers(BaseSubobject Base,
1484                                const CXXRecordDecl *NearestVBase,
1485                                CharUnits OffsetFromNearestVBase,
1486                                bool BaseIsNonVirtualPrimaryBase,
1487                                llvm::Constant *VTable,
1488                                const CXXRecordDecl *VTableClass,
1489                                VisitedVirtualBasesSetTy& VBases);
1490
1491  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1492
1493  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1494  /// to by This.
1495  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1496
1497  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1498  /// given phase of destruction for a destructor.  The end result
1499  /// should call destructors on members and base classes in reverse
1500  /// order of their construction.
1501  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1502
1503  /// ShouldInstrumentFunction - Return true if the current function should be
1504  /// instrumented with __cyg_profile_func_* calls
1505  bool ShouldInstrumentFunction();
1506
1507  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1508  /// instrumentation function with the current function and the call site, if
1509  /// function instrumentation is enabled.
1510  void EmitFunctionInstrumentation(const char *Fn);
1511
1512  /// EmitMCountInstrumentation - Emit call to .mcount.
1513  void EmitMCountInstrumentation();
1514
1515  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1516  /// arguments for the given function. This is also responsible for naming the
1517  /// LLVM function arguments.
1518  void EmitFunctionProlog(const CGFunctionInfo &FI,
1519                          llvm::Function *Fn,
1520                          const FunctionArgList &Args);
1521
1522  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1523  /// given temporary.
1524  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1525
1526  /// EmitStartEHSpec - Emit the start of the exception spec.
1527  void EmitStartEHSpec(const Decl *D);
1528
1529  /// EmitEndEHSpec - Emit the end of the exception spec.
1530  void EmitEndEHSpec(const Decl *D);
1531
1532  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1533  llvm::BasicBlock *getTerminateLandingPad();
1534
1535  /// getTerminateHandler - Return a handler (not a landing pad, just
1536  /// a catch handler) that just calls terminate.  This is used when
1537  /// a terminate scope encloses a try.
1538  llvm::BasicBlock *getTerminateHandler();
1539
1540  llvm::Type *ConvertTypeForMem(QualType T);
1541  llvm::Type *ConvertType(QualType T);
1542  llvm::Type *ConvertType(const TypeDecl *T) {
1543    return ConvertType(getContext().getTypeDeclType(T));
1544  }
1545
1546  /// LoadObjCSelf - Load the value of self. This function is only valid while
1547  /// generating code for an Objective-C method.
1548  llvm::Value *LoadObjCSelf();
1549
1550  /// TypeOfSelfObject - Return type of object that this self represents.
1551  QualType TypeOfSelfObject();
1552
1553  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1554  /// an aggregate LLVM type or is void.
1555  static TypeEvaluationKind getEvaluationKind(QualType T);
1556
1557  static bool hasScalarEvaluationKind(QualType T) {
1558    return getEvaluationKind(T) == TEK_Scalar;
1559  }
1560
1561  static bool hasAggregateEvaluationKind(QualType T) {
1562    return getEvaluationKind(T) == TEK_Aggregate;
1563  }
1564
1565  /// createBasicBlock - Create an LLVM basic block.
1566  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1567                                     llvm::Function *parent = 0,
1568                                     llvm::BasicBlock *before = 0) {
1569#ifdef NDEBUG
1570    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1571#else
1572    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1573#endif
1574  }
1575
1576  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1577  /// label maps to.
1578  JumpDest getJumpDestForLabel(const LabelDecl *S);
1579
1580  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1581  /// another basic block, simplify it. This assumes that no other code could
1582  /// potentially reference the basic block.
1583  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1584
1585  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1586  /// adding a fall-through branch from the current insert block if
1587  /// necessary. It is legal to call this function even if there is no current
1588  /// insertion point.
1589  ///
1590  /// IsFinished - If true, indicates that the caller has finished emitting
1591  /// branches to the given block and does not expect to emit code into it. This
1592  /// means the block can be ignored if it is unreachable.
1593  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1594
1595  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1596  /// near its uses, and leave the insertion point in it.
1597  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1598
1599  /// EmitBranch - Emit a branch to the specified basic block from the current
1600  /// insert block, taking care to avoid creation of branches from dummy
1601  /// blocks. It is legal to call this function even if there is no current
1602  /// insertion point.
1603  ///
1604  /// This function clears the current insertion point. The caller should follow
1605  /// calls to this function with calls to Emit*Block prior to generation new
1606  /// code.
1607  void EmitBranch(llvm::BasicBlock *Block);
1608
1609  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1610  /// indicates that the current code being emitted is unreachable.
1611  bool HaveInsertPoint() const {
1612    return Builder.GetInsertBlock() != 0;
1613  }
1614
1615  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1616  /// emitted IR has a place to go. Note that by definition, if this function
1617  /// creates a block then that block is unreachable; callers may do better to
1618  /// detect when no insertion point is defined and simply skip IR generation.
1619  void EnsureInsertPoint() {
1620    if (!HaveInsertPoint())
1621      EmitBlock(createBasicBlock());
1622  }
1623
1624  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1625  /// specified stmt yet.
1626  void ErrorUnsupported(const Stmt *S, const char *Type,
1627                        bool OmitOnError=false);
1628
1629  //===--------------------------------------------------------------------===//
1630  //                                  Helpers
1631  //===--------------------------------------------------------------------===//
1632
1633  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1634                        CharUnits Alignment = CharUnits()) {
1635    return LValue::MakeAddr(V, T, Alignment, getContext(),
1636                            CGM.getTBAAInfo(T));
1637  }
1638
1639  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1640    CharUnits Alignment;
1641    if (!T->isIncompleteType())
1642      Alignment = getContext().getTypeAlignInChars(T);
1643    return LValue::MakeAddr(V, T, Alignment, getContext(),
1644                            CGM.getTBAAInfo(T));
1645  }
1646
1647  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1648  /// block. The caller is responsible for setting an appropriate alignment on
1649  /// the alloca.
1650  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1651                                     const Twine &Name = "tmp");
1652
1653  /// InitTempAlloca - Provide an initial value for the given alloca.
1654  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1655
1656  /// CreateIRTemp - Create a temporary IR object of the given type, with
1657  /// appropriate alignment. This routine should only be used when an temporary
1658  /// value needs to be stored into an alloca (for example, to avoid explicit
1659  /// PHI construction), but the type is the IR type, not the type appropriate
1660  /// for storing in memory.
1661  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1662
1663  /// CreateMemTemp - Create a temporary memory object of the given type, with
1664  /// appropriate alignment.
1665  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1666
1667  /// CreateAggTemp - Create a temporary memory object for the given
1668  /// aggregate type.
1669  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1670    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1671    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1672                                 T.getQualifiers(),
1673                                 AggValueSlot::IsNotDestructed,
1674                                 AggValueSlot::DoesNotNeedGCBarriers,
1675                                 AggValueSlot::IsNotAliased);
1676  }
1677
1678  /// Emit a cast to void* in the appropriate address space.
1679  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1680
1681  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1682  /// expression and compare the result against zero, returning an Int1Ty value.
1683  llvm::Value *EvaluateExprAsBool(const Expr *E);
1684
1685  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1686  void EmitIgnoredExpr(const Expr *E);
1687
1688  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1689  /// any type.  The result is returned as an RValue struct.  If this is an
1690  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1691  /// the result should be returned.
1692  ///
1693  /// \param ignoreResult True if the resulting value isn't used.
1694  RValue EmitAnyExpr(const Expr *E,
1695                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1696                     bool ignoreResult = false);
1697
1698  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1699  // or the value of the expression, depending on how va_list is defined.
1700  llvm::Value *EmitVAListRef(const Expr *E);
1701
1702  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1703  /// always be accessible even if no aggregate location is provided.
1704  RValue EmitAnyExprToTemp(const Expr *E);
1705
1706  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1707  /// arbitrary expression into the given memory location.
1708  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1709                        Qualifiers Quals, bool IsInitializer);
1710
1711  /// EmitExprAsInit - Emits the code necessary to initialize a
1712  /// location in memory with the given initializer.
1713  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1714                      LValue lvalue, bool capturedByInit);
1715
1716  /// hasVolatileMember - returns true if aggregate type has a volatile
1717  /// member.
1718  bool hasVolatileMember(QualType T) {
1719    if (const RecordType *RT = T->getAs<RecordType>()) {
1720      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1721      return RD->hasVolatileMember();
1722    }
1723    return false;
1724  }
1725  /// EmitAggregateCopy - Emit an aggregate assignment.
1726  ///
1727  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1728  /// This is required for correctness when assigning non-POD structures in C++.
1729  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1730                           QualType EltTy) {
1731    bool IsVolatile = hasVolatileMember(EltTy);
1732    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1733                      true);
1734  }
1735
1736  /// EmitAggregateCopy - Emit an aggregate copy.
1737  ///
1738  /// \param isVolatile - True iff either the source or the destination is
1739  /// volatile.
1740  /// \param isAssignment - If false, allow padding to be copied.  This often
1741  /// yields more efficient.
1742  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1743                         QualType EltTy, bool isVolatile=false,
1744                         CharUnits Alignment = CharUnits::Zero(),
1745                         bool isAssignment = false);
1746
1747  /// StartBlock - Start new block named N. If insert block is a dummy block
1748  /// then reuse it.
1749  void StartBlock(const char *N);
1750
1751  /// GetAddrOfLocalVar - Return the address of a local variable.
1752  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1753    llvm::Value *Res = LocalDeclMap[VD];
1754    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1755    return Res;
1756  }
1757
1758  /// getOpaqueLValueMapping - Given an opaque value expression (which
1759  /// must be mapped to an l-value), return its mapping.
1760  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1761    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1762
1763    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1764      it = OpaqueLValues.find(e);
1765    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1766    return it->second;
1767  }
1768
1769  /// getOpaqueRValueMapping - Given an opaque value expression (which
1770  /// must be mapped to an r-value), return its mapping.
1771  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1772    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1773
1774    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1775      it = OpaqueRValues.find(e);
1776    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1777    return it->second;
1778  }
1779
1780  /// getAccessedFieldNo - Given an encoded value and a result number, return
1781  /// the input field number being accessed.
1782  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1783
1784  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1785  llvm::BasicBlock *GetIndirectGotoBlock();
1786
1787  /// EmitNullInitialization - Generate code to set a value of the given type to
1788  /// null, If the type contains data member pointers, they will be initialized
1789  /// to -1 in accordance with the Itanium C++ ABI.
1790  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1791
1792  // EmitVAArg - Generate code to get an argument from the passed in pointer
1793  // and update it accordingly. The return value is a pointer to the argument.
1794  // FIXME: We should be able to get rid of this method and use the va_arg
1795  // instruction in LLVM instead once it works well enough.
1796  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1797
1798  /// emitArrayLength - Compute the length of an array, even if it's a
1799  /// VLA, and drill down to the base element type.
1800  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1801                               QualType &baseType,
1802                               llvm::Value *&addr);
1803
1804  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1805  /// the given variably-modified type and store them in the VLASizeMap.
1806  ///
1807  /// This function can be called with a null (unreachable) insert point.
1808  void EmitVariablyModifiedType(QualType Ty);
1809
1810  /// getVLASize - Returns an LLVM value that corresponds to the size,
1811  /// in non-variably-sized elements, of a variable length array type,
1812  /// plus that largest non-variably-sized element type.  Assumes that
1813  /// the type has already been emitted with EmitVariablyModifiedType.
1814  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1815  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1816
1817  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1818  /// generating code for an C++ member function.
1819  llvm::Value *LoadCXXThis() {
1820    assert(CXXThisValue && "no 'this' value for this function");
1821    return CXXThisValue;
1822  }
1823
1824  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1825  /// virtual bases.
1826  // FIXME: Every place that calls LoadCXXVTT is something
1827  // that needs to be abstracted properly.
1828  llvm::Value *LoadCXXVTT() {
1829    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1830    return CXXStructorImplicitParamValue;
1831  }
1832
1833  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1834  /// for a constructor/destructor.
1835  llvm::Value *LoadCXXStructorImplicitParam() {
1836    assert(CXXStructorImplicitParamValue &&
1837           "no implicit argument value for this function");
1838    return CXXStructorImplicitParamValue;
1839  }
1840
1841  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1842  /// complete class to the given direct base.
1843  llvm::Value *
1844  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1845                                        const CXXRecordDecl *Derived,
1846                                        const CXXRecordDecl *Base,
1847                                        bool BaseIsVirtual);
1848
1849  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1850  /// load of 'this' and returns address of the base class.
1851  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1852                                     const CXXRecordDecl *Derived,
1853                                     CastExpr::path_const_iterator PathBegin,
1854                                     CastExpr::path_const_iterator PathEnd,
1855                                     bool NullCheckValue);
1856
1857  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1858                                        const CXXRecordDecl *Derived,
1859                                        CastExpr::path_const_iterator PathBegin,
1860                                        CastExpr::path_const_iterator PathEnd,
1861                                        bool NullCheckValue);
1862
1863  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1864                                         const CXXRecordDecl *ClassDecl,
1865                                         const CXXRecordDecl *BaseClassDecl);
1866
1867  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1868  /// base constructor/destructor with virtual bases.
1869  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1870  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1871  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1872                               bool Delegating);
1873
1874  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1875                                      CXXCtorType CtorType,
1876                                      const FunctionArgList &Args);
1877  // It's important not to confuse this and the previous function. Delegating
1878  // constructors are the C++0x feature. The constructor delegate optimization
1879  // is used to reduce duplication in the base and complete consturctors where
1880  // they are substantially the same.
1881  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1882                                        const FunctionArgList &Args);
1883  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1884                              bool ForVirtualBase, bool Delegating,
1885                              llvm::Value *This,
1886                              CallExpr::const_arg_iterator ArgBeg,
1887                              CallExpr::const_arg_iterator ArgEnd);
1888
1889  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1890                              llvm::Value *This, llvm::Value *Src,
1891                              CallExpr::const_arg_iterator ArgBeg,
1892                              CallExpr::const_arg_iterator ArgEnd);
1893
1894  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1895                                  const ConstantArrayType *ArrayTy,
1896                                  llvm::Value *ArrayPtr,
1897                                  CallExpr::const_arg_iterator ArgBeg,
1898                                  CallExpr::const_arg_iterator ArgEnd,
1899                                  bool ZeroInitialization = false);
1900
1901  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1902                                  llvm::Value *NumElements,
1903                                  llvm::Value *ArrayPtr,
1904                                  CallExpr::const_arg_iterator ArgBeg,
1905                                  CallExpr::const_arg_iterator ArgEnd,
1906                                  bool ZeroInitialization = false);
1907
1908  static Destroyer destroyCXXObject;
1909
1910  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1911                             bool ForVirtualBase, bool Delegating,
1912                             llvm::Value *This);
1913
1914  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1915                               llvm::Value *NewPtr, llvm::Value *NumElements);
1916
1917  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1918                        llvm::Value *Ptr);
1919
1920  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1921  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1922
1923  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1924                      QualType DeleteTy);
1925
1926  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1927  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1928  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1929
1930  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1931  void EmitStdInitializerListCleanup(llvm::Value *loc,
1932                                     const InitListExpr *init);
1933
1934  /// \brief Situations in which we might emit a check for the suitability of a
1935  ///        pointer or glvalue.
1936  enum TypeCheckKind {
1937    /// Checking the operand of a load. Must be suitably sized and aligned.
1938    TCK_Load,
1939    /// Checking the destination of a store. Must be suitably sized and aligned.
1940    TCK_Store,
1941    /// Checking the bound value in a reference binding. Must be suitably sized
1942    /// and aligned, but is not required to refer to an object (until the
1943    /// reference is used), per core issue 453.
1944    TCK_ReferenceBinding,
1945    /// Checking the object expression in a non-static data member access. Must
1946    /// be an object within its lifetime.
1947    TCK_MemberAccess,
1948    /// Checking the 'this' pointer for a call to a non-static member function.
1949    /// Must be an object within its lifetime.
1950    TCK_MemberCall,
1951    /// Checking the 'this' pointer for a constructor call.
1952    TCK_ConstructorCall,
1953    /// Checking the operand of a static_cast to a derived pointer type. Must be
1954    /// null or an object within its lifetime.
1955    TCK_DowncastPointer,
1956    /// Checking the operand of a static_cast to a derived reference type. Must
1957    /// be an object within its lifetime.
1958    TCK_DowncastReference
1959  };
1960
1961  /// \brief Emit a check that \p V is the address of storage of the
1962  /// appropriate size and alignment for an object of type \p Type.
1963  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1964                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1965
1966  /// \brief Emit a check that \p Base points into an array object, which
1967  /// we can access at index \p Index. \p Accessed should be \c false if we
1968  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1969  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1970                       QualType IndexType, bool Accessed);
1971
1972  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1973                                       bool isInc, bool isPre);
1974  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1975                                         bool isInc, bool isPre);
1976  //===--------------------------------------------------------------------===//
1977  //                            Declaration Emission
1978  //===--------------------------------------------------------------------===//
1979
1980  /// EmitDecl - Emit a declaration.
1981  ///
1982  /// This function can be called with a null (unreachable) insert point.
1983  void EmitDecl(const Decl &D);
1984
1985  /// EmitVarDecl - Emit a local variable declaration.
1986  ///
1987  /// This function can be called with a null (unreachable) insert point.
1988  void EmitVarDecl(const VarDecl &D);
1989
1990  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1991                      LValue lvalue, bool capturedByInit);
1992  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1993
1994  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1995                             llvm::Value *Address);
1996
1997  /// EmitAutoVarDecl - Emit an auto variable declaration.
1998  ///
1999  /// This function can be called with a null (unreachable) insert point.
2000  void EmitAutoVarDecl(const VarDecl &D);
2001
2002  class AutoVarEmission {
2003    friend class CodeGenFunction;
2004
2005    const VarDecl *Variable;
2006
2007    /// The alignment of the variable.
2008    CharUnits Alignment;
2009
2010    /// The address of the alloca.  Null if the variable was emitted
2011    /// as a global constant.
2012    llvm::Value *Address;
2013
2014    llvm::Value *NRVOFlag;
2015
2016    /// True if the variable is a __block variable.
2017    bool IsByRef;
2018
2019    /// True if the variable is of aggregate type and has a constant
2020    /// initializer.
2021    bool IsConstantAggregate;
2022
2023    /// Non-null if we should use lifetime annotations.
2024    llvm::Value *SizeForLifetimeMarkers;
2025
2026    struct Invalid {};
2027    AutoVarEmission(Invalid) : Variable(0) {}
2028
2029    AutoVarEmission(const VarDecl &variable)
2030      : Variable(&variable), Address(0), NRVOFlag(0),
2031        IsByRef(false), IsConstantAggregate(false),
2032        SizeForLifetimeMarkers(0) {}
2033
2034    bool wasEmittedAsGlobal() const { return Address == 0; }
2035
2036  public:
2037    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2038
2039    bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
2040    llvm::Value *getSizeForLifetimeMarkers() const {
2041      assert(useLifetimeMarkers());
2042      return SizeForLifetimeMarkers;
2043    }
2044
2045    /// Returns the raw, allocated address, which is not necessarily
2046    /// the address of the object itself.
2047    llvm::Value *getAllocatedAddress() const {
2048      return Address;
2049    }
2050
2051    /// Returns the address of the object within this declaration.
2052    /// Note that this does not chase the forwarding pointer for
2053    /// __block decls.
2054    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
2055      if (!IsByRef) return Address;
2056
2057      return CGF.Builder.CreateStructGEP(Address,
2058                                         CGF.getByRefValueLLVMField(Variable),
2059                                         Variable->getNameAsString());
2060    }
2061  };
2062  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2063  void EmitAutoVarInit(const AutoVarEmission &emission);
2064  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2065  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2066                              QualType::DestructionKind dtorKind);
2067
2068  void EmitStaticVarDecl(const VarDecl &D,
2069                         llvm::GlobalValue::LinkageTypes Linkage);
2070
2071  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2072  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2073
2074  /// protectFromPeepholes - Protect a value that we're intending to
2075  /// store to the side, but which will probably be used later, from
2076  /// aggressive peepholing optimizations that might delete it.
2077  ///
2078  /// Pass the result to unprotectFromPeepholes to declare that
2079  /// protection is no longer required.
2080  ///
2081  /// There's no particular reason why this shouldn't apply to
2082  /// l-values, it's just that no existing peepholes work on pointers.
2083  PeepholeProtection protectFromPeepholes(RValue rvalue);
2084  void unprotectFromPeepholes(PeepholeProtection protection);
2085
2086  //===--------------------------------------------------------------------===//
2087  //                             Statement Emission
2088  //===--------------------------------------------------------------------===//
2089
2090  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2091  void EmitStopPoint(const Stmt *S);
2092
2093  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2094  /// this function even if there is no current insertion point.
2095  ///
2096  /// This function may clear the current insertion point; callers should use
2097  /// EnsureInsertPoint if they wish to subsequently generate code without first
2098  /// calling EmitBlock, EmitBranch, or EmitStmt.
2099  void EmitStmt(const Stmt *S);
2100
2101  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2102  /// necessarily require an insertion point or debug information; typically
2103  /// because the statement amounts to a jump or a container of other
2104  /// statements.
2105  ///
2106  /// \return True if the statement was handled.
2107  bool EmitSimpleStmt(const Stmt *S);
2108
2109  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2110                          AggValueSlot AVS = AggValueSlot::ignored());
2111  RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2112                                      bool GetLast = false, AggValueSlot AVS =
2113                                          AggValueSlot::ignored());
2114
2115  /// EmitLabel - Emit the block for the given label. It is legal to call this
2116  /// function even if there is no current insertion point.
2117  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2118
2119  void EmitLabelStmt(const LabelStmt &S);
2120  void EmitAttributedStmt(const AttributedStmt &S);
2121  void EmitGotoStmt(const GotoStmt &S);
2122  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2123  void EmitIfStmt(const IfStmt &S);
2124  void EmitWhileStmt(const WhileStmt &S);
2125  void EmitDoStmt(const DoStmt &S);
2126  void EmitForStmt(const ForStmt &S);
2127  void EmitReturnStmt(const ReturnStmt &S);
2128  void EmitDeclStmt(const DeclStmt &S);
2129  void EmitBreakStmt(const BreakStmt &S);
2130  void EmitContinueStmt(const ContinueStmt &S);
2131  void EmitSwitchStmt(const SwitchStmt &S);
2132  void EmitDefaultStmt(const DefaultStmt &S);
2133  void EmitCaseStmt(const CaseStmt &S);
2134  void EmitCaseStmtRange(const CaseStmt &S);
2135  void EmitAsmStmt(const AsmStmt &S);
2136
2137  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2138  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2139  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2140  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2141  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2142
2143  llvm::Constant *getUnwindResumeFn();
2144  llvm::Constant *getUnwindResumeOrRethrowFn();
2145  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2146  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2147
2148  void EmitCXXTryStmt(const CXXTryStmt &S);
2149  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2150
2151  //===--------------------------------------------------------------------===//
2152  //                         LValue Expression Emission
2153  //===--------------------------------------------------------------------===//
2154
2155  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2156  RValue GetUndefRValue(QualType Ty);
2157
2158  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2159  /// and issue an ErrorUnsupported style diagnostic (using the
2160  /// provided Name).
2161  RValue EmitUnsupportedRValue(const Expr *E,
2162                               const char *Name);
2163
2164  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2165  /// an ErrorUnsupported style diagnostic (using the provided Name).
2166  LValue EmitUnsupportedLValue(const Expr *E,
2167                               const char *Name);
2168
2169  /// EmitLValue - Emit code to compute a designator that specifies the location
2170  /// of the expression.
2171  ///
2172  /// This can return one of two things: a simple address or a bitfield
2173  /// reference.  In either case, the LLVM Value* in the LValue structure is
2174  /// guaranteed to be an LLVM pointer type.
2175  ///
2176  /// If this returns a bitfield reference, nothing about the pointee type of
2177  /// the LLVM value is known: For example, it may not be a pointer to an
2178  /// integer.
2179  ///
2180  /// If this returns a normal address, and if the lvalue's C type is fixed
2181  /// size, this method guarantees that the returned pointer type will point to
2182  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2183  /// variable length type, this is not possible.
2184  ///
2185  LValue EmitLValue(const Expr *E);
2186
2187  /// \brief Same as EmitLValue but additionally we generate checking code to
2188  /// guard against undefined behavior.  This is only suitable when we know
2189  /// that the address will be used to access the object.
2190  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2191
2192  RValue convertTempToRValue(llvm::Value *addr, QualType type);
2193
2194  void EmitAtomicInit(Expr *E, LValue lvalue);
2195
2196  RValue EmitAtomicLoad(LValue lvalue,
2197                        AggValueSlot slot = AggValueSlot::ignored());
2198
2199  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2200
2201  /// EmitToMemory - Change a scalar value from its value
2202  /// representation to its in-memory representation.
2203  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2204
2205  /// EmitFromMemory - Change a scalar value from its memory
2206  /// representation to its value representation.
2207  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2208
2209  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2210  /// care to appropriately convert from the memory representation to
2211  /// the LLVM value representation.
2212  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2213                                unsigned Alignment, QualType Ty,
2214                                llvm::MDNode *TBAAInfo = 0,
2215                                QualType TBAABaseTy = QualType(),
2216                                uint64_t TBAAOffset = 0);
2217
2218  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2219  /// care to appropriately convert from the memory representation to
2220  /// the LLVM value representation.  The l-value must be a simple
2221  /// l-value.
2222  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2223
2224  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2225  /// care to appropriately convert from the memory representation to
2226  /// the LLVM value representation.
2227  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2228                         bool Volatile, unsigned Alignment, QualType Ty,
2229                         llvm::MDNode *TBAAInfo = 0, bool isInit = false,
2230                         QualType TBAABaseTy = QualType(),
2231                         uint64_t TBAAOffset = 0);
2232
2233  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2234  /// care to appropriately convert from the memory representation to
2235  /// the LLVM value representation.  The l-value must be a simple
2236  /// l-value.  The isInit flag indicates whether this is an initialization.
2237  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2238  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2239
2240  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2241  /// this method emits the address of the lvalue, then loads the result as an
2242  /// rvalue, returning the rvalue.
2243  RValue EmitLoadOfLValue(LValue V);
2244  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2245  RValue EmitLoadOfBitfieldLValue(LValue LV);
2246
2247  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2248  /// lvalue, where both are guaranteed to the have the same type, and that type
2249  /// is 'Ty'.
2250  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2251  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2252
2253  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2254  /// EmitStoreThroughLValue.
2255  ///
2256  /// \param Result [out] - If non-null, this will be set to a Value* for the
2257  /// bit-field contents after the store, appropriate for use as the result of
2258  /// an assignment to the bit-field.
2259  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2260                                      llvm::Value **Result=0);
2261
2262  /// Emit an l-value for an assignment (simple or compound) of complex type.
2263  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2264  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2265
2266  // Note: only available for agg return types
2267  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2268  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2269  // Note: only available for agg return types
2270  LValue EmitCallExprLValue(const CallExpr *E);
2271  // Note: only available for agg return types
2272  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2273  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2274  LValue EmitStringLiteralLValue(const StringLiteral *E);
2275  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2276  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2277  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2278  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2279                                bool Accessed = false);
2280  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2281  LValue EmitMemberExpr(const MemberExpr *E);
2282  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2283  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2284  LValue EmitInitListLValue(const InitListExpr *E);
2285  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2286  LValue EmitCastLValue(const CastExpr *E);
2287  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2288  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2289  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2290
2291  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2292
2293  class ConstantEmission {
2294    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2295    ConstantEmission(llvm::Constant *C, bool isReference)
2296      : ValueAndIsReference(C, isReference) {}
2297  public:
2298    ConstantEmission() {}
2299    static ConstantEmission forReference(llvm::Constant *C) {
2300      return ConstantEmission(C, true);
2301    }
2302    static ConstantEmission forValue(llvm::Constant *C) {
2303      return ConstantEmission(C, false);
2304    }
2305
2306    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2307
2308    bool isReference() const { return ValueAndIsReference.getInt(); }
2309    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2310      assert(isReference());
2311      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2312                                            refExpr->getType());
2313    }
2314
2315    llvm::Constant *getValue() const {
2316      assert(!isReference());
2317      return ValueAndIsReference.getPointer();
2318    }
2319  };
2320
2321  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2322
2323  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2324                                AggValueSlot slot = AggValueSlot::ignored());
2325  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2326
2327  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2328                              const ObjCIvarDecl *Ivar);
2329  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2330
2331  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2332  /// if the Field is a reference, this will return the address of the reference
2333  /// and not the address of the value stored in the reference.
2334  LValue EmitLValueForFieldInitialization(LValue Base,
2335                                          const FieldDecl* Field);
2336
2337  LValue EmitLValueForIvar(QualType ObjectTy,
2338                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2339                           unsigned CVRQualifiers);
2340
2341  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2342  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2343  LValue EmitLambdaLValue(const LambdaExpr *E);
2344  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2345  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2346
2347  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2348  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2349  LValue EmitStmtExprLValue(const StmtExpr *E);
2350  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2351  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2352  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2353
2354  //===--------------------------------------------------------------------===//
2355  //                         Scalar Expression Emission
2356  //===--------------------------------------------------------------------===//
2357
2358  /// EmitCall - Generate a call of the given function, expecting the given
2359  /// result type, and using the given argument list which specifies both the
2360  /// LLVM arguments and the types they were derived from.
2361  ///
2362  /// \param TargetDecl - If given, the decl of the function in a direct call;
2363  /// used to set attributes on the call (noreturn, etc.).
2364  RValue EmitCall(const CGFunctionInfo &FnInfo,
2365                  llvm::Value *Callee,
2366                  ReturnValueSlot ReturnValue,
2367                  const CallArgList &Args,
2368                  const Decl *TargetDecl = 0,
2369                  llvm::Instruction **callOrInvoke = 0);
2370
2371  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2372                  ReturnValueSlot ReturnValue,
2373                  CallExpr::const_arg_iterator ArgBeg,
2374                  CallExpr::const_arg_iterator ArgEnd,
2375                  const Decl *TargetDecl = 0);
2376  RValue EmitCallExpr(const CallExpr *E,
2377                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2378
2379  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2380                                  const Twine &name = "");
2381  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2382                                  ArrayRef<llvm::Value*> args,
2383                                  const Twine &name = "");
2384  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2385                                          const Twine &name = "");
2386  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2387                                          ArrayRef<llvm::Value*> args,
2388                                          const Twine &name = "");
2389
2390  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2391                                  ArrayRef<llvm::Value *> Args,
2392                                  const Twine &Name = "");
2393  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2394                                  const Twine &Name = "");
2395  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2396                                         ArrayRef<llvm::Value*> args,
2397                                         const Twine &name = "");
2398  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2399                                         const Twine &name = "");
2400  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2401                                       ArrayRef<llvm::Value*> args);
2402
2403  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2404                                llvm::Type *Ty);
2405  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2406                                llvm::Value *This, llvm::Type *Ty);
2407  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2408                                         NestedNameSpecifier *Qual,
2409                                         llvm::Type *Ty);
2410
2411  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2412                                                   CXXDtorType Type,
2413                                                   const CXXRecordDecl *RD);
2414
2415  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2416                           SourceLocation CallLoc,
2417                           llvm::Value *Callee,
2418                           ReturnValueSlot ReturnValue,
2419                           llvm::Value *This,
2420                           llvm::Value *ImplicitParam,
2421                           QualType ImplicitParamTy,
2422                           CallExpr::const_arg_iterator ArgBeg,
2423                           CallExpr::const_arg_iterator ArgEnd);
2424  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2425                               ReturnValueSlot ReturnValue);
2426  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2427                                      ReturnValueSlot ReturnValue);
2428
2429  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2430                                           const CXXMethodDecl *MD,
2431                                           llvm::Value *This);
2432  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2433                                       const CXXMethodDecl *MD,
2434                                       ReturnValueSlot ReturnValue);
2435
2436  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2437                                ReturnValueSlot ReturnValue);
2438
2439
2440  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2441                         unsigned BuiltinID, const CallExpr *E);
2442
2443  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2444
2445  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2446  /// is unhandled by the current target.
2447  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2448
2449  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2450  llvm::Value *EmitNeonCall(llvm::Function *F,
2451                            SmallVectorImpl<llvm::Value*> &O,
2452                            const char *name,
2453                            unsigned shift = 0, bool rightshift = false);
2454  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2455  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2456                                   bool negateForRightShift);
2457
2458  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2459  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2460  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2461
2462  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2463  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2464  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2465  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2466  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2467  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2468                                const ObjCMethodDecl *MethodWithObjects);
2469  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2470  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2471                             ReturnValueSlot Return = ReturnValueSlot());
2472
2473  /// Retrieves the default cleanup kind for an ARC cleanup.
2474  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2475  CleanupKind getARCCleanupKind() {
2476    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2477             ? NormalAndEHCleanup : NormalCleanup;
2478  }
2479
2480  // ARC primitives.
2481  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2482  void EmitARCDestroyWeak(llvm::Value *addr);
2483  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2484  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2485  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2486                                bool ignored);
2487  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2488  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2489  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2490  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2491  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2492                                  bool resultIgnored);
2493  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2494                                      bool resultIgnored);
2495  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2496  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2497  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2498  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2499  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2500  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2501  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2502  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2503  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2504
2505  std::pair<LValue,llvm::Value*>
2506  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2507  std::pair<LValue,llvm::Value*>
2508  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2509
2510  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2511
2512  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2513  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2514  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2515
2516  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2517  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2518  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2519
2520  void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2521
2522  static Destroyer destroyARCStrongImprecise;
2523  static Destroyer destroyARCStrongPrecise;
2524  static Destroyer destroyARCWeak;
2525
2526  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2527  llvm::Value *EmitObjCAutoreleasePoolPush();
2528  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2529  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2530  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2531
2532  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2533  /// expression. Will emit a temporary variable if E is not an LValue.
2534  RValue EmitReferenceBindingToExpr(const Expr* E,
2535                                    const NamedDecl *InitializedDecl);
2536
2537  //===--------------------------------------------------------------------===//
2538  //                           Expression Emission
2539  //===--------------------------------------------------------------------===//
2540
2541  // Expressions are broken into three classes: scalar, complex, aggregate.
2542
2543  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2544  /// scalar type, returning the result.
2545  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2546
2547  /// EmitScalarConversion - Emit a conversion from the specified type to the
2548  /// specified destination type, both of which are LLVM scalar types.
2549  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2550                                    QualType DstTy);
2551
2552  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2553  /// complex type to the specified destination type, where the destination type
2554  /// is an LLVM scalar type.
2555  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2556                                             QualType DstTy);
2557
2558
2559  /// EmitAggExpr - Emit the computation of the specified expression
2560  /// of aggregate type.  The result is computed into the given slot,
2561  /// which may be null to indicate that the value is not needed.
2562  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2563
2564  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2565  /// aggregate type into a temporary LValue.
2566  LValue EmitAggExprToLValue(const Expr *E);
2567
2568  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2569  /// pointers.
2570  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2571                                QualType Ty);
2572
2573  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2574  /// make sure it survives garbage collection until this point.
2575  void EmitExtendGCLifetime(llvm::Value *object);
2576
2577  /// EmitComplexExpr - Emit the computation of the specified expression of
2578  /// complex type, returning the result.
2579  ComplexPairTy EmitComplexExpr(const Expr *E,
2580                                bool IgnoreReal = false,
2581                                bool IgnoreImag = false);
2582
2583  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2584  /// type and place its result into the specified l-value.
2585  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2586
2587  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2588  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2589
2590  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2591  ComplexPairTy EmitLoadOfComplex(LValue src);
2592
2593  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2594  /// a static local variable.
2595  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2596                                            const char *Separator,
2597                                       llvm::GlobalValue::LinkageTypes Linkage);
2598
2599  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2600  /// global variable that has already been created for it.  If the initializer
2601  /// has a different type than GV does, this may free GV and return a different
2602  /// one.  Otherwise it just returns GV.
2603  llvm::GlobalVariable *
2604  AddInitializerToStaticVarDecl(const VarDecl &D,
2605                                llvm::GlobalVariable *GV);
2606
2607
2608  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2609  /// variable with global storage.
2610  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2611                                bool PerformInit);
2612
2613  /// Call atexit() with a function that passes the given argument to
2614  /// the given function.
2615  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2616
2617  /// Emit code in this function to perform a guarded variable
2618  /// initialization.  Guarded initializations are used when it's not
2619  /// possible to prove that an initialization will be done exactly
2620  /// once, e.g. with a static local variable or a static data member
2621  /// of a class template.
2622  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2623                          bool PerformInit);
2624
2625  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2626  /// variables.
2627  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2628                                 llvm::Constant **Decls,
2629                                 unsigned NumDecls);
2630
2631  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2632  /// variables.
2633  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2634                                  const std::vector<std::pair<llvm::WeakVH,
2635                                  llvm::Constant*> > &DtorsAndObjects);
2636
2637  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2638                                        const VarDecl *D,
2639                                        llvm::GlobalVariable *Addr,
2640                                        bool PerformInit);
2641
2642  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2643
2644  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2645                                  const Expr *Exp);
2646
2647  void enterFullExpression(const ExprWithCleanups *E) {
2648    if (E->getNumObjects() == 0) return;
2649    enterNonTrivialFullExpression(E);
2650  }
2651  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2652
2653  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2654
2655  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2656
2657  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2658
2659  //===--------------------------------------------------------------------===//
2660  //                         Annotations Emission
2661  //===--------------------------------------------------------------------===//
2662
2663  /// Emit an annotation call (intrinsic or builtin).
2664  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2665                                  llvm::Value *AnnotatedVal,
2666                                  StringRef AnnotationStr,
2667                                  SourceLocation Location);
2668
2669  /// Emit local annotations for the local variable V, declared by D.
2670  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2671
2672  /// Emit field annotations for the given field & value. Returns the
2673  /// annotation result.
2674  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2675
2676  //===--------------------------------------------------------------------===//
2677  //                             Internal Helpers
2678  //===--------------------------------------------------------------------===//
2679
2680  /// ContainsLabel - Return true if the statement contains a label in it.  If
2681  /// this statement is not executed normally, it not containing a label means
2682  /// that we can just remove the code.
2683  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2684
2685  /// containsBreak - Return true if the statement contains a break out of it.
2686  /// If the statement (recursively) contains a switch or loop with a break
2687  /// inside of it, this is fine.
2688  static bool containsBreak(const Stmt *S);
2689
2690  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2691  /// to a constant, or if it does but contains a label, return false.  If it
2692  /// constant folds return true and set the boolean result in Result.
2693  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2694
2695  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2696  /// to a constant, or if it does but contains a label, return false.  If it
2697  /// constant folds return true and set the folded value.
2698  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2699
2700  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2701  /// if statement) to the specified blocks.  Based on the condition, this might
2702  /// try to simplify the codegen of the conditional based on the branch.
2703  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2704                            llvm::BasicBlock *FalseBlock);
2705
2706  /// \brief Emit a description of a type in a format suitable for passing to
2707  /// a runtime sanitizer handler.
2708  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2709
2710  /// \brief Convert a value into a format suitable for passing to a runtime
2711  /// sanitizer handler.
2712  llvm::Value *EmitCheckValue(llvm::Value *V);
2713
2714  /// \brief Emit a description of a source location in a format suitable for
2715  /// passing to a runtime sanitizer handler.
2716  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2717
2718  /// \brief Specify under what conditions this check can be recovered
2719  enum CheckRecoverableKind {
2720    /// Always terminate program execution if this check fails
2721    CRK_Unrecoverable,
2722    /// Check supports recovering, allows user to specify which
2723    CRK_Recoverable,
2724    /// Runtime conditionally aborts, always need to support recovery.
2725    CRK_AlwaysRecoverable
2726  };
2727
2728  /// \brief Create a basic block that will call a handler function in a
2729  /// sanitizer runtime with the provided arguments, and create a conditional
2730  /// branch to it.
2731  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2732                 ArrayRef<llvm::Constant *> StaticArgs,
2733                 ArrayRef<llvm::Value *> DynamicArgs,
2734                 CheckRecoverableKind Recoverable);
2735
2736  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2737  /// conditional branch to it, for the -ftrapv checks.
2738  void EmitTrapCheck(llvm::Value *Checked);
2739
2740  /// EmitCallArg - Emit a single call argument.
2741  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2742
2743  /// EmitDelegateCallArg - We are performing a delegate call; that
2744  /// is, the current function is delegating to another one.  Produce
2745  /// a r-value suitable for passing the given parameter.
2746  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2747
2748  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2749  /// point operation, expressed as the maximum relative error in ulp.
2750  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2751
2752private:
2753  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2754  void EmitReturnOfRValue(RValue RV, QualType Ty);
2755
2756  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2757  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2758  ///
2759  /// \param AI - The first function argument of the expansion.
2760  /// \return The argument following the last expanded function
2761  /// argument.
2762  llvm::Function::arg_iterator
2763  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2764                     llvm::Function::arg_iterator AI);
2765
2766  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2767  /// Ty, into individual arguments on the provided vector \arg Args. See
2768  /// ABIArgInfo::Expand.
2769  void ExpandTypeToArgs(QualType Ty, RValue Src,
2770                        SmallVector<llvm::Value*, 16> &Args,
2771                        llvm::FunctionType *IRFuncTy);
2772
2773  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2774                            const Expr *InputExpr, std::string &ConstraintStr);
2775
2776  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2777                                  LValue InputValue, QualType InputType,
2778                                  std::string &ConstraintStr);
2779
2780  /// EmitCallArgs - Emit call arguments for a function.
2781  /// The CallArgTypeInfo parameter is used for iterating over the known
2782  /// argument types of the function being called.
2783  template<typename T>
2784  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2785                    CallExpr::const_arg_iterator ArgBeg,
2786                    CallExpr::const_arg_iterator ArgEnd) {
2787      CallExpr::const_arg_iterator Arg = ArgBeg;
2788
2789    // First, use the argument types that the type info knows about
2790    if (CallArgTypeInfo) {
2791      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2792           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2793        assert(Arg != ArgEnd && "Running over edge of argument list!");
2794        QualType ArgType = *I;
2795#ifndef NDEBUG
2796        QualType ActualArgType = Arg->getType();
2797        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2798          QualType ActualBaseType =
2799            ActualArgType->getAs<PointerType>()->getPointeeType();
2800          QualType ArgBaseType =
2801            ArgType->getAs<PointerType>()->getPointeeType();
2802          if (ArgBaseType->isVariableArrayType()) {
2803            if (const VariableArrayType *VAT =
2804                getContext().getAsVariableArrayType(ActualBaseType)) {
2805              if (!VAT->getSizeExpr())
2806                ActualArgType = ArgType;
2807            }
2808          }
2809        }
2810        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2811               getTypePtr() ==
2812               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2813               "type mismatch in call argument!");
2814#endif
2815        EmitCallArg(Args, *Arg, ArgType);
2816      }
2817
2818      // Either we've emitted all the call args, or we have a call to a
2819      // variadic function.
2820      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2821             "Extra arguments in non-variadic function!");
2822
2823    }
2824
2825    // If we still have any arguments, emit them using the type of the argument.
2826    for (; Arg != ArgEnd; ++Arg)
2827      EmitCallArg(Args, *Arg, Arg->getType());
2828  }
2829
2830  const TargetCodeGenInfo &getTargetHooks() const {
2831    return CGM.getTargetCodeGenInfo();
2832  }
2833
2834  void EmitDeclMetadata();
2835
2836  CodeGenModule::ByrefHelpers *
2837  buildByrefHelpers(llvm::StructType &byrefType,
2838                    const AutoVarEmission &emission);
2839
2840  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2841
2842  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2843  /// value and compute our best estimate of the alignment of the pointee.
2844  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2845};
2846
2847/// Helper class with most of the code for saving a value for a
2848/// conditional expression cleanup.
2849struct DominatingLLVMValue {
2850  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2851
2852  /// Answer whether the given value needs extra work to be saved.
2853  static bool needsSaving(llvm::Value *value) {
2854    // If it's not an instruction, we don't need to save.
2855    if (!isa<llvm::Instruction>(value)) return false;
2856
2857    // If it's an instruction in the entry block, we don't need to save.
2858    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2859    return (block != &block->getParent()->getEntryBlock());
2860  }
2861
2862  /// Try to save the given value.
2863  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2864    if (!needsSaving(value)) return saved_type(value, false);
2865
2866    // Otherwise we need an alloca.
2867    llvm::Value *alloca =
2868      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2869    CGF.Builder.CreateStore(value, alloca);
2870
2871    return saved_type(alloca, true);
2872  }
2873
2874  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2875    if (!value.getInt()) return value.getPointer();
2876    return CGF.Builder.CreateLoad(value.getPointer());
2877  }
2878};
2879
2880/// A partial specialization of DominatingValue for llvm::Values that
2881/// might be llvm::Instructions.
2882template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2883  typedef T *type;
2884  static type restore(CodeGenFunction &CGF, saved_type value) {
2885    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2886  }
2887};
2888
2889/// A specialization of DominatingValue for RValue.
2890template <> struct DominatingValue<RValue> {
2891  typedef RValue type;
2892  class saved_type {
2893    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2894                AggregateAddress, ComplexAddress };
2895
2896    llvm::Value *Value;
2897    Kind K;
2898    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2899
2900  public:
2901    static bool needsSaving(RValue value);
2902    static saved_type save(CodeGenFunction &CGF, RValue value);
2903    RValue restore(CodeGenFunction &CGF);
2904
2905    // implementations in CGExprCXX.cpp
2906  };
2907
2908  static bool needsSaving(type value) {
2909    return saved_type::needsSaving(value);
2910  }
2911  static saved_type save(CodeGenFunction &CGF, type value) {
2912    return saved_type::save(CGF, value);
2913  }
2914  static type restore(CodeGenFunction &CGF, saved_type value) {
2915    return value.restore(CGF);
2916  }
2917};
2918
2919}  // end namespace CodeGen
2920}  // end namespace clang
2921
2922#endif
2923