CodeGenFunction.cpp revision 239462
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/MDBuilder.h"
27#include "llvm/Target/TargetData.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
32  : CodeGenTypeCache(cgm), CGM(cgm),
33    Target(CGM.getContext().getTargetInfo()),
34    Builder(cgm.getModule().getContext()),
35    AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
36    LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
37    FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
38    DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
39    IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
40    CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
41    CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
42    TerminateHandler(0), TrapBB(0) {
43
44  CatchUndefined = getContext().getLangOpts().CatchUndefined;
45  if (!suppressNewContext)
46    CGM.getCXXABI().getMangleContext().startNewFunction();
47}
48
49CodeGenFunction::~CodeGenFunction() {
50  // If there are any unclaimed block infos, go ahead and destroy them
51  // now.  This can happen if IR-gen gets clever and skips evaluating
52  // something.
53  if (FirstBlockInfo)
54    destroyBlockInfos(FirstBlockInfo);
55}
56
57
58llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
59  return CGM.getTypes().ConvertTypeForMem(T);
60}
61
62llvm::Type *CodeGenFunction::ConvertType(QualType T) {
63  return CGM.getTypes().ConvertType(T);
64}
65
66bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
67  switch (type.getCanonicalType()->getTypeClass()) {
68#define TYPE(name, parent)
69#define ABSTRACT_TYPE(name, parent)
70#define NON_CANONICAL_TYPE(name, parent) case Type::name:
71#define DEPENDENT_TYPE(name, parent) case Type::name:
72#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
73#include "clang/AST/TypeNodes.def"
74    llvm_unreachable("non-canonical or dependent type in IR-generation");
75
76  case Type::Builtin:
77  case Type::Pointer:
78  case Type::BlockPointer:
79  case Type::LValueReference:
80  case Type::RValueReference:
81  case Type::MemberPointer:
82  case Type::Vector:
83  case Type::ExtVector:
84  case Type::FunctionProto:
85  case Type::FunctionNoProto:
86  case Type::Enum:
87  case Type::ObjCObjectPointer:
88    return false;
89
90  // Complexes, arrays, records, and Objective-C objects.
91  case Type::Complex:
92  case Type::ConstantArray:
93  case Type::IncompleteArray:
94  case Type::VariableArray:
95  case Type::Record:
96  case Type::ObjCObject:
97  case Type::ObjCInterface:
98    return true;
99
100  // In IRGen, atomic types are just the underlying type
101  case Type::Atomic:
102    return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
103  }
104  llvm_unreachable("unknown type kind!");
105}
106
107void CodeGenFunction::EmitReturnBlock() {
108  // For cleanliness, we try to avoid emitting the return block for
109  // simple cases.
110  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
111
112  if (CurBB) {
113    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
114
115    // We have a valid insert point, reuse it if it is empty or there are no
116    // explicit jumps to the return block.
117    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
118      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
119      delete ReturnBlock.getBlock();
120    } else
121      EmitBlock(ReturnBlock.getBlock());
122    return;
123  }
124
125  // Otherwise, if the return block is the target of a single direct
126  // branch then we can just put the code in that block instead. This
127  // cleans up functions which started with a unified return block.
128  if (ReturnBlock.getBlock()->hasOneUse()) {
129    llvm::BranchInst *BI =
130      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
131    if (BI && BI->isUnconditional() &&
132        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
133      // Reset insertion point, including debug location, and delete the branch.
134      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
135      Builder.SetInsertPoint(BI->getParent());
136      BI->eraseFromParent();
137      delete ReturnBlock.getBlock();
138      return;
139    }
140  }
141
142  // FIXME: We are at an unreachable point, there is no reason to emit the block
143  // unless it has uses. However, we still need a place to put the debug
144  // region.end for now.
145
146  EmitBlock(ReturnBlock.getBlock());
147}
148
149static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
150  if (!BB) return;
151  if (!BB->use_empty())
152    return CGF.CurFn->getBasicBlockList().push_back(BB);
153  delete BB;
154}
155
156void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
157  assert(BreakContinueStack.empty() &&
158         "mismatched push/pop in break/continue stack!");
159
160  // Pop any cleanups that might have been associated with the
161  // parameters.  Do this in whatever block we're currently in; it's
162  // important to do this before we enter the return block or return
163  // edges will be *really* confused.
164  if (EHStack.stable_begin() != PrologueCleanupDepth)
165    PopCleanupBlocks(PrologueCleanupDepth);
166
167  // Emit function epilog (to return).
168  EmitReturnBlock();
169
170  if (ShouldInstrumentFunction())
171    EmitFunctionInstrumentation("__cyg_profile_func_exit");
172
173  // Emit debug descriptor for function end.
174  if (CGDebugInfo *DI = getDebugInfo()) {
175    DI->setLocation(EndLoc);
176    DI->EmitFunctionEnd(Builder);
177  }
178
179  EmitFunctionEpilog(*CurFnInfo);
180  EmitEndEHSpec(CurCodeDecl);
181
182  assert(EHStack.empty() &&
183         "did not remove all scopes from cleanup stack!");
184
185  // If someone did an indirect goto, emit the indirect goto block at the end of
186  // the function.
187  if (IndirectBranch) {
188    EmitBlock(IndirectBranch->getParent());
189    Builder.ClearInsertionPoint();
190  }
191
192  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
193  llvm::Instruction *Ptr = AllocaInsertPt;
194  AllocaInsertPt = 0;
195  Ptr->eraseFromParent();
196
197  // If someone took the address of a label but never did an indirect goto, we
198  // made a zero entry PHI node, which is illegal, zap it now.
199  if (IndirectBranch) {
200    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
201    if (PN->getNumIncomingValues() == 0) {
202      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
203      PN->eraseFromParent();
204    }
205  }
206
207  EmitIfUsed(*this, EHResumeBlock);
208  EmitIfUsed(*this, TerminateLandingPad);
209  EmitIfUsed(*this, TerminateHandler);
210  EmitIfUsed(*this, UnreachableBlock);
211
212  if (CGM.getCodeGenOpts().EmitDeclMetadata)
213    EmitDeclMetadata();
214}
215
216/// ShouldInstrumentFunction - Return true if the current function should be
217/// instrumented with __cyg_profile_func_* calls
218bool CodeGenFunction::ShouldInstrumentFunction() {
219  if (!CGM.getCodeGenOpts().InstrumentFunctions)
220    return false;
221  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
222    return false;
223  return true;
224}
225
226/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
227/// instrumentation function with the current function and the call site, if
228/// function instrumentation is enabled.
229void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
230  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
231  llvm::PointerType *PointerTy = Int8PtrTy;
232  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
233  llvm::FunctionType *FunctionTy =
234    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
235
236  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
237  llvm::CallInst *CallSite = Builder.CreateCall(
238    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
239    llvm::ConstantInt::get(Int32Ty, 0),
240    "callsite");
241
242  Builder.CreateCall2(F,
243                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
244                      CallSite);
245}
246
247void CodeGenFunction::EmitMCountInstrumentation() {
248  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
249
250  llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
251                                                       Target.getMCountName());
252  Builder.CreateCall(MCountFn);
253}
254
255// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
256// information in the program executable. The argument information stored
257// includes the argument name, its type, the address and access qualifiers used.
258// FIXME: Add type, address, and access qualifiers.
259static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
260                                 CodeGenModule &CGM,llvm::LLVMContext &Context,
261                                 llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) {
262
263  // Create MDNodes that represents the kernel arg metadata.
264  // Each MDNode is a list in the form of "key", N number of values which is
265  // the same number of values as their are kernel arguments.
266
267  // MDNode for the kernel argument names.
268  SmallVector<llvm::Value*, 8> argNames;
269  argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
270
271  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
272    const ParmVarDecl *parm = FD->getParamDecl(i);
273
274    // Get argument name.
275    argNames.push_back(llvm::MDString::get(Context, parm->getName()));
276
277  }
278  // Add MDNode to the list of all metadata.
279  kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
280}
281
282void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
283                                               llvm::Function *Fn)
284{
285  if (!FD->hasAttr<OpenCLKernelAttr>())
286    return;
287
288  llvm::LLVMContext &Context = getLLVMContext();
289
290  llvm::SmallVector <llvm::Value*, 5> kernelMDArgs;
291  kernelMDArgs.push_back(Fn);
292
293  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
294    GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
295
296  if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
297    llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
298    attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint"));
299    WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
300    llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
301    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
302       llvm::APInt(32, (uint64_t)attr->getXDim())));
303    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
304       llvm::APInt(32, (uint64_t)attr->getYDim())));
305    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
306       llvm::APInt(32, (uint64_t)attr->getZDim())));
307    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
308  }
309
310  if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
311    llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
312    attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size"));
313    ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
314    llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
315    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
316       llvm::APInt(32, (uint64_t)attr->getXDim())));
317    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
318       llvm::APInt(32, (uint64_t)attr->getYDim())));
319    attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
320       llvm::APInt(32, (uint64_t)attr->getZDim())));
321    kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
322  }
323
324  llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
325  llvm::NamedMDNode *OpenCLKernelMetadata =
326    CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
327  OpenCLKernelMetadata->addOperand(kernelMDNode);
328}
329
330void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
331                                    llvm::Function *Fn,
332                                    const CGFunctionInfo &FnInfo,
333                                    const FunctionArgList &Args,
334                                    SourceLocation StartLoc) {
335  const Decl *D = GD.getDecl();
336
337  DidCallStackSave = false;
338  CurCodeDecl = CurFuncDecl = D;
339  FnRetTy = RetTy;
340  CurFn = Fn;
341  CurFnInfo = &FnInfo;
342  assert(CurFn->isDeclaration() && "Function already has body?");
343
344  // Pass inline keyword to optimizer if it appears explicitly on any
345  // declaration.
346  if (!CGM.getCodeGenOpts().NoInline)
347    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
348      for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
349             RE = FD->redecls_end(); RI != RE; ++RI)
350        if (RI->isInlineSpecified()) {
351          Fn->addFnAttr(llvm::Attribute::InlineHint);
352          break;
353        }
354
355  if (getContext().getLangOpts().OpenCL) {
356    // Add metadata for a kernel function.
357    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
358      EmitOpenCLKernelMetadata(FD, Fn);
359  }
360
361  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
362
363  // Create a marker to make it easy to insert allocas into the entryblock
364  // later.  Don't create this with the builder, because we don't want it
365  // folded.
366  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
367  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
368  if (Builder.isNamePreserving())
369    AllocaInsertPt->setName("allocapt");
370
371  ReturnBlock = getJumpDestInCurrentScope("return");
372
373  Builder.SetInsertPoint(EntryBB);
374
375  // Emit subprogram debug descriptor.
376  if (CGDebugInfo *DI = getDebugInfo()) {
377    unsigned NumArgs = 0;
378    QualType *ArgsArray = new QualType[Args.size()];
379    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
380	 i != e; ++i) {
381      ArgsArray[NumArgs++] = (*i)->getType();
382    }
383
384    QualType FnType =
385      getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
386                                   FunctionProtoType::ExtProtoInfo());
387
388    delete[] ArgsArray;
389
390    DI->setLocation(StartLoc);
391    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
392  }
393
394  if (ShouldInstrumentFunction())
395    EmitFunctionInstrumentation("__cyg_profile_func_enter");
396
397  if (CGM.getCodeGenOpts().InstrumentForProfiling)
398    EmitMCountInstrumentation();
399
400  if (RetTy->isVoidType()) {
401    // Void type; nothing to return.
402    ReturnValue = 0;
403  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
404             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
405    // Indirect aggregate return; emit returned value directly into sret slot.
406    // This reduces code size, and affects correctness in C++.
407    ReturnValue = CurFn->arg_begin();
408  } else {
409    ReturnValue = CreateIRTemp(RetTy, "retval");
410
411    // Tell the epilog emitter to autorelease the result.  We do this
412    // now so that various specialized functions can suppress it
413    // during their IR-generation.
414    if (getLangOpts().ObjCAutoRefCount &&
415        !CurFnInfo->isReturnsRetained() &&
416        RetTy->isObjCRetainableType())
417      AutoreleaseResult = true;
418  }
419
420  EmitStartEHSpec(CurCodeDecl);
421
422  PrologueCleanupDepth = EHStack.stable_begin();
423  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
424
425  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
426    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
427    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
428    if (MD->getParent()->isLambda() &&
429        MD->getOverloadedOperator() == OO_Call) {
430      // We're in a lambda; figure out the captures.
431      MD->getParent()->getCaptureFields(LambdaCaptureFields,
432                                        LambdaThisCaptureField);
433      if (LambdaThisCaptureField) {
434        // If this lambda captures this, load it.
435        QualType LambdaTagType =
436            getContext().getTagDeclType(LambdaThisCaptureField->getParent());
437        LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
438                                                     LambdaTagType);
439        LValue ThisLValue = EmitLValueForField(LambdaLV,
440                                               LambdaThisCaptureField);
441        CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
442      }
443    } else {
444      // Not in a lambda; just use 'this' from the method.
445      // FIXME: Should we generate a new load for each use of 'this'?  The
446      // fast register allocator would be happier...
447      CXXThisValue = CXXABIThisValue;
448    }
449  }
450
451  // If any of the arguments have a variably modified type, make sure to
452  // emit the type size.
453  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
454       i != e; ++i) {
455    QualType Ty = (*i)->getType();
456
457    if (Ty->isVariablyModifiedType())
458      EmitVariablyModifiedType(Ty);
459  }
460  // Emit a location at the end of the prologue.
461  if (CGDebugInfo *DI = getDebugInfo())
462    DI->EmitLocation(Builder, StartLoc);
463}
464
465void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
466  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
467  assert(FD->getBody());
468  EmitStmt(FD->getBody());
469}
470
471/// Tries to mark the given function nounwind based on the
472/// non-existence of any throwing calls within it.  We believe this is
473/// lightweight enough to do at -O0.
474static void TryMarkNoThrow(llvm::Function *F) {
475  // LLVM treats 'nounwind' on a function as part of the type, so we
476  // can't do this on functions that can be overwritten.
477  if (F->mayBeOverridden()) return;
478
479  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
480    for (llvm::BasicBlock::iterator
481           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
482      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
483        if (!Call->doesNotThrow())
484          return;
485      } else if (isa<llvm::ResumeInst>(&*BI)) {
486        return;
487      }
488  F->setDoesNotThrow(true);
489}
490
491void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
492                                   const CGFunctionInfo &FnInfo) {
493  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
494
495  // Check if we should generate debug info for this function.
496  if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
497    DebugInfo = CGM.getModuleDebugInfo();
498
499  FunctionArgList Args;
500  QualType ResTy = FD->getResultType();
501
502  CurGD = GD;
503  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
504    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
505
506  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
507    Args.push_back(FD->getParamDecl(i));
508
509  SourceRange BodyRange;
510  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
511
512  // Emit the standard function prologue.
513  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
514
515  // Generate the body of the function.
516  if (isa<CXXDestructorDecl>(FD))
517    EmitDestructorBody(Args);
518  else if (isa<CXXConstructorDecl>(FD))
519    EmitConstructorBody(Args);
520  else if (getContext().getLangOpts().CUDA &&
521           !CGM.getCodeGenOpts().CUDAIsDevice &&
522           FD->hasAttr<CUDAGlobalAttr>())
523    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
524  else if (isa<CXXConversionDecl>(FD) &&
525           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
526    // The lambda conversion to block pointer is special; the semantics can't be
527    // expressed in the AST, so IRGen needs to special-case it.
528    EmitLambdaToBlockPointerBody(Args);
529  } else if (isa<CXXMethodDecl>(FD) &&
530             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
531    // The lambda "__invoke" function is special, because it forwards or
532    // clones the body of the function call operator (but is actually static).
533    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
534  }
535  else
536    EmitFunctionBody(Args);
537
538  // Emit the standard function epilogue.
539  FinishFunction(BodyRange.getEnd());
540
541  // If we haven't marked the function nothrow through other means, do
542  // a quick pass now to see if we can.
543  if (!CurFn->doesNotThrow())
544    TryMarkNoThrow(CurFn);
545}
546
547/// ContainsLabel - Return true if the statement contains a label in it.  If
548/// this statement is not executed normally, it not containing a label means
549/// that we can just remove the code.
550bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
551  // Null statement, not a label!
552  if (S == 0) return false;
553
554  // If this is a label, we have to emit the code, consider something like:
555  // if (0) {  ...  foo:  bar(); }  goto foo;
556  //
557  // TODO: If anyone cared, we could track __label__'s, since we know that you
558  // can't jump to one from outside their declared region.
559  if (isa<LabelStmt>(S))
560    return true;
561
562  // If this is a case/default statement, and we haven't seen a switch, we have
563  // to emit the code.
564  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
565    return true;
566
567  // If this is a switch statement, we want to ignore cases below it.
568  if (isa<SwitchStmt>(S))
569    IgnoreCaseStmts = true;
570
571  // Scan subexpressions for verboten labels.
572  for (Stmt::const_child_range I = S->children(); I; ++I)
573    if (ContainsLabel(*I, IgnoreCaseStmts))
574      return true;
575
576  return false;
577}
578
579/// containsBreak - Return true if the statement contains a break out of it.
580/// If the statement (recursively) contains a switch or loop with a break
581/// inside of it, this is fine.
582bool CodeGenFunction::containsBreak(const Stmt *S) {
583  // Null statement, not a label!
584  if (S == 0) return false;
585
586  // If this is a switch or loop that defines its own break scope, then we can
587  // include it and anything inside of it.
588  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
589      isa<ForStmt>(S))
590    return false;
591
592  if (isa<BreakStmt>(S))
593    return true;
594
595  // Scan subexpressions for verboten breaks.
596  for (Stmt::const_child_range I = S->children(); I; ++I)
597    if (containsBreak(*I))
598      return true;
599
600  return false;
601}
602
603
604/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
605/// to a constant, or if it does but contains a label, return false.  If it
606/// constant folds return true and set the boolean result in Result.
607bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
608                                                   bool &ResultBool) {
609  llvm::APSInt ResultInt;
610  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
611    return false;
612
613  ResultBool = ResultInt.getBoolValue();
614  return true;
615}
616
617/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
618/// to a constant, or if it does but contains a label, return false.  If it
619/// constant folds return true and set the folded value.
620bool CodeGenFunction::
621ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
622  // FIXME: Rename and handle conversion of other evaluatable things
623  // to bool.
624  llvm::APSInt Int;
625  if (!Cond->EvaluateAsInt(Int, getContext()))
626    return false;  // Not foldable, not integer or not fully evaluatable.
627
628  if (CodeGenFunction::ContainsLabel(Cond))
629    return false;  // Contains a label.
630
631  ResultInt = Int;
632  return true;
633}
634
635
636
637/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
638/// statement) to the specified blocks.  Based on the condition, this might try
639/// to simplify the codegen of the conditional based on the branch.
640///
641void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
642                                           llvm::BasicBlock *TrueBlock,
643                                           llvm::BasicBlock *FalseBlock) {
644  Cond = Cond->IgnoreParens();
645
646  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
647    // Handle X && Y in a condition.
648    if (CondBOp->getOpcode() == BO_LAnd) {
649      // If we have "1 && X", simplify the code.  "0 && X" would have constant
650      // folded if the case was simple enough.
651      bool ConstantBool = false;
652      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
653          ConstantBool) {
654        // br(1 && X) -> br(X).
655        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
656      }
657
658      // If we have "X && 1", simplify the code to use an uncond branch.
659      // "X && 0" would have been constant folded to 0.
660      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
661          ConstantBool) {
662        // br(X && 1) -> br(X).
663        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
664      }
665
666      // Emit the LHS as a conditional.  If the LHS conditional is false, we
667      // want to jump to the FalseBlock.
668      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
669
670      ConditionalEvaluation eval(*this);
671      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
672      EmitBlock(LHSTrue);
673
674      // Any temporaries created here are conditional.
675      eval.begin(*this);
676      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
677      eval.end(*this);
678
679      return;
680    }
681
682    if (CondBOp->getOpcode() == BO_LOr) {
683      // If we have "0 || X", simplify the code.  "1 || X" would have constant
684      // folded if the case was simple enough.
685      bool ConstantBool = false;
686      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
687          !ConstantBool) {
688        // br(0 || X) -> br(X).
689        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
690      }
691
692      // If we have "X || 0", simplify the code to use an uncond branch.
693      // "X || 1" would have been constant folded to 1.
694      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
695          !ConstantBool) {
696        // br(X || 0) -> br(X).
697        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
698      }
699
700      // Emit the LHS as a conditional.  If the LHS conditional is true, we
701      // want to jump to the TrueBlock.
702      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
703
704      ConditionalEvaluation eval(*this);
705      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
706      EmitBlock(LHSFalse);
707
708      // Any temporaries created here are conditional.
709      eval.begin(*this);
710      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
711      eval.end(*this);
712
713      return;
714    }
715  }
716
717  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
718    // br(!x, t, f) -> br(x, f, t)
719    if (CondUOp->getOpcode() == UO_LNot)
720      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
721  }
722
723  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
724    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
725    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
726    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
727
728    ConditionalEvaluation cond(*this);
729    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
730
731    cond.begin(*this);
732    EmitBlock(LHSBlock);
733    EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
734    cond.end(*this);
735
736    cond.begin(*this);
737    EmitBlock(RHSBlock);
738    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
739    cond.end(*this);
740
741    return;
742  }
743
744  // Emit the code with the fully general case.
745  llvm::Value *CondV = EvaluateExprAsBool(Cond);
746  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
747}
748
749/// ErrorUnsupported - Print out an error that codegen doesn't support the
750/// specified stmt yet.
751void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
752                                       bool OmitOnError) {
753  CGM.ErrorUnsupported(S, Type, OmitOnError);
754}
755
756/// emitNonZeroVLAInit - Emit the "zero" initialization of a
757/// variable-length array whose elements have a non-zero bit-pattern.
758///
759/// \param baseType the inner-most element type of the array
760/// \param src - a char* pointing to the bit-pattern for a single
761/// base element of the array
762/// \param sizeInChars - the total size of the VLA, in chars
763static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
764                               llvm::Value *dest, llvm::Value *src,
765                               llvm::Value *sizeInChars) {
766  std::pair<CharUnits,CharUnits> baseSizeAndAlign
767    = CGF.getContext().getTypeInfoInChars(baseType);
768
769  CGBuilderTy &Builder = CGF.Builder;
770
771  llvm::Value *baseSizeInChars
772    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
773
774  llvm::Type *i8p = Builder.getInt8PtrTy();
775
776  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
777  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
778
779  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
780  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
781  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
782
783  // Make a loop over the VLA.  C99 guarantees that the VLA element
784  // count must be nonzero.
785  CGF.EmitBlock(loopBB);
786
787  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
788  cur->addIncoming(begin, originBB);
789
790  // memcpy the individual element bit-pattern.
791  Builder.CreateMemCpy(cur, src, baseSizeInChars,
792                       baseSizeAndAlign.second.getQuantity(),
793                       /*volatile*/ false);
794
795  // Go to the next element.
796  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
797
798  // Leave if that's the end of the VLA.
799  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
800  Builder.CreateCondBr(done, contBB, loopBB);
801  cur->addIncoming(next, loopBB);
802
803  CGF.EmitBlock(contBB);
804}
805
806void
807CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
808  // Ignore empty classes in C++.
809  if (getContext().getLangOpts().CPlusPlus) {
810    if (const RecordType *RT = Ty->getAs<RecordType>()) {
811      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
812        return;
813    }
814  }
815
816  // Cast the dest ptr to the appropriate i8 pointer type.
817  unsigned DestAS =
818    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
819  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
820  if (DestPtr->getType() != BP)
821    DestPtr = Builder.CreateBitCast(DestPtr, BP);
822
823  // Get size and alignment info for this aggregate.
824  std::pair<CharUnits, CharUnits> TypeInfo =
825    getContext().getTypeInfoInChars(Ty);
826  CharUnits Size = TypeInfo.first;
827  CharUnits Align = TypeInfo.second;
828
829  llvm::Value *SizeVal;
830  const VariableArrayType *vla;
831
832  // Don't bother emitting a zero-byte memset.
833  if (Size.isZero()) {
834    // But note that getTypeInfo returns 0 for a VLA.
835    if (const VariableArrayType *vlaType =
836          dyn_cast_or_null<VariableArrayType>(
837                                          getContext().getAsArrayType(Ty))) {
838      QualType eltType;
839      llvm::Value *numElts;
840      llvm::tie(numElts, eltType) = getVLASize(vlaType);
841
842      SizeVal = numElts;
843      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
844      if (!eltSize.isOne())
845        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
846      vla = vlaType;
847    } else {
848      return;
849    }
850  } else {
851    SizeVal = CGM.getSize(Size);
852    vla = 0;
853  }
854
855  // If the type contains a pointer to data member we can't memset it to zero.
856  // Instead, create a null constant and copy it to the destination.
857  // TODO: there are other patterns besides zero that we can usefully memset,
858  // like -1, which happens to be the pattern used by member-pointers.
859  if (!CGM.getTypes().isZeroInitializable(Ty)) {
860    // For a VLA, emit a single element, then splat that over the VLA.
861    if (vla) Ty = getContext().getBaseElementType(vla);
862
863    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
864
865    llvm::GlobalVariable *NullVariable =
866      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
867                               /*isConstant=*/true,
868                               llvm::GlobalVariable::PrivateLinkage,
869                               NullConstant, Twine());
870    llvm::Value *SrcPtr =
871      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
872
873    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
874
875    // Get and call the appropriate llvm.memcpy overload.
876    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
877    return;
878  }
879
880  // Otherwise, just memset the whole thing to zero.  This is legal
881  // because in LLVM, all default initializers (other than the ones we just
882  // handled above) are guaranteed to have a bit pattern of all zeros.
883  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
884                       Align.getQuantity(), false);
885}
886
887llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
888  // Make sure that there is a block for the indirect goto.
889  if (IndirectBranch == 0)
890    GetIndirectGotoBlock();
891
892  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
893
894  // Make sure the indirect branch includes all of the address-taken blocks.
895  IndirectBranch->addDestination(BB);
896  return llvm::BlockAddress::get(CurFn, BB);
897}
898
899llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
900  // If we already made the indirect branch for indirect goto, return its block.
901  if (IndirectBranch) return IndirectBranch->getParent();
902
903  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
904
905  // Create the PHI node that indirect gotos will add entries to.
906  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
907                                              "indirect.goto.dest");
908
909  // Create the indirect branch instruction.
910  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
911  return IndirectBranch->getParent();
912}
913
914/// Computes the length of an array in elements, as well as the base
915/// element type and a properly-typed first element pointer.
916llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
917                                              QualType &baseType,
918                                              llvm::Value *&addr) {
919  const ArrayType *arrayType = origArrayType;
920
921  // If it's a VLA, we have to load the stored size.  Note that
922  // this is the size of the VLA in bytes, not its size in elements.
923  llvm::Value *numVLAElements = 0;
924  if (isa<VariableArrayType>(arrayType)) {
925    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
926
927    // Walk into all VLAs.  This doesn't require changes to addr,
928    // which has type T* where T is the first non-VLA element type.
929    do {
930      QualType elementType = arrayType->getElementType();
931      arrayType = getContext().getAsArrayType(elementType);
932
933      // If we only have VLA components, 'addr' requires no adjustment.
934      if (!arrayType) {
935        baseType = elementType;
936        return numVLAElements;
937      }
938    } while (isa<VariableArrayType>(arrayType));
939
940    // We get out here only if we find a constant array type
941    // inside the VLA.
942  }
943
944  // We have some number of constant-length arrays, so addr should
945  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
946  // down to the first element of addr.
947  SmallVector<llvm::Value*, 8> gepIndices;
948
949  // GEP down to the array type.
950  llvm::ConstantInt *zero = Builder.getInt32(0);
951  gepIndices.push_back(zero);
952
953  uint64_t countFromCLAs = 1;
954  QualType eltType;
955
956  llvm::ArrayType *llvmArrayType =
957    dyn_cast<llvm::ArrayType>(
958      cast<llvm::PointerType>(addr->getType())->getElementType());
959  while (llvmArrayType) {
960    assert(isa<ConstantArrayType>(arrayType));
961    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
962             == llvmArrayType->getNumElements());
963
964    gepIndices.push_back(zero);
965    countFromCLAs *= llvmArrayType->getNumElements();
966    eltType = arrayType->getElementType();
967
968    llvmArrayType =
969      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
970    arrayType = getContext().getAsArrayType(arrayType->getElementType());
971    assert((!llvmArrayType || arrayType) &&
972           "LLVM and Clang types are out-of-synch");
973  }
974
975  if (arrayType) {
976    // From this point onwards, the Clang array type has been emitted
977    // as some other type (probably a packed struct). Compute the array
978    // size, and just emit the 'begin' expression as a bitcast.
979    while (arrayType) {
980      countFromCLAs *=
981          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
982      eltType = arrayType->getElementType();
983      arrayType = getContext().getAsArrayType(eltType);
984    }
985
986    unsigned AddressSpace =
987        cast<llvm::PointerType>(addr->getType())->getAddressSpace();
988    llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
989    addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
990  } else {
991    // Create the actual GEP.
992    addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
993  }
994
995  baseType = eltType;
996
997  llvm::Value *numElements
998    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
999
1000  // If we had any VLA dimensions, factor them in.
1001  if (numVLAElements)
1002    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1003
1004  return numElements;
1005}
1006
1007std::pair<llvm::Value*, QualType>
1008CodeGenFunction::getVLASize(QualType type) {
1009  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1010  assert(vla && "type was not a variable array type!");
1011  return getVLASize(vla);
1012}
1013
1014std::pair<llvm::Value*, QualType>
1015CodeGenFunction::getVLASize(const VariableArrayType *type) {
1016  // The number of elements so far; always size_t.
1017  llvm::Value *numElements = 0;
1018
1019  QualType elementType;
1020  do {
1021    elementType = type->getElementType();
1022    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1023    assert(vlaSize && "no size for VLA!");
1024    assert(vlaSize->getType() == SizeTy);
1025
1026    if (!numElements) {
1027      numElements = vlaSize;
1028    } else {
1029      // It's undefined behavior if this wraps around, so mark it that way.
1030      numElements = Builder.CreateNUWMul(numElements, vlaSize);
1031    }
1032  } while ((type = getContext().getAsVariableArrayType(elementType)));
1033
1034  return std::pair<llvm::Value*,QualType>(numElements, elementType);
1035}
1036
1037void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1038  assert(type->isVariablyModifiedType() &&
1039         "Must pass variably modified type to EmitVLASizes!");
1040
1041  EnsureInsertPoint();
1042
1043  // We're going to walk down into the type and look for VLA
1044  // expressions.
1045  do {
1046    assert(type->isVariablyModifiedType());
1047
1048    const Type *ty = type.getTypePtr();
1049    switch (ty->getTypeClass()) {
1050
1051#define TYPE(Class, Base)
1052#define ABSTRACT_TYPE(Class, Base)
1053#define NON_CANONICAL_TYPE(Class, Base)
1054#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1055#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1056#include "clang/AST/TypeNodes.def"
1057      llvm_unreachable("unexpected dependent type!");
1058
1059    // These types are never variably-modified.
1060    case Type::Builtin:
1061    case Type::Complex:
1062    case Type::Vector:
1063    case Type::ExtVector:
1064    case Type::Record:
1065    case Type::Enum:
1066    case Type::Elaborated:
1067    case Type::TemplateSpecialization:
1068    case Type::ObjCObject:
1069    case Type::ObjCInterface:
1070    case Type::ObjCObjectPointer:
1071      llvm_unreachable("type class is never variably-modified!");
1072
1073    case Type::Pointer:
1074      type = cast<PointerType>(ty)->getPointeeType();
1075      break;
1076
1077    case Type::BlockPointer:
1078      type = cast<BlockPointerType>(ty)->getPointeeType();
1079      break;
1080
1081    case Type::LValueReference:
1082    case Type::RValueReference:
1083      type = cast<ReferenceType>(ty)->getPointeeType();
1084      break;
1085
1086    case Type::MemberPointer:
1087      type = cast<MemberPointerType>(ty)->getPointeeType();
1088      break;
1089
1090    case Type::ConstantArray:
1091    case Type::IncompleteArray:
1092      // Losing element qualification here is fine.
1093      type = cast<ArrayType>(ty)->getElementType();
1094      break;
1095
1096    case Type::VariableArray: {
1097      // Losing element qualification here is fine.
1098      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1099
1100      // Unknown size indication requires no size computation.
1101      // Otherwise, evaluate and record it.
1102      if (const Expr *size = vat->getSizeExpr()) {
1103        // It's possible that we might have emitted this already,
1104        // e.g. with a typedef and a pointer to it.
1105        llvm::Value *&entry = VLASizeMap[size];
1106        if (!entry) {
1107          // Always zexting here would be wrong if it weren't
1108          // undefined behavior to have a negative bound.
1109          entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1110                                        /*signed*/ false);
1111        }
1112      }
1113      type = vat->getElementType();
1114      break;
1115    }
1116
1117    case Type::FunctionProto:
1118    case Type::FunctionNoProto:
1119      type = cast<FunctionType>(ty)->getResultType();
1120      break;
1121
1122    case Type::Paren:
1123    case Type::TypeOf:
1124    case Type::UnaryTransform:
1125    case Type::Attributed:
1126    case Type::SubstTemplateTypeParm:
1127      // Keep walking after single level desugaring.
1128      type = type.getSingleStepDesugaredType(getContext());
1129      break;
1130
1131    case Type::Typedef:
1132    case Type::Decltype:
1133    case Type::Auto:
1134      // Stop walking: nothing to do.
1135      return;
1136
1137    case Type::TypeOfExpr:
1138      // Stop walking: emit typeof expression.
1139      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1140      return;
1141
1142    case Type::Atomic:
1143      type = cast<AtomicType>(ty)->getValueType();
1144      break;
1145    }
1146  } while (type->isVariablyModifiedType());
1147}
1148
1149llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1150  if (getContext().getBuiltinVaListType()->isArrayType())
1151    return EmitScalarExpr(E);
1152  return EmitLValue(E).getAddress();
1153}
1154
1155void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1156                                              llvm::Constant *Init) {
1157  assert (Init && "Invalid DeclRefExpr initializer!");
1158  if (CGDebugInfo *Dbg = getDebugInfo())
1159    if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1160      Dbg->EmitGlobalVariable(E->getDecl(), Init);
1161}
1162
1163CodeGenFunction::PeepholeProtection
1164CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1165  // At the moment, the only aggressive peephole we do in IR gen
1166  // is trunc(zext) folding, but if we add more, we can easily
1167  // extend this protection.
1168
1169  if (!rvalue.isScalar()) return PeepholeProtection();
1170  llvm::Value *value = rvalue.getScalarVal();
1171  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1172
1173  // Just make an extra bitcast.
1174  assert(HaveInsertPoint());
1175  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1176                                                  Builder.GetInsertBlock());
1177
1178  PeepholeProtection protection;
1179  protection.Inst = inst;
1180  return protection;
1181}
1182
1183void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1184  if (!protection.Inst) return;
1185
1186  // In theory, we could try to duplicate the peepholes now, but whatever.
1187  protection.Inst->eraseFromParent();
1188}
1189
1190llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1191                                                 llvm::Value *AnnotatedVal,
1192                                                 llvm::StringRef AnnotationStr,
1193                                                 SourceLocation Location) {
1194  llvm::Value *Args[4] = {
1195    AnnotatedVal,
1196    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1197    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1198    CGM.EmitAnnotationLineNo(Location)
1199  };
1200  return Builder.CreateCall(AnnotationFn, Args);
1201}
1202
1203void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1204  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1205  // FIXME We create a new bitcast for every annotation because that's what
1206  // llvm-gcc was doing.
1207  for (specific_attr_iterator<AnnotateAttr>
1208       ai = D->specific_attr_begin<AnnotateAttr>(),
1209       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1210    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1211                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1212                       (*ai)->getAnnotation(), D->getLocation());
1213}
1214
1215llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1216                                                   llvm::Value *V) {
1217  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1218  llvm::Type *VTy = V->getType();
1219  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1220                                    CGM.Int8PtrTy);
1221
1222  for (specific_attr_iterator<AnnotateAttr>
1223       ai = D->specific_attr_begin<AnnotateAttr>(),
1224       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1225    // FIXME Always emit the cast inst so we can differentiate between
1226    // annotation on the first field of a struct and annotation on the struct
1227    // itself.
1228    if (VTy != CGM.Int8PtrTy)
1229      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1230    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1231    V = Builder.CreateBitCast(V, VTy);
1232  }
1233
1234  return V;
1235}
1236