1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Module.h"
33#include <cstdarg>
34
35using namespace clang;
36using namespace CodeGen;
37using llvm::Value;
38
39//===----------------------------------------------------------------------===//
40//                         Scalar Expression Emitter
41//===----------------------------------------------------------------------===//
42
43namespace {
44struct BinOpInfo {
45  Value *LHS;
46  Value *RHS;
47  QualType Ty;  // Computation Type.
48  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49  bool FPContractable;
50  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51};
52
53static bool MustVisitNullValue(const Expr *E) {
54  // If a null pointer expression's type is the C++0x nullptr_t, then
55  // it's not necessarily a simple constant and it must be evaluated
56  // for its potential side effects.
57  return E->getType()->isNullPtrType();
58}
59
60class ScalarExprEmitter
61  : public StmtVisitor<ScalarExprEmitter, Value*> {
62  CodeGenFunction &CGF;
63  CGBuilderTy &Builder;
64  bool IgnoreResultAssign;
65  llvm::LLVMContext &VMContext;
66public:
67
68  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70      VMContext(cgf.getLLVMContext()) {
71  }
72
73  //===--------------------------------------------------------------------===//
74  //                               Utilities
75  //===--------------------------------------------------------------------===//
76
77  bool TestAndClearIgnoreResultAssign() {
78    bool I = IgnoreResultAssign;
79    IgnoreResultAssign = false;
80    return I;
81  }
82
83  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
84  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
85  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86    return CGF.EmitCheckedLValue(E, TCK);
87  }
88
89  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90                      const BinOpInfo &Info);
91
92  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93    return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94  }
95
96  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97    const AlignValueAttr *AVAttr = nullptr;
98    if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99      const ValueDecl *VD = DRE->getDecl();
100
101      if (VD->getType()->isReferenceType()) {
102        if (const auto *TTy =
103            dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104          AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105      } else {
106        // Assumptions for function parameters are emitted at the start of the
107        // function, so there is no need to repeat that here.
108        if (isa<ParmVarDecl>(VD))
109          return;
110
111        AVAttr = VD->getAttr<AlignValueAttr>();
112      }
113    }
114
115    if (!AVAttr)
116      if (const auto *TTy =
117          dyn_cast<TypedefType>(E->getType()))
118        AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119
120    if (!AVAttr)
121      return;
122
123    Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124    llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125    CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126  }
127
128  /// EmitLoadOfLValue - Given an expression with complex type that represents a
129  /// value l-value, this method emits the address of the l-value, then loads
130  /// and returns the result.
131  Value *EmitLoadOfLValue(const Expr *E) {
132    Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133                                E->getExprLoc());
134
135    EmitLValueAlignmentAssumption(E, V);
136    return V;
137  }
138
139  /// EmitConversionToBool - Convert the specified expression value to a
140  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141  Value *EmitConversionToBool(Value *Src, QualType DstTy);
142
143  /// Emit a check that a conversion to or from a floating-point type does not
144  /// overflow.
145  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146                                Value *Src, QualType SrcType, QualType DstType,
147                                llvm::Type *DstTy, SourceLocation Loc);
148
149  /// Emit a conversion from the specified type to the specified destination
150  /// type, both of which are LLVM scalar types.
151  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152                              SourceLocation Loc);
153
154  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155                              SourceLocation Loc, bool TreatBooleanAsSigned);
156
157  /// Emit a conversion from the specified complex type to the specified
158  /// destination type, where the destination type is an LLVM scalar type.
159  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160                                       QualType SrcTy, QualType DstTy,
161                                       SourceLocation Loc);
162
163  /// EmitNullValue - Emit a value that corresponds to null for the given type.
164  Value *EmitNullValue(QualType Ty);
165
166  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
167  Value *EmitFloatToBoolConversion(Value *V) {
168    // Compare against 0.0 for fp scalars.
169    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170    return Builder.CreateFCmpUNE(V, Zero, "tobool");
171  }
172
173  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
174  Value *EmitPointerToBoolConversion(Value *V) {
175    Value *Zero = llvm::ConstantPointerNull::get(
176                                      cast<llvm::PointerType>(V->getType()));
177    return Builder.CreateICmpNE(V, Zero, "tobool");
178  }
179
180  Value *EmitIntToBoolConversion(Value *V) {
181    // Because of the type rules of C, we often end up computing a
182    // logical value, then zero extending it to int, then wanting it
183    // as a logical value again.  Optimize this common case.
184    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186        Value *Result = ZI->getOperand(0);
187        // If there aren't any more uses, zap the instruction to save space.
188        // Note that there can be more uses, for example if this
189        // is the result of an assignment.
190        if (ZI->use_empty())
191          ZI->eraseFromParent();
192        return Result;
193      }
194    }
195
196    return Builder.CreateIsNotNull(V, "tobool");
197  }
198
199  //===--------------------------------------------------------------------===//
200  //                            Visitor Methods
201  //===--------------------------------------------------------------------===//
202
203  Value *Visit(Expr *E) {
204    ApplyDebugLocation DL(CGF, E);
205    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206  }
207
208  Value *VisitStmt(Stmt *S) {
209    S->dump(CGF.getContext().getSourceManager());
210    llvm_unreachable("Stmt can't have complex result type!");
211  }
212  Value *VisitExpr(Expr *S);
213
214  Value *VisitParenExpr(ParenExpr *PE) {
215    return Visit(PE->getSubExpr());
216  }
217  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218    return Visit(E->getReplacement());
219  }
220  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221    return Visit(GE->getResultExpr());
222  }
223
224  // Leaves.
225  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226    return Builder.getInt(E->getValue());
227  }
228  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229    return llvm::ConstantFP::get(VMContext, E->getValue());
230  }
231  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233  }
234  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236  }
237  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239  }
240  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241    return EmitNullValue(E->getType());
242  }
243  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244    return EmitNullValue(E->getType());
245  }
246  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
248  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250    return Builder.CreateBitCast(V, ConvertType(E->getType()));
251  }
252
253  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255  }
256
257  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259  }
260
261  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262    if (E->isGLValue())
263      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264
265    // Otherwise, assume the mapping is the scalar directly.
266    return CGF.getOpaqueRValueMapping(E).getScalarVal();
267  }
268
269  // l-values.
270  Value *VisitDeclRefExpr(DeclRefExpr *E) {
271    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272      if (result.isReference())
273        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274                                E->getExprLoc());
275      return result.getValue();
276    }
277    return EmitLoadOfLValue(E);
278  }
279
280  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281    return CGF.EmitObjCSelectorExpr(E);
282  }
283  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284    return CGF.EmitObjCProtocolExpr(E);
285  }
286  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287    return EmitLoadOfLValue(E);
288  }
289  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290    if (E->getMethodDecl() &&
291        E->getMethodDecl()->getReturnType()->isReferenceType())
292      return EmitLoadOfLValue(E);
293    return CGF.EmitObjCMessageExpr(E).getScalarVal();
294  }
295
296  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297    LValue LV = CGF.EmitObjCIsaExpr(E);
298    Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299    return V;
300  }
301
302  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305  Value *VisitMemberExpr(MemberExpr *E);
306  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
307  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308    return EmitLoadOfLValue(E);
309  }
310
311  Value *VisitInitListExpr(InitListExpr *E);
312
313  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314    return EmitNullValue(E->getType());
315  }
316  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317    CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318    return VisitCastExpr(E);
319  }
320  Value *VisitCastExpr(CastExpr *E);
321
322  Value *VisitCallExpr(const CallExpr *E) {
323    if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324      return EmitLoadOfLValue(E);
325
326    Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328    EmitLValueAlignmentAssumption(E, V);
329    return V;
330  }
331
332  Value *VisitStmtExpr(const StmtExpr *E);
333
334  // Unary Operators.
335  Value *VisitUnaryPostDec(const UnaryOperator *E) {
336    LValue LV = EmitLValue(E->getSubExpr());
337    return EmitScalarPrePostIncDec(E, LV, false, false);
338  }
339  Value *VisitUnaryPostInc(const UnaryOperator *E) {
340    LValue LV = EmitLValue(E->getSubExpr());
341    return EmitScalarPrePostIncDec(E, LV, true, false);
342  }
343  Value *VisitUnaryPreDec(const UnaryOperator *E) {
344    LValue LV = EmitLValue(E->getSubExpr());
345    return EmitScalarPrePostIncDec(E, LV, false, true);
346  }
347  Value *VisitUnaryPreInc(const UnaryOperator *E) {
348    LValue LV = EmitLValue(E->getSubExpr());
349    return EmitScalarPrePostIncDec(E, LV, true, true);
350  }
351
352  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                  llvm::Value *InVal,
354                                                  bool IsInc);
355
356  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                       bool isInc, bool isPre);
358
359
360  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361    if (isa<MemberPointerType>(E->getType())) // never sugared
362      return CGF.CGM.getMemberPointerConstant(E);
363
364    return EmitLValue(E->getSubExpr()).getPointer();
365  }
366  Value *VisitUnaryDeref(const UnaryOperator *E) {
367    if (E->getType()->isVoidType())
368      return Visit(E->getSubExpr()); // the actual value should be unused
369    return EmitLoadOfLValue(E);
370  }
371  Value *VisitUnaryPlus(const UnaryOperator *E) {
372    // This differs from gcc, though, most likely due to a bug in gcc.
373    TestAndClearIgnoreResultAssign();
374    return Visit(E->getSubExpr());
375  }
376  Value *VisitUnaryMinus    (const UnaryOperator *E);
377  Value *VisitUnaryNot      (const UnaryOperator *E);
378  Value *VisitUnaryLNot     (const UnaryOperator *E);
379  Value *VisitUnaryReal     (const UnaryOperator *E);
380  Value *VisitUnaryImag     (const UnaryOperator *E);
381  Value *VisitUnaryExtension(const UnaryOperator *E) {
382    return Visit(E->getSubExpr());
383  }
384
385  // C++
386  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387    return EmitLoadOfLValue(E);
388  }
389
390  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391    return Visit(DAE->getExpr());
392  }
393  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395    return Visit(DIE->getExpr());
396  }
397  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398    return CGF.LoadCXXThis();
399  }
400
401  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402    CGF.enterFullExpression(E);
403    CodeGenFunction::RunCleanupsScope Scope(CGF);
404    return Visit(E->getSubExpr());
405  }
406  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407    return CGF.EmitCXXNewExpr(E);
408  }
409  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410    CGF.EmitCXXDeleteExpr(E);
411    return nullptr;
412  }
413
414  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416  }
417
418  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420  }
421
422  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424  }
425
426  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427    // C++ [expr.pseudo]p1:
428    //   The result shall only be used as the operand for the function call
429    //   operator (), and the result of such a call has type void. The only
430    //   effect is the evaluation of the postfix-expression before the dot or
431    //   arrow.
432    CGF.EmitScalarExpr(E->getBase());
433    return nullptr;
434  }
435
436  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437    return EmitNullValue(E->getType());
438  }
439
440  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441    CGF.EmitCXXThrowExpr(E);
442    return nullptr;
443  }
444
445  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446    return Builder.getInt1(E->getValue());
447  }
448
449  // Binary Operators.
450  Value *EmitMul(const BinOpInfo &Ops) {
451    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453      case LangOptions::SOB_Defined:
454        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455      case LangOptions::SOB_Undefined:
456        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458        // Fall through.
459      case LangOptions::SOB_Trapping:
460        return EmitOverflowCheckedBinOp(Ops);
461      }
462    }
463
464    if (Ops.Ty->isUnsignedIntegerType() &&
465        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466      return EmitOverflowCheckedBinOp(Ops);
467
468    if (Ops.LHS->getType()->isFPOrFPVectorTy())
469      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471  }
472  /// Create a binary op that checks for overflow.
473  /// Currently only supports +, - and *.
474  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475
476  // Check for undefined division and modulus behaviors.
477  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                  llvm::Value *Zero,bool isDiv);
479  // Common helper for getting how wide LHS of shift is.
480  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481  Value *EmitDiv(const BinOpInfo &Ops);
482  Value *EmitRem(const BinOpInfo &Ops);
483  Value *EmitAdd(const BinOpInfo &Ops);
484  Value *EmitSub(const BinOpInfo &Ops);
485  Value *EmitShl(const BinOpInfo &Ops);
486  Value *EmitShr(const BinOpInfo &Ops);
487  Value *EmitAnd(const BinOpInfo &Ops) {
488    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489  }
490  Value *EmitXor(const BinOpInfo &Ops) {
491    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492  }
493  Value *EmitOr (const BinOpInfo &Ops) {
494    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495  }
496
497  BinOpInfo EmitBinOps(const BinaryOperator *E);
498  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                  Value *&Result);
501
502  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504
505  // Binary operators and binary compound assignment operators.
506#define HANDLEBINOP(OP) \
507  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508    return Emit ## OP(EmitBinOps(E));                                      \
509  }                                                                        \
510  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512  }
513  HANDLEBINOP(Mul)
514  HANDLEBINOP(Div)
515  HANDLEBINOP(Rem)
516  HANDLEBINOP(Add)
517  HANDLEBINOP(Sub)
518  HANDLEBINOP(Shl)
519  HANDLEBINOP(Shr)
520  HANDLEBINOP(And)
521  HANDLEBINOP(Xor)
522  HANDLEBINOP(Or)
523#undef HANDLEBINOP
524
525  // Comparisons.
526  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527                     llvm::CmpInst::Predicate SICmpOpc,
528                     llvm::CmpInst::Predicate FCmpOpc);
529#define VISITCOMP(CODE, UI, SI, FP) \
530    Value *VisitBin##CODE(const BinaryOperator *E) { \
531      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                         llvm::FCmpInst::FP); }
533  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539#undef VISITCOMP
540
541  Value *VisitBinAssign     (const BinaryOperator *E);
542
543  Value *VisitBinLAnd       (const BinaryOperator *E);
544  Value *VisitBinLOr        (const BinaryOperator *E);
545  Value *VisitBinComma      (const BinaryOperator *E);
546
547  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
548  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550  // Other Operators.
551  Value *VisitBlockExpr(const BlockExpr *BE);
552  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553  Value *VisitChooseExpr(ChooseExpr *CE);
554  Value *VisitVAArgExpr(VAArgExpr *VE);
555  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556    return CGF.EmitObjCStringLiteral(E);
557  }
558  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559    return CGF.EmitObjCBoxedExpr(E);
560  }
561  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562    return CGF.EmitObjCArrayLiteral(E);
563  }
564  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565    return CGF.EmitObjCDictionaryLiteral(E);
566  }
567  Value *VisitAsTypeExpr(AsTypeExpr *CE);
568  Value *VisitAtomicExpr(AtomicExpr *AE);
569};
570}  // end anonymous namespace.
571
572//===----------------------------------------------------------------------===//
573//                                Utilities
574//===----------------------------------------------------------------------===//
575
576/// EmitConversionToBool - Convert the specified expression value to a
577/// boolean (i1) truth value.  This is equivalent to "Val != 0".
578Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581  if (SrcType->isRealFloatingType())
582    return EmitFloatToBoolConversion(Src);
583
584  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588         "Unknown scalar type to convert");
589
590  if (isa<llvm::IntegerType>(Src->getType()))
591    return EmitIntToBoolConversion(Src);
592
593  assert(isa<llvm::PointerType>(Src->getType()));
594  return EmitPointerToBoolConversion(Src);
595}
596
597void ScalarExprEmitter::EmitFloatConversionCheck(
598    Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599    QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600  CodeGenFunction::SanitizerScope SanScope(&CGF);
601  using llvm::APFloat;
602  using llvm::APSInt;
603
604  llvm::Type *SrcTy = Src->getType();
605
606  llvm::Value *Check = nullptr;
607  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608    // Integer to floating-point. This can fail for unsigned short -> __half
609    // or unsigned __int128 -> float.
610    assert(DstType->isFloatingType());
611    bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612
613    APFloat LargestFloat =
614      APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615    APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616
617    bool IsExact;
618    if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619                                      &IsExact) != APFloat::opOK)
620      // The range of representable values of this floating point type includes
621      // all values of this integer type. Don't need an overflow check.
622      return;
623
624    llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625    if (SrcIsUnsigned)
626      Check = Builder.CreateICmpULE(Src, Max);
627    else {
628      llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629      llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630      llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631      Check = Builder.CreateAnd(GE, LE);
632    }
633  } else {
634    const llvm::fltSemantics &SrcSema =
635      CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636    if (isa<llvm::IntegerType>(DstTy)) {
637      // Floating-point to integer. This has undefined behavior if the source is
638      // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639      // to an integer).
640      unsigned Width = CGF.getContext().getIntWidth(DstType);
641      bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642
643      APSInt Min = APSInt::getMinValue(Width, Unsigned);
644      APFloat MinSrc(SrcSema, APFloat::uninitialized);
645      if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646          APFloat::opOverflow)
647        // Don't need an overflow check for lower bound. Just check for
648        // -Inf/NaN.
649        MinSrc = APFloat::getInf(SrcSema, true);
650      else
651        // Find the largest value which is too small to represent (before
652        // truncation toward zero).
653        MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654
655      APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656      APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657      if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658          APFloat::opOverflow)
659        // Don't need an overflow check for upper bound. Just check for
660        // +Inf/NaN.
661        MaxSrc = APFloat::getInf(SrcSema, false);
662      else
663        // Find the smallest value which is too large to represent (before
664        // truncation toward zero).
665        MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666
667      // If we're converting from __half, convert the range to float to match
668      // the type of src.
669      if (OrigSrcType->isHalfType()) {
670        const llvm::fltSemantics &Sema =
671          CGF.getContext().getFloatTypeSemantics(SrcType);
672        bool IsInexact;
673        MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674        MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675      }
676
677      llvm::Value *GE =
678        Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679      llvm::Value *LE =
680        Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681      Check = Builder.CreateAnd(GE, LE);
682    } else {
683      // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684      //
685      // Floating-point to floating-point. This has undefined behavior if the
686      // source is not in the range of representable values of the destination
687      // type. The C and C++ standards are spectacularly unclear here. We
688      // diagnose finite out-of-range conversions, but allow infinities and NaNs
689      // to convert to the corresponding value in the smaller type.
690      //
691      // C11 Annex F gives all such conversions defined behavior for IEC 60559
692      // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693      // does not.
694
695      // Converting from a lower rank to a higher rank can never have
696      // undefined behavior, since higher-rank types must have a superset
697      // of values of lower-rank types.
698      if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699        return;
700
701      assert(!OrigSrcType->isHalfType() &&
702             "should not check conversion from __half, it has the lowest rank");
703
704      const llvm::fltSemantics &DstSema =
705        CGF.getContext().getFloatTypeSemantics(DstType);
706      APFloat MinBad = APFloat::getLargest(DstSema, false);
707      APFloat MaxBad = APFloat::getInf(DstSema, false);
708
709      bool IsInexact;
710      MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711      MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712
713      Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714        CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715      llvm::Value *GE =
716        Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717      llvm::Value *LE =
718        Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719      Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720    }
721  }
722
723  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724                                  CGF.EmitCheckTypeDescriptor(OrigSrcType),
725                                  CGF.EmitCheckTypeDescriptor(DstType)};
726  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727                "float_cast_overflow", StaticArgs, OrigSrc);
728}
729
730/// Emit a conversion from the specified type to the specified destination type,
731/// both of which are LLVM scalar types.
732Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733                                               QualType DstType,
734                                               SourceLocation Loc) {
735  return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736}
737
738Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739                                               QualType DstType,
740                                               SourceLocation Loc,
741                                               bool TreatBooleanAsSigned) {
742  SrcType = CGF.getContext().getCanonicalType(SrcType);
743  DstType = CGF.getContext().getCanonicalType(DstType);
744  if (SrcType == DstType) return Src;
745
746  if (DstType->isVoidType()) return nullptr;
747
748  llvm::Value *OrigSrc = Src;
749  QualType OrigSrcType = SrcType;
750  llvm::Type *SrcTy = Src->getType();
751
752  // Handle conversions to bool first, they are special: comparisons against 0.
753  if (DstType->isBooleanType())
754    return EmitConversionToBool(Src, SrcType);
755
756  llvm::Type *DstTy = ConvertType(DstType);
757
758  // Cast from half through float if half isn't a native type.
759  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760    // Cast to FP using the intrinsic if the half type itself isn't supported.
761    if (DstTy->isFloatingPointTy()) {
762      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763        return Builder.CreateCall(
764            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765            Src);
766    } else {
767      // Cast to other types through float, using either the intrinsic or FPExt,
768      // depending on whether the half type itself is supported
769      // (as opposed to operations on half, available with NativeHalfType).
770      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771        Src = Builder.CreateCall(
772            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773                                 CGF.CGM.FloatTy),
774            Src);
775      } else {
776        Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777      }
778      SrcType = CGF.getContext().FloatTy;
779      SrcTy = CGF.FloatTy;
780    }
781  }
782
783  // Ignore conversions like int -> uint.
784  if (SrcTy == DstTy)
785    return Src;
786
787  // Handle pointer conversions next: pointers can only be converted to/from
788  // other pointers and integers. Check for pointer types in terms of LLVM, as
789  // some native types (like Obj-C id) may map to a pointer type.
790  if (isa<llvm::PointerType>(DstTy)) {
791    // The source value may be an integer, or a pointer.
792    if (isa<llvm::PointerType>(SrcTy))
793      return Builder.CreateBitCast(Src, DstTy, "conv");
794
795    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796    // First, convert to the correct width so that we control the kind of
797    // extension.
798    llvm::Type *MiddleTy = CGF.IntPtrTy;
799    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800    llvm::Value* IntResult =
801        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802    // Then, cast to pointer.
803    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804  }
805
806  if (isa<llvm::PointerType>(SrcTy)) {
807    // Must be an ptr to int cast.
808    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809    return Builder.CreatePtrToInt(Src, DstTy, "conv");
810  }
811
812  // A scalar can be splatted to an extended vector of the same element type
813  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814    // Sema should add casts to make sure that the source expression's type is
815    // the same as the vector's element type (sans qualifiers)
816    assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817               SrcType.getTypePtr() &&
818           "Splatted expr doesn't match with vector element type?");
819
820    // Splat the element across to all elements
821    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
822    return Builder.CreateVectorSplat(NumElements, Src, "splat");
823  }
824
825  // Allow bitcast from vector to integer/fp of the same size.
826  if (isa<llvm::VectorType>(SrcTy) ||
827      isa<llvm::VectorType>(DstTy))
828    return Builder.CreateBitCast(Src, DstTy, "conv");
829
830  // Finally, we have the arithmetic types: real int/float.
831  Value *Res = nullptr;
832  llvm::Type *ResTy = DstTy;
833
834  // An overflowing conversion has undefined behavior if either the source type
835  // or the destination type is a floating-point type.
836  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837      (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839                             Loc);
840
841  // Cast to half through float if half isn't a native type.
842  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843    // Make sure we cast in a single step if from another FP type.
844    if (SrcTy->isFloatingPointTy()) {
845      // Use the intrinsic if the half type itself isn't supported
846      // (as opposed to operations on half, available with NativeHalfType).
847      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848        return Builder.CreateCall(
849            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850      // If the half type is supported, just use an fptrunc.
851      return Builder.CreateFPTrunc(Src, DstTy);
852    }
853    DstTy = CGF.FloatTy;
854  }
855
856  if (isa<llvm::IntegerType>(SrcTy)) {
857    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858    if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859      InputSigned = true;
860    }
861    if (isa<llvm::IntegerType>(DstTy))
862      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863    else if (InputSigned)
864      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865    else
866      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867  } else if (isa<llvm::IntegerType>(DstTy)) {
868    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869    if (DstType->isSignedIntegerOrEnumerationType())
870      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871    else
872      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873  } else {
874    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875           "Unknown real conversion");
876    if (DstTy->getTypeID() < SrcTy->getTypeID())
877      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878    else
879      Res = Builder.CreateFPExt(Src, DstTy, "conv");
880  }
881
882  if (DstTy != ResTy) {
883    if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884      assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885      Res = Builder.CreateCall(
886        CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887        Res);
888    } else {
889      Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890    }
891  }
892
893  return Res;
894}
895
896/// Emit a conversion from the specified complex type to the specified
897/// destination type, where the destination type is an LLVM scalar type.
898Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899    CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900    SourceLocation Loc) {
901  // Get the source element type.
902  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903
904  // Handle conversions to bool first, they are special: comparisons against 0.
905  if (DstTy->isBooleanType()) {
906    //  Complex != 0  -> (Real != 0) | (Imag != 0)
907    Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909    return Builder.CreateOr(Src.first, Src.second, "tobool");
910  }
911
912  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913  // the imaginary part of the complex value is discarded and the value of the
914  // real part is converted according to the conversion rules for the
915  // corresponding real type.
916  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917}
918
919Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921}
922
923/// \brief Emit a sanitization check for the given "binary" operation (which
924/// might actually be a unary increment which has been lowered to a binary
925/// operation). The check passes if all values in \p Checks (which are \c i1),
926/// are \c true.
927void ScalarExprEmitter::EmitBinOpCheck(
928    ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929  assert(CGF.IsSanitizerScope);
930  StringRef CheckName;
931  SmallVector<llvm::Constant *, 4> StaticData;
932  SmallVector<llvm::Value *, 2> DynamicData;
933
934  BinaryOperatorKind Opcode = Info.Opcode;
935  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937
938  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940  if (UO && UO->getOpcode() == UO_Minus) {
941    CheckName = "negate_overflow";
942    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943    DynamicData.push_back(Info.RHS);
944  } else {
945    if (BinaryOperator::isShiftOp(Opcode)) {
946      // Shift LHS negative or too large, or RHS out of bounds.
947      CheckName = "shift_out_of_bounds";
948      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949      StaticData.push_back(
950        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951      StaticData.push_back(
952        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955      CheckName = "divrem_overflow";
956      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957    } else {
958      // Arithmetic overflow (+, -, *).
959      switch (Opcode) {
960      case BO_Add: CheckName = "add_overflow"; break;
961      case BO_Sub: CheckName = "sub_overflow"; break;
962      case BO_Mul: CheckName = "mul_overflow"; break;
963      default: llvm_unreachable("unexpected opcode for bin op check");
964      }
965      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966    }
967    DynamicData.push_back(Info.LHS);
968    DynamicData.push_back(Info.RHS);
969  }
970
971  CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972}
973
974//===----------------------------------------------------------------------===//
975//                            Visitor Methods
976//===----------------------------------------------------------------------===//
977
978Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979  CGF.ErrorUnsupported(E, "scalar expression");
980  if (E->getType()->isVoidType())
981    return nullptr;
982  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983}
984
985Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986  // Vector Mask Case
987  if (E->getNumSubExprs() == 2 ||
988      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
989    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
990    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
991    Value *Mask;
992
993    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
994    unsigned LHSElts = LTy->getNumElements();
995
996    if (E->getNumSubExprs() == 3) {
997      Mask = CGF.EmitScalarExpr(E->getExpr(2));
998
999      // Shuffle LHS & RHS into one input vector.
1000      SmallVector<llvm::Constant*, 32> concat;
1001      for (unsigned i = 0; i != LHSElts; ++i) {
1002        concat.push_back(Builder.getInt32(2*i));
1003        concat.push_back(Builder.getInt32(2*i+1));
1004      }
1005
1006      Value* CV = llvm::ConstantVector::get(concat);
1007      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1008      LHSElts *= 2;
1009    } else {
1010      Mask = RHS;
1011    }
1012
1013    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1014
1015    // Mask off the high bits of each shuffle index.
1016    Value *MaskBits =
1017        llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1018    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1019
1020    // newv = undef
1021    // mask = mask & maskbits
1022    // for each elt
1023    //   n = extract mask i
1024    //   x = extract val n
1025    //   newv = insert newv, x, i
1026    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1027                                                  MTy->getNumElements());
1028    Value* NewV = llvm::UndefValue::get(RTy);
1029    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1030      Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1031      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1032
1033      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1034      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1035    }
1036    return NewV;
1037  }
1038
1039  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1040  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1041
1042  SmallVector<llvm::Constant*, 32> indices;
1043  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1044    llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1045    // Check for -1 and output it as undef in the IR.
1046    if (Idx.isSigned() && Idx.isAllOnesValue())
1047      indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1048    else
1049      indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1050  }
1051
1052  Value *SV = llvm::ConstantVector::get(indices);
1053  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1054}
1055
1056Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1057  QualType SrcType = E->getSrcExpr()->getType(),
1058           DstType = E->getType();
1059
1060  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1061
1062  SrcType = CGF.getContext().getCanonicalType(SrcType);
1063  DstType = CGF.getContext().getCanonicalType(DstType);
1064  if (SrcType == DstType) return Src;
1065
1066  assert(SrcType->isVectorType() &&
1067         "ConvertVector source type must be a vector");
1068  assert(DstType->isVectorType() &&
1069         "ConvertVector destination type must be a vector");
1070
1071  llvm::Type *SrcTy = Src->getType();
1072  llvm::Type *DstTy = ConvertType(DstType);
1073
1074  // Ignore conversions like int -> uint.
1075  if (SrcTy == DstTy)
1076    return Src;
1077
1078  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1079           DstEltType = DstType->getAs<VectorType>()->getElementType();
1080
1081  assert(SrcTy->isVectorTy() &&
1082         "ConvertVector source IR type must be a vector");
1083  assert(DstTy->isVectorTy() &&
1084         "ConvertVector destination IR type must be a vector");
1085
1086  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1087             *DstEltTy = DstTy->getVectorElementType();
1088
1089  if (DstEltType->isBooleanType()) {
1090    assert((SrcEltTy->isFloatingPointTy() ||
1091            isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1092
1093    llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1094    if (SrcEltTy->isFloatingPointTy()) {
1095      return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1096    } else {
1097      return Builder.CreateICmpNE(Src, Zero, "tobool");
1098    }
1099  }
1100
1101  // We have the arithmetic types: real int/float.
1102  Value *Res = nullptr;
1103
1104  if (isa<llvm::IntegerType>(SrcEltTy)) {
1105    bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1106    if (isa<llvm::IntegerType>(DstEltTy))
1107      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1108    else if (InputSigned)
1109      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1110    else
1111      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1112  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1113    assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1114    if (DstEltType->isSignedIntegerOrEnumerationType())
1115      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1116    else
1117      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1118  } else {
1119    assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1120           "Unknown real conversion");
1121    if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1122      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1123    else
1124      Res = Builder.CreateFPExt(Src, DstTy, "conv");
1125  }
1126
1127  return Res;
1128}
1129
1130Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1131  llvm::APSInt Value;
1132  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1133    if (E->isArrow())
1134      CGF.EmitScalarExpr(E->getBase());
1135    else
1136      EmitLValue(E->getBase());
1137    return Builder.getInt(Value);
1138  }
1139
1140  return EmitLoadOfLValue(E);
1141}
1142
1143Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1144  TestAndClearIgnoreResultAssign();
1145
1146  // Emit subscript expressions in rvalue context's.  For most cases, this just
1147  // loads the lvalue formed by the subscript expr.  However, we have to be
1148  // careful, because the base of a vector subscript is occasionally an rvalue,
1149  // so we can't get it as an lvalue.
1150  if (!E->getBase()->getType()->isVectorType())
1151    return EmitLoadOfLValue(E);
1152
1153  // Handle the vector case.  The base must be a vector, the index must be an
1154  // integer value.
1155  Value *Base = Visit(E->getBase());
1156  Value *Idx  = Visit(E->getIdx());
1157  QualType IdxTy = E->getIdx()->getType();
1158
1159  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1160    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1161
1162  return Builder.CreateExtractElement(Base, Idx, "vecext");
1163}
1164
1165static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1166                                  unsigned Off, llvm::Type *I32Ty) {
1167  int MV = SVI->getMaskValue(Idx);
1168  if (MV == -1)
1169    return llvm::UndefValue::get(I32Ty);
1170  return llvm::ConstantInt::get(I32Ty, Off+MV);
1171}
1172
1173static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1174  if (C->getBitWidth() != 32) {
1175      assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1176                                                    C->getZExtValue()) &&
1177             "Index operand too large for shufflevector mask!");
1178      return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1179  }
1180  return C;
1181}
1182
1183Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1184  bool Ignore = TestAndClearIgnoreResultAssign();
1185  (void)Ignore;
1186  assert (Ignore == false && "init list ignored");
1187  unsigned NumInitElements = E->getNumInits();
1188
1189  if (E->hadArrayRangeDesignator())
1190    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1191
1192  llvm::VectorType *VType =
1193    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1194
1195  if (!VType) {
1196    if (NumInitElements == 0) {
1197      // C++11 value-initialization for the scalar.
1198      return EmitNullValue(E->getType());
1199    }
1200    // We have a scalar in braces. Just use the first element.
1201    return Visit(E->getInit(0));
1202  }
1203
1204  unsigned ResElts = VType->getNumElements();
1205
1206  // Loop over initializers collecting the Value for each, and remembering
1207  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1208  // us to fold the shuffle for the swizzle into the shuffle for the vector
1209  // initializer, since LLVM optimizers generally do not want to touch
1210  // shuffles.
1211  unsigned CurIdx = 0;
1212  bool VIsUndefShuffle = false;
1213  llvm::Value *V = llvm::UndefValue::get(VType);
1214  for (unsigned i = 0; i != NumInitElements; ++i) {
1215    Expr *IE = E->getInit(i);
1216    Value *Init = Visit(IE);
1217    SmallVector<llvm::Constant*, 16> Args;
1218
1219    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1220
1221    // Handle scalar elements.  If the scalar initializer is actually one
1222    // element of a different vector of the same width, use shuffle instead of
1223    // extract+insert.
1224    if (!VVT) {
1225      if (isa<ExtVectorElementExpr>(IE)) {
1226        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1227
1228        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1229          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1230          Value *LHS = nullptr, *RHS = nullptr;
1231          if (CurIdx == 0) {
1232            // insert into undef -> shuffle (src, undef)
1233            // shufflemask must use an i32
1234            Args.push_back(getAsInt32(C, CGF.Int32Ty));
1235            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1236
1237            LHS = EI->getVectorOperand();
1238            RHS = V;
1239            VIsUndefShuffle = true;
1240          } else if (VIsUndefShuffle) {
1241            // insert into undefshuffle && size match -> shuffle (v, src)
1242            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1243            for (unsigned j = 0; j != CurIdx; ++j)
1244              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1245            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1246            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1247
1248            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1249            RHS = EI->getVectorOperand();
1250            VIsUndefShuffle = false;
1251          }
1252          if (!Args.empty()) {
1253            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1254            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1255            ++CurIdx;
1256            continue;
1257          }
1258        }
1259      }
1260      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1261                                      "vecinit");
1262      VIsUndefShuffle = false;
1263      ++CurIdx;
1264      continue;
1265    }
1266
1267    unsigned InitElts = VVT->getNumElements();
1268
1269    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1270    // input is the same width as the vector being constructed, generate an
1271    // optimized shuffle of the swizzle input into the result.
1272    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1273    if (isa<ExtVectorElementExpr>(IE)) {
1274      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1275      Value *SVOp = SVI->getOperand(0);
1276      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1277
1278      if (OpTy->getNumElements() == ResElts) {
1279        for (unsigned j = 0; j != CurIdx; ++j) {
1280          // If the current vector initializer is a shuffle with undef, merge
1281          // this shuffle directly into it.
1282          if (VIsUndefShuffle) {
1283            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1284                                      CGF.Int32Ty));
1285          } else {
1286            Args.push_back(Builder.getInt32(j));
1287          }
1288        }
1289        for (unsigned j = 0, je = InitElts; j != je; ++j)
1290          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1291        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1292
1293        if (VIsUndefShuffle)
1294          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1295
1296        Init = SVOp;
1297      }
1298    }
1299
1300    // Extend init to result vector length, and then shuffle its contribution
1301    // to the vector initializer into V.
1302    if (Args.empty()) {
1303      for (unsigned j = 0; j != InitElts; ++j)
1304        Args.push_back(Builder.getInt32(j));
1305      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1306      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1308                                         Mask, "vext");
1309
1310      Args.clear();
1311      for (unsigned j = 0; j != CurIdx; ++j)
1312        Args.push_back(Builder.getInt32(j));
1313      for (unsigned j = 0; j != InitElts; ++j)
1314        Args.push_back(Builder.getInt32(j+Offset));
1315      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1316    }
1317
1318    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1319    // merging subsequent shuffles into this one.
1320    if (CurIdx == 0)
1321      std::swap(V, Init);
1322    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1323    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1324    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1325    CurIdx += InitElts;
1326  }
1327
1328  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1329  // Emit remaining default initializers.
1330  llvm::Type *EltTy = VType->getElementType();
1331
1332  // Emit remaining default initializers
1333  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1334    Value *Idx = Builder.getInt32(CurIdx);
1335    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1336    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1337  }
1338  return V;
1339}
1340
1341bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1342  const Expr *E = CE->getSubExpr();
1343
1344  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1345    return false;
1346
1347  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1348    // We always assume that 'this' is never null.
1349    return false;
1350  }
1351
1352  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1353    // And that glvalue casts are never null.
1354    if (ICE->getValueKind() != VK_RValue)
1355      return false;
1356  }
1357
1358  return true;
1359}
1360
1361// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1362// have to handle a more broad range of conversions than explicit casts, as they
1363// handle things like function to ptr-to-function decay etc.
1364Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1365  Expr *E = CE->getSubExpr();
1366  QualType DestTy = CE->getType();
1367  CastKind Kind = CE->getCastKind();
1368
1369  if (!DestTy->isVoidType())
1370    TestAndClearIgnoreResultAssign();
1371
1372  // Since almost all cast kinds apply to scalars, this switch doesn't have
1373  // a default case, so the compiler will warn on a missing case.  The cases
1374  // are in the same order as in the CastKind enum.
1375  switch (Kind) {
1376  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1377  case CK_BuiltinFnToFnPtr:
1378    llvm_unreachable("builtin functions are handled elsewhere");
1379
1380  case CK_LValueBitCast:
1381  case CK_ObjCObjectLValueCast: {
1382    Address Addr = EmitLValue(E).getAddress();
1383    Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1384    LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1385    return EmitLoadOfLValue(LV, CE->getExprLoc());
1386  }
1387
1388  case CK_CPointerToObjCPointerCast:
1389  case CK_BlockPointerToObjCPointerCast:
1390  case CK_AnyPointerToBlockPointerCast:
1391  case CK_BitCast: {
1392    Value *Src = Visit(const_cast<Expr*>(E));
1393    llvm::Type *SrcTy = Src->getType();
1394    llvm::Type *DstTy = ConvertType(DestTy);
1395    if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1396        SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1397      llvm_unreachable("wrong cast for pointers in different address spaces"
1398                       "(must be an address space cast)!");
1399    }
1400
1401    if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1402      if (auto PT = DestTy->getAs<PointerType>())
1403        CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1404                                      /*MayBeNull=*/true,
1405                                      CodeGenFunction::CFITCK_UnrelatedCast,
1406                                      CE->getLocStart());
1407    }
1408
1409    return Builder.CreateBitCast(Src, DstTy);
1410  }
1411  case CK_AddressSpaceConversion: {
1412    Value *Src = Visit(const_cast<Expr*>(E));
1413    return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1414  }
1415  case CK_AtomicToNonAtomic:
1416  case CK_NonAtomicToAtomic:
1417  case CK_NoOp:
1418  case CK_UserDefinedConversion:
1419    return Visit(const_cast<Expr*>(E));
1420
1421  case CK_BaseToDerived: {
1422    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1423    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1424
1425    Address Base = CGF.EmitPointerWithAlignment(E);
1426    Address Derived =
1427      CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1428                                   CE->path_begin(), CE->path_end(),
1429                                   CGF.ShouldNullCheckClassCastValue(CE));
1430
1431    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1432    // performed and the object is not of the derived type.
1433    if (CGF.sanitizePerformTypeCheck())
1434      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1435                        Derived.getPointer(), DestTy->getPointeeType());
1436
1437    if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1438      CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1439                                    Derived.getPointer(),
1440                                    /*MayBeNull=*/true,
1441                                    CodeGenFunction::CFITCK_DerivedCast,
1442                                    CE->getLocStart());
1443
1444    return Derived.getPointer();
1445  }
1446  case CK_UncheckedDerivedToBase:
1447  case CK_DerivedToBase: {
1448    // The EmitPointerWithAlignment path does this fine; just discard
1449    // the alignment.
1450    return CGF.EmitPointerWithAlignment(CE).getPointer();
1451  }
1452
1453  case CK_Dynamic: {
1454    Address V = CGF.EmitPointerWithAlignment(E);
1455    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1456    return CGF.EmitDynamicCast(V, DCE);
1457  }
1458
1459  case CK_ArrayToPointerDecay:
1460    return CGF.EmitArrayToPointerDecay(E).getPointer();
1461  case CK_FunctionToPointerDecay:
1462    return EmitLValue(E).getPointer();
1463
1464  case CK_NullToPointer:
1465    if (MustVisitNullValue(E))
1466      (void) Visit(E);
1467
1468    return llvm::ConstantPointerNull::get(
1469                               cast<llvm::PointerType>(ConvertType(DestTy)));
1470
1471  case CK_NullToMemberPointer: {
1472    if (MustVisitNullValue(E))
1473      (void) Visit(E);
1474
1475    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1476    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1477  }
1478
1479  case CK_ReinterpretMemberPointer:
1480  case CK_BaseToDerivedMemberPointer:
1481  case CK_DerivedToBaseMemberPointer: {
1482    Value *Src = Visit(E);
1483
1484    // Note that the AST doesn't distinguish between checked and
1485    // unchecked member pointer conversions, so we always have to
1486    // implement checked conversions here.  This is inefficient when
1487    // actual control flow may be required in order to perform the
1488    // check, which it is for data member pointers (but not member
1489    // function pointers on Itanium and ARM).
1490    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1491  }
1492
1493  case CK_ARCProduceObject:
1494    return CGF.EmitARCRetainScalarExpr(E);
1495  case CK_ARCConsumeObject:
1496    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1497  case CK_ARCReclaimReturnedObject: {
1498    llvm::Value *value = Visit(E);
1499    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1500    return CGF.EmitObjCConsumeObject(E->getType(), value);
1501  }
1502  case CK_ARCExtendBlockObject:
1503    return CGF.EmitARCExtendBlockObject(E);
1504
1505  case CK_CopyAndAutoreleaseBlockObject:
1506    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1507
1508  case CK_FloatingRealToComplex:
1509  case CK_FloatingComplexCast:
1510  case CK_IntegralRealToComplex:
1511  case CK_IntegralComplexCast:
1512  case CK_IntegralComplexToFloatingComplex:
1513  case CK_FloatingComplexToIntegralComplex:
1514  case CK_ConstructorConversion:
1515  case CK_ToUnion:
1516    llvm_unreachable("scalar cast to non-scalar value");
1517
1518  case CK_LValueToRValue:
1519    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1520    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1521    return Visit(const_cast<Expr*>(E));
1522
1523  case CK_IntegralToPointer: {
1524    Value *Src = Visit(const_cast<Expr*>(E));
1525
1526    // First, convert to the correct width so that we control the kind of
1527    // extension.
1528    llvm::Type *MiddleTy = CGF.IntPtrTy;
1529    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1530    llvm::Value* IntResult =
1531      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1532
1533    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1534  }
1535  case CK_PointerToIntegral:
1536    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1537    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1538
1539  case CK_ToVoid: {
1540    CGF.EmitIgnoredExpr(E);
1541    return nullptr;
1542  }
1543  case CK_VectorSplat: {
1544    llvm::Type *DstTy = ConvertType(DestTy);
1545    Value *Elt = Visit(const_cast<Expr*>(E));
1546    // Splat the element across to all elements
1547    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1548    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1549  }
1550
1551  case CK_IntegralCast:
1552  case CK_IntegralToFloating:
1553  case CK_FloatingToIntegral:
1554  case CK_FloatingCast:
1555    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1556                                CE->getExprLoc());
1557  case CK_BooleanToSignedIntegral:
1558    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1559                                CE->getExprLoc(),
1560                                /*TreatBooleanAsSigned=*/true);
1561  case CK_IntegralToBoolean:
1562    return EmitIntToBoolConversion(Visit(E));
1563  case CK_PointerToBoolean:
1564    return EmitPointerToBoolConversion(Visit(E));
1565  case CK_FloatingToBoolean:
1566    return EmitFloatToBoolConversion(Visit(E));
1567  case CK_MemberPointerToBoolean: {
1568    llvm::Value *MemPtr = Visit(E);
1569    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1570    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1571  }
1572
1573  case CK_FloatingComplexToReal:
1574  case CK_IntegralComplexToReal:
1575    return CGF.EmitComplexExpr(E, false, true).first;
1576
1577  case CK_FloatingComplexToBoolean:
1578  case CK_IntegralComplexToBoolean: {
1579    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1580
1581    // TODO: kill this function off, inline appropriate case here
1582    return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1583                                         CE->getExprLoc());
1584  }
1585
1586  case CK_ZeroToOCLEvent: {
1587    assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1588    return llvm::Constant::getNullValue(ConvertType(DestTy));
1589  }
1590
1591  }
1592
1593  llvm_unreachable("unknown scalar cast");
1594}
1595
1596Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1597  CodeGenFunction::StmtExprEvaluation eval(CGF);
1598  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1599                                           !E->getType()->isVoidType());
1600  if (!RetAlloca.isValid())
1601    return nullptr;
1602  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1603                              E->getExprLoc());
1604}
1605
1606//===----------------------------------------------------------------------===//
1607//                             Unary Operators
1608//===----------------------------------------------------------------------===//
1609
1610static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1611                                           llvm::Value *InVal, bool IsInc) {
1612  BinOpInfo BinOp;
1613  BinOp.LHS = InVal;
1614  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1615  BinOp.Ty = E->getType();
1616  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1617  BinOp.FPContractable = false;
1618  BinOp.E = E;
1619  return BinOp;
1620}
1621
1622llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1623    const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1624  llvm::Value *Amount =
1625      llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1626  StringRef Name = IsInc ? "inc" : "dec";
1627  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1628  case LangOptions::SOB_Defined:
1629    return Builder.CreateAdd(InVal, Amount, Name);
1630  case LangOptions::SOB_Undefined:
1631    if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1632      return Builder.CreateNSWAdd(InVal, Amount, Name);
1633    // Fall through.
1634  case LangOptions::SOB_Trapping:
1635    return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1636  }
1637  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1638}
1639
1640llvm::Value *
1641ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1642                                           bool isInc, bool isPre) {
1643
1644  QualType type = E->getSubExpr()->getType();
1645  llvm::PHINode *atomicPHI = nullptr;
1646  llvm::Value *value;
1647  llvm::Value *input;
1648
1649  int amount = (isInc ? 1 : -1);
1650
1651  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1652    type = atomicTy->getValueType();
1653    if (isInc && type->isBooleanType()) {
1654      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1655      if (isPre) {
1656        Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1657          ->setAtomic(llvm::SequentiallyConsistent);
1658        return Builder.getTrue();
1659      }
1660      // For atomic bool increment, we just store true and return it for
1661      // preincrement, do an atomic swap with true for postincrement
1662        return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1663            LV.getPointer(), True, llvm::SequentiallyConsistent);
1664    }
1665    // Special case for atomic increment / decrement on integers, emit
1666    // atomicrmw instructions.  We skip this if we want to be doing overflow
1667    // checking, and fall into the slow path with the atomic cmpxchg loop.
1668    if (!type->isBooleanType() && type->isIntegerType() &&
1669        !(type->isUnsignedIntegerType() &&
1670          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1671        CGF.getLangOpts().getSignedOverflowBehavior() !=
1672            LangOptions::SOB_Trapping) {
1673      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1674        llvm::AtomicRMWInst::Sub;
1675      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1676        llvm::Instruction::Sub;
1677      llvm::Value *amt = CGF.EmitToMemory(
1678          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1679      llvm::Value *old = Builder.CreateAtomicRMW(aop,
1680          LV.getPointer(), amt, llvm::SequentiallyConsistent);
1681      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1682    }
1683    value = EmitLoadOfLValue(LV, E->getExprLoc());
1684    input = value;
1685    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1686    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1687    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1688    value = CGF.EmitToMemory(value, type);
1689    Builder.CreateBr(opBB);
1690    Builder.SetInsertPoint(opBB);
1691    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1692    atomicPHI->addIncoming(value, startBB);
1693    value = atomicPHI;
1694  } else {
1695    value = EmitLoadOfLValue(LV, E->getExprLoc());
1696    input = value;
1697  }
1698
1699  // Special case of integer increment that we have to check first: bool++.
1700  // Due to promotion rules, we get:
1701  //   bool++ -> bool = bool + 1
1702  //          -> bool = (int)bool + 1
1703  //          -> bool = ((int)bool + 1 != 0)
1704  // An interesting aspect of this is that increment is always true.
1705  // Decrement does not have this property.
1706  if (isInc && type->isBooleanType()) {
1707    value = Builder.getTrue();
1708
1709  // Most common case by far: integer increment.
1710  } else if (type->isIntegerType()) {
1711    // Note that signed integer inc/dec with width less than int can't
1712    // overflow because of promotion rules; we're just eliding a few steps here.
1713    bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1714                       CGF.IntTy->getIntegerBitWidth();
1715    if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1716      value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1717    } else if (CanOverflow && type->isUnsignedIntegerType() &&
1718               CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1719      value =
1720          EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1721    } else {
1722      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1723      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1724    }
1725
1726  // Next most common: pointer increment.
1727  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1728    QualType type = ptr->getPointeeType();
1729
1730    // VLA types don't have constant size.
1731    if (const VariableArrayType *vla
1732          = CGF.getContext().getAsVariableArrayType(type)) {
1733      llvm::Value *numElts = CGF.getVLASize(vla).first;
1734      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1735      if (CGF.getLangOpts().isSignedOverflowDefined())
1736        value = Builder.CreateGEP(value, numElts, "vla.inc");
1737      else
1738        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1739
1740    // Arithmetic on function pointers (!) is just +-1.
1741    } else if (type->isFunctionType()) {
1742      llvm::Value *amt = Builder.getInt32(amount);
1743
1744      value = CGF.EmitCastToVoidPtr(value);
1745      if (CGF.getLangOpts().isSignedOverflowDefined())
1746        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1747      else
1748        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1749      value = Builder.CreateBitCast(value, input->getType());
1750
1751    // For everything else, we can just do a simple increment.
1752    } else {
1753      llvm::Value *amt = Builder.getInt32(amount);
1754      if (CGF.getLangOpts().isSignedOverflowDefined())
1755        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1756      else
1757        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1758    }
1759
1760  // Vector increment/decrement.
1761  } else if (type->isVectorType()) {
1762    if (type->hasIntegerRepresentation()) {
1763      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1764
1765      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1766    } else {
1767      value = Builder.CreateFAdd(
1768                  value,
1769                  llvm::ConstantFP::get(value->getType(), amount),
1770                  isInc ? "inc" : "dec");
1771    }
1772
1773  // Floating point.
1774  } else if (type->isRealFloatingType()) {
1775    // Add the inc/dec to the real part.
1776    llvm::Value *amt;
1777
1778    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1779      // Another special case: half FP increment should be done via float
1780      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1781        value = Builder.CreateCall(
1782            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1783                                 CGF.CGM.FloatTy),
1784            input, "incdec.conv");
1785      } else {
1786        value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1787      }
1788    }
1789
1790    if (value->getType()->isFloatTy())
1791      amt = llvm::ConstantFP::get(VMContext,
1792                                  llvm::APFloat(static_cast<float>(amount)));
1793    else if (value->getType()->isDoubleTy())
1794      amt = llvm::ConstantFP::get(VMContext,
1795                                  llvm::APFloat(static_cast<double>(amount)));
1796    else {
1797      // Remaining types are either Half or LongDouble.  Convert from float.
1798      llvm::APFloat F(static_cast<float>(amount));
1799      bool ignored;
1800      // Don't use getFloatTypeSemantics because Half isn't
1801      // necessarily represented using the "half" LLVM type.
1802      F.convert(value->getType()->isHalfTy()
1803                    ? CGF.getTarget().getHalfFormat()
1804                    : CGF.getTarget().getLongDoubleFormat(),
1805                llvm::APFloat::rmTowardZero, &ignored);
1806      amt = llvm::ConstantFP::get(VMContext, F);
1807    }
1808    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1809
1810    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1811      if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1812        value = Builder.CreateCall(
1813            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1814                                 CGF.CGM.FloatTy),
1815            value, "incdec.conv");
1816      } else {
1817        value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1818      }
1819    }
1820
1821  // Objective-C pointer types.
1822  } else {
1823    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1824    value = CGF.EmitCastToVoidPtr(value);
1825
1826    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1827    if (!isInc) size = -size;
1828    llvm::Value *sizeValue =
1829      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1830
1831    if (CGF.getLangOpts().isSignedOverflowDefined())
1832      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1833    else
1834      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1835    value = Builder.CreateBitCast(value, input->getType());
1836  }
1837
1838  if (atomicPHI) {
1839    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1840    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1841    auto Pair = CGF.EmitAtomicCompareExchange(
1842        LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1843    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1844    llvm::Value *success = Pair.second;
1845    atomicPHI->addIncoming(old, opBB);
1846    Builder.CreateCondBr(success, contBB, opBB);
1847    Builder.SetInsertPoint(contBB);
1848    return isPre ? value : input;
1849  }
1850
1851  // Store the updated result through the lvalue.
1852  if (LV.isBitField())
1853    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1854  else
1855    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1856
1857  // If this is a postinc, return the value read from memory, otherwise use the
1858  // updated value.
1859  return isPre ? value : input;
1860}
1861
1862
1863
1864Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1865  TestAndClearIgnoreResultAssign();
1866  // Emit unary minus with EmitSub so we handle overflow cases etc.
1867  BinOpInfo BinOp;
1868  BinOp.RHS = Visit(E->getSubExpr());
1869
1870  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1871    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1872  else
1873    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1874  BinOp.Ty = E->getType();
1875  BinOp.Opcode = BO_Sub;
1876  BinOp.FPContractable = false;
1877  BinOp.E = E;
1878  return EmitSub(BinOp);
1879}
1880
1881Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1882  TestAndClearIgnoreResultAssign();
1883  Value *Op = Visit(E->getSubExpr());
1884  return Builder.CreateNot(Op, "neg");
1885}
1886
1887Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1888  // Perform vector logical not on comparison with zero vector.
1889  if (E->getType()->isExtVectorType()) {
1890    Value *Oper = Visit(E->getSubExpr());
1891    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1892    Value *Result;
1893    if (Oper->getType()->isFPOrFPVectorTy())
1894      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1895    else
1896      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1897    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1898  }
1899
1900  // Compare operand to zero.
1901  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1902
1903  // Invert value.
1904  // TODO: Could dynamically modify easy computations here.  For example, if
1905  // the operand is an icmp ne, turn into icmp eq.
1906  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1907
1908  // ZExt result to the expr type.
1909  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1910}
1911
1912Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1913  // Try folding the offsetof to a constant.
1914  llvm::APSInt Value;
1915  if (E->EvaluateAsInt(Value, CGF.getContext()))
1916    return Builder.getInt(Value);
1917
1918  // Loop over the components of the offsetof to compute the value.
1919  unsigned n = E->getNumComponents();
1920  llvm::Type* ResultType = ConvertType(E->getType());
1921  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1922  QualType CurrentType = E->getTypeSourceInfo()->getType();
1923  for (unsigned i = 0; i != n; ++i) {
1924    OffsetOfNode ON = E->getComponent(i);
1925    llvm::Value *Offset = nullptr;
1926    switch (ON.getKind()) {
1927    case OffsetOfNode::Array: {
1928      // Compute the index
1929      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1930      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1931      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1932      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1933
1934      // Save the element type
1935      CurrentType =
1936          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1937
1938      // Compute the element size
1939      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1940          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1941
1942      // Multiply out to compute the result
1943      Offset = Builder.CreateMul(Idx, ElemSize);
1944      break;
1945    }
1946
1947    case OffsetOfNode::Field: {
1948      FieldDecl *MemberDecl = ON.getField();
1949      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1950      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1951
1952      // Compute the index of the field in its parent.
1953      unsigned i = 0;
1954      // FIXME: It would be nice if we didn't have to loop here!
1955      for (RecordDecl::field_iterator Field = RD->field_begin(),
1956                                      FieldEnd = RD->field_end();
1957           Field != FieldEnd; ++Field, ++i) {
1958        if (*Field == MemberDecl)
1959          break;
1960      }
1961      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1962
1963      // Compute the offset to the field
1964      int64_t OffsetInt = RL.getFieldOffset(i) /
1965                          CGF.getContext().getCharWidth();
1966      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1967
1968      // Save the element type.
1969      CurrentType = MemberDecl->getType();
1970      break;
1971    }
1972
1973    case OffsetOfNode::Identifier:
1974      llvm_unreachable("dependent __builtin_offsetof");
1975
1976    case OffsetOfNode::Base: {
1977      if (ON.getBase()->isVirtual()) {
1978        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1979        continue;
1980      }
1981
1982      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1983      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1984
1985      // Save the element type.
1986      CurrentType = ON.getBase()->getType();
1987
1988      // Compute the offset to the base.
1989      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1990      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1991      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1992      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1993      break;
1994    }
1995    }
1996    Result = Builder.CreateAdd(Result, Offset);
1997  }
1998  return Result;
1999}
2000
2001/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2002/// argument of the sizeof expression as an integer.
2003Value *
2004ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2005                              const UnaryExprOrTypeTraitExpr *E) {
2006  QualType TypeToSize = E->getTypeOfArgument();
2007  if (E->getKind() == UETT_SizeOf) {
2008    if (const VariableArrayType *VAT =
2009          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2010      if (E->isArgumentType()) {
2011        // sizeof(type) - make sure to emit the VLA size.
2012        CGF.EmitVariablyModifiedType(TypeToSize);
2013      } else {
2014        // C99 6.5.3.4p2: If the argument is an expression of type
2015        // VLA, it is evaluated.
2016        CGF.EmitIgnoredExpr(E->getArgumentExpr());
2017      }
2018
2019      QualType eltType;
2020      llvm::Value *numElts;
2021      std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2022
2023      llvm::Value *size = numElts;
2024
2025      // Scale the number of non-VLA elements by the non-VLA element size.
2026      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2027      if (!eltSize.isOne())
2028        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2029
2030      return size;
2031    }
2032  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2033    auto Alignment =
2034        CGF.getContext()
2035            .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2036                E->getTypeOfArgument()->getPointeeType()))
2037            .getQuantity();
2038    return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2039  }
2040
2041  // If this isn't sizeof(vla), the result must be constant; use the constant
2042  // folding logic so we don't have to duplicate it here.
2043  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2044}
2045
2046Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2047  Expr *Op = E->getSubExpr();
2048  if (Op->getType()->isAnyComplexType()) {
2049    // If it's an l-value, load through the appropriate subobject l-value.
2050    // Note that we have to ask E because Op might be an l-value that
2051    // this won't work for, e.g. an Obj-C property.
2052    if (E->isGLValue())
2053      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2054                                  E->getExprLoc()).getScalarVal();
2055
2056    // Otherwise, calculate and project.
2057    return CGF.EmitComplexExpr(Op, false, true).first;
2058  }
2059
2060  return Visit(Op);
2061}
2062
2063Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2064  Expr *Op = E->getSubExpr();
2065  if (Op->getType()->isAnyComplexType()) {
2066    // If it's an l-value, load through the appropriate subobject l-value.
2067    // Note that we have to ask E because Op might be an l-value that
2068    // this won't work for, e.g. an Obj-C property.
2069    if (Op->isGLValue())
2070      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2071                                  E->getExprLoc()).getScalarVal();
2072
2073    // Otherwise, calculate and project.
2074    return CGF.EmitComplexExpr(Op, true, false).second;
2075  }
2076
2077  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2078  // effects are evaluated, but not the actual value.
2079  if (Op->isGLValue())
2080    CGF.EmitLValue(Op);
2081  else
2082    CGF.EmitScalarExpr(Op, true);
2083  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2084}
2085
2086//===----------------------------------------------------------------------===//
2087//                           Binary Operators
2088//===----------------------------------------------------------------------===//
2089
2090BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2091  TestAndClearIgnoreResultAssign();
2092  BinOpInfo Result;
2093  Result.LHS = Visit(E->getLHS());
2094  Result.RHS = Visit(E->getRHS());
2095  Result.Ty  = E->getType();
2096  Result.Opcode = E->getOpcode();
2097  Result.FPContractable = E->isFPContractable();
2098  Result.E = E;
2099  return Result;
2100}
2101
2102LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2103                                              const CompoundAssignOperator *E,
2104                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2105                                                   Value *&Result) {
2106  QualType LHSTy = E->getLHS()->getType();
2107  BinOpInfo OpInfo;
2108
2109  if (E->getComputationResultType()->isAnyComplexType())
2110    return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2111
2112  // Emit the RHS first.  __block variables need to have the rhs evaluated
2113  // first, plus this should improve codegen a little.
2114  OpInfo.RHS = Visit(E->getRHS());
2115  OpInfo.Ty = E->getComputationResultType();
2116  OpInfo.Opcode = E->getOpcode();
2117  OpInfo.FPContractable = E->isFPContractable();
2118  OpInfo.E = E;
2119  // Load/convert the LHS.
2120  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2121
2122  llvm::PHINode *atomicPHI = nullptr;
2123  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2124    QualType type = atomicTy->getValueType();
2125    if (!type->isBooleanType() && type->isIntegerType() &&
2126        !(type->isUnsignedIntegerType() &&
2127          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2128        CGF.getLangOpts().getSignedOverflowBehavior() !=
2129            LangOptions::SOB_Trapping) {
2130      llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2131      switch (OpInfo.Opcode) {
2132        // We don't have atomicrmw operands for *, %, /, <<, >>
2133        case BO_MulAssign: case BO_DivAssign:
2134        case BO_RemAssign:
2135        case BO_ShlAssign:
2136        case BO_ShrAssign:
2137          break;
2138        case BO_AddAssign:
2139          aop = llvm::AtomicRMWInst::Add;
2140          break;
2141        case BO_SubAssign:
2142          aop = llvm::AtomicRMWInst::Sub;
2143          break;
2144        case BO_AndAssign:
2145          aop = llvm::AtomicRMWInst::And;
2146          break;
2147        case BO_XorAssign:
2148          aop = llvm::AtomicRMWInst::Xor;
2149          break;
2150        case BO_OrAssign:
2151          aop = llvm::AtomicRMWInst::Or;
2152          break;
2153        default:
2154          llvm_unreachable("Invalid compound assignment type");
2155      }
2156      if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2157        llvm::Value *amt = CGF.EmitToMemory(
2158            EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2159                                 E->getExprLoc()),
2160            LHSTy);
2161        Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2162            llvm::SequentiallyConsistent);
2163        return LHSLV;
2164      }
2165    }
2166    // FIXME: For floating point types, we should be saving and restoring the
2167    // floating point environment in the loop.
2168    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2169    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2170    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2171    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2172    Builder.CreateBr(opBB);
2173    Builder.SetInsertPoint(opBB);
2174    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2175    atomicPHI->addIncoming(OpInfo.LHS, startBB);
2176    OpInfo.LHS = atomicPHI;
2177  }
2178  else
2179    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2180
2181  SourceLocation Loc = E->getExprLoc();
2182  OpInfo.LHS =
2183      EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2184
2185  // Expand the binary operator.
2186  Result = (this->*Func)(OpInfo);
2187
2188  // Convert the result back to the LHS type.
2189  Result =
2190      EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2191
2192  if (atomicPHI) {
2193    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2194    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2195    auto Pair = CGF.EmitAtomicCompareExchange(
2196        LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2197    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2198    llvm::Value *success = Pair.second;
2199    atomicPHI->addIncoming(old, opBB);
2200    Builder.CreateCondBr(success, contBB, opBB);
2201    Builder.SetInsertPoint(contBB);
2202    return LHSLV;
2203  }
2204
2205  // Store the result value into the LHS lvalue. Bit-fields are handled
2206  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2207  // 'An assignment expression has the value of the left operand after the
2208  // assignment...'.
2209  if (LHSLV.isBitField())
2210    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2211  else
2212    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2213
2214  return LHSLV;
2215}
2216
2217Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2218                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2219  bool Ignore = TestAndClearIgnoreResultAssign();
2220  Value *RHS;
2221  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2222
2223  // If the result is clearly ignored, return now.
2224  if (Ignore)
2225    return nullptr;
2226
2227  // The result of an assignment in C is the assigned r-value.
2228  if (!CGF.getLangOpts().CPlusPlus)
2229    return RHS;
2230
2231  // If the lvalue is non-volatile, return the computed value of the assignment.
2232  if (!LHS.isVolatileQualified())
2233    return RHS;
2234
2235  // Otherwise, reload the value.
2236  return EmitLoadOfLValue(LHS, E->getExprLoc());
2237}
2238
2239void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2240    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2241  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2242
2243  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2244    Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2245                                    SanitizerKind::IntegerDivideByZero));
2246  }
2247
2248  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2249      Ops.Ty->hasSignedIntegerRepresentation()) {
2250    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2251
2252    llvm::Value *IntMin =
2253      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2254    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2255
2256    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2257    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2258    llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2259    Checks.push_back(
2260        std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2261  }
2262
2263  if (Checks.size() > 0)
2264    EmitBinOpCheck(Checks, Ops);
2265}
2266
2267Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2268  {
2269    CodeGenFunction::SanitizerScope SanScope(&CGF);
2270    if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2271         CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2272        Ops.Ty->isIntegerType()) {
2273      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2274      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2275    } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2276               Ops.Ty->isRealFloatingType()) {
2277      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2278      llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2279      EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2280                     Ops);
2281    }
2282  }
2283
2284  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2285    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2286    if (CGF.getLangOpts().OpenCL) {
2287      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2288      llvm::Type *ValTy = Val->getType();
2289      if (ValTy->isFloatTy() ||
2290          (isa<llvm::VectorType>(ValTy) &&
2291           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2292        CGF.SetFPAccuracy(Val, 2.5);
2293    }
2294    return Val;
2295  }
2296  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2297    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2298  else
2299    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2300}
2301
2302Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2303  // Rem in C can't be a floating point type: C99 6.5.5p2.
2304  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2305    CodeGenFunction::SanitizerScope SanScope(&CGF);
2306    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2307
2308    if (Ops.Ty->isIntegerType())
2309      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2310  }
2311
2312  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2313    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2314  else
2315    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2316}
2317
2318Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2319  unsigned IID;
2320  unsigned OpID = 0;
2321
2322  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2323  switch (Ops.Opcode) {
2324  case BO_Add:
2325  case BO_AddAssign:
2326    OpID = 1;
2327    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2328                     llvm::Intrinsic::uadd_with_overflow;
2329    break;
2330  case BO_Sub:
2331  case BO_SubAssign:
2332    OpID = 2;
2333    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2334                     llvm::Intrinsic::usub_with_overflow;
2335    break;
2336  case BO_Mul:
2337  case BO_MulAssign:
2338    OpID = 3;
2339    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2340                     llvm::Intrinsic::umul_with_overflow;
2341    break;
2342  default:
2343    llvm_unreachable("Unsupported operation for overflow detection");
2344  }
2345  OpID <<= 1;
2346  if (isSigned)
2347    OpID |= 1;
2348
2349  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2350
2351  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2352
2353  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2354  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2355  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2356
2357  // Handle overflow with llvm.trap if no custom handler has been specified.
2358  const std::string *handlerName =
2359    &CGF.getLangOpts().OverflowHandler;
2360  if (handlerName->empty()) {
2361    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2362    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2363    if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2364      CodeGenFunction::SanitizerScope SanScope(&CGF);
2365      llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2366      SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2367                              : SanitizerKind::UnsignedIntegerOverflow;
2368      EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2369    } else
2370      CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2371    return result;
2372  }
2373
2374  // Branch in case of overflow.
2375  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2376  llvm::Function::iterator insertPt = initialBB->getIterator();
2377  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2378                                                      &*std::next(insertPt));
2379  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2380
2381  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2382
2383  // If an overflow handler is set, then we want to call it and then use its
2384  // result, if it returns.
2385  Builder.SetInsertPoint(overflowBB);
2386
2387  // Get the overflow handler.
2388  llvm::Type *Int8Ty = CGF.Int8Ty;
2389  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2390  llvm::FunctionType *handlerTy =
2391      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2392  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2393
2394  // Sign extend the args to 64-bit, so that we can use the same handler for
2395  // all types of overflow.
2396  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2397  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2398
2399  // Call the handler with the two arguments, the operation, and the size of
2400  // the result.
2401  llvm::Value *handlerArgs[] = {
2402    lhs,
2403    rhs,
2404    Builder.getInt8(OpID),
2405    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2406  };
2407  llvm::Value *handlerResult =
2408    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2409
2410  // Truncate the result back to the desired size.
2411  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2412  Builder.CreateBr(continueBB);
2413
2414  Builder.SetInsertPoint(continueBB);
2415  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2416  phi->addIncoming(result, initialBB);
2417  phi->addIncoming(handlerResult, overflowBB);
2418
2419  return phi;
2420}
2421
2422/// Emit pointer + index arithmetic.
2423static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2424                                    const BinOpInfo &op,
2425                                    bool isSubtraction) {
2426  // Must have binary (not unary) expr here.  Unary pointer
2427  // increment/decrement doesn't use this path.
2428  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2429
2430  Value *pointer = op.LHS;
2431  Expr *pointerOperand = expr->getLHS();
2432  Value *index = op.RHS;
2433  Expr *indexOperand = expr->getRHS();
2434
2435  // In a subtraction, the LHS is always the pointer.
2436  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2437    std::swap(pointer, index);
2438    std::swap(pointerOperand, indexOperand);
2439  }
2440
2441  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2442  if (width != CGF.PointerWidthInBits) {
2443    // Zero-extend or sign-extend the pointer value according to
2444    // whether the index is signed or not.
2445    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2446    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2447                                      "idx.ext");
2448  }
2449
2450  // If this is subtraction, negate the index.
2451  if (isSubtraction)
2452    index = CGF.Builder.CreateNeg(index, "idx.neg");
2453
2454  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2455    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2456                        /*Accessed*/ false);
2457
2458  const PointerType *pointerType
2459    = pointerOperand->getType()->getAs<PointerType>();
2460  if (!pointerType) {
2461    QualType objectType = pointerOperand->getType()
2462                                        ->castAs<ObjCObjectPointerType>()
2463                                        ->getPointeeType();
2464    llvm::Value *objectSize
2465      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2466
2467    index = CGF.Builder.CreateMul(index, objectSize);
2468
2469    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2470    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2471    return CGF.Builder.CreateBitCast(result, pointer->getType());
2472  }
2473
2474  QualType elementType = pointerType->getPointeeType();
2475  if (const VariableArrayType *vla
2476        = CGF.getContext().getAsVariableArrayType(elementType)) {
2477    // The element count here is the total number of non-VLA elements.
2478    llvm::Value *numElements = CGF.getVLASize(vla).first;
2479
2480    // Effectively, the multiply by the VLA size is part of the GEP.
2481    // GEP indexes are signed, and scaling an index isn't permitted to
2482    // signed-overflow, so we use the same semantics for our explicit
2483    // multiply.  We suppress this if overflow is not undefined behavior.
2484    if (CGF.getLangOpts().isSignedOverflowDefined()) {
2485      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2486      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2487    } else {
2488      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2489      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2490    }
2491    return pointer;
2492  }
2493
2494  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2495  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2496  // future proof.
2497  if (elementType->isVoidType() || elementType->isFunctionType()) {
2498    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2499    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2500    return CGF.Builder.CreateBitCast(result, pointer->getType());
2501  }
2502
2503  if (CGF.getLangOpts().isSignedOverflowDefined())
2504    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2505
2506  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2507}
2508
2509// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2510// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2511// the add operand respectively. This allows fmuladd to represent a*b-c, or
2512// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2513// efficient operations.
2514static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2515                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
2516                           bool negMul, bool negAdd) {
2517  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2518
2519  Value *MulOp0 = MulOp->getOperand(0);
2520  Value *MulOp1 = MulOp->getOperand(1);
2521  if (negMul) {
2522    MulOp0 =
2523      Builder.CreateFSub(
2524        llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2525        "neg");
2526  } else if (negAdd) {
2527    Addend =
2528      Builder.CreateFSub(
2529        llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2530        "neg");
2531  }
2532
2533  Value *FMulAdd = Builder.CreateCall(
2534      CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2535      {MulOp0, MulOp1, Addend});
2536   MulOp->eraseFromParent();
2537
2538   return FMulAdd;
2539}
2540
2541// Check whether it would be legal to emit an fmuladd intrinsic call to
2542// represent op and if so, build the fmuladd.
2543//
2544// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2545// Does NOT check the type of the operation - it's assumed that this function
2546// will be called from contexts where it's known that the type is contractable.
2547static Value* tryEmitFMulAdd(const BinOpInfo &op,
2548                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
2549                         bool isSub=false) {
2550
2551  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2552          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2553         "Only fadd/fsub can be the root of an fmuladd.");
2554
2555  // Check whether this op is marked as fusable.
2556  if (!op.FPContractable)
2557    return nullptr;
2558
2559  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2560  // either disabled, or handled entirely by the LLVM backend).
2561  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2562    return nullptr;
2563
2564  // We have a potentially fusable op. Look for a mul on one of the operands.
2565  // Also, make sure that the mul result isn't used directly. In that case,
2566  // there's no point creating a muladd operation.
2567  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2568    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2569        LHSBinOp->use_empty())
2570      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2571  }
2572  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2573    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2574        RHSBinOp->use_empty())
2575      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2576  }
2577
2578  return nullptr;
2579}
2580
2581Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2582  if (op.LHS->getType()->isPointerTy() ||
2583      op.RHS->getType()->isPointerTy())
2584    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2585
2586  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2587    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2588    case LangOptions::SOB_Defined:
2589      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2590    case LangOptions::SOB_Undefined:
2591      if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2592        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2593      // Fall through.
2594    case LangOptions::SOB_Trapping:
2595      return EmitOverflowCheckedBinOp(op);
2596    }
2597  }
2598
2599  if (op.Ty->isUnsignedIntegerType() &&
2600      CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2601    return EmitOverflowCheckedBinOp(op);
2602
2603  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2604    // Try to form an fmuladd.
2605    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2606      return FMulAdd;
2607
2608    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2609  }
2610
2611  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2612}
2613
2614Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2615  // The LHS is always a pointer if either side is.
2616  if (!op.LHS->getType()->isPointerTy()) {
2617    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2618      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2619      case LangOptions::SOB_Defined:
2620        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2621      case LangOptions::SOB_Undefined:
2622        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2623          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2624        // Fall through.
2625      case LangOptions::SOB_Trapping:
2626        return EmitOverflowCheckedBinOp(op);
2627      }
2628    }
2629
2630    if (op.Ty->isUnsignedIntegerType() &&
2631        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2632      return EmitOverflowCheckedBinOp(op);
2633
2634    if (op.LHS->getType()->isFPOrFPVectorTy()) {
2635      // Try to form an fmuladd.
2636      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2637        return FMulAdd;
2638      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2639    }
2640
2641    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2642  }
2643
2644  // If the RHS is not a pointer, then we have normal pointer
2645  // arithmetic.
2646  if (!op.RHS->getType()->isPointerTy())
2647    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2648
2649  // Otherwise, this is a pointer subtraction.
2650
2651  // Do the raw subtraction part.
2652  llvm::Value *LHS
2653    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2654  llvm::Value *RHS
2655    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2656  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2657
2658  // Okay, figure out the element size.
2659  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2660  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2661
2662  llvm::Value *divisor = nullptr;
2663
2664  // For a variable-length array, this is going to be non-constant.
2665  if (const VariableArrayType *vla
2666        = CGF.getContext().getAsVariableArrayType(elementType)) {
2667    llvm::Value *numElements;
2668    std::tie(numElements, elementType) = CGF.getVLASize(vla);
2669
2670    divisor = numElements;
2671
2672    // Scale the number of non-VLA elements by the non-VLA element size.
2673    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2674    if (!eltSize.isOne())
2675      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2676
2677  // For everything elese, we can just compute it, safe in the
2678  // assumption that Sema won't let anything through that we can't
2679  // safely compute the size of.
2680  } else {
2681    CharUnits elementSize;
2682    // Handle GCC extension for pointer arithmetic on void* and
2683    // function pointer types.
2684    if (elementType->isVoidType() || elementType->isFunctionType())
2685      elementSize = CharUnits::One();
2686    else
2687      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2688
2689    // Don't even emit the divide for element size of 1.
2690    if (elementSize.isOne())
2691      return diffInChars;
2692
2693    divisor = CGF.CGM.getSize(elementSize);
2694  }
2695
2696  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2697  // pointer difference in C is only defined in the case where both operands
2698  // are pointing to elements of an array.
2699  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2700}
2701
2702Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2703  llvm::IntegerType *Ty;
2704  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2705    Ty = cast<llvm::IntegerType>(VT->getElementType());
2706  else
2707    Ty = cast<llvm::IntegerType>(LHS->getType());
2708  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2709}
2710
2711Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2712  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2713  // RHS to the same size as the LHS.
2714  Value *RHS = Ops.RHS;
2715  if (Ops.LHS->getType() != RHS->getType())
2716    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2717
2718  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2719                      Ops.Ty->hasSignedIntegerRepresentation();
2720  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2721  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2722  if (CGF.getLangOpts().OpenCL)
2723    RHS =
2724        Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2725  else if ((SanitizeBase || SanitizeExponent) &&
2726           isa<llvm::IntegerType>(Ops.LHS->getType())) {
2727    CodeGenFunction::SanitizerScope SanScope(&CGF);
2728    SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2729    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2730    llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2731
2732    if (SanitizeExponent) {
2733      Checks.push_back(
2734          std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2735    }
2736
2737    if (SanitizeBase) {
2738      // Check whether we are shifting any non-zero bits off the top of the
2739      // integer. We only emit this check if exponent is valid - otherwise
2740      // instructions below will have undefined behavior themselves.
2741      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2742      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2743      llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2744      Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2745      CGF.EmitBlock(CheckShiftBase);
2746      llvm::Value *BitsShiftedOff =
2747        Builder.CreateLShr(Ops.LHS,
2748                           Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2749                                             /*NUW*/true, /*NSW*/true),
2750                           "shl.check");
2751      if (CGF.getLangOpts().CPlusPlus) {
2752        // In C99, we are not permitted to shift a 1 bit into the sign bit.
2753        // Under C++11's rules, shifting a 1 bit into the sign bit is
2754        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2755        // define signed left shifts, so we use the C99 and C++11 rules there).
2756        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2757        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2758      }
2759      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2760      llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2761      CGF.EmitBlock(Cont);
2762      llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2763      BaseCheck->addIncoming(Builder.getTrue(), Orig);
2764      BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2765      Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2766    }
2767
2768    assert(!Checks.empty());
2769    EmitBinOpCheck(Checks, Ops);
2770  }
2771
2772  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2773}
2774
2775Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2776  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2777  // RHS to the same size as the LHS.
2778  Value *RHS = Ops.RHS;
2779  if (Ops.LHS->getType() != RHS->getType())
2780    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2781
2782  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2783  if (CGF.getLangOpts().OpenCL)
2784    RHS =
2785        Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2786  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2787           isa<llvm::IntegerType>(Ops.LHS->getType())) {
2788    CodeGenFunction::SanitizerScope SanScope(&CGF);
2789    llvm::Value *Valid =
2790        Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2791    EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2792  }
2793
2794  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2795    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2796  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2797}
2798
2799enum IntrinsicType { VCMPEQ, VCMPGT };
2800// return corresponding comparison intrinsic for given vector type
2801static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2802                                        BuiltinType::Kind ElemKind) {
2803  switch (ElemKind) {
2804  default: llvm_unreachable("unexpected element type");
2805  case BuiltinType::Char_U:
2806  case BuiltinType::UChar:
2807    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2808                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2809  case BuiltinType::Char_S:
2810  case BuiltinType::SChar:
2811    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2812                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2813  case BuiltinType::UShort:
2814    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2815                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2816  case BuiltinType::Short:
2817    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2818                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2819  case BuiltinType::UInt:
2820  case BuiltinType::ULong:
2821    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2822                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2823  case BuiltinType::Int:
2824  case BuiltinType::Long:
2825    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2826                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2827  case BuiltinType::Float:
2828    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2829                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2830  }
2831}
2832
2833Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2834                                      llvm::CmpInst::Predicate UICmpOpc,
2835                                      llvm::CmpInst::Predicate SICmpOpc,
2836                                      llvm::CmpInst::Predicate FCmpOpc) {
2837  TestAndClearIgnoreResultAssign();
2838  Value *Result;
2839  QualType LHSTy = E->getLHS()->getType();
2840  QualType RHSTy = E->getRHS()->getType();
2841  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2842    assert(E->getOpcode() == BO_EQ ||
2843           E->getOpcode() == BO_NE);
2844    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2845    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2846    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2847                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2848  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2849    Value *LHS = Visit(E->getLHS());
2850    Value *RHS = Visit(E->getRHS());
2851
2852    // If AltiVec, the comparison results in a numeric type, so we use
2853    // intrinsics comparing vectors and giving 0 or 1 as a result
2854    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2855      // constants for mapping CR6 register bits to predicate result
2856      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2857
2858      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2859
2860      // in several cases vector arguments order will be reversed
2861      Value *FirstVecArg = LHS,
2862            *SecondVecArg = RHS;
2863
2864      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2865      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2866      BuiltinType::Kind ElementKind = BTy->getKind();
2867
2868      switch(E->getOpcode()) {
2869      default: llvm_unreachable("is not a comparison operation");
2870      case BO_EQ:
2871        CR6 = CR6_LT;
2872        ID = GetIntrinsic(VCMPEQ, ElementKind);
2873        break;
2874      case BO_NE:
2875        CR6 = CR6_EQ;
2876        ID = GetIntrinsic(VCMPEQ, ElementKind);
2877        break;
2878      case BO_LT:
2879        CR6 = CR6_LT;
2880        ID = GetIntrinsic(VCMPGT, ElementKind);
2881        std::swap(FirstVecArg, SecondVecArg);
2882        break;
2883      case BO_GT:
2884        CR6 = CR6_LT;
2885        ID = GetIntrinsic(VCMPGT, ElementKind);
2886        break;
2887      case BO_LE:
2888        if (ElementKind == BuiltinType::Float) {
2889          CR6 = CR6_LT;
2890          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2891          std::swap(FirstVecArg, SecondVecArg);
2892        }
2893        else {
2894          CR6 = CR6_EQ;
2895          ID = GetIntrinsic(VCMPGT, ElementKind);
2896        }
2897        break;
2898      case BO_GE:
2899        if (ElementKind == BuiltinType::Float) {
2900          CR6 = CR6_LT;
2901          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2902        }
2903        else {
2904          CR6 = CR6_EQ;
2905          ID = GetIntrinsic(VCMPGT, ElementKind);
2906          std::swap(FirstVecArg, SecondVecArg);
2907        }
2908        break;
2909      }
2910
2911      Value *CR6Param = Builder.getInt32(CR6);
2912      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2913      Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2914      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2915                                  E->getExprLoc());
2916    }
2917
2918    if (LHS->getType()->isFPOrFPVectorTy()) {
2919      Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2920    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2921      Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2922    } else {
2923      // Unsigned integers and pointers.
2924      Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2925    }
2926
2927    // If this is a vector comparison, sign extend the result to the appropriate
2928    // vector integer type and return it (don't convert to bool).
2929    if (LHSTy->isVectorType())
2930      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2931
2932  } else {
2933    // Complex Comparison: can only be an equality comparison.
2934    CodeGenFunction::ComplexPairTy LHS, RHS;
2935    QualType CETy;
2936    if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2937      LHS = CGF.EmitComplexExpr(E->getLHS());
2938      CETy = CTy->getElementType();
2939    } else {
2940      LHS.first = Visit(E->getLHS());
2941      LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2942      CETy = LHSTy;
2943    }
2944    if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2945      RHS = CGF.EmitComplexExpr(E->getRHS());
2946      assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2947                                                     CTy->getElementType()) &&
2948             "The element types must always match.");
2949      (void)CTy;
2950    } else {
2951      RHS.first = Visit(E->getRHS());
2952      RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2953      assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2954             "The element types must always match.");
2955    }
2956
2957    Value *ResultR, *ResultI;
2958    if (CETy->isRealFloatingType()) {
2959      ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2960      ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2961    } else {
2962      // Complex comparisons can only be equality comparisons.  As such, signed
2963      // and unsigned opcodes are the same.
2964      ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2965      ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2966    }
2967
2968    if (E->getOpcode() == BO_EQ) {
2969      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2970    } else {
2971      assert(E->getOpcode() == BO_NE &&
2972             "Complex comparison other than == or != ?");
2973      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2974    }
2975  }
2976
2977  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2978                              E->getExprLoc());
2979}
2980
2981Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2982  bool Ignore = TestAndClearIgnoreResultAssign();
2983
2984  Value *RHS;
2985  LValue LHS;
2986
2987  switch (E->getLHS()->getType().getObjCLifetime()) {
2988  case Qualifiers::OCL_Strong:
2989    std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2990    break;
2991
2992  case Qualifiers::OCL_Autoreleasing:
2993    std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2994    break;
2995
2996  case Qualifiers::OCL_Weak:
2997    RHS = Visit(E->getRHS());
2998    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2999    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3000    break;
3001
3002  // No reason to do any of these differently.
3003  case Qualifiers::OCL_None:
3004  case Qualifiers::OCL_ExplicitNone:
3005    // __block variables need to have the rhs evaluated first, plus
3006    // this should improve codegen just a little.
3007    RHS = Visit(E->getRHS());
3008    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3009
3010    // Store the value into the LHS.  Bit-fields are handled specially
3011    // because the result is altered by the store, i.e., [C99 6.5.16p1]
3012    // 'An assignment expression has the value of the left operand after
3013    // the assignment...'.
3014    if (LHS.isBitField())
3015      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3016    else
3017      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3018  }
3019
3020  // If the result is clearly ignored, return now.
3021  if (Ignore)
3022    return nullptr;
3023
3024  // The result of an assignment in C is the assigned r-value.
3025  if (!CGF.getLangOpts().CPlusPlus)
3026    return RHS;
3027
3028  // If the lvalue is non-volatile, return the computed value of the assignment.
3029  if (!LHS.isVolatileQualified())
3030    return RHS;
3031
3032  // Otherwise, reload the value.
3033  return EmitLoadOfLValue(LHS, E->getExprLoc());
3034}
3035
3036Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3037  // Perform vector logical and on comparisons with zero vectors.
3038  if (E->getType()->isVectorType()) {
3039    CGF.incrementProfileCounter(E);
3040
3041    Value *LHS = Visit(E->getLHS());
3042    Value *RHS = Visit(E->getRHS());
3043    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3044    if (LHS->getType()->isFPOrFPVectorTy()) {
3045      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3046      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3047    } else {
3048      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3049      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3050    }
3051    Value *And = Builder.CreateAnd(LHS, RHS);
3052    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3053  }
3054
3055  llvm::Type *ResTy = ConvertType(E->getType());
3056
3057  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3058  // If we have 1 && X, just emit X without inserting the control flow.
3059  bool LHSCondVal;
3060  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3061    if (LHSCondVal) { // If we have 1 && X, just emit X.
3062      CGF.incrementProfileCounter(E);
3063
3064      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3065      // ZExt result to int or bool.
3066      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3067    }
3068
3069    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3070    if (!CGF.ContainsLabel(E->getRHS()))
3071      return llvm::Constant::getNullValue(ResTy);
3072  }
3073
3074  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3075  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3076
3077  CodeGenFunction::ConditionalEvaluation eval(CGF);
3078
3079  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3080  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3081                           CGF.getProfileCount(E->getRHS()));
3082
3083  // Any edges into the ContBlock are now from an (indeterminate number of)
3084  // edges from this first condition.  All of these values will be false.  Start
3085  // setting up the PHI node in the Cont Block for this.
3086  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3087                                            "", ContBlock);
3088  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3089       PI != PE; ++PI)
3090    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3091
3092  eval.begin(CGF);
3093  CGF.EmitBlock(RHSBlock);
3094  CGF.incrementProfileCounter(E);
3095  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3096  eval.end(CGF);
3097
3098  // Reaquire the RHS block, as there may be subblocks inserted.
3099  RHSBlock = Builder.GetInsertBlock();
3100
3101  // Emit an unconditional branch from this block to ContBlock.
3102  {
3103    // There is no need to emit line number for unconditional branch.
3104    auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3105    CGF.EmitBlock(ContBlock);
3106  }
3107  // Insert an entry into the phi node for the edge with the value of RHSCond.
3108  PN->addIncoming(RHSCond, RHSBlock);
3109
3110  // ZExt result to int.
3111  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3112}
3113
3114Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3115  // Perform vector logical or on comparisons with zero vectors.
3116  if (E->getType()->isVectorType()) {
3117    CGF.incrementProfileCounter(E);
3118
3119    Value *LHS = Visit(E->getLHS());
3120    Value *RHS = Visit(E->getRHS());
3121    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3122    if (LHS->getType()->isFPOrFPVectorTy()) {
3123      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3124      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3125    } else {
3126      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3127      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3128    }
3129    Value *Or = Builder.CreateOr(LHS, RHS);
3130    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3131  }
3132
3133  llvm::Type *ResTy = ConvertType(E->getType());
3134
3135  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3136  // If we have 0 || X, just emit X without inserting the control flow.
3137  bool LHSCondVal;
3138  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3139    if (!LHSCondVal) { // If we have 0 || X, just emit X.
3140      CGF.incrementProfileCounter(E);
3141
3142      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3143      // ZExt result to int or bool.
3144      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3145    }
3146
3147    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3148    if (!CGF.ContainsLabel(E->getRHS()))
3149      return llvm::ConstantInt::get(ResTy, 1);
3150  }
3151
3152  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3153  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3154
3155  CodeGenFunction::ConditionalEvaluation eval(CGF);
3156
3157  // Branch on the LHS first.  If it is true, go to the success (cont) block.
3158  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3159                           CGF.getCurrentProfileCount() -
3160                               CGF.getProfileCount(E->getRHS()));
3161
3162  // Any edges into the ContBlock are now from an (indeterminate number of)
3163  // edges from this first condition.  All of these values will be true.  Start
3164  // setting up the PHI node in the Cont Block for this.
3165  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3166                                            "", ContBlock);
3167  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3168       PI != PE; ++PI)
3169    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3170
3171  eval.begin(CGF);
3172
3173  // Emit the RHS condition as a bool value.
3174  CGF.EmitBlock(RHSBlock);
3175  CGF.incrementProfileCounter(E);
3176  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3177
3178  eval.end(CGF);
3179
3180  // Reaquire the RHS block, as there may be subblocks inserted.
3181  RHSBlock = Builder.GetInsertBlock();
3182
3183  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3184  // into the phi node for the edge with the value of RHSCond.
3185  CGF.EmitBlock(ContBlock);
3186  PN->addIncoming(RHSCond, RHSBlock);
3187
3188  // ZExt result to int.
3189  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3190}
3191
3192Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3193  CGF.EmitIgnoredExpr(E->getLHS());
3194  CGF.EnsureInsertPoint();
3195  return Visit(E->getRHS());
3196}
3197
3198//===----------------------------------------------------------------------===//
3199//                             Other Operators
3200//===----------------------------------------------------------------------===//
3201
3202/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3203/// expression is cheap enough and side-effect-free enough to evaluate
3204/// unconditionally instead of conditionally.  This is used to convert control
3205/// flow into selects in some cases.
3206static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3207                                                   CodeGenFunction &CGF) {
3208  // Anything that is an integer or floating point constant is fine.
3209  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3210
3211  // Even non-volatile automatic variables can't be evaluated unconditionally.
3212  // Referencing a thread_local may cause non-trivial initialization work to
3213  // occur. If we're inside a lambda and one of the variables is from the scope
3214  // outside the lambda, that function may have returned already. Reading its
3215  // locals is a bad idea. Also, these reads may introduce races there didn't
3216  // exist in the source-level program.
3217}
3218
3219
3220Value *ScalarExprEmitter::
3221VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3222  TestAndClearIgnoreResultAssign();
3223
3224  // Bind the common expression if necessary.
3225  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3226
3227  Expr *condExpr = E->getCond();
3228  Expr *lhsExpr = E->getTrueExpr();
3229  Expr *rhsExpr = E->getFalseExpr();
3230
3231  // If the condition constant folds and can be elided, try to avoid emitting
3232  // the condition and the dead arm.
3233  bool CondExprBool;
3234  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3235    Expr *live = lhsExpr, *dead = rhsExpr;
3236    if (!CondExprBool) std::swap(live, dead);
3237
3238    // If the dead side doesn't have labels we need, just emit the Live part.
3239    if (!CGF.ContainsLabel(dead)) {
3240      if (CondExprBool)
3241        CGF.incrementProfileCounter(E);
3242      Value *Result = Visit(live);
3243
3244      // If the live part is a throw expression, it acts like it has a void
3245      // type, so evaluating it returns a null Value*.  However, a conditional
3246      // with non-void type must return a non-null Value*.
3247      if (!Result && !E->getType()->isVoidType())
3248        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3249
3250      return Result;
3251    }
3252  }
3253
3254  // OpenCL: If the condition is a vector, we can treat this condition like
3255  // the select function.
3256  if (CGF.getLangOpts().OpenCL
3257      && condExpr->getType()->isVectorType()) {
3258    CGF.incrementProfileCounter(E);
3259
3260    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3261    llvm::Value *LHS = Visit(lhsExpr);
3262    llvm::Value *RHS = Visit(rhsExpr);
3263
3264    llvm::Type *condType = ConvertType(condExpr->getType());
3265    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3266
3267    unsigned numElem = vecTy->getNumElements();
3268    llvm::Type *elemType = vecTy->getElementType();
3269
3270    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3271    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3272    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3273                                          llvm::VectorType::get(elemType,
3274                                                                numElem),
3275                                          "sext");
3276    llvm::Value *tmp2 = Builder.CreateNot(tmp);
3277
3278    // Cast float to int to perform ANDs if necessary.
3279    llvm::Value *RHSTmp = RHS;
3280    llvm::Value *LHSTmp = LHS;
3281    bool wasCast = false;
3282    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3283    if (rhsVTy->getElementType()->isFloatingPointTy()) {
3284      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3285      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3286      wasCast = true;
3287    }
3288
3289    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3290    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3291    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3292    if (wasCast)
3293      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3294
3295    return tmp5;
3296  }
3297
3298  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3299  // select instead of as control flow.  We can only do this if it is cheap and
3300  // safe to evaluate the LHS and RHS unconditionally.
3301  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3302      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3303    CGF.incrementProfileCounter(E);
3304
3305    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3306    llvm::Value *LHS = Visit(lhsExpr);
3307    llvm::Value *RHS = Visit(rhsExpr);
3308    if (!LHS) {
3309      // If the conditional has void type, make sure we return a null Value*.
3310      assert(!RHS && "LHS and RHS types must match");
3311      return nullptr;
3312    }
3313    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3314  }
3315
3316  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3317  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3318  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3319
3320  CodeGenFunction::ConditionalEvaluation eval(CGF);
3321  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3322                           CGF.getProfileCount(lhsExpr));
3323
3324  CGF.EmitBlock(LHSBlock);
3325  CGF.incrementProfileCounter(E);
3326  eval.begin(CGF);
3327  Value *LHS = Visit(lhsExpr);
3328  eval.end(CGF);
3329
3330  LHSBlock = Builder.GetInsertBlock();
3331  Builder.CreateBr(ContBlock);
3332
3333  CGF.EmitBlock(RHSBlock);
3334  eval.begin(CGF);
3335  Value *RHS = Visit(rhsExpr);
3336  eval.end(CGF);
3337
3338  RHSBlock = Builder.GetInsertBlock();
3339  CGF.EmitBlock(ContBlock);
3340
3341  // If the LHS or RHS is a throw expression, it will be legitimately null.
3342  if (!LHS)
3343    return RHS;
3344  if (!RHS)
3345    return LHS;
3346
3347  // Create a PHI node for the real part.
3348  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3349  PN->addIncoming(LHS, LHSBlock);
3350  PN->addIncoming(RHS, RHSBlock);
3351  return PN;
3352}
3353
3354Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3355  return Visit(E->getChosenSubExpr());
3356}
3357
3358Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3359  QualType Ty = VE->getType();
3360
3361  if (Ty->isVariablyModifiedType())
3362    CGF.EmitVariablyModifiedType(Ty);
3363
3364  Address ArgValue = Address::invalid();
3365  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3366
3367  llvm::Type *ArgTy = ConvertType(VE->getType());
3368
3369  // If EmitVAArg fails, we fall back to the LLVM instruction.
3370  if (!ArgPtr.isValid())
3371    return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3372
3373  // FIXME Volatility.
3374  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3375
3376  // If EmitVAArg promoted the type, we must truncate it.
3377  if (ArgTy != Val->getType()) {
3378    if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3379      Val = Builder.CreateIntToPtr(Val, ArgTy);
3380    else
3381      Val = Builder.CreateTrunc(Val, ArgTy);
3382  }
3383
3384  return Val;
3385}
3386
3387Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3388  return CGF.EmitBlockLiteral(block);
3389}
3390
3391Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3392  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3393  llvm::Type *DstTy = ConvertType(E->getType());
3394
3395  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3396  // a shuffle vector instead of a bitcast.
3397  llvm::Type *SrcTy = Src->getType();
3398  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3399    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3400    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3401    if ((numElementsDst == 3 && numElementsSrc == 4)
3402        || (numElementsDst == 4 && numElementsSrc == 3)) {
3403
3404
3405      // In the case of going from int4->float3, a bitcast is needed before
3406      // doing a shuffle.
3407      llvm::Type *srcElemTy =
3408      cast<llvm::VectorType>(SrcTy)->getElementType();
3409      llvm::Type *dstElemTy =
3410      cast<llvm::VectorType>(DstTy)->getElementType();
3411
3412      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3413          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3414        // Create a float type of the same size as the source or destination.
3415        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3416                                                                 numElementsSrc);
3417
3418        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3419      }
3420
3421      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3422
3423      SmallVector<llvm::Constant*, 3> Args;
3424      Args.push_back(Builder.getInt32(0));
3425      Args.push_back(Builder.getInt32(1));
3426      Args.push_back(Builder.getInt32(2));
3427
3428      if (numElementsDst == 4)
3429        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3430
3431      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3432
3433      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3434    }
3435  }
3436
3437  return Builder.CreateBitCast(Src, DstTy, "astype");
3438}
3439
3440Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3441  return CGF.EmitAtomicExpr(E).getScalarVal();
3442}
3443
3444//===----------------------------------------------------------------------===//
3445//                         Entry Point into this File
3446//===----------------------------------------------------------------------===//
3447
3448/// Emit the computation of the specified expression of scalar type, ignoring
3449/// the result.
3450Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3451  assert(E && hasScalarEvaluationKind(E->getType()) &&
3452         "Invalid scalar expression to emit");
3453
3454  return ScalarExprEmitter(*this, IgnoreResultAssign)
3455      .Visit(const_cast<Expr *>(E));
3456}
3457
3458/// Emit a conversion from the specified type to the specified destination type,
3459/// both of which are LLVM scalar types.
3460Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3461                                             QualType DstTy,
3462                                             SourceLocation Loc) {
3463  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3464         "Invalid scalar expression to emit");
3465  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3466}
3467
3468/// Emit a conversion from the specified complex type to the specified
3469/// destination type, where the destination type is an LLVM scalar type.
3470Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3471                                                      QualType SrcTy,
3472                                                      QualType DstTy,
3473                                                      SourceLocation Loc) {
3474  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3475         "Invalid complex -> scalar conversion");
3476  return ScalarExprEmitter(*this)
3477      .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3478}
3479
3480
3481llvm::Value *CodeGenFunction::
3482EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3483                        bool isInc, bool isPre) {
3484  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3485}
3486
3487LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3488  // object->isa or (*object).isa
3489  // Generate code as for: *(Class*)object
3490
3491  Expr *BaseExpr = E->getBase();
3492  Address Addr = Address::invalid();
3493  if (BaseExpr->isRValue()) {
3494    Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3495  } else {
3496    Addr = EmitLValue(BaseExpr).getAddress();
3497  }
3498
3499  // Cast the address to Class*.
3500  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3501  return MakeAddrLValue(Addr, E->getType());
3502}
3503
3504
3505LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3506                                            const CompoundAssignOperator *E) {
3507  ScalarExprEmitter Scalar(*this);
3508  Value *Result = nullptr;
3509  switch (E->getOpcode()) {
3510#define COMPOUND_OP(Op)                                                       \
3511    case BO_##Op##Assign:                                                     \
3512      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3513                                             Result)
3514  COMPOUND_OP(Mul);
3515  COMPOUND_OP(Div);
3516  COMPOUND_OP(Rem);
3517  COMPOUND_OP(Add);
3518  COMPOUND_OP(Sub);
3519  COMPOUND_OP(Shl);
3520  COMPOUND_OP(Shr);
3521  COMPOUND_OP(And);
3522  COMPOUND_OP(Xor);
3523  COMPOUND_OP(Or);
3524#undef COMPOUND_OP
3525
3526  case BO_PtrMemD:
3527  case BO_PtrMemI:
3528  case BO_Mul:
3529  case BO_Div:
3530  case BO_Rem:
3531  case BO_Add:
3532  case BO_Sub:
3533  case BO_Shl:
3534  case BO_Shr:
3535  case BO_LT:
3536  case BO_GT:
3537  case BO_LE:
3538  case BO_GE:
3539  case BO_EQ:
3540  case BO_NE:
3541  case BO_And:
3542  case BO_Xor:
3543  case BO_Or:
3544  case BO_LAnd:
3545  case BO_LOr:
3546  case BO_Assign:
3547  case BO_Comma:
3548    llvm_unreachable("Not valid compound assignment operators");
3549  }
3550
3551  llvm_unreachable("Unhandled compound assignment operator");
3552}
3553