CodeGenFunction.cpp revision 243830
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/MDBuilder.h"
27#include "llvm/DataLayout.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
32  : CodeGenTypeCache(cgm), CGM(cgm),
33    Target(CGM.getContext().getTargetInfo()),
34    Builder(cgm.getModule().getContext()),
35    SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull |
36                             CGM.getLangOpts().SanitizeAlignment |
37                             CGM.getLangOpts().SanitizeObjectSize |
38                             CGM.getLangOpts().SanitizeVptr),
39    AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
40    LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
41    FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
42    DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
43    IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
44    CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
45    CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
46    TerminateHandler(0), TrapBB(0) {
47  if (!suppressNewContext)
48    CGM.getCXXABI().getMangleContext().startNewFunction();
49}
50
51CodeGenFunction::~CodeGenFunction() {
52  // If there are any unclaimed block infos, go ahead and destroy them
53  // now.  This can happen if IR-gen gets clever and skips evaluating
54  // something.
55  if (FirstBlockInfo)
56    destroyBlockInfos(FirstBlockInfo);
57}
58
59
60llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61  return CGM.getTypes().ConvertTypeForMem(T);
62}
63
64llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65  return CGM.getTypes().ConvertType(T);
66}
67
68bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
69  switch (type.getCanonicalType()->getTypeClass()) {
70#define TYPE(name, parent)
71#define ABSTRACT_TYPE(name, parent)
72#define NON_CANONICAL_TYPE(name, parent) case Type::name:
73#define DEPENDENT_TYPE(name, parent) case Type::name:
74#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
75#include "clang/AST/TypeNodes.def"
76    llvm_unreachable("non-canonical or dependent type in IR-generation");
77
78  case Type::Builtin:
79  case Type::Pointer:
80  case Type::BlockPointer:
81  case Type::LValueReference:
82  case Type::RValueReference:
83  case Type::MemberPointer:
84  case Type::Vector:
85  case Type::ExtVector:
86  case Type::FunctionProto:
87  case Type::FunctionNoProto:
88  case Type::Enum:
89  case Type::ObjCObjectPointer:
90    return false;
91
92  // Complexes, arrays, records, and Objective-C objects.
93  case Type::Complex:
94  case Type::ConstantArray:
95  case Type::IncompleteArray:
96  case Type::VariableArray:
97  case Type::Record:
98  case Type::ObjCObject:
99  case Type::ObjCInterface:
100    return true;
101
102  // In IRGen, atomic types are just the underlying type
103  case Type::Atomic:
104    return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
105  }
106  llvm_unreachable("unknown type kind!");
107}
108
109void CodeGenFunction::EmitReturnBlock() {
110  // For cleanliness, we try to avoid emitting the return block for
111  // simple cases.
112  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
113
114  if (CurBB) {
115    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
116
117    // We have a valid insert point, reuse it if it is empty or there are no
118    // explicit jumps to the return block.
119    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
120      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
121      delete ReturnBlock.getBlock();
122    } else
123      EmitBlock(ReturnBlock.getBlock());
124    return;
125  }
126
127  // Otherwise, if the return block is the target of a single direct
128  // branch then we can just put the code in that block instead. This
129  // cleans up functions which started with a unified return block.
130  if (ReturnBlock.getBlock()->hasOneUse()) {
131    llvm::BranchInst *BI =
132      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
133    if (BI && BI->isUnconditional() &&
134        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
135      // Reset insertion point, including debug location, and delete the branch.
136      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
137      Builder.SetInsertPoint(BI->getParent());
138      BI->eraseFromParent();
139      delete ReturnBlock.getBlock();
140      return;
141    }
142  }
143
144  // FIXME: We are at an unreachable point, there is no reason to emit the block
145  // unless it has uses. However, we still need a place to put the debug
146  // region.end for now.
147
148  EmitBlock(ReturnBlock.getBlock());
149}
150
151static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
152  if (!BB) return;
153  if (!BB->use_empty())
154    return CGF.CurFn->getBasicBlockList().push_back(BB);
155  delete BB;
156}
157
158void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
159  assert(BreakContinueStack.empty() &&
160         "mismatched push/pop in break/continue stack!");
161
162  // Pop any cleanups that might have been associated with the
163  // parameters.  Do this in whatever block we're currently in; it's
164  // important to do this before we enter the return block or return
165  // edges will be *really* confused.
166  if (EHStack.stable_begin() != PrologueCleanupDepth)
167    PopCleanupBlocks(PrologueCleanupDepth);
168
169  // Emit function epilog (to return).
170  EmitReturnBlock();
171
172  if (ShouldInstrumentFunction())
173    EmitFunctionInstrumentation("__cyg_profile_func_exit");
174
175  // Emit debug descriptor for function end.
176  if (CGDebugInfo *DI = getDebugInfo()) {
177    DI->setLocation(EndLoc);
178    DI->EmitFunctionEnd(Builder);
179  }
180
181  EmitFunctionEpilog(*CurFnInfo);
182  EmitEndEHSpec(CurCodeDecl);
183
184  assert(EHStack.empty() &&
185         "did not remove all scopes from cleanup stack!");
186
187  // If someone did an indirect goto, emit the indirect goto block at the end of
188  // the function.
189  if (IndirectBranch) {
190    EmitBlock(IndirectBranch->getParent());
191    Builder.ClearInsertionPoint();
192  }
193
194  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
195  llvm::Instruction *Ptr = AllocaInsertPt;
196  AllocaInsertPt = 0;
197  Ptr->eraseFromParent();
198
199  // If someone took the address of a label but never did an indirect goto, we
200  // made a zero entry PHI node, which is illegal, zap it now.
201  if (IndirectBranch) {
202    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
203    if (PN->getNumIncomingValues() == 0) {
204      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
205      PN->eraseFromParent();
206    }
207  }
208
209  EmitIfUsed(*this, EHResumeBlock);
210  EmitIfUsed(*this, TerminateLandingPad);
211  EmitIfUsed(*this, TerminateHandler);
212  EmitIfUsed(*this, UnreachableBlock);
213
214  if (CGM.getCodeGenOpts().EmitDeclMetadata)
215    EmitDeclMetadata();
216}
217
218/// ShouldInstrumentFunction - Return true if the current function should be
219/// instrumented with __cyg_profile_func_* calls
220bool CodeGenFunction::ShouldInstrumentFunction() {
221  if (!CGM.getCodeGenOpts().InstrumentFunctions)
222    return false;
223  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
224    return false;
225  return true;
226}
227
228/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
229/// instrumentation function with the current function and the call site, if
230/// function instrumentation is enabled.
231void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
232  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
233  llvm::PointerType *PointerTy = Int8PtrTy;
234  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
235  llvm::FunctionType *FunctionTy =
236    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
237
238  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
239  llvm::CallInst *CallSite = Builder.CreateCall(
240    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
241    llvm::ConstantInt::get(Int32Ty, 0),
242    "callsite");
243
244  Builder.CreateCall2(F,
245                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
246                      CallSite);
247}
248
249void CodeGenFunction::EmitMCountInstrumentation() {
250  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
251
252  llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
253                                                       Target.getMCountName());
254  Builder.CreateCall(MCountFn);
255}
256
257// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
258// information in the program executable. The argument information stored
259// includes the argument name, its type, the address and access qualifiers used.
260// FIXME: Add type, address, and access qualifiers.
261static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
262                                 CodeGenModule &CGM,llvm::LLVMContext &Context,
263                                 llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) {
264
265  // Create MDNodes that represents the kernel arg metadata.
266  // Each MDNode is a list in the form of "key", N number of values which is
267  // the same number of values as their are kernel arguments.
268
269  // MDNode for the kernel argument names.
270  SmallVector<llvm::Value*, 8> argNames;
271  argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
272
273  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
274    const ParmVarDecl *parm = FD->getParamDecl(i);
275
276    // Get argument name.
277    argNames.push_back(llvm::MDString::get(Context, parm->getName()));
278
279  }
280  // Add MDNode to the list of all metadata.
281  kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
282}
283
284void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
285                                               llvm::Function *Fn)
286{
287  if (!FD->hasAttr<OpenCLKernelAttr>())
288    return;
289
290  llvm::LLVMContext &Context = getLLVMContext();
291
292  llvm::SmallVector <llvm::Value*, 5> kernelMDArgs;
293  kernelMDArgs.push_back(Fn);
294
295  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
296    GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
297
298  if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
299    llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
300    attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint"));
301    WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
302    llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
303    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
304       llvm::APInt(32, (uint64_t)attr->getXDim())));
305    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
306       llvm::APInt(32, (uint64_t)attr->getYDim())));
307    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
308       llvm::APInt(32, (uint64_t)attr->getZDim())));
309    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
310  }
311
312  if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
313    llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
314    attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size"));
315    ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
316    llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
317    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
318       llvm::APInt(32, (uint64_t)attr->getXDim())));
319    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
320       llvm::APInt(32, (uint64_t)attr->getYDim())));
321    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
322       llvm::APInt(32, (uint64_t)attr->getZDim())));
323    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
324  }
325
326  llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
327  llvm::NamedMDNode *OpenCLKernelMetadata =
328    CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
329  OpenCLKernelMetadata->addOperand(kernelMDNode);
330}
331
332void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
333                                    llvm::Function *Fn,
334                                    const CGFunctionInfo &FnInfo,
335                                    const FunctionArgList &Args,
336                                    SourceLocation StartLoc) {
337  const Decl *D = GD.getDecl();
338
339  DidCallStackSave = false;
340  CurCodeDecl = CurFuncDecl = D;
341  FnRetTy = RetTy;
342  CurFn = Fn;
343  CurFnInfo = &FnInfo;
344  assert(CurFn->isDeclaration() && "Function already has body?");
345
346  // Pass inline keyword to optimizer if it appears explicitly on any
347  // declaration.
348  if (!CGM.getCodeGenOpts().NoInline)
349    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
350      for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
351             RE = FD->redecls_end(); RI != RE; ++RI)
352        if (RI->isInlineSpecified()) {
353          Fn->addFnAttr(llvm::Attributes::InlineHint);
354          break;
355        }
356
357  if (getLangOpts().OpenCL) {
358    // Add metadata for a kernel function.
359    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
360      EmitOpenCLKernelMetadata(FD, Fn);
361  }
362
363  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
364
365  // Create a marker to make it easy to insert allocas into the entryblock
366  // later.  Don't create this with the builder, because we don't want it
367  // folded.
368  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
369  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
370  if (Builder.isNamePreserving())
371    AllocaInsertPt->setName("allocapt");
372
373  ReturnBlock = getJumpDestInCurrentScope("return");
374
375  Builder.SetInsertPoint(EntryBB);
376
377  // Emit subprogram debug descriptor.
378  if (CGDebugInfo *DI = getDebugInfo()) {
379    unsigned NumArgs = 0;
380    QualType *ArgsArray = new QualType[Args.size()];
381    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
382	 i != e; ++i) {
383      ArgsArray[NumArgs++] = (*i)->getType();
384    }
385
386    QualType FnType =
387      getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
388                                   FunctionProtoType::ExtProtoInfo());
389
390    delete[] ArgsArray;
391
392    DI->setLocation(StartLoc);
393    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
394  }
395
396  if (ShouldInstrumentFunction())
397    EmitFunctionInstrumentation("__cyg_profile_func_enter");
398
399  if (CGM.getCodeGenOpts().InstrumentForProfiling)
400    EmitMCountInstrumentation();
401
402  if (RetTy->isVoidType()) {
403    // Void type; nothing to return.
404    ReturnValue = 0;
405  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
406             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
407    // Indirect aggregate return; emit returned value directly into sret slot.
408    // This reduces code size, and affects correctness in C++.
409    ReturnValue = CurFn->arg_begin();
410  } else {
411    ReturnValue = CreateIRTemp(RetTy, "retval");
412
413    // Tell the epilog emitter to autorelease the result.  We do this
414    // now so that various specialized functions can suppress it
415    // during their IR-generation.
416    if (getLangOpts().ObjCAutoRefCount &&
417        !CurFnInfo->isReturnsRetained() &&
418        RetTy->isObjCRetainableType())
419      AutoreleaseResult = true;
420  }
421
422  EmitStartEHSpec(CurCodeDecl);
423
424  PrologueCleanupDepth = EHStack.stable_begin();
425  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
426
427  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
428    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
429    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
430    if (MD->getParent()->isLambda() &&
431        MD->getOverloadedOperator() == OO_Call) {
432      // We're in a lambda; figure out the captures.
433      MD->getParent()->getCaptureFields(LambdaCaptureFields,
434                                        LambdaThisCaptureField);
435      if (LambdaThisCaptureField) {
436        // If this lambda captures this, load it.
437        QualType LambdaTagType =
438            getContext().getTagDeclType(LambdaThisCaptureField->getParent());
439        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
440                                                     LambdaTagType);
441        LValue ThisLValue = EmitLValueForField(LambdaLV,
442                                               LambdaThisCaptureField);
443        CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
444      }
445    } else {
446      // Not in a lambda; just use 'this' from the method.
447      // FIXME: Should we generate a new load for each use of 'this'?  The
448      // fast register allocator would be happier...
449      CXXThisValue = CXXABIThisValue;
450    }
451  }
452
453  // If any of the arguments have a variably modified type, make sure to
454  // emit the type size.
455  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
456       i != e; ++i) {
457    QualType Ty = (*i)->getType();
458
459    if (Ty->isVariablyModifiedType())
460      EmitVariablyModifiedType(Ty);
461  }
462  // Emit a location at the end of the prologue.
463  if (CGDebugInfo *DI = getDebugInfo())
464    DI->EmitLocation(Builder, StartLoc);
465}
466
467void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
468  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
469  assert(FD->getBody());
470  EmitStmt(FD->getBody());
471}
472
473/// Tries to mark the given function nounwind based on the
474/// non-existence of any throwing calls within it.  We believe this is
475/// lightweight enough to do at -O0.
476static void TryMarkNoThrow(llvm::Function *F) {
477  // LLVM treats 'nounwind' on a function as part of the type, so we
478  // can't do this on functions that can be overwritten.
479  if (F->mayBeOverridden()) return;
480
481  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
482    for (llvm::BasicBlock::iterator
483           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
484      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
485        if (!Call->doesNotThrow())
486          return;
487      } else if (isa<llvm::ResumeInst>(&*BI)) {
488        return;
489      }
490  F->setDoesNotThrow();
491}
492
493void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
494                                   const CGFunctionInfo &FnInfo) {
495  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496
497  // Check if we should generate debug info for this function.
498  if (!FD->hasAttr<NoDebugAttr>())
499    maybeInitializeDebugInfo();
500
501  FunctionArgList Args;
502  QualType ResTy = FD->getResultType();
503
504  CurGD = GD;
505  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
506    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
507
508  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
509    Args.push_back(FD->getParamDecl(i));
510
511  SourceRange BodyRange;
512  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
513
514  // Emit the standard function prologue.
515  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
516
517  // Generate the body of the function.
518  if (isa<CXXDestructorDecl>(FD))
519    EmitDestructorBody(Args);
520  else if (isa<CXXConstructorDecl>(FD))
521    EmitConstructorBody(Args);
522  else if (getLangOpts().CUDA &&
523           !CGM.getCodeGenOpts().CUDAIsDevice &&
524           FD->hasAttr<CUDAGlobalAttr>())
525    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
526  else if (isa<CXXConversionDecl>(FD) &&
527           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
528    // The lambda conversion to block pointer is special; the semantics can't be
529    // expressed in the AST, so IRGen needs to special-case it.
530    EmitLambdaToBlockPointerBody(Args);
531  } else if (isa<CXXMethodDecl>(FD) &&
532             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
533    // The lambda "__invoke" function is special, because it forwards or
534    // clones the body of the function call operator (but is actually static).
535    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
536  }
537  else
538    EmitFunctionBody(Args);
539
540  // C++11 [stmt.return]p2:
541  //   Flowing off the end of a function [...] results in undefined behavior in
542  //   a value-returning function.
543  // C11 6.9.1p12:
544  //   If the '}' that terminates a function is reached, and the value of the
545  //   function call is used by the caller, the behavior is undefined.
546  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
547      !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
548    if (getLangOpts().SanitizeReturn)
549      EmitCheck(Builder.getFalse(), "missing_return",
550                EmitCheckSourceLocation(FD->getLocation()),
551                llvm::ArrayRef<llvm::Value*>());
552    else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
553      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
554    Builder.CreateUnreachable();
555    Builder.ClearInsertionPoint();
556  }
557
558  // Emit the standard function epilogue.
559  FinishFunction(BodyRange.getEnd());
560
561  // If we haven't marked the function nothrow through other means, do
562  // a quick pass now to see if we can.
563  if (!CurFn->doesNotThrow())
564    TryMarkNoThrow(CurFn);
565}
566
567/// ContainsLabel - Return true if the statement contains a label in it.  If
568/// this statement is not executed normally, it not containing a label means
569/// that we can just remove the code.
570bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
571  // Null statement, not a label!
572  if (S == 0) return false;
573
574  // If this is a label, we have to emit the code, consider something like:
575  // if (0) {  ...  foo:  bar(); }  goto foo;
576  //
577  // TODO: If anyone cared, we could track __label__'s, since we know that you
578  // can't jump to one from outside their declared region.
579  if (isa<LabelStmt>(S))
580    return true;
581
582  // If this is a case/default statement, and we haven't seen a switch, we have
583  // to emit the code.
584  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
585    return true;
586
587  // If this is a switch statement, we want to ignore cases below it.
588  if (isa<SwitchStmt>(S))
589    IgnoreCaseStmts = true;
590
591  // Scan subexpressions for verboten labels.
592  for (Stmt::const_child_range I = S->children(); I; ++I)
593    if (ContainsLabel(*I, IgnoreCaseStmts))
594      return true;
595
596  return false;
597}
598
599/// containsBreak - Return true if the statement contains a break out of it.
600/// If the statement (recursively) contains a switch or loop with a break
601/// inside of it, this is fine.
602bool CodeGenFunction::containsBreak(const Stmt *S) {
603  // Null statement, not a label!
604  if (S == 0) return false;
605
606  // If this is a switch or loop that defines its own break scope, then we can
607  // include it and anything inside of it.
608  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
609      isa<ForStmt>(S))
610    return false;
611
612  if (isa<BreakStmt>(S))
613    return true;
614
615  // Scan subexpressions for verboten breaks.
616  for (Stmt::const_child_range I = S->children(); I; ++I)
617    if (containsBreak(*I))
618      return true;
619
620  return false;
621}
622
623
624/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
625/// to a constant, or if it does but contains a label, return false.  If it
626/// constant folds return true and set the boolean result in Result.
627bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
628                                                   bool &ResultBool) {
629  llvm::APSInt ResultInt;
630  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
631    return false;
632
633  ResultBool = ResultInt.getBoolValue();
634  return true;
635}
636
637/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
638/// to a constant, or if it does but contains a label, return false.  If it
639/// constant folds return true and set the folded value.
640bool CodeGenFunction::
641ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
642  // FIXME: Rename and handle conversion of other evaluatable things
643  // to bool.
644  llvm::APSInt Int;
645  if (!Cond->EvaluateAsInt(Int, getContext()))
646    return false;  // Not foldable, not integer or not fully evaluatable.
647
648  if (CodeGenFunction::ContainsLabel(Cond))
649    return false;  // Contains a label.
650
651  ResultInt = Int;
652  return true;
653}
654
655
656
657/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
658/// statement) to the specified blocks.  Based on the condition, this might try
659/// to simplify the codegen of the conditional based on the branch.
660///
661void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
662                                           llvm::BasicBlock *TrueBlock,
663                                           llvm::BasicBlock *FalseBlock) {
664  Cond = Cond->IgnoreParens();
665
666  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
667    // Handle X && Y in a condition.
668    if (CondBOp->getOpcode() == BO_LAnd) {
669      // If we have "1 && X", simplify the code.  "0 && X" would have constant
670      // folded if the case was simple enough.
671      bool ConstantBool = false;
672      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
673          ConstantBool) {
674        // br(1 && X) -> br(X).
675        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
676      }
677
678      // If we have "X && 1", simplify the code to use an uncond branch.
679      // "X && 0" would have been constant folded to 0.
680      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
681          ConstantBool) {
682        // br(X && 1) -> br(X).
683        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
684      }
685
686      // Emit the LHS as a conditional.  If the LHS conditional is false, we
687      // want to jump to the FalseBlock.
688      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
689
690      ConditionalEvaluation eval(*this);
691      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
692      EmitBlock(LHSTrue);
693
694      // Any temporaries created here are conditional.
695      eval.begin(*this);
696      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
697      eval.end(*this);
698
699      return;
700    }
701
702    if (CondBOp->getOpcode() == BO_LOr) {
703      // If we have "0 || X", simplify the code.  "1 || X" would have constant
704      // folded if the case was simple enough.
705      bool ConstantBool = false;
706      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
707          !ConstantBool) {
708        // br(0 || X) -> br(X).
709        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
710      }
711
712      // If we have "X || 0", simplify the code to use an uncond branch.
713      // "X || 1" would have been constant folded to 1.
714      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
715          !ConstantBool) {
716        // br(X || 0) -> br(X).
717        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
718      }
719
720      // Emit the LHS as a conditional.  If the LHS conditional is true, we
721      // want to jump to the TrueBlock.
722      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
723
724      ConditionalEvaluation eval(*this);
725      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
726      EmitBlock(LHSFalse);
727
728      // Any temporaries created here are conditional.
729      eval.begin(*this);
730      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
731      eval.end(*this);
732
733      return;
734    }
735  }
736
737  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
738    // br(!x, t, f) -> br(x, f, t)
739    if (CondUOp->getOpcode() == UO_LNot)
740      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
741  }
742
743  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
744    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
745    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
746    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
747
748    ConditionalEvaluation cond(*this);
749    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
750
751    cond.begin(*this);
752    EmitBlock(LHSBlock);
753    EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
754    cond.end(*this);
755
756    cond.begin(*this);
757    EmitBlock(RHSBlock);
758    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
759    cond.end(*this);
760
761    return;
762  }
763
764  // Emit the code with the fully general case.
765  llvm::Value *CondV = EvaluateExprAsBool(Cond);
766  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
767}
768
769/// ErrorUnsupported - Print out an error that codegen doesn't support the
770/// specified stmt yet.
771void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
772                                       bool OmitOnError) {
773  CGM.ErrorUnsupported(S, Type, OmitOnError);
774}
775
776/// emitNonZeroVLAInit - Emit the "zero" initialization of a
777/// variable-length array whose elements have a non-zero bit-pattern.
778///
779/// \param baseType the inner-most element type of the array
780/// \param src - a char* pointing to the bit-pattern for a single
781/// base element of the array
782/// \param sizeInChars - the total size of the VLA, in chars
783static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
784                               llvm::Value *dest, llvm::Value *src,
785                               llvm::Value *sizeInChars) {
786  std::pair<CharUnits,CharUnits> baseSizeAndAlign
787    = CGF.getContext().getTypeInfoInChars(baseType);
788
789  CGBuilderTy &Builder = CGF.Builder;
790
791  llvm::Value *baseSizeInChars
792    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
793
794  llvm::Type *i8p = Builder.getInt8PtrTy();
795
796  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
797  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
798
799  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
800  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
801  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
802
803  // Make a loop over the VLA.  C99 guarantees that the VLA element
804  // count must be nonzero.
805  CGF.EmitBlock(loopBB);
806
807  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
808  cur->addIncoming(begin, originBB);
809
810  // memcpy the individual element bit-pattern.
811  Builder.CreateMemCpy(cur, src, baseSizeInChars,
812                       baseSizeAndAlign.second.getQuantity(),
813                       /*volatile*/ false);
814
815  // Go to the next element.
816  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
817
818  // Leave if that's the end of the VLA.
819  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
820  Builder.CreateCondBr(done, contBB, loopBB);
821  cur->addIncoming(next, loopBB);
822
823  CGF.EmitBlock(contBB);
824}
825
826void
827CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
828  // Ignore empty classes in C++.
829  if (getLangOpts().CPlusPlus) {
830    if (const RecordType *RT = Ty->getAs<RecordType>()) {
831      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
832        return;
833    }
834  }
835
836  // Cast the dest ptr to the appropriate i8 pointer type.
837  unsigned DestAS =
838    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
839  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
840  if (DestPtr->getType() != BP)
841    DestPtr = Builder.CreateBitCast(DestPtr, BP);
842
843  // Get size and alignment info for this aggregate.
844  std::pair<CharUnits, CharUnits> TypeInfo =
845    getContext().getTypeInfoInChars(Ty);
846  CharUnits Size = TypeInfo.first;
847  CharUnits Align = TypeInfo.second;
848
849  llvm::Value *SizeVal;
850  const VariableArrayType *vla;
851
852  // Don't bother emitting a zero-byte memset.
853  if (Size.isZero()) {
854    // But note that getTypeInfo returns 0 for a VLA.
855    if (const VariableArrayType *vlaType =
856          dyn_cast_or_null<VariableArrayType>(
857                                          getContext().getAsArrayType(Ty))) {
858      QualType eltType;
859      llvm::Value *numElts;
860      llvm::tie(numElts, eltType) = getVLASize(vlaType);
861
862      SizeVal = numElts;
863      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
864      if (!eltSize.isOne())
865        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
866      vla = vlaType;
867    } else {
868      return;
869    }
870  } else {
871    SizeVal = CGM.getSize(Size);
872    vla = 0;
873  }
874
875  // If the type contains a pointer to data member we can't memset it to zero.
876  // Instead, create a null constant and copy it to the destination.
877  // TODO: there are other patterns besides zero that we can usefully memset,
878  // like -1, which happens to be the pattern used by member-pointers.
879  if (!CGM.getTypes().isZeroInitializable(Ty)) {
880    // For a VLA, emit a single element, then splat that over the VLA.
881    if (vla) Ty = getContext().getBaseElementType(vla);
882
883    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
884
885    llvm::GlobalVariable *NullVariable =
886      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
887                               /*isConstant=*/true,
888                               llvm::GlobalVariable::PrivateLinkage,
889                               NullConstant, Twine());
890    llvm::Value *SrcPtr =
891      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
892
893    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
894
895    // Get and call the appropriate llvm.memcpy overload.
896    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
897    return;
898  }
899
900  // Otherwise, just memset the whole thing to zero.  This is legal
901  // because in LLVM, all default initializers (other than the ones we just
902  // handled above) are guaranteed to have a bit pattern of all zeros.
903  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
904                       Align.getQuantity(), false);
905}
906
907llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
908  // Make sure that there is a block for the indirect goto.
909  if (IndirectBranch == 0)
910    GetIndirectGotoBlock();
911
912  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
913
914  // Make sure the indirect branch includes all of the address-taken blocks.
915  IndirectBranch->addDestination(BB);
916  return llvm::BlockAddress::get(CurFn, BB);
917}
918
919llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
920  // If we already made the indirect branch for indirect goto, return its block.
921  if (IndirectBranch) return IndirectBranch->getParent();
922
923  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
924
925  // Create the PHI node that indirect gotos will add entries to.
926  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
927                                              "indirect.goto.dest");
928
929  // Create the indirect branch instruction.
930  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
931  return IndirectBranch->getParent();
932}
933
934/// Computes the length of an array in elements, as well as the base
935/// element type and a properly-typed first element pointer.
936llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
937                                              QualType &baseType,
938                                              llvm::Value *&addr) {
939  const ArrayType *arrayType = origArrayType;
940
941  // If it's a VLA, we have to load the stored size.  Note that
942  // this is the size of the VLA in bytes, not its size in elements.
943  llvm::Value *numVLAElements = 0;
944  if (isa<VariableArrayType>(arrayType)) {
945    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
946
947    // Walk into all VLAs.  This doesn't require changes to addr,
948    // which has type T* where T is the first non-VLA element type.
949    do {
950      QualType elementType = arrayType->getElementType();
951      arrayType = getContext().getAsArrayType(elementType);
952
953      // If we only have VLA components, 'addr' requires no adjustment.
954      if (!arrayType) {
955        baseType = elementType;
956        return numVLAElements;
957      }
958    } while (isa<VariableArrayType>(arrayType));
959
960    // We get out here only if we find a constant array type
961    // inside the VLA.
962  }
963
964  // We have some number of constant-length arrays, so addr should
965  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
966  // down to the first element of addr.
967  SmallVector<llvm::Value*, 8> gepIndices;
968
969  // GEP down to the array type.
970  llvm::ConstantInt *zero = Builder.getInt32(0);
971  gepIndices.push_back(zero);
972
973  uint64_t countFromCLAs = 1;
974  QualType eltType;
975
976  llvm::ArrayType *llvmArrayType =
977    dyn_cast<llvm::ArrayType>(
978      cast<llvm::PointerType>(addr->getType())->getElementType());
979  while (llvmArrayType) {
980    assert(isa<ConstantArrayType>(arrayType));
981    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
982             == llvmArrayType->getNumElements());
983
984    gepIndices.push_back(zero);
985    countFromCLAs *= llvmArrayType->getNumElements();
986    eltType = arrayType->getElementType();
987
988    llvmArrayType =
989      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
990    arrayType = getContext().getAsArrayType(arrayType->getElementType());
991    assert((!llvmArrayType || arrayType) &&
992           "LLVM and Clang types are out-of-synch");
993  }
994
995  if (arrayType) {
996    // From this point onwards, the Clang array type has been emitted
997    // as some other type (probably a packed struct). Compute the array
998    // size, and just emit the 'begin' expression as a bitcast.
999    while (arrayType) {
1000      countFromCLAs *=
1001          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1002      eltType = arrayType->getElementType();
1003      arrayType = getContext().getAsArrayType(eltType);
1004    }
1005
1006    unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1007    llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1008    addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1009  } else {
1010    // Create the actual GEP.
1011    addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1012  }
1013
1014  baseType = eltType;
1015
1016  llvm::Value *numElements
1017    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1018
1019  // If we had any VLA dimensions, factor them in.
1020  if (numVLAElements)
1021    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1022
1023  return numElements;
1024}
1025
1026std::pair<llvm::Value*, QualType>
1027CodeGenFunction::getVLASize(QualType type) {
1028  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1029  assert(vla && "type was not a variable array type!");
1030  return getVLASize(vla);
1031}
1032
1033std::pair<llvm::Value*, QualType>
1034CodeGenFunction::getVLASize(const VariableArrayType *type) {
1035  // The number of elements so far; always size_t.
1036  llvm::Value *numElements = 0;
1037
1038  QualType elementType;
1039  do {
1040    elementType = type->getElementType();
1041    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1042    assert(vlaSize && "no size for VLA!");
1043    assert(vlaSize->getType() == SizeTy);
1044
1045    if (!numElements) {
1046      numElements = vlaSize;
1047    } else {
1048      // It's undefined behavior if this wraps around, so mark it that way.
1049      // FIXME: Teach -fcatch-undefined-behavior to trap this.
1050      numElements = Builder.CreateNUWMul(numElements, vlaSize);
1051    }
1052  } while ((type = getContext().getAsVariableArrayType(elementType)));
1053
1054  return std::pair<llvm::Value*,QualType>(numElements, elementType);
1055}
1056
1057void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1058  assert(type->isVariablyModifiedType() &&
1059         "Must pass variably modified type to EmitVLASizes!");
1060
1061  EnsureInsertPoint();
1062
1063  // We're going to walk down into the type and look for VLA
1064  // expressions.
1065  do {
1066    assert(type->isVariablyModifiedType());
1067
1068    const Type *ty = type.getTypePtr();
1069    switch (ty->getTypeClass()) {
1070
1071#define TYPE(Class, Base)
1072#define ABSTRACT_TYPE(Class, Base)
1073#define NON_CANONICAL_TYPE(Class, Base)
1074#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1075#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1076#include "clang/AST/TypeNodes.def"
1077      llvm_unreachable("unexpected dependent type!");
1078
1079    // These types are never variably-modified.
1080    case Type::Builtin:
1081    case Type::Complex:
1082    case Type::Vector:
1083    case Type::ExtVector:
1084    case Type::Record:
1085    case Type::Enum:
1086    case Type::Elaborated:
1087    case Type::TemplateSpecialization:
1088    case Type::ObjCObject:
1089    case Type::ObjCInterface:
1090    case Type::ObjCObjectPointer:
1091      llvm_unreachable("type class is never variably-modified!");
1092
1093    case Type::Pointer:
1094      type = cast<PointerType>(ty)->getPointeeType();
1095      break;
1096
1097    case Type::BlockPointer:
1098      type = cast<BlockPointerType>(ty)->getPointeeType();
1099      break;
1100
1101    case Type::LValueReference:
1102    case Type::RValueReference:
1103      type = cast<ReferenceType>(ty)->getPointeeType();
1104      break;
1105
1106    case Type::MemberPointer:
1107      type = cast<MemberPointerType>(ty)->getPointeeType();
1108      break;
1109
1110    case Type::ConstantArray:
1111    case Type::IncompleteArray:
1112      // Losing element qualification here is fine.
1113      type = cast<ArrayType>(ty)->getElementType();
1114      break;
1115
1116    case Type::VariableArray: {
1117      // Losing element qualification here is fine.
1118      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1119
1120      // Unknown size indication requires no size computation.
1121      // Otherwise, evaluate and record it.
1122      if (const Expr *size = vat->getSizeExpr()) {
1123        // It's possible that we might have emitted this already,
1124        // e.g. with a typedef and a pointer to it.
1125        llvm::Value *&entry = VLASizeMap[size];
1126        if (!entry) {
1127          llvm::Value *Size = EmitScalarExpr(size);
1128
1129          // C11 6.7.6.2p5:
1130          //   If the size is an expression that is not an integer constant
1131          //   expression [...] each time it is evaluated it shall have a value
1132          //   greater than zero.
1133          if (getLangOpts().SanitizeVLABound &&
1134              size->getType()->isSignedIntegerType()) {
1135            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1136            llvm::Constant *StaticArgs[] = {
1137              EmitCheckSourceLocation(size->getLocStart()),
1138              EmitCheckTypeDescriptor(size->getType())
1139            };
1140            EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1141                      "vla_bound_not_positive", StaticArgs, Size);
1142          }
1143
1144          // Always zexting here would be wrong if it weren't
1145          // undefined behavior to have a negative bound.
1146          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1147        }
1148      }
1149      type = vat->getElementType();
1150      break;
1151    }
1152
1153    case Type::FunctionProto:
1154    case Type::FunctionNoProto:
1155      type = cast<FunctionType>(ty)->getResultType();
1156      break;
1157
1158    case Type::Paren:
1159    case Type::TypeOf:
1160    case Type::UnaryTransform:
1161    case Type::Attributed:
1162    case Type::SubstTemplateTypeParm:
1163      // Keep walking after single level desugaring.
1164      type = type.getSingleStepDesugaredType(getContext());
1165      break;
1166
1167    case Type::Typedef:
1168    case Type::Decltype:
1169    case Type::Auto:
1170      // Stop walking: nothing to do.
1171      return;
1172
1173    case Type::TypeOfExpr:
1174      // Stop walking: emit typeof expression.
1175      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1176      return;
1177
1178    case Type::Atomic:
1179      type = cast<AtomicType>(ty)->getValueType();
1180      break;
1181    }
1182  } while (type->isVariablyModifiedType());
1183}
1184
1185llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1186  if (getContext().getBuiltinVaListType()->isArrayType())
1187    return EmitScalarExpr(E);
1188  return EmitLValue(E).getAddress();
1189}
1190
1191void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1192                                              llvm::Constant *Init) {
1193  assert (Init && "Invalid DeclRefExpr initializer!");
1194  if (CGDebugInfo *Dbg = getDebugInfo())
1195    if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1196      Dbg->EmitGlobalVariable(E->getDecl(), Init);
1197}
1198
1199CodeGenFunction::PeepholeProtection
1200CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1201  // At the moment, the only aggressive peephole we do in IR gen
1202  // is trunc(zext) folding, but if we add more, we can easily
1203  // extend this protection.
1204
1205  if (!rvalue.isScalar()) return PeepholeProtection();
1206  llvm::Value *value = rvalue.getScalarVal();
1207  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1208
1209  // Just make an extra bitcast.
1210  assert(HaveInsertPoint());
1211  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1212                                                  Builder.GetInsertBlock());
1213
1214  PeepholeProtection protection;
1215  protection.Inst = inst;
1216  return protection;
1217}
1218
1219void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1220  if (!protection.Inst) return;
1221
1222  // In theory, we could try to duplicate the peepholes now, but whatever.
1223  protection.Inst->eraseFromParent();
1224}
1225
1226llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1227                                                 llvm::Value *AnnotatedVal,
1228                                                 llvm::StringRef AnnotationStr,
1229                                                 SourceLocation Location) {
1230  llvm::Value *Args[4] = {
1231    AnnotatedVal,
1232    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1233    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1234    CGM.EmitAnnotationLineNo(Location)
1235  };
1236  return Builder.CreateCall(AnnotationFn, Args);
1237}
1238
1239void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1240  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1241  // FIXME We create a new bitcast for every annotation because that's what
1242  // llvm-gcc was doing.
1243  for (specific_attr_iterator<AnnotateAttr>
1244       ai = D->specific_attr_begin<AnnotateAttr>(),
1245       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1246    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1247                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1248                       (*ai)->getAnnotation(), D->getLocation());
1249}
1250
1251llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1252                                                   llvm::Value *V) {
1253  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1254  llvm::Type *VTy = V->getType();
1255  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1256                                    CGM.Int8PtrTy);
1257
1258  for (specific_attr_iterator<AnnotateAttr>
1259       ai = D->specific_attr_begin<AnnotateAttr>(),
1260       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1261    // FIXME Always emit the cast inst so we can differentiate between
1262    // annotation on the first field of a struct and annotation on the struct
1263    // itself.
1264    if (VTy != CGM.Int8PtrTy)
1265      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1266    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1267    V = Builder.CreateBitCast(V, VTy);
1268  }
1269
1270  return V;
1271}
1272