CGCall.cpp revision 292735
1//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/CodeGen/CGFunctionInfo.h"
26#include "clang/Frontend/CodeGenOptions.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/Transforms/Utils/Local.h"
35using namespace clang;
36using namespace CodeGen;
37
38/***/
39
40static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
41  switch (CC) {
42  default: return llvm::CallingConv::C;
43  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
44  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
45  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
46  case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
47  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
48  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
49  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
50  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
51  // TODO: Add support for __pascal to LLVM.
52  case CC_X86Pascal: return llvm::CallingConv::C;
53  // TODO: Add support for __vectorcall to LLVM.
54  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
55  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
56  case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
57  }
58}
59
60/// Derives the 'this' type for codegen purposes, i.e. ignoring method
61/// qualification.
62/// FIXME: address space qualification?
63static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
64  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
65  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
66}
67
68/// Returns the canonical formal type of the given C++ method.
69static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
70  return MD->getType()->getCanonicalTypeUnqualified()
71           .getAs<FunctionProtoType>();
72}
73
74/// Returns the "extra-canonicalized" return type, which discards
75/// qualifiers on the return type.  Codegen doesn't care about them,
76/// and it makes ABI code a little easier to be able to assume that
77/// all parameter and return types are top-level unqualified.
78static CanQualType GetReturnType(QualType RetTy) {
79  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
80}
81
82/// Arrange the argument and result information for a value of the given
83/// unprototyped freestanding function type.
84const CGFunctionInfo &
85CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
86  // When translating an unprototyped function type, always use a
87  // variadic type.
88  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
89                                 /*instanceMethod=*/false,
90                                 /*chainCall=*/false, None,
91                                 FTNP->getExtInfo(), RequiredArgs(0));
92}
93
94/// Arrange the LLVM function layout for a value of the given function
95/// type, on top of any implicit parameters already stored.
96static const CGFunctionInfo &
97arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
98                        SmallVectorImpl<CanQualType> &prefix,
99                        CanQual<FunctionProtoType> FTP) {
100  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
101  // FIXME: Kill copy.
102  prefix.append(FTP->param_type_begin(), FTP->param_type_end());
103  CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                     /*chainCall=*/false, prefix,
106                                     FTP->getExtInfo(), required);
107}
108
109/// Arrange the argument and result information for a value of the
110/// given freestanding function type.
111const CGFunctionInfo &
112CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113  SmallVector<CanQualType, 16> argTypes;
114  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                   FTP);
116}
117
118static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119  // Set the appropriate calling convention for the Function.
120  if (D->hasAttr<StdCallAttr>())
121    return CC_X86StdCall;
122
123  if (D->hasAttr<FastCallAttr>())
124    return CC_X86FastCall;
125
126  if (D->hasAttr<ThisCallAttr>())
127    return CC_X86ThisCall;
128
129  if (D->hasAttr<VectorCallAttr>())
130    return CC_X86VectorCall;
131
132  if (D->hasAttr<PascalAttr>())
133    return CC_X86Pascal;
134
135  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137
138  if (D->hasAttr<IntelOclBiccAttr>())
139    return CC_IntelOclBicc;
140
141  if (D->hasAttr<MSABIAttr>())
142    return IsWindows ? CC_C : CC_X86_64Win64;
143
144  if (D->hasAttr<SysVABIAttr>())
145    return IsWindows ? CC_X86_64SysV : CC_C;
146
147  return CC_C;
148}
149
150/// Arrange the argument and result information for a call to an
151/// unknown C++ non-static member function of the given abstract type.
152/// (Zero value of RD means we don't have any meaningful "this" argument type,
153///  so fall back to a generic pointer type).
154/// The member function must be an ordinary function, i.e. not a
155/// constructor or destructor.
156const CGFunctionInfo &
157CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                   const FunctionProtoType *FTP) {
159  SmallVector<CanQualType, 16> argTypes;
160
161  // Add the 'this' pointer.
162  if (RD)
163    argTypes.push_back(GetThisType(Context, RD));
164  else
165    argTypes.push_back(Context.VoidPtrTy);
166
167  return ::arrangeLLVMFunctionInfo(
168      *this, true, argTypes,
169      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170}
171
172/// Arrange the argument and result information for a declaration or
173/// definition of the given C++ non-static member function.  The
174/// member function must be an ordinary function, i.e. not a
175/// constructor or destructor.
176const CGFunctionInfo &
177CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180
181  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182
183  if (MD->isInstance()) {
184    // The abstract case is perfectly fine.
185    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186    return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187  }
188
189  return arrangeFreeFunctionType(prototype);
190}
191
192const CGFunctionInfo &
193CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                            StructorType Type) {
195
196  SmallVector<CanQualType, 16> argTypes;
197  argTypes.push_back(GetThisType(Context, MD->getParent()));
198
199  GlobalDecl GD;
200  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201    GD = GlobalDecl(CD, toCXXCtorType(Type));
202  } else {
203    auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204    GD = GlobalDecl(DD, toCXXDtorType(Type));
205  }
206
207  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208
209  // Add the formal parameters.
210  argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
211
212  TheCXXABI.buildStructorSignature(MD, Type, argTypes);
213
214  RequiredArgs required =
215      (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
216
217  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
218  CanQualType resultType = TheCXXABI.HasThisReturn(GD)
219                               ? argTypes.front()
220                               : TheCXXABI.hasMostDerivedReturn(GD)
221                                     ? CGM.getContext().VoidPtrTy
222                                     : Context.VoidTy;
223  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
224                                 /*chainCall=*/false, argTypes, extInfo,
225                                 required);
226}
227
228/// Arrange a call to a C++ method, passing the given arguments.
229const CGFunctionInfo &
230CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
231                                        const CXXConstructorDecl *D,
232                                        CXXCtorType CtorKind,
233                                        unsigned ExtraArgs) {
234  // FIXME: Kill copy.
235  SmallVector<CanQualType, 16> ArgTypes;
236  for (const auto &Arg : args)
237    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
238
239  CanQual<FunctionProtoType> FPT = GetFormalType(D);
240  RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
241  GlobalDecl GD(D, CtorKind);
242  CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
243                               ? ArgTypes.front()
244                               : TheCXXABI.hasMostDerivedReturn(GD)
245                                     ? CGM.getContext().VoidPtrTy
246                                     : Context.VoidTy;
247
248  FunctionType::ExtInfo Info = FPT->getExtInfo();
249  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
250                                 /*chainCall=*/false, ArgTypes, Info,
251                                 Required);
252}
253
254/// Arrange the argument and result information for the declaration or
255/// definition of the given function.
256const CGFunctionInfo &
257CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
258  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
259    if (MD->isInstance())
260      return arrangeCXXMethodDeclaration(MD);
261
262  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
263
264  assert(isa<FunctionType>(FTy));
265
266  // When declaring a function without a prototype, always use a
267  // non-variadic type.
268  if (isa<FunctionNoProtoType>(FTy)) {
269    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
270    return arrangeLLVMFunctionInfo(
271        noProto->getReturnType(), /*instanceMethod=*/false,
272        /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
273  }
274
275  assert(isa<FunctionProtoType>(FTy));
276  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
277}
278
279/// Arrange the argument and result information for the declaration or
280/// definition of an Objective-C method.
281const CGFunctionInfo &
282CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
283  // It happens that this is the same as a call with no optional
284  // arguments, except also using the formal 'self' type.
285  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
286}
287
288/// Arrange the argument and result information for the function type
289/// through which to perform a send to the given Objective-C method,
290/// using the given receiver type.  The receiver type is not always
291/// the 'self' type of the method or even an Objective-C pointer type.
292/// This is *not* the right method for actually performing such a
293/// message send, due to the possibility of optional arguments.
294const CGFunctionInfo &
295CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
296                                              QualType receiverType) {
297  SmallVector<CanQualType, 16> argTys;
298  argTys.push_back(Context.getCanonicalParamType(receiverType));
299  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
300  // FIXME: Kill copy?
301  for (const auto *I : MD->params()) {
302    argTys.push_back(Context.getCanonicalParamType(I->getType()));
303  }
304
305  FunctionType::ExtInfo einfo;
306  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
307  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
308
309  if (getContext().getLangOpts().ObjCAutoRefCount &&
310      MD->hasAttr<NSReturnsRetainedAttr>())
311    einfo = einfo.withProducesResult(true);
312
313  RequiredArgs required =
314    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
315
316  return arrangeLLVMFunctionInfo(
317      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
318      /*chainCall=*/false, argTys, einfo, required);
319}
320
321const CGFunctionInfo &
322CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
323  // FIXME: Do we need to handle ObjCMethodDecl?
324  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325
326  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
327    return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
328
329  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
330    return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
331
332  return arrangeFunctionDeclaration(FD);
333}
334
335/// Arrange a thunk that takes 'this' as the first parameter followed by
336/// varargs.  Return a void pointer, regardless of the actual return type.
337/// The body of the thunk will end in a musttail call to a function of the
338/// correct type, and the caller will bitcast the function to the correct
339/// prototype.
340const CGFunctionInfo &
341CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
342  assert(MD->isVirtual() && "only virtual memptrs have thunks");
343  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344  CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
345  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
346                                 /*chainCall=*/false, ArgTys,
347                                 FTP->getExtInfo(), RequiredArgs(1));
348}
349
350const CGFunctionInfo &
351CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
352                                   CXXCtorType CT) {
353  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
354
355  CanQual<FunctionProtoType> FTP = GetFormalType(CD);
356  SmallVector<CanQualType, 2> ArgTys;
357  const CXXRecordDecl *RD = CD->getParent();
358  ArgTys.push_back(GetThisType(Context, RD));
359  if (CT == Ctor_CopyingClosure)
360    ArgTys.push_back(*FTP->param_type_begin());
361  if (RD->getNumVBases() > 0)
362    ArgTys.push_back(Context.IntTy);
363  CallingConv CC = Context.getDefaultCallingConvention(
364      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
365  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
366                                 /*chainCall=*/false, ArgTys,
367                                 FunctionType::ExtInfo(CC), RequiredArgs::All);
368}
369
370/// Arrange a call as unto a free function, except possibly with an
371/// additional number of formal parameters considered required.
372static const CGFunctionInfo &
373arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
374                            CodeGenModule &CGM,
375                            const CallArgList &args,
376                            const FunctionType *fnType,
377                            unsigned numExtraRequiredArgs,
378                            bool chainCall) {
379  assert(args.size() >= numExtraRequiredArgs);
380
381  // In most cases, there are no optional arguments.
382  RequiredArgs required = RequiredArgs::All;
383
384  // If we have a variadic prototype, the required arguments are the
385  // extra prefix plus the arguments in the prototype.
386  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387    if (proto->isVariadic())
388      required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389
390  // If we don't have a prototype at all, but we're supposed to
391  // explicitly use the variadic convention for unprototyped calls,
392  // treat all of the arguments as required but preserve the nominal
393  // possibility of variadics.
394  } else if (CGM.getTargetCodeGenInfo()
395                .isNoProtoCallVariadic(args,
396                                       cast<FunctionNoProtoType>(fnType))) {
397    required = RequiredArgs(args.size());
398  }
399
400  // FIXME: Kill copy.
401  SmallVector<CanQualType, 16> argTypes;
402  for (const auto &arg : args)
403    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
404  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
405                                     /*instanceMethod=*/false, chainCall,
406                                     argTypes, fnType->getExtInfo(), required);
407}
408
409/// Figure out the rules for calling a function with the given formal
410/// type using the given arguments.  The arguments are necessary
411/// because the function might be unprototyped, in which case it's
412/// target-dependent in crazy ways.
413const CGFunctionInfo &
414CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
415                                      const FunctionType *fnType,
416                                      bool chainCall) {
417  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
418                                     chainCall ? 1 : 0, chainCall);
419}
420
421/// A block function call is essentially a free-function call with an
422/// extra implicit argument.
423const CGFunctionInfo &
424CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
425                                       const FunctionType *fnType) {
426  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
427                                     /*chainCall=*/false);
428}
429
430const CGFunctionInfo &
431CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
432                                      const CallArgList &args,
433                                      FunctionType::ExtInfo info,
434                                      RequiredArgs required) {
435  // FIXME: Kill copy.
436  SmallVector<CanQualType, 16> argTypes;
437  for (const auto &Arg : args)
438    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
439  return arrangeLLVMFunctionInfo(
440      GetReturnType(resultType), /*instanceMethod=*/false,
441      /*chainCall=*/false, argTypes, info, required);
442}
443
444/// Arrange a call to a C++ method, passing the given arguments.
445const CGFunctionInfo &
446CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
447                                   const FunctionProtoType *FPT,
448                                   RequiredArgs required) {
449  // FIXME: Kill copy.
450  SmallVector<CanQualType, 16> argTypes;
451  for (const auto &Arg : args)
452    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
453
454  FunctionType::ExtInfo info = FPT->getExtInfo();
455  return arrangeLLVMFunctionInfo(
456      GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
457      /*chainCall=*/false, argTypes, info, required);
458}
459
460const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
461    QualType resultType, const FunctionArgList &args,
462    const FunctionType::ExtInfo &info, bool isVariadic) {
463  // FIXME: Kill copy.
464  SmallVector<CanQualType, 16> argTypes;
465  for (auto Arg : args)
466    argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
467
468  RequiredArgs required =
469    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
470  return arrangeLLVMFunctionInfo(
471      GetReturnType(resultType), /*instanceMethod=*/false,
472      /*chainCall=*/false, argTypes, info, required);
473}
474
475const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
476  return arrangeLLVMFunctionInfo(
477      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
478      None, FunctionType::ExtInfo(), RequiredArgs::All);
479}
480
481/// Arrange the argument and result information for an abstract value
482/// of a given function type.  This is the method which all of the
483/// above functions ultimately defer to.
484const CGFunctionInfo &
485CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
486                                      bool instanceMethod,
487                                      bool chainCall,
488                                      ArrayRef<CanQualType> argTypes,
489                                      FunctionType::ExtInfo info,
490                                      RequiredArgs required) {
491  assert(std::all_of(argTypes.begin(), argTypes.end(),
492                     std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
493
494  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
495
496  // Lookup or create unique function info.
497  llvm::FoldingSetNodeID ID;
498  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
499                          resultType, argTypes);
500
501  void *insertPos = nullptr;
502  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
503  if (FI)
504    return *FI;
505
506  // Construct the function info.  We co-allocate the ArgInfos.
507  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
508                              resultType, argTypes, required);
509  FunctionInfos.InsertNode(FI, insertPos);
510
511  bool inserted = FunctionsBeingProcessed.insert(FI).second;
512  (void)inserted;
513  assert(inserted && "Recursively being processed?");
514
515  // Compute ABI information.
516  getABIInfo().computeInfo(*FI);
517
518  // Loop over all of the computed argument and return value info.  If any of
519  // them are direct or extend without a specified coerce type, specify the
520  // default now.
521  ABIArgInfo &retInfo = FI->getReturnInfo();
522  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
523    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
524
525  for (auto &I : FI->arguments())
526    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
527      I.info.setCoerceToType(ConvertType(I.type));
528
529  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
530  assert(erased && "Not in set?");
531
532  return *FI;
533}
534
535CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
536                                       bool instanceMethod,
537                                       bool chainCall,
538                                       const FunctionType::ExtInfo &info,
539                                       CanQualType resultType,
540                                       ArrayRef<CanQualType> argTypes,
541                                       RequiredArgs required) {
542  void *buffer = operator new(sizeof(CGFunctionInfo) +
543                              sizeof(ArgInfo) * (argTypes.size() + 1));
544  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
545  FI->CallingConvention = llvmCC;
546  FI->EffectiveCallingConvention = llvmCC;
547  FI->ASTCallingConvention = info.getCC();
548  FI->InstanceMethod = instanceMethod;
549  FI->ChainCall = chainCall;
550  FI->NoReturn = info.getNoReturn();
551  FI->ReturnsRetained = info.getProducesResult();
552  FI->Required = required;
553  FI->HasRegParm = info.getHasRegParm();
554  FI->RegParm = info.getRegParm();
555  FI->ArgStruct = nullptr;
556  FI->NumArgs = argTypes.size();
557  FI->getArgsBuffer()[0].type = resultType;
558  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
559    FI->getArgsBuffer()[i + 1].type = argTypes[i];
560  return FI;
561}
562
563/***/
564
565namespace {
566// ABIArgInfo::Expand implementation.
567
568// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
569struct TypeExpansion {
570  enum TypeExpansionKind {
571    // Elements of constant arrays are expanded recursively.
572    TEK_ConstantArray,
573    // Record fields are expanded recursively (but if record is a union, only
574    // the field with the largest size is expanded).
575    TEK_Record,
576    // For complex types, real and imaginary parts are expanded recursively.
577    TEK_Complex,
578    // All other types are not expandable.
579    TEK_None
580  };
581
582  const TypeExpansionKind Kind;
583
584  TypeExpansion(TypeExpansionKind K) : Kind(K) {}
585  virtual ~TypeExpansion() {}
586};
587
588struct ConstantArrayExpansion : TypeExpansion {
589  QualType EltTy;
590  uint64_t NumElts;
591
592  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
593      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
594  static bool classof(const TypeExpansion *TE) {
595    return TE->Kind == TEK_ConstantArray;
596  }
597};
598
599struct RecordExpansion : TypeExpansion {
600  SmallVector<const CXXBaseSpecifier *, 1> Bases;
601
602  SmallVector<const FieldDecl *, 1> Fields;
603
604  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
605                  SmallVector<const FieldDecl *, 1> &&Fields)
606      : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
607  static bool classof(const TypeExpansion *TE) {
608    return TE->Kind == TEK_Record;
609  }
610};
611
612struct ComplexExpansion : TypeExpansion {
613  QualType EltTy;
614
615  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
616  static bool classof(const TypeExpansion *TE) {
617    return TE->Kind == TEK_Complex;
618  }
619};
620
621struct NoExpansion : TypeExpansion {
622  NoExpansion() : TypeExpansion(TEK_None) {}
623  static bool classof(const TypeExpansion *TE) {
624    return TE->Kind == TEK_None;
625  }
626};
627}  // namespace
628
629static std::unique_ptr<TypeExpansion>
630getTypeExpansion(QualType Ty, const ASTContext &Context) {
631  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
632    return llvm::make_unique<ConstantArrayExpansion>(
633        AT->getElementType(), AT->getSize().getZExtValue());
634  }
635  if (const RecordType *RT = Ty->getAs<RecordType>()) {
636    SmallVector<const CXXBaseSpecifier *, 1> Bases;
637    SmallVector<const FieldDecl *, 1> Fields;
638    const RecordDecl *RD = RT->getDecl();
639    assert(!RD->hasFlexibleArrayMember() &&
640           "Cannot expand structure with flexible array.");
641    if (RD->isUnion()) {
642      // Unions can be here only in degenerative cases - all the fields are same
643      // after flattening. Thus we have to use the "largest" field.
644      const FieldDecl *LargestFD = nullptr;
645      CharUnits UnionSize = CharUnits::Zero();
646
647      for (const auto *FD : RD->fields()) {
648        // Skip zero length bitfields.
649        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
650          continue;
651        assert(!FD->isBitField() &&
652               "Cannot expand structure with bit-field members.");
653        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
654        if (UnionSize < FieldSize) {
655          UnionSize = FieldSize;
656          LargestFD = FD;
657        }
658      }
659      if (LargestFD)
660        Fields.push_back(LargestFD);
661    } else {
662      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
663        assert(!CXXRD->isDynamicClass() &&
664               "cannot expand vtable pointers in dynamic classes");
665        for (const CXXBaseSpecifier &BS : CXXRD->bases())
666          Bases.push_back(&BS);
667      }
668
669      for (const auto *FD : RD->fields()) {
670        // Skip zero length bitfields.
671        if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
672          continue;
673        assert(!FD->isBitField() &&
674               "Cannot expand structure with bit-field members.");
675        Fields.push_back(FD);
676      }
677    }
678    return llvm::make_unique<RecordExpansion>(std::move(Bases),
679                                              std::move(Fields));
680  }
681  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
682    return llvm::make_unique<ComplexExpansion>(CT->getElementType());
683  }
684  return llvm::make_unique<NoExpansion>();
685}
686
687static int getExpansionSize(QualType Ty, const ASTContext &Context) {
688  auto Exp = getTypeExpansion(Ty, Context);
689  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
690    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
691  }
692  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
693    int Res = 0;
694    for (auto BS : RExp->Bases)
695      Res += getExpansionSize(BS->getType(), Context);
696    for (auto FD : RExp->Fields)
697      Res += getExpansionSize(FD->getType(), Context);
698    return Res;
699  }
700  if (isa<ComplexExpansion>(Exp.get()))
701    return 2;
702  assert(isa<NoExpansion>(Exp.get()));
703  return 1;
704}
705
706void
707CodeGenTypes::getExpandedTypes(QualType Ty,
708                               SmallVectorImpl<llvm::Type *>::iterator &TI) {
709  auto Exp = getTypeExpansion(Ty, Context);
710  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
711    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
712      getExpandedTypes(CAExp->EltTy, TI);
713    }
714  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
715    for (auto BS : RExp->Bases)
716      getExpandedTypes(BS->getType(), TI);
717    for (auto FD : RExp->Fields)
718      getExpandedTypes(FD->getType(), TI);
719  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
720    llvm::Type *EltTy = ConvertType(CExp->EltTy);
721    *TI++ = EltTy;
722    *TI++ = EltTy;
723  } else {
724    assert(isa<NoExpansion>(Exp.get()));
725    *TI++ = ConvertType(Ty);
726  }
727}
728
729void CodeGenFunction::ExpandTypeFromArgs(
730    QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
731  assert(LV.isSimple() &&
732         "Unexpected non-simple lvalue during struct expansion.");
733
734  auto Exp = getTypeExpansion(Ty, getContext());
735  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
736    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
737      llvm::Value *EltAddr =
738          Builder.CreateConstGEP2_32(nullptr, LV.getAddress(), 0, i);
739      LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
740      ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
741    }
742  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
743    llvm::Value *This = LV.getAddress();
744    for (const CXXBaseSpecifier *BS : RExp->Bases) {
745      // Perform a single step derived-to-base conversion.
746      llvm::Value *Base =
747          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
748                                /*NullCheckValue=*/false, SourceLocation());
749      LValue SubLV = MakeAddrLValue(Base, BS->getType());
750
751      // Recurse onto bases.
752      ExpandTypeFromArgs(BS->getType(), SubLV, AI);
753    }
754    for (auto FD : RExp->Fields) {
755      // FIXME: What are the right qualifiers here?
756      LValue SubLV = EmitLValueForField(LV, FD);
757      ExpandTypeFromArgs(FD->getType(), SubLV, AI);
758    }
759  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
760    llvm::Value *RealAddr =
761        Builder.CreateStructGEP(nullptr, LV.getAddress(), 0, "real");
762    EmitStoreThroughLValue(RValue::get(*AI++),
763                           MakeAddrLValue(RealAddr, CExp->EltTy));
764    llvm::Value *ImagAddr =
765        Builder.CreateStructGEP(nullptr, LV.getAddress(), 1, "imag");
766    EmitStoreThroughLValue(RValue::get(*AI++),
767                           MakeAddrLValue(ImagAddr, CExp->EltTy));
768  } else {
769    assert(isa<NoExpansion>(Exp.get()));
770    EmitStoreThroughLValue(RValue::get(*AI++), LV);
771  }
772}
773
774void CodeGenFunction::ExpandTypeToArgs(
775    QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
776    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
777  auto Exp = getTypeExpansion(Ty, getContext());
778  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
779    llvm::Value *Addr = RV.getAggregateAddr();
780    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
781      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(nullptr, Addr, 0, i);
782      RValue EltRV =
783          convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
784      ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
785    }
786  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
787    llvm::Value *This = RV.getAggregateAddr();
788    for (const CXXBaseSpecifier *BS : RExp->Bases) {
789      // Perform a single step derived-to-base conversion.
790      llvm::Value *Base =
791          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
792                                /*NullCheckValue=*/false, SourceLocation());
793      RValue BaseRV = RValue::getAggregate(Base);
794
795      // Recurse onto bases.
796      ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
797                       IRCallArgPos);
798    }
799
800    LValue LV = MakeAddrLValue(This, Ty);
801    for (auto FD : RExp->Fields) {
802      RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
803      ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
804                       IRCallArgPos);
805    }
806  } else if (isa<ComplexExpansion>(Exp.get())) {
807    ComplexPairTy CV = RV.getComplexVal();
808    IRCallArgs[IRCallArgPos++] = CV.first;
809    IRCallArgs[IRCallArgPos++] = CV.second;
810  } else {
811    assert(isa<NoExpansion>(Exp.get()));
812    assert(RV.isScalar() &&
813           "Unexpected non-scalar rvalue during struct expansion.");
814
815    // Insert a bitcast as needed.
816    llvm::Value *V = RV.getScalarVal();
817    if (IRCallArgPos < IRFuncTy->getNumParams() &&
818        V->getType() != IRFuncTy->getParamType(IRCallArgPos))
819      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
820
821    IRCallArgs[IRCallArgPos++] = V;
822  }
823}
824
825/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
826/// accessing some number of bytes out of it, try to gep into the struct to get
827/// at its inner goodness.  Dive as deep as possible without entering an element
828/// with an in-memory size smaller than DstSize.
829static llvm::Value *
830EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
831                                   llvm::StructType *SrcSTy,
832                                   uint64_t DstSize, CodeGenFunction &CGF) {
833  // We can't dive into a zero-element struct.
834  if (SrcSTy->getNumElements() == 0) return SrcPtr;
835
836  llvm::Type *FirstElt = SrcSTy->getElementType(0);
837
838  // If the first elt is at least as large as what we're looking for, or if the
839  // first element is the same size as the whole struct, we can enter it. The
840  // comparison must be made on the store size and not the alloca size. Using
841  // the alloca size may overstate the size of the load.
842  uint64_t FirstEltSize =
843    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
844  if (FirstEltSize < DstSize &&
845      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
846    return SrcPtr;
847
848  // GEP into the first element.
849  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcSTy, SrcPtr, 0, 0, "coerce.dive");
850
851  // If the first element is a struct, recurse.
852  llvm::Type *SrcTy =
853    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
854  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
855    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
856
857  return SrcPtr;
858}
859
860/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
861/// are either integers or pointers.  This does a truncation of the value if it
862/// is too large or a zero extension if it is too small.
863///
864/// This behaves as if the value were coerced through memory, so on big-endian
865/// targets the high bits are preserved in a truncation, while little-endian
866/// targets preserve the low bits.
867static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
868                                             llvm::Type *Ty,
869                                             CodeGenFunction &CGF) {
870  if (Val->getType() == Ty)
871    return Val;
872
873  if (isa<llvm::PointerType>(Val->getType())) {
874    // If this is Pointer->Pointer avoid conversion to and from int.
875    if (isa<llvm::PointerType>(Ty))
876      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
877
878    // Convert the pointer to an integer so we can play with its width.
879    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
880  }
881
882  llvm::Type *DestIntTy = Ty;
883  if (isa<llvm::PointerType>(DestIntTy))
884    DestIntTy = CGF.IntPtrTy;
885
886  if (Val->getType() != DestIntTy) {
887    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
888    if (DL.isBigEndian()) {
889      // Preserve the high bits on big-endian targets.
890      // That is what memory coercion does.
891      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
892      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
893
894      if (SrcSize > DstSize) {
895        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
896        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
897      } else {
898        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
899        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
900      }
901    } else {
902      // Little-endian targets preserve the low bits. No shifts required.
903      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
904    }
905  }
906
907  if (isa<llvm::PointerType>(Ty))
908    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
909  return Val;
910}
911
912
913
914/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
915/// a pointer to an object of type \arg Ty, known to be aligned to
916/// \arg SrcAlign bytes.
917///
918/// This safely handles the case when the src type is smaller than the
919/// destination type; in this situation the values of bits which not
920/// present in the src are undefined.
921static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
922                                      llvm::Type *Ty, CharUnits SrcAlign,
923                                      CodeGenFunction &CGF) {
924  llvm::Type *SrcTy =
925    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
926
927  // If SrcTy and Ty are the same, just do a load.
928  if (SrcTy == Ty)
929    return CGF.Builder.CreateAlignedLoad(SrcPtr, SrcAlign.getQuantity());
930
931  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
932
933  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
934    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
935    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
936  }
937
938  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
939
940  // If the source and destination are integer or pointer types, just do an
941  // extension or truncation to the desired type.
942  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
943      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
944    llvm::LoadInst *Load =
945      CGF.Builder.CreateAlignedLoad(SrcPtr, SrcAlign.getQuantity());
946    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
947  }
948
949  // If load is legal, just bitcast the src pointer.
950  if (SrcSize >= DstSize) {
951    // Generally SrcSize is never greater than DstSize, since this means we are
952    // losing bits. However, this can happen in cases where the structure has
953    // additional padding, for example due to a user specified alignment.
954    //
955    // FIXME: Assert that we aren't truncating non-padding bits when have access
956    // to that information.
957    llvm::Value *Casted =
958      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
959    return CGF.Builder.CreateAlignedLoad(Casted, SrcAlign.getQuantity());
960  }
961
962  // Otherwise do coercion through memory. This is stupid, but
963  // simple.
964  llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(Ty);
965  Tmp->setAlignment(SrcAlign.getQuantity());
966  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
967  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
968  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
969  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
970      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
971      SrcAlign.getQuantity(), false);
972  return CGF.Builder.CreateAlignedLoad(Tmp, SrcAlign.getQuantity());
973}
974
975// Function to store a first-class aggregate into memory.  We prefer to
976// store the elements rather than the aggregate to be more friendly to
977// fast-isel.
978// FIXME: Do we need to recurse here?
979static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
980                          llvm::Value *DestPtr, bool DestIsVolatile,
981                          CharUnits DestAlign) {
982  // Prefer scalar stores to first-class aggregate stores.
983  if (llvm::StructType *STy =
984        dyn_cast<llvm::StructType>(Val->getType())) {
985    const llvm::StructLayout *Layout =
986      CGF.CGM.getDataLayout().getStructLayout(STy);
987
988    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
989      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(STy, DestPtr, 0, i);
990      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
991      uint64_t EltOffset = Layout->getElementOffset(i);
992      CharUnits EltAlign =
993        DestAlign.alignmentAtOffset(CharUnits::fromQuantity(EltOffset));
994      CGF.Builder.CreateAlignedStore(Elt, EltPtr, EltAlign.getQuantity(),
995                                     DestIsVolatile);
996    }
997  } else {
998    CGF.Builder.CreateAlignedStore(Val, DestPtr, DestAlign.getQuantity(),
999                                   DestIsVolatile);
1000  }
1001}
1002
1003/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1004/// where the source and destination may have different types.  The
1005/// destination is known to be aligned to \arg DstAlign bytes.
1006///
1007/// This safely handles the case when the src type is larger than the
1008/// destination type; the upper bits of the src will be lost.
1009static void CreateCoercedStore(llvm::Value *Src,
1010                               llvm::Value *DstPtr,
1011                               bool DstIsVolatile,
1012                               CharUnits DstAlign,
1013                               CodeGenFunction &CGF) {
1014  llvm::Type *SrcTy = Src->getType();
1015  llvm::Type *DstTy =
1016    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1017  if (SrcTy == DstTy) {
1018    CGF.Builder.CreateAlignedStore(Src, DstPtr, DstAlign.getQuantity(),
1019                                   DstIsVolatile);
1020    return;
1021  }
1022
1023  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1024
1025  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1026    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1027    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1028  }
1029
1030  // If the source and destination are integer or pointer types, just do an
1031  // extension or truncation to the desired type.
1032  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1033      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1034    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1035    CGF.Builder.CreateAlignedStore(Src, DstPtr, DstAlign.getQuantity(),
1036                                   DstIsVolatile);
1037    return;
1038  }
1039
1040  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1041
1042  // If store is legal, just bitcast the src pointer.
1043  if (SrcSize <= DstSize) {
1044    llvm::Value *Casted =
1045      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1046    BuildAggStore(CGF, Src, Casted, DstIsVolatile, DstAlign);
1047  } else {
1048    // Otherwise do coercion through memory. This is stupid, but
1049    // simple.
1050
1051    // Generally SrcSize is never greater than DstSize, since this means we are
1052    // losing bits. However, this can happen in cases where the structure has
1053    // additional padding, for example due to a user specified alignment.
1054    //
1055    // FIXME: Assert that we aren't truncating non-padding bits when have access
1056    // to that information.
1057    llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(SrcTy);
1058    Tmp->setAlignment(DstAlign.getQuantity());
1059    CGF.Builder.CreateAlignedStore(Src, Tmp, DstAlign.getQuantity());
1060    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1061    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1062    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1063    CGF.Builder.CreateMemCpy(DstCasted, Casted,
1064        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1065        DstAlign.getQuantity(), false);
1066  }
1067}
1068
1069namespace {
1070
1071/// Encapsulates information about the way function arguments from
1072/// CGFunctionInfo should be passed to actual LLVM IR function.
1073class ClangToLLVMArgMapping {
1074  static const unsigned InvalidIndex = ~0U;
1075  unsigned InallocaArgNo;
1076  unsigned SRetArgNo;
1077  unsigned TotalIRArgs;
1078
1079  /// Arguments of LLVM IR function corresponding to single Clang argument.
1080  struct IRArgs {
1081    unsigned PaddingArgIndex;
1082    // Argument is expanded to IR arguments at positions
1083    // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1084    unsigned FirstArgIndex;
1085    unsigned NumberOfArgs;
1086
1087    IRArgs()
1088        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1089          NumberOfArgs(0) {}
1090  };
1091
1092  SmallVector<IRArgs, 8> ArgInfo;
1093
1094public:
1095  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1096                        bool OnlyRequiredArgs = false)
1097      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1098        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1099    construct(Context, FI, OnlyRequiredArgs);
1100  }
1101
1102  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1103  unsigned getInallocaArgNo() const {
1104    assert(hasInallocaArg());
1105    return InallocaArgNo;
1106  }
1107
1108  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1109  unsigned getSRetArgNo() const {
1110    assert(hasSRetArg());
1111    return SRetArgNo;
1112  }
1113
1114  unsigned totalIRArgs() const { return TotalIRArgs; }
1115
1116  bool hasPaddingArg(unsigned ArgNo) const {
1117    assert(ArgNo < ArgInfo.size());
1118    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1119  }
1120  unsigned getPaddingArgNo(unsigned ArgNo) const {
1121    assert(hasPaddingArg(ArgNo));
1122    return ArgInfo[ArgNo].PaddingArgIndex;
1123  }
1124
1125  /// Returns index of first IR argument corresponding to ArgNo, and their
1126  /// quantity.
1127  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1128    assert(ArgNo < ArgInfo.size());
1129    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1130                          ArgInfo[ArgNo].NumberOfArgs);
1131  }
1132
1133private:
1134  void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1135                 bool OnlyRequiredArgs);
1136};
1137
1138void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1139                                      const CGFunctionInfo &FI,
1140                                      bool OnlyRequiredArgs) {
1141  unsigned IRArgNo = 0;
1142  bool SwapThisWithSRet = false;
1143  const ABIArgInfo &RetAI = FI.getReturnInfo();
1144
1145  if (RetAI.getKind() == ABIArgInfo::Indirect) {
1146    SwapThisWithSRet = RetAI.isSRetAfterThis();
1147    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1148  }
1149
1150  unsigned ArgNo = 0;
1151  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1152  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1153       ++I, ++ArgNo) {
1154    assert(I != FI.arg_end());
1155    QualType ArgType = I->type;
1156    const ABIArgInfo &AI = I->info;
1157    // Collect data about IR arguments corresponding to Clang argument ArgNo.
1158    auto &IRArgs = ArgInfo[ArgNo];
1159
1160    if (AI.getPaddingType())
1161      IRArgs.PaddingArgIndex = IRArgNo++;
1162
1163    switch (AI.getKind()) {
1164    case ABIArgInfo::Extend:
1165    case ABIArgInfo::Direct: {
1166      // FIXME: handle sseregparm someday...
1167      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1168      if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1169        IRArgs.NumberOfArgs = STy->getNumElements();
1170      } else {
1171        IRArgs.NumberOfArgs = 1;
1172      }
1173      break;
1174    }
1175    case ABIArgInfo::Indirect:
1176      IRArgs.NumberOfArgs = 1;
1177      break;
1178    case ABIArgInfo::Ignore:
1179    case ABIArgInfo::InAlloca:
1180      // ignore and inalloca doesn't have matching LLVM parameters.
1181      IRArgs.NumberOfArgs = 0;
1182      break;
1183    case ABIArgInfo::Expand: {
1184      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1185      break;
1186    }
1187    }
1188
1189    if (IRArgs.NumberOfArgs > 0) {
1190      IRArgs.FirstArgIndex = IRArgNo;
1191      IRArgNo += IRArgs.NumberOfArgs;
1192    }
1193
1194    // Skip over the sret parameter when it comes second.  We already handled it
1195    // above.
1196    if (IRArgNo == 1 && SwapThisWithSRet)
1197      IRArgNo++;
1198  }
1199  assert(ArgNo == ArgInfo.size());
1200
1201  if (FI.usesInAlloca())
1202    InallocaArgNo = IRArgNo++;
1203
1204  TotalIRArgs = IRArgNo;
1205}
1206}  // namespace
1207
1208/***/
1209
1210bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1211  return FI.getReturnInfo().isIndirect();
1212}
1213
1214bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1215  return ReturnTypeUsesSRet(FI) &&
1216         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1217}
1218
1219bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1220  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1221    switch (BT->getKind()) {
1222    default:
1223      return false;
1224    case BuiltinType::Float:
1225      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1226    case BuiltinType::Double:
1227      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1228    case BuiltinType::LongDouble:
1229      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1230    }
1231  }
1232
1233  return false;
1234}
1235
1236bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1237  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1238    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1239      if (BT->getKind() == BuiltinType::LongDouble)
1240        return getTarget().useObjCFP2RetForComplexLongDouble();
1241    }
1242  }
1243
1244  return false;
1245}
1246
1247llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1248  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1249  return GetFunctionType(FI);
1250}
1251
1252llvm::FunctionType *
1253CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1254
1255  bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1256  (void)Inserted;
1257  assert(Inserted && "Recursively being processed?");
1258
1259  llvm::Type *resultType = nullptr;
1260  const ABIArgInfo &retAI = FI.getReturnInfo();
1261  switch (retAI.getKind()) {
1262  case ABIArgInfo::Expand:
1263    llvm_unreachable("Invalid ABI kind for return argument");
1264
1265  case ABIArgInfo::Extend:
1266  case ABIArgInfo::Direct:
1267    resultType = retAI.getCoerceToType();
1268    break;
1269
1270  case ABIArgInfo::InAlloca:
1271    if (retAI.getInAllocaSRet()) {
1272      // sret things on win32 aren't void, they return the sret pointer.
1273      QualType ret = FI.getReturnType();
1274      llvm::Type *ty = ConvertType(ret);
1275      unsigned addressSpace = Context.getTargetAddressSpace(ret);
1276      resultType = llvm::PointerType::get(ty, addressSpace);
1277    } else {
1278      resultType = llvm::Type::getVoidTy(getLLVMContext());
1279    }
1280    break;
1281
1282  case ABIArgInfo::Indirect:
1283  case ABIArgInfo::Ignore:
1284    resultType = llvm::Type::getVoidTy(getLLVMContext());
1285    break;
1286  }
1287
1288  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1289  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1290
1291  // Add type for sret argument.
1292  if (IRFunctionArgs.hasSRetArg()) {
1293    QualType Ret = FI.getReturnType();
1294    llvm::Type *Ty = ConvertType(Ret);
1295    unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1296    ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1297        llvm::PointerType::get(Ty, AddressSpace);
1298  }
1299
1300  // Add type for inalloca argument.
1301  if (IRFunctionArgs.hasInallocaArg()) {
1302    auto ArgStruct = FI.getArgStruct();
1303    assert(ArgStruct);
1304    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1305  }
1306
1307  // Add in all of the required arguments.
1308  unsigned ArgNo = 0;
1309  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1310                                     ie = it + FI.getNumRequiredArgs();
1311  for (; it != ie; ++it, ++ArgNo) {
1312    const ABIArgInfo &ArgInfo = it->info;
1313
1314    // Insert a padding type to ensure proper alignment.
1315    if (IRFunctionArgs.hasPaddingArg(ArgNo))
1316      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1317          ArgInfo.getPaddingType();
1318
1319    unsigned FirstIRArg, NumIRArgs;
1320    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1321
1322    switch (ArgInfo.getKind()) {
1323    case ABIArgInfo::Ignore:
1324    case ABIArgInfo::InAlloca:
1325      assert(NumIRArgs == 0);
1326      break;
1327
1328    case ABIArgInfo::Indirect: {
1329      assert(NumIRArgs == 1);
1330      // indirect arguments are always on the stack, which is addr space #0.
1331      llvm::Type *LTy = ConvertTypeForMem(it->type);
1332      ArgTypes[FirstIRArg] = LTy->getPointerTo();
1333      break;
1334    }
1335
1336    case ABIArgInfo::Extend:
1337    case ABIArgInfo::Direct: {
1338      // Fast-isel and the optimizer generally like scalar values better than
1339      // FCAs, so we flatten them if this is safe to do for this argument.
1340      llvm::Type *argType = ArgInfo.getCoerceToType();
1341      llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1342      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1343        assert(NumIRArgs == st->getNumElements());
1344        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1345          ArgTypes[FirstIRArg + i] = st->getElementType(i);
1346      } else {
1347        assert(NumIRArgs == 1);
1348        ArgTypes[FirstIRArg] = argType;
1349      }
1350      break;
1351    }
1352
1353    case ABIArgInfo::Expand:
1354      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1355      getExpandedTypes(it->type, ArgTypesIter);
1356      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1357      break;
1358    }
1359  }
1360
1361  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1362  assert(Erased && "Not in set?");
1363
1364  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1365}
1366
1367llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1368  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1369  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1370
1371  if (!isFuncTypeConvertible(FPT))
1372    return llvm::StructType::get(getLLVMContext());
1373
1374  const CGFunctionInfo *Info;
1375  if (isa<CXXDestructorDecl>(MD))
1376    Info =
1377        &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1378  else
1379    Info = &arrangeCXXMethodDeclaration(MD);
1380  return GetFunctionType(*Info);
1381}
1382
1383void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1384                                           const Decl *TargetDecl,
1385                                           AttributeListType &PAL,
1386                                           unsigned &CallingConv,
1387                                           bool AttrOnCallSite) {
1388  llvm::AttrBuilder FuncAttrs;
1389  llvm::AttrBuilder RetAttrs;
1390  bool HasOptnone = false;
1391
1392  CallingConv = FI.getEffectiveCallingConvention();
1393
1394  if (FI.isNoReturn())
1395    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1396
1397  // FIXME: handle sseregparm someday...
1398  if (TargetDecl) {
1399    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1400      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1401    if (TargetDecl->hasAttr<NoThrowAttr>())
1402      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1403    if (TargetDecl->hasAttr<NoReturnAttr>())
1404      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1405    if (TargetDecl->hasAttr<NoDuplicateAttr>())
1406      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1407
1408    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1409      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1410      if (FPT && FPT->isNothrow(getContext()))
1411        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1412      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1413      // These attributes are not inherited by overloads.
1414      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1415      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1416        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1417    }
1418
1419    // 'const' and 'pure' attribute functions are also nounwind.
1420    if (TargetDecl->hasAttr<ConstAttr>()) {
1421      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1422      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1423    } else if (TargetDecl->hasAttr<PureAttr>()) {
1424      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1425      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1426    }
1427    if (TargetDecl->hasAttr<RestrictAttr>())
1428      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1429    if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1430      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1431
1432    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1433  }
1434
1435  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1436  if (!HasOptnone) {
1437    if (CodeGenOpts.OptimizeSize)
1438      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1439    if (CodeGenOpts.OptimizeSize == 2)
1440      FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1441  }
1442
1443  if (CodeGenOpts.DisableRedZone)
1444    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1445  if (CodeGenOpts.NoImplicitFloat)
1446    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1447  if (CodeGenOpts.EnableSegmentedStacks &&
1448      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1449    FuncAttrs.addAttribute("split-stack");
1450
1451  if (AttrOnCallSite) {
1452    // Attributes that should go on the call site only.
1453    if (!CodeGenOpts.SimplifyLibCalls)
1454      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1455    if (!CodeGenOpts.TrapFuncName.empty())
1456      FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1457  } else {
1458    // Attributes that should go on the function, but not the call site.
1459    if (!CodeGenOpts.DisableFPElim) {
1460      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1461    } else if (CodeGenOpts.OmitLeafFramePointer) {
1462      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1463      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1464    } else {
1465      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1466      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1467    }
1468
1469    FuncAttrs.addAttribute("disable-tail-calls",
1470                           llvm::toStringRef(CodeGenOpts.DisableTailCalls));
1471    FuncAttrs.addAttribute("less-precise-fpmad",
1472                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1473    FuncAttrs.addAttribute("no-infs-fp-math",
1474                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1475    FuncAttrs.addAttribute("no-nans-fp-math",
1476                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1477    FuncAttrs.addAttribute("unsafe-fp-math",
1478                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1479    FuncAttrs.addAttribute("use-soft-float",
1480                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1481    FuncAttrs.addAttribute("stack-protector-buffer-size",
1482                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1483
1484    if (!CodeGenOpts.StackRealignment)
1485      FuncAttrs.addAttribute("no-realign-stack");
1486
1487    // Add target-cpu and target-features attributes to functions. If
1488    // we have a decl for the function and it has a target attribute then
1489    // parse that and add it to the feature set.
1490    StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1491
1492    // TODO: Features gets us the features on the command line including
1493    // feature dependencies. For canonicalization purposes we might want to
1494    // avoid putting features in the target-features set if we know it'll be
1495    // one of the default features in the backend, e.g. corei7-avx and +avx or
1496    // figure out non-explicit dependencies.
1497    // Canonicalize the existing features in a new feature map.
1498    // TODO: Migrate the existing backends to keep the map around rather than
1499    // the vector.
1500    llvm::StringMap<bool> FeatureMap;
1501    for (auto F : getTarget().getTargetOpts().Features) {
1502      const char *Name = F.c_str();
1503      bool Enabled = Name[0] == '+';
1504      getTarget().setFeatureEnabled(FeatureMap, Name + 1, Enabled);
1505    }
1506
1507    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1508    if (FD) {
1509      if (const auto *TD = FD->getAttr<TargetAttr>()) {
1510        StringRef FeaturesStr = TD->getFeatures();
1511        SmallVector<StringRef, 1> AttrFeatures;
1512        FeaturesStr.split(AttrFeatures, ",");
1513
1514        // Grab the various features and prepend a "+" to turn on the feature to
1515        // the backend and add them to our existing set of features.
1516        for (auto &Feature : AttrFeatures) {
1517	  // Go ahead and trim whitespace rather than either erroring or
1518	  // accepting it weirdly.
1519	  Feature = Feature.trim();
1520
1521          // While we're here iterating check for a different target cpu.
1522          if (Feature.startswith("arch="))
1523            TargetCPU = Feature.split("=").second.trim();
1524	  else if (Feature.startswith("tune="))
1525	    // We don't support cpu tuning this way currently.
1526	    ;
1527	  else if (Feature.startswith("fpmath="))
1528	    // TODO: Support the fpmath option this way. It will require checking
1529	    // overall feature validity for the function with the rest of the
1530	    // attributes on the function.
1531	    ;
1532	  else if (Feature.startswith("mno-"))
1533            getTarget().setFeatureEnabled(FeatureMap, Feature.split("-").second,
1534                                          false);
1535          else
1536            getTarget().setFeatureEnabled(FeatureMap, Feature, true);
1537        }
1538      }
1539    }
1540
1541    // Produce the canonical string for this set of features.
1542    std::vector<std::string> Features;
1543    for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1544                                               ie = FeatureMap.end();
1545         it != ie; ++it)
1546      Features.push_back((it->second ? "+" : "-") + it->first().str());
1547
1548    // Now add the target-cpu and target-features to the function.
1549    if (TargetCPU != "")
1550      FuncAttrs.addAttribute("target-cpu", TargetCPU);
1551    if (!Features.empty()) {
1552      std::sort(Features.begin(), Features.end());
1553      FuncAttrs.addAttribute("target-features",
1554                             llvm::join(Features.begin(), Features.end(), ","));
1555    }
1556  }
1557
1558  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1559
1560  QualType RetTy = FI.getReturnType();
1561  const ABIArgInfo &RetAI = FI.getReturnInfo();
1562  switch (RetAI.getKind()) {
1563  case ABIArgInfo::Extend:
1564    if (RetTy->hasSignedIntegerRepresentation())
1565      RetAttrs.addAttribute(llvm::Attribute::SExt);
1566    else if (RetTy->hasUnsignedIntegerRepresentation())
1567      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1568    // FALL THROUGH
1569  case ABIArgInfo::Direct:
1570    if (RetAI.getInReg())
1571      RetAttrs.addAttribute(llvm::Attribute::InReg);
1572    break;
1573  case ABIArgInfo::Ignore:
1574    break;
1575
1576  case ABIArgInfo::InAlloca:
1577  case ABIArgInfo::Indirect: {
1578    // inalloca and sret disable readnone and readonly
1579    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1580      .removeAttribute(llvm::Attribute::ReadNone);
1581    break;
1582  }
1583
1584  case ABIArgInfo::Expand:
1585    llvm_unreachable("Invalid ABI kind for return argument");
1586  }
1587
1588  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1589    QualType PTy = RefTy->getPointeeType();
1590    if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1591      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1592                                        .getQuantity());
1593    else if (getContext().getTargetAddressSpace(PTy) == 0)
1594      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1595  }
1596
1597  // Attach return attributes.
1598  if (RetAttrs.hasAttributes()) {
1599    PAL.push_back(llvm::AttributeSet::get(
1600        getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1601  }
1602
1603  // Attach attributes to sret.
1604  if (IRFunctionArgs.hasSRetArg()) {
1605    llvm::AttrBuilder SRETAttrs;
1606    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1607    if (RetAI.getInReg())
1608      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1609    PAL.push_back(llvm::AttributeSet::get(
1610        getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1611  }
1612
1613  // Attach attributes to inalloca argument.
1614  if (IRFunctionArgs.hasInallocaArg()) {
1615    llvm::AttrBuilder Attrs;
1616    Attrs.addAttribute(llvm::Attribute::InAlloca);
1617    PAL.push_back(llvm::AttributeSet::get(
1618        getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1619  }
1620
1621  unsigned ArgNo = 0;
1622  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1623                                          E = FI.arg_end();
1624       I != E; ++I, ++ArgNo) {
1625    QualType ParamType = I->type;
1626    const ABIArgInfo &AI = I->info;
1627    llvm::AttrBuilder Attrs;
1628
1629    // Add attribute for padding argument, if necessary.
1630    if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1631      if (AI.getPaddingInReg())
1632        PAL.push_back(llvm::AttributeSet::get(
1633            getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1634            llvm::Attribute::InReg));
1635    }
1636
1637    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1638    // have the corresponding parameter variable.  It doesn't make
1639    // sense to do it here because parameters are so messed up.
1640    switch (AI.getKind()) {
1641    case ABIArgInfo::Extend:
1642      if (ParamType->isSignedIntegerOrEnumerationType())
1643        Attrs.addAttribute(llvm::Attribute::SExt);
1644      else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1645        if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1646          Attrs.addAttribute(llvm::Attribute::SExt);
1647        else
1648          Attrs.addAttribute(llvm::Attribute::ZExt);
1649      }
1650      // FALL THROUGH
1651    case ABIArgInfo::Direct:
1652      if (ArgNo == 0 && FI.isChainCall())
1653        Attrs.addAttribute(llvm::Attribute::Nest);
1654      else if (AI.getInReg())
1655        Attrs.addAttribute(llvm::Attribute::InReg);
1656      break;
1657
1658    case ABIArgInfo::Indirect:
1659      if (AI.getInReg())
1660        Attrs.addAttribute(llvm::Attribute::InReg);
1661
1662      if (AI.getIndirectByVal())
1663        Attrs.addAttribute(llvm::Attribute::ByVal);
1664
1665      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1666
1667      // byval disables readnone and readonly.
1668      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1669        .removeAttribute(llvm::Attribute::ReadNone);
1670      break;
1671
1672    case ABIArgInfo::Ignore:
1673    case ABIArgInfo::Expand:
1674      continue;
1675
1676    case ABIArgInfo::InAlloca:
1677      // inalloca disables readnone and readonly.
1678      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1679          .removeAttribute(llvm::Attribute::ReadNone);
1680      continue;
1681    }
1682
1683    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1684      QualType PTy = RefTy->getPointeeType();
1685      if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1686        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1687                                       .getQuantity());
1688      else if (getContext().getTargetAddressSpace(PTy) == 0)
1689        Attrs.addAttribute(llvm::Attribute::NonNull);
1690    }
1691
1692    if (Attrs.hasAttributes()) {
1693      unsigned FirstIRArg, NumIRArgs;
1694      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1695      for (unsigned i = 0; i < NumIRArgs; i++)
1696        PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1697                                              FirstIRArg + i + 1, Attrs));
1698    }
1699  }
1700  assert(ArgNo == FI.arg_size());
1701
1702  if (FuncAttrs.hasAttributes())
1703    PAL.push_back(llvm::
1704                  AttributeSet::get(getLLVMContext(),
1705                                    llvm::AttributeSet::FunctionIndex,
1706                                    FuncAttrs));
1707}
1708
1709/// An argument came in as a promoted argument; demote it back to its
1710/// declared type.
1711static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1712                                         const VarDecl *var,
1713                                         llvm::Value *value) {
1714  llvm::Type *varType = CGF.ConvertType(var->getType());
1715
1716  // This can happen with promotions that actually don't change the
1717  // underlying type, like the enum promotions.
1718  if (value->getType() == varType) return value;
1719
1720  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1721         && "unexpected promotion type");
1722
1723  if (isa<llvm::IntegerType>(varType))
1724    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1725
1726  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1727}
1728
1729/// Returns the attribute (either parameter attribute, or function
1730/// attribute), which declares argument ArgNo to be non-null.
1731static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1732                                         QualType ArgType, unsigned ArgNo) {
1733  // FIXME: __attribute__((nonnull)) can also be applied to:
1734  //   - references to pointers, where the pointee is known to be
1735  //     nonnull (apparently a Clang extension)
1736  //   - transparent unions containing pointers
1737  // In the former case, LLVM IR cannot represent the constraint. In
1738  // the latter case, we have no guarantee that the transparent union
1739  // is in fact passed as a pointer.
1740  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1741    return nullptr;
1742  // First, check attribute on parameter itself.
1743  if (PVD) {
1744    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1745      return ParmNNAttr;
1746  }
1747  // Check function attributes.
1748  if (!FD)
1749    return nullptr;
1750  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1751    if (NNAttr->isNonNull(ArgNo))
1752      return NNAttr;
1753  }
1754  return nullptr;
1755}
1756
1757void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1758                                         llvm::Function *Fn,
1759                                         const FunctionArgList &Args) {
1760  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1761    // Naked functions don't have prologues.
1762    return;
1763
1764  // If this is an implicit-return-zero function, go ahead and
1765  // initialize the return value.  TODO: it might be nice to have
1766  // a more general mechanism for this that didn't require synthesized
1767  // return statements.
1768  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1769    if (FD->hasImplicitReturnZero()) {
1770      QualType RetTy = FD->getReturnType().getUnqualifiedType();
1771      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1772      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1773      Builder.CreateStore(Zero, ReturnValue);
1774    }
1775  }
1776
1777  // FIXME: We no longer need the types from FunctionArgList; lift up and
1778  // simplify.
1779
1780  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1781  // Flattened function arguments.
1782  SmallVector<llvm::Argument *, 16> FnArgs;
1783  FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1784  for (auto &Arg : Fn->args()) {
1785    FnArgs.push_back(&Arg);
1786  }
1787  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1788
1789  // If we're using inalloca, all the memory arguments are GEPs off of the last
1790  // parameter, which is a pointer to the complete memory area.
1791  llvm::Value *ArgStruct = nullptr;
1792  if (IRFunctionArgs.hasInallocaArg()) {
1793    ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1794    assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1795  }
1796
1797  // Name the struct return parameter.
1798  if (IRFunctionArgs.hasSRetArg()) {
1799    auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1800    AI->setName("agg.result");
1801    AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1802                                        llvm::Attribute::NoAlias));
1803  }
1804
1805  // Track if we received the parameter as a pointer (indirect, byval, or
1806  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1807  // into a local alloca for us.
1808  enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1809  typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1810  SmallVector<ValueAndIsPtr, 16> ArgVals;
1811  ArgVals.reserve(Args.size());
1812
1813  // Create a pointer value for every parameter declaration.  This usually
1814  // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1815  // any cleanups or do anything that might unwind.  We do that separately, so
1816  // we can push the cleanups in the correct order for the ABI.
1817  assert(FI.arg_size() == Args.size() &&
1818         "Mismatch between function signature & arguments.");
1819  unsigned ArgNo = 0;
1820  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1821  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1822       i != e; ++i, ++info_it, ++ArgNo) {
1823    const VarDecl *Arg = *i;
1824    QualType Ty = info_it->type;
1825    const ABIArgInfo &ArgI = info_it->info;
1826
1827    bool isPromoted =
1828      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1829
1830    unsigned FirstIRArg, NumIRArgs;
1831    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1832
1833    switch (ArgI.getKind()) {
1834    case ABIArgInfo::InAlloca: {
1835      assert(NumIRArgs == 0);
1836      llvm::Value *V =
1837          Builder.CreateStructGEP(FI.getArgStruct(), ArgStruct,
1838                                  ArgI.getInAllocaFieldIndex(), Arg->getName());
1839      ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1840      break;
1841    }
1842
1843    case ABIArgInfo::Indirect: {
1844      assert(NumIRArgs == 1);
1845      llvm::Value *V = FnArgs[FirstIRArg];
1846
1847      if (!hasScalarEvaluationKind(Ty)) {
1848        // Aggregates and complex variables are accessed by reference.  All we
1849        // need to do is realign the value, if requested
1850        if (ArgI.getIndirectRealign()) {
1851          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1852
1853          // Copy from the incoming argument pointer to the temporary with the
1854          // appropriate alignment.
1855          //
1856          // FIXME: We should have a common utility for generating an aggregate
1857          // copy.
1858          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1859          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1860          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1861          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1862          Builder.CreateMemCpy(Dst,
1863                               Src,
1864                               llvm::ConstantInt::get(IntPtrTy,
1865                                                      Size.getQuantity()),
1866                               ArgI.getIndirectAlign(),
1867                               false);
1868          V = AlignedTemp;
1869        }
1870        ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1871      } else {
1872        // Load scalar value from indirect argument.
1873        V = EmitLoadOfScalar(V, false, ArgI.getIndirectAlign(), Ty,
1874                             Arg->getLocStart());
1875
1876        if (isPromoted)
1877          V = emitArgumentDemotion(*this, Arg, V);
1878        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1879      }
1880      break;
1881    }
1882
1883    case ABIArgInfo::Extend:
1884    case ABIArgInfo::Direct: {
1885
1886      // If we have the trivial case, handle it with no muss and fuss.
1887      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1888          ArgI.getCoerceToType() == ConvertType(Ty) &&
1889          ArgI.getDirectOffset() == 0) {
1890        assert(NumIRArgs == 1);
1891        auto AI = FnArgs[FirstIRArg];
1892        llvm::Value *V = AI;
1893
1894        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1895          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1896                             PVD->getFunctionScopeIndex()))
1897            AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1898                                                AI->getArgNo() + 1,
1899                                                llvm::Attribute::NonNull));
1900
1901          QualType OTy = PVD->getOriginalType();
1902          if (const auto *ArrTy =
1903              getContext().getAsConstantArrayType(OTy)) {
1904            // A C99 array parameter declaration with the static keyword also
1905            // indicates dereferenceability, and if the size is constant we can
1906            // use the dereferenceable attribute (which requires the size in
1907            // bytes).
1908            if (ArrTy->getSizeModifier() == ArrayType::Static) {
1909              QualType ETy = ArrTy->getElementType();
1910              uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1911              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1912                  ArrSize) {
1913                llvm::AttrBuilder Attrs;
1914                Attrs.addDereferenceableAttr(
1915                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1916                AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1917                                                    AI->getArgNo() + 1, Attrs));
1918              } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1919                AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1920                                                    AI->getArgNo() + 1,
1921                                                    llvm::Attribute::NonNull));
1922              }
1923            }
1924          } else if (const auto *ArrTy =
1925                     getContext().getAsVariableArrayType(OTy)) {
1926            // For C99 VLAs with the static keyword, we don't know the size so
1927            // we can't use the dereferenceable attribute, but in addrspace(0)
1928            // we know that it must be nonnull.
1929            if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1930                !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1931              AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1932                                                  AI->getArgNo() + 1,
1933                                                  llvm::Attribute::NonNull));
1934          }
1935
1936          const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1937          if (!AVAttr)
1938            if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1939              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1940          if (AVAttr) {
1941            llvm::Value *AlignmentValue =
1942              EmitScalarExpr(AVAttr->getAlignment());
1943            llvm::ConstantInt *AlignmentCI =
1944              cast<llvm::ConstantInt>(AlignmentValue);
1945            unsigned Alignment =
1946              std::min((unsigned) AlignmentCI->getZExtValue(),
1947                       +llvm::Value::MaximumAlignment);
1948
1949            llvm::AttrBuilder Attrs;
1950            Attrs.addAlignmentAttr(Alignment);
1951            AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1952                                                AI->getArgNo() + 1, Attrs));
1953          }
1954        }
1955
1956        if (Arg->getType().isRestrictQualified())
1957          AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1958                                              AI->getArgNo() + 1,
1959                                              llvm::Attribute::NoAlias));
1960
1961        // Ensure the argument is the correct type.
1962        if (V->getType() != ArgI.getCoerceToType())
1963          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1964
1965        if (isPromoted)
1966          V = emitArgumentDemotion(*this, Arg, V);
1967
1968        if (const CXXMethodDecl *MD =
1969            dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1970          if (MD->isVirtual() && Arg == CXXABIThisDecl)
1971            V = CGM.getCXXABI().
1972                adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1973        }
1974
1975        // Because of merging of function types from multiple decls it is
1976        // possible for the type of an argument to not match the corresponding
1977        // type in the function type. Since we are codegening the callee
1978        // in here, add a cast to the argument type.
1979        llvm::Type *LTy = ConvertType(Arg->getType());
1980        if (V->getType() != LTy)
1981          V = Builder.CreateBitCast(V, LTy);
1982
1983        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1984        break;
1985      }
1986
1987      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1988
1989      // The alignment we need to use is the max of the requested alignment for
1990      // the argument plus the alignment required by our access code below.
1991      unsigned AlignmentToUse =
1992        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1993      AlignmentToUse = std::max(AlignmentToUse,
1994                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1995
1996      Alloca->setAlignment(AlignmentToUse);
1997      llvm::Value *V = Alloca;
1998      llvm::Value *Ptr = V;    // Pointer to store into.
1999      CharUnits PtrAlign = CharUnits::fromQuantity(AlignmentToUse);
2000
2001      // If the value is offset in memory, apply the offset now.
2002      if (unsigned Offs = ArgI.getDirectOffset()) {
2003        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
2004        Ptr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), Ptr, Offs);
2005        Ptr = Builder.CreateBitCast(Ptr,
2006                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
2007        PtrAlign = PtrAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs));
2008      }
2009
2010      // Fast-isel and the optimizer generally like scalar values better than
2011      // FCAs, so we flatten them if this is safe to do for this argument.
2012      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2013      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2014          STy->getNumElements() > 1) {
2015        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2016        llvm::Type *DstTy =
2017          cast<llvm::PointerType>(Ptr->getType())->getElementType();
2018        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2019
2020        if (SrcSize <= DstSize) {
2021          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2022
2023          assert(STy->getNumElements() == NumIRArgs);
2024          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2025            auto AI = FnArgs[FirstIRArg + i];
2026            AI->setName(Arg->getName() + ".coerce" + Twine(i));
2027            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, Ptr, 0, i);
2028            Builder.CreateStore(AI, EltPtr);
2029          }
2030        } else {
2031          llvm::AllocaInst *TempAlloca =
2032            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
2033          TempAlloca->setAlignment(AlignmentToUse);
2034          llvm::Value *TempV = TempAlloca;
2035
2036          assert(STy->getNumElements() == NumIRArgs);
2037          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2038            auto AI = FnArgs[FirstIRArg + i];
2039            AI->setName(Arg->getName() + ".coerce" + Twine(i));
2040            llvm::Value *EltPtr =
2041                Builder.CreateConstGEP2_32(ArgI.getCoerceToType(), TempV, 0, i);
2042            Builder.CreateStore(AI, EltPtr);
2043          }
2044
2045          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
2046        }
2047      } else {
2048        // Simple case, just do a coerced store of the argument into the alloca.
2049        assert(NumIRArgs == 1);
2050        auto AI = FnArgs[FirstIRArg];
2051        AI->setName(Arg->getName() + ".coerce");
2052        CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, PtrAlign, *this);
2053      }
2054
2055
2056      // Match to what EmitParmDecl is expecting for this type.
2057      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2058        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
2059        if (isPromoted)
2060          V = emitArgumentDemotion(*this, Arg, V);
2061        ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
2062      } else {
2063        ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
2064      }
2065      break;
2066    }
2067
2068    case ABIArgInfo::Expand: {
2069      // If this structure was expanded into multiple arguments then
2070      // we need to create a temporary and reconstruct it from the
2071      // arguments.
2072      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
2073      CharUnits Align = getContext().getDeclAlign(Arg);
2074      Alloca->setAlignment(Align.getQuantity());
2075      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
2076      ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
2077
2078      auto FnArgIter = FnArgs.begin() + FirstIRArg;
2079      ExpandTypeFromArgs(Ty, LV, FnArgIter);
2080      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2081      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2082        auto AI = FnArgs[FirstIRArg + i];
2083        AI->setName(Arg->getName() + "." + Twine(i));
2084      }
2085      break;
2086    }
2087
2088    case ABIArgInfo::Ignore:
2089      assert(NumIRArgs == 0);
2090      // Initialize the local variable appropriately.
2091      if (!hasScalarEvaluationKind(Ty)) {
2092        ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
2093      } else {
2094        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2095        ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
2096      }
2097      break;
2098    }
2099  }
2100
2101  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2102    for (int I = Args.size() - 1; I >= 0; --I)
2103      EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2104                   I + 1);
2105  } else {
2106    for (unsigned I = 0, E = Args.size(); I != E; ++I)
2107      EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2108                   I + 1);
2109  }
2110}
2111
2112static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2113  while (insn->use_empty()) {
2114    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2115    if (!bitcast) return;
2116
2117    // This is "safe" because we would have used a ConstantExpr otherwise.
2118    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2119    bitcast->eraseFromParent();
2120  }
2121}
2122
2123/// Try to emit a fused autorelease of a return result.
2124static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2125                                                    llvm::Value *result) {
2126  // We must be immediately followed the cast.
2127  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2128  if (BB->empty()) return nullptr;
2129  if (&BB->back() != result) return nullptr;
2130
2131  llvm::Type *resultType = result->getType();
2132
2133  // result is in a BasicBlock and is therefore an Instruction.
2134  llvm::Instruction *generator = cast<llvm::Instruction>(result);
2135
2136  SmallVector<llvm::Instruction*,4> insnsToKill;
2137
2138  // Look for:
2139  //  %generator = bitcast %type1* %generator2 to %type2*
2140  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2141    // We would have emitted this as a constant if the operand weren't
2142    // an Instruction.
2143    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2144
2145    // Require the generator to be immediately followed by the cast.
2146    if (generator->getNextNode() != bitcast)
2147      return nullptr;
2148
2149    insnsToKill.push_back(bitcast);
2150  }
2151
2152  // Look for:
2153  //   %generator = call i8* @objc_retain(i8* %originalResult)
2154  // or
2155  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2156  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2157  if (!call) return nullptr;
2158
2159  bool doRetainAutorelease;
2160
2161  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2162    doRetainAutorelease = true;
2163  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2164                                          .objc_retainAutoreleasedReturnValue) {
2165    doRetainAutorelease = false;
2166
2167    // If we emitted an assembly marker for this call (and the
2168    // ARCEntrypoints field should have been set if so), go looking
2169    // for that call.  If we can't find it, we can't do this
2170    // optimization.  But it should always be the immediately previous
2171    // instruction, unless we needed bitcasts around the call.
2172    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2173      llvm::Instruction *prev = call->getPrevNode();
2174      assert(prev);
2175      if (isa<llvm::BitCastInst>(prev)) {
2176        prev = prev->getPrevNode();
2177        assert(prev);
2178      }
2179      assert(isa<llvm::CallInst>(prev));
2180      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2181               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2182      insnsToKill.push_back(prev);
2183    }
2184  } else {
2185    return nullptr;
2186  }
2187
2188  result = call->getArgOperand(0);
2189  insnsToKill.push_back(call);
2190
2191  // Keep killing bitcasts, for sanity.  Note that we no longer care
2192  // about precise ordering as long as there's exactly one use.
2193  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2194    if (!bitcast->hasOneUse()) break;
2195    insnsToKill.push_back(bitcast);
2196    result = bitcast->getOperand(0);
2197  }
2198
2199  // Delete all the unnecessary instructions, from latest to earliest.
2200  for (SmallVectorImpl<llvm::Instruction*>::iterator
2201         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2202    (*i)->eraseFromParent();
2203
2204  // Do the fused retain/autorelease if we were asked to.
2205  if (doRetainAutorelease)
2206    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2207
2208  // Cast back to the result type.
2209  return CGF.Builder.CreateBitCast(result, resultType);
2210}
2211
2212/// If this is a +1 of the value of an immutable 'self', remove it.
2213static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2214                                          llvm::Value *result) {
2215  // This is only applicable to a method with an immutable 'self'.
2216  const ObjCMethodDecl *method =
2217    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2218  if (!method) return nullptr;
2219  const VarDecl *self = method->getSelfDecl();
2220  if (!self->getType().isConstQualified()) return nullptr;
2221
2222  // Look for a retain call.
2223  llvm::CallInst *retainCall =
2224    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2225  if (!retainCall ||
2226      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2227    return nullptr;
2228
2229  // Look for an ordinary load of 'self'.
2230  llvm::Value *retainedValue = retainCall->getArgOperand(0);
2231  llvm::LoadInst *load =
2232    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2233  if (!load || load->isAtomic() || load->isVolatile() ||
2234      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2235    return nullptr;
2236
2237  // Okay!  Burn it all down.  This relies for correctness on the
2238  // assumption that the retain is emitted as part of the return and
2239  // that thereafter everything is used "linearly".
2240  llvm::Type *resultType = result->getType();
2241  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2242  assert(retainCall->use_empty());
2243  retainCall->eraseFromParent();
2244  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2245
2246  return CGF.Builder.CreateBitCast(load, resultType);
2247}
2248
2249/// Emit an ARC autorelease of the result of a function.
2250///
2251/// \return the value to actually return from the function
2252static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2253                                            llvm::Value *result) {
2254  // If we're returning 'self', kill the initial retain.  This is a
2255  // heuristic attempt to "encourage correctness" in the really unfortunate
2256  // case where we have a return of self during a dealloc and we desperately
2257  // need to avoid the possible autorelease.
2258  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2259    return self;
2260
2261  // At -O0, try to emit a fused retain/autorelease.
2262  if (CGF.shouldUseFusedARCCalls())
2263    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2264      return fused;
2265
2266  return CGF.EmitARCAutoreleaseReturnValue(result);
2267}
2268
2269/// Heuristically search for a dominating store to the return-value slot.
2270static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2271  // If there are multiple uses of the return-value slot, just check
2272  // for something immediately preceding the IP.  Sometimes this can
2273  // happen with how we generate implicit-returns; it can also happen
2274  // with noreturn cleanups.
2275  if (!CGF.ReturnValue->hasOneUse()) {
2276    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2277    if (IP->empty()) return nullptr;
2278    llvm::Instruction *I = &IP->back();
2279
2280    // Skip lifetime markers
2281    for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2282                                            IE = IP->rend();
2283         II != IE; ++II) {
2284      if (llvm::IntrinsicInst *Intrinsic =
2285              dyn_cast<llvm::IntrinsicInst>(&*II)) {
2286        if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2287          const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2288          ++II;
2289          if (II == IE)
2290            break;
2291          if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2292            continue;
2293        }
2294      }
2295      I = &*II;
2296      break;
2297    }
2298
2299    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(I);
2300    if (!store) return nullptr;
2301    if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2302    assert(!store->isAtomic() && !store->isVolatile()); // see below
2303    return store;
2304  }
2305
2306  llvm::StoreInst *store =
2307    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2308  if (!store) return nullptr;
2309
2310  // These aren't actually possible for non-coerced returns, and we
2311  // only care about non-coerced returns on this code path.
2312  assert(!store->isAtomic() && !store->isVolatile());
2313
2314  // Now do a first-and-dirty dominance check: just walk up the
2315  // single-predecessors chain from the current insertion point.
2316  llvm::BasicBlock *StoreBB = store->getParent();
2317  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2318  while (IP != StoreBB) {
2319    if (!(IP = IP->getSinglePredecessor()))
2320      return nullptr;
2321  }
2322
2323  // Okay, the store's basic block dominates the insertion point; we
2324  // can do our thing.
2325  return store;
2326}
2327
2328void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2329                                         bool EmitRetDbgLoc,
2330                                         SourceLocation EndLoc) {
2331  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2332    // Naked functions don't have epilogues.
2333    Builder.CreateUnreachable();
2334    return;
2335  }
2336
2337  // Functions with no result always return void.
2338  if (!ReturnValue) {
2339    Builder.CreateRetVoid();
2340    return;
2341  }
2342
2343  llvm::DebugLoc RetDbgLoc;
2344  llvm::Value *RV = nullptr;
2345  QualType RetTy = FI.getReturnType();
2346  const ABIArgInfo &RetAI = FI.getReturnInfo();
2347
2348  switch (RetAI.getKind()) {
2349  case ABIArgInfo::InAlloca:
2350    // Aggregrates get evaluated directly into the destination.  Sometimes we
2351    // need to return the sret value in a register, though.
2352    assert(hasAggregateEvaluationKind(RetTy));
2353    if (RetAI.getInAllocaSRet()) {
2354      llvm::Function::arg_iterator EI = CurFn->arg_end();
2355      --EI;
2356      llvm::Value *ArgStruct = EI;
2357      llvm::Value *SRet = Builder.CreateStructGEP(
2358          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2359      RV = Builder.CreateLoad(SRet, "sret");
2360    }
2361    break;
2362
2363  case ABIArgInfo::Indirect: {
2364    auto AI = CurFn->arg_begin();
2365    if (RetAI.isSRetAfterThis())
2366      ++AI;
2367    switch (getEvaluationKind(RetTy)) {
2368    case TEK_Complex: {
2369      ComplexPairTy RT =
2370        EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2371                          EndLoc);
2372      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2373                         /*isInit*/ true);
2374      break;
2375    }
2376    case TEK_Aggregate:
2377      // Do nothing; aggregrates get evaluated directly into the destination.
2378      break;
2379    case TEK_Scalar:
2380      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2381                        MakeNaturalAlignAddrLValue(AI, RetTy),
2382                        /*isInit*/ true);
2383      break;
2384    }
2385    break;
2386  }
2387
2388  case ABIArgInfo::Extend:
2389  case ABIArgInfo::Direct:
2390    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2391        RetAI.getDirectOffset() == 0) {
2392      // The internal return value temp always will have pointer-to-return-type
2393      // type, just do a load.
2394
2395      // If there is a dominating store to ReturnValue, we can elide
2396      // the load, zap the store, and usually zap the alloca.
2397      if (llvm::StoreInst *SI =
2398              findDominatingStoreToReturnValue(*this)) {
2399        // Reuse the debug location from the store unless there is
2400        // cleanup code to be emitted between the store and return
2401        // instruction.
2402        if (EmitRetDbgLoc && !AutoreleaseResult)
2403          RetDbgLoc = SI->getDebugLoc();
2404        // Get the stored value and nuke the now-dead store.
2405        RV = SI->getValueOperand();
2406        SI->eraseFromParent();
2407
2408        // If that was the only use of the return value, nuke it as well now.
2409        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2410          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2411          ReturnValue = nullptr;
2412        }
2413
2414      // Otherwise, we have to do a simple load.
2415      } else {
2416        RV = Builder.CreateLoad(ReturnValue);
2417      }
2418    } else {
2419      llvm::Value *V = ReturnValue;
2420      CharUnits Align = getContext().getTypeAlignInChars(RetTy);
2421      // If the value is offset in memory, apply the offset now.
2422      if (unsigned Offs = RetAI.getDirectOffset()) {
2423        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2424        V = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), V, Offs);
2425        V = Builder.CreateBitCast(V,
2426                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2427        Align = Align.alignmentAtOffset(CharUnits::fromQuantity(Offs));
2428      }
2429
2430      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), Align, *this);
2431    }
2432
2433    // In ARC, end functions that return a retainable type with a call
2434    // to objc_autoreleaseReturnValue.
2435    if (AutoreleaseResult) {
2436      assert(getLangOpts().ObjCAutoRefCount &&
2437             !FI.isReturnsRetained() &&
2438             RetTy->isObjCRetainableType());
2439      RV = emitAutoreleaseOfResult(*this, RV);
2440    }
2441
2442    break;
2443
2444  case ABIArgInfo::Ignore:
2445    break;
2446
2447  case ABIArgInfo::Expand:
2448    llvm_unreachable("Invalid ABI kind for return argument");
2449  }
2450
2451  llvm::Instruction *Ret;
2452  if (RV) {
2453    if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2454      if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2455        SanitizerScope SanScope(this);
2456        llvm::Value *Cond = Builder.CreateICmpNE(
2457            RV, llvm::Constant::getNullValue(RV->getType()));
2458        llvm::Constant *StaticData[] = {
2459            EmitCheckSourceLocation(EndLoc),
2460            EmitCheckSourceLocation(RetNNAttr->getLocation()),
2461        };
2462        EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2463                  "nonnull_return", StaticData, None);
2464      }
2465    }
2466    Ret = Builder.CreateRet(RV);
2467  } else {
2468    Ret = Builder.CreateRetVoid();
2469  }
2470
2471  if (RetDbgLoc)
2472    Ret->setDebugLoc(std::move(RetDbgLoc));
2473}
2474
2475static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2476  const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2477  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2478}
2479
2480static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2481  // FIXME: Generate IR in one pass, rather than going back and fixing up these
2482  // placeholders.
2483  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2484  llvm::Value *Placeholder =
2485      llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2486  Placeholder = CGF.Builder.CreateLoad(Placeholder);
2487  return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2488                               Ty.getQualifiers(),
2489                               AggValueSlot::IsNotDestructed,
2490                               AggValueSlot::DoesNotNeedGCBarriers,
2491                               AggValueSlot::IsNotAliased);
2492}
2493
2494void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2495                                          const VarDecl *param,
2496                                          SourceLocation loc) {
2497  // StartFunction converted the ABI-lowered parameter(s) into a
2498  // local alloca.  We need to turn that into an r-value suitable
2499  // for EmitCall.
2500  llvm::Value *local = GetAddrOfLocalVar(param);
2501
2502  QualType type = param->getType();
2503
2504  // For the most part, we just need to load the alloca, except:
2505  // 1) aggregate r-values are actually pointers to temporaries, and
2506  // 2) references to non-scalars are pointers directly to the aggregate.
2507  // I don't know why references to scalars are different here.
2508  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2509    if (!hasScalarEvaluationKind(ref->getPointeeType()))
2510      return args.add(RValue::getAggregate(local), type);
2511
2512    // Locals which are references to scalars are represented
2513    // with allocas holding the pointer.
2514    return args.add(RValue::get(Builder.CreateLoad(local)), type);
2515  }
2516
2517  assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2518         "cannot emit delegate call arguments for inalloca arguments!");
2519
2520  args.add(convertTempToRValue(local, type, loc), type);
2521}
2522
2523static bool isProvablyNull(llvm::Value *addr) {
2524  return isa<llvm::ConstantPointerNull>(addr);
2525}
2526
2527static bool isProvablyNonNull(llvm::Value *addr) {
2528  return isa<llvm::AllocaInst>(addr);
2529}
2530
2531/// Emit the actual writing-back of a writeback.
2532static void emitWriteback(CodeGenFunction &CGF,
2533                          const CallArgList::Writeback &writeback) {
2534  const LValue &srcLV = writeback.Source;
2535  llvm::Value *srcAddr = srcLV.getAddress();
2536  assert(!isProvablyNull(srcAddr) &&
2537         "shouldn't have writeback for provably null argument");
2538
2539  llvm::BasicBlock *contBB = nullptr;
2540
2541  // If the argument wasn't provably non-null, we need to null check
2542  // before doing the store.
2543  bool provablyNonNull = isProvablyNonNull(srcAddr);
2544  if (!provablyNonNull) {
2545    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2546    contBB = CGF.createBasicBlock("icr.done");
2547
2548    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2549    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2550    CGF.EmitBlock(writebackBB);
2551  }
2552
2553  // Load the value to writeback.
2554  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2555
2556  // Cast it back, in case we're writing an id to a Foo* or something.
2557  value = CGF.Builder.CreateBitCast(value,
2558               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2559                            "icr.writeback-cast");
2560
2561  // Perform the writeback.
2562
2563  // If we have a "to use" value, it's something we need to emit a use
2564  // of.  This has to be carefully threaded in: if it's done after the
2565  // release it's potentially undefined behavior (and the optimizer
2566  // will ignore it), and if it happens before the retain then the
2567  // optimizer could move the release there.
2568  if (writeback.ToUse) {
2569    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2570
2571    // Retain the new value.  No need to block-copy here:  the block's
2572    // being passed up the stack.
2573    value = CGF.EmitARCRetainNonBlock(value);
2574
2575    // Emit the intrinsic use here.
2576    CGF.EmitARCIntrinsicUse(writeback.ToUse);
2577
2578    // Load the old value (primitively).
2579    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2580
2581    // Put the new value in place (primitively).
2582    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2583
2584    // Release the old value.
2585    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2586
2587  // Otherwise, we can just do a normal lvalue store.
2588  } else {
2589    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2590  }
2591
2592  // Jump to the continuation block.
2593  if (!provablyNonNull)
2594    CGF.EmitBlock(contBB);
2595}
2596
2597static void emitWritebacks(CodeGenFunction &CGF,
2598                           const CallArgList &args) {
2599  for (const auto &I : args.writebacks())
2600    emitWriteback(CGF, I);
2601}
2602
2603static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2604                                            const CallArgList &CallArgs) {
2605  assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2606  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2607    CallArgs.getCleanupsToDeactivate();
2608  // Iterate in reverse to increase the likelihood of popping the cleanup.
2609  for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2610         I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2611    CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2612    I->IsActiveIP->eraseFromParent();
2613  }
2614}
2615
2616static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2617  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2618    if (uop->getOpcode() == UO_AddrOf)
2619      return uop->getSubExpr();
2620  return nullptr;
2621}
2622
2623/// Emit an argument that's being passed call-by-writeback.  That is,
2624/// we are passing the address of
2625static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2626                             const ObjCIndirectCopyRestoreExpr *CRE) {
2627  LValue srcLV;
2628
2629  // Make an optimistic effort to emit the address as an l-value.
2630  // This can fail if the argument expression is more complicated.
2631  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2632    srcLV = CGF.EmitLValue(lvExpr);
2633
2634  // Otherwise, just emit it as a scalar.
2635  } else {
2636    llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2637
2638    QualType srcAddrType =
2639      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2640    srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2641  }
2642  llvm::Value *srcAddr = srcLV.getAddress();
2643
2644  // The dest and src types don't necessarily match in LLVM terms
2645  // because of the crazy ObjC compatibility rules.
2646
2647  llvm::PointerType *destType =
2648    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2649
2650  // If the address is a constant null, just pass the appropriate null.
2651  if (isProvablyNull(srcAddr)) {
2652    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2653             CRE->getType());
2654    return;
2655  }
2656
2657  // Create the temporary.
2658  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2659                                           "icr.temp");
2660  // Loading an l-value can introduce a cleanup if the l-value is __weak,
2661  // and that cleanup will be conditional if we can't prove that the l-value
2662  // isn't null, so we need to register a dominating point so that the cleanups
2663  // system will make valid IR.
2664  CodeGenFunction::ConditionalEvaluation condEval(CGF);
2665
2666  // Zero-initialize it if we're not doing a copy-initialization.
2667  bool shouldCopy = CRE->shouldCopy();
2668  if (!shouldCopy) {
2669    llvm::Value *null =
2670      llvm::ConstantPointerNull::get(
2671        cast<llvm::PointerType>(destType->getElementType()));
2672    CGF.Builder.CreateStore(null, temp);
2673  }
2674
2675  llvm::BasicBlock *contBB = nullptr;
2676  llvm::BasicBlock *originBB = nullptr;
2677
2678  // If the address is *not* known to be non-null, we need to switch.
2679  llvm::Value *finalArgument;
2680
2681  bool provablyNonNull = isProvablyNonNull(srcAddr);
2682  if (provablyNonNull) {
2683    finalArgument = temp;
2684  } else {
2685    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2686
2687    finalArgument = CGF.Builder.CreateSelect(isNull,
2688                                   llvm::ConstantPointerNull::get(destType),
2689                                             temp, "icr.argument");
2690
2691    // If we need to copy, then the load has to be conditional, which
2692    // means we need control flow.
2693    if (shouldCopy) {
2694      originBB = CGF.Builder.GetInsertBlock();
2695      contBB = CGF.createBasicBlock("icr.cont");
2696      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2697      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2698      CGF.EmitBlock(copyBB);
2699      condEval.begin(CGF);
2700    }
2701  }
2702
2703  llvm::Value *valueToUse = nullptr;
2704
2705  // Perform a copy if necessary.
2706  if (shouldCopy) {
2707    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2708    assert(srcRV.isScalar());
2709
2710    llvm::Value *src = srcRV.getScalarVal();
2711    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2712                                    "icr.cast");
2713
2714    // Use an ordinary store, not a store-to-lvalue.
2715    CGF.Builder.CreateStore(src, temp);
2716
2717    // If optimization is enabled, and the value was held in a
2718    // __strong variable, we need to tell the optimizer that this
2719    // value has to stay alive until we're doing the store back.
2720    // This is because the temporary is effectively unretained,
2721    // and so otherwise we can violate the high-level semantics.
2722    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2723        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2724      valueToUse = src;
2725    }
2726  }
2727
2728  // Finish the control flow if we needed it.
2729  if (shouldCopy && !provablyNonNull) {
2730    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2731    CGF.EmitBlock(contBB);
2732
2733    // Make a phi for the value to intrinsically use.
2734    if (valueToUse) {
2735      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2736                                                      "icr.to-use");
2737      phiToUse->addIncoming(valueToUse, copyBB);
2738      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2739                            originBB);
2740      valueToUse = phiToUse;
2741    }
2742
2743    condEval.end(CGF);
2744  }
2745
2746  args.addWriteback(srcLV, temp, valueToUse);
2747  args.add(RValue::get(finalArgument), CRE->getType());
2748}
2749
2750void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2751  assert(!StackBase && !StackCleanup.isValid());
2752
2753  // Save the stack.
2754  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2755  StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2756
2757  // Control gets really tied up in landing pads, so we have to spill the
2758  // stacksave to an alloca to avoid violating SSA form.
2759  // TODO: This is dead if we never emit the cleanup.  We should create the
2760  // alloca and store lazily on the first cleanup emission.
2761  StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2762  CGF.Builder.CreateStore(StackBase, StackBaseMem);
2763  CGF.pushStackRestore(EHCleanup, StackBaseMem);
2764  StackCleanup = CGF.EHStack.getInnermostEHScope();
2765  assert(StackCleanup.isValid());
2766}
2767
2768void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2769  if (StackBase) {
2770    CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2771    llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2772    // We could load StackBase from StackBaseMem, but in the non-exceptional
2773    // case we can skip it.
2774    CGF.Builder.CreateCall(F, StackBase);
2775  }
2776}
2777
2778void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2779                                          SourceLocation ArgLoc,
2780                                          const FunctionDecl *FD,
2781                                          unsigned ParmNum) {
2782  if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2783    return;
2784  auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2785  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2786  auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2787  if (!NNAttr)
2788    return;
2789  SanitizerScope SanScope(this);
2790  assert(RV.isScalar());
2791  llvm::Value *V = RV.getScalarVal();
2792  llvm::Value *Cond =
2793      Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2794  llvm::Constant *StaticData[] = {
2795      EmitCheckSourceLocation(ArgLoc),
2796      EmitCheckSourceLocation(NNAttr->getLocation()),
2797      llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2798  };
2799  EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2800                "nonnull_arg", StaticData, None);
2801}
2802
2803void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2804                                   ArrayRef<QualType> ArgTypes,
2805                                   CallExpr::const_arg_iterator ArgBeg,
2806                                   CallExpr::const_arg_iterator ArgEnd,
2807                                   const FunctionDecl *CalleeDecl,
2808                                   unsigned ParamsToSkip) {
2809  // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2810  // because arguments are destroyed left to right in the callee.
2811  if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2812    // Insert a stack save if we're going to need any inalloca args.
2813    bool HasInAllocaArgs = false;
2814    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2815         I != E && !HasInAllocaArgs; ++I)
2816      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2817    if (HasInAllocaArgs) {
2818      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2819      Args.allocateArgumentMemory(*this);
2820    }
2821
2822    // Evaluate each argument.
2823    size_t CallArgsStart = Args.size();
2824    for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2825      CallExpr::const_arg_iterator Arg = ArgBeg + I;
2826      EmitCallArg(Args, *Arg, ArgTypes[I]);
2827      EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2828                          CalleeDecl, ParamsToSkip + I);
2829    }
2830
2831    // Un-reverse the arguments we just evaluated so they match up with the LLVM
2832    // IR function.
2833    std::reverse(Args.begin() + CallArgsStart, Args.end());
2834    return;
2835  }
2836
2837  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2838    CallExpr::const_arg_iterator Arg = ArgBeg + I;
2839    assert(Arg != ArgEnd);
2840    EmitCallArg(Args, *Arg, ArgTypes[I]);
2841    EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2842                        CalleeDecl, ParamsToSkip + I);
2843  }
2844}
2845
2846namespace {
2847
2848struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2849  DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2850      : Addr(Addr), Ty(Ty) {}
2851
2852  llvm::Value *Addr;
2853  QualType Ty;
2854
2855  void Emit(CodeGenFunction &CGF, Flags flags) override {
2856    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2857    assert(!Dtor->isTrivial());
2858    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2859                              /*Delegating=*/false, Addr);
2860  }
2861};
2862
2863}
2864
2865struct DisableDebugLocationUpdates {
2866  CodeGenFunction &CGF;
2867  bool disabledDebugInfo;
2868  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2869    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2870      CGF.disableDebugInfo();
2871  }
2872  ~DisableDebugLocationUpdates() {
2873    if (disabledDebugInfo)
2874      CGF.enableDebugInfo();
2875  }
2876};
2877
2878void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2879                                  QualType type) {
2880  DisableDebugLocationUpdates Dis(*this, E);
2881  if (const ObjCIndirectCopyRestoreExpr *CRE
2882        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2883    assert(getLangOpts().ObjCAutoRefCount);
2884    assert(getContext().hasSameType(E->getType(), type));
2885    return emitWritebackArg(*this, args, CRE);
2886  }
2887
2888  assert(type->isReferenceType() == E->isGLValue() &&
2889         "reference binding to unmaterialized r-value!");
2890
2891  if (E->isGLValue()) {
2892    assert(E->getObjectKind() == OK_Ordinary);
2893    return args.add(EmitReferenceBindingToExpr(E), type);
2894  }
2895
2896  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2897
2898  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2899  // However, we still have to push an EH-only cleanup in case we unwind before
2900  // we make it to the call.
2901  if (HasAggregateEvalKind &&
2902      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2903    // If we're using inalloca, use the argument memory.  Otherwise, use a
2904    // temporary.
2905    AggValueSlot Slot;
2906    if (args.isUsingInAlloca())
2907      Slot = createPlaceholderSlot(*this, type);
2908    else
2909      Slot = CreateAggTemp(type, "agg.tmp");
2910
2911    const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2912    bool DestroyedInCallee =
2913        RD && RD->hasNonTrivialDestructor() &&
2914        CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2915    if (DestroyedInCallee)
2916      Slot.setExternallyDestructed();
2917
2918    EmitAggExpr(E, Slot);
2919    RValue RV = Slot.asRValue();
2920    args.add(RV, type);
2921
2922    if (DestroyedInCallee) {
2923      // Create a no-op GEP between the placeholder and the cleanup so we can
2924      // RAUW it successfully.  It also serves as a marker of the first
2925      // instruction where the cleanup is active.
2926      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2927      // This unreachable is a temporary marker which will be removed later.
2928      llvm::Instruction *IsActive = Builder.CreateUnreachable();
2929      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2930    }
2931    return;
2932  }
2933
2934  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2935      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2936    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2937    assert(L.isSimple());
2938    if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2939      args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2940    } else {
2941      // We can't represent a misaligned lvalue in the CallArgList, so copy
2942      // to an aligned temporary now.
2943      llvm::Value *tmp = CreateMemTemp(type);
2944      EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2945                        L.getAlignment());
2946      args.add(RValue::getAggregate(tmp), type);
2947    }
2948    return;
2949  }
2950
2951  args.add(EmitAnyExprToTemp(E), type);
2952}
2953
2954QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2955  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2956  // implicitly widens null pointer constants that are arguments to varargs
2957  // functions to pointer-sized ints.
2958  if (!getTarget().getTriple().isOSWindows())
2959    return Arg->getType();
2960
2961  if (Arg->getType()->isIntegerType() &&
2962      getContext().getTypeSize(Arg->getType()) <
2963          getContext().getTargetInfo().getPointerWidth(0) &&
2964      Arg->isNullPointerConstant(getContext(),
2965                                 Expr::NPC_ValueDependentIsNotNull)) {
2966    return getContext().getIntPtrType();
2967  }
2968
2969  return Arg->getType();
2970}
2971
2972// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2973// optimizer it can aggressively ignore unwind edges.
2974void
2975CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2976  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2977      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2978    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2979                      CGM.getNoObjCARCExceptionsMetadata());
2980}
2981
2982/// Emits a call to the given no-arguments nounwind runtime function.
2983llvm::CallInst *
2984CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2985                                         const llvm::Twine &name) {
2986  return EmitNounwindRuntimeCall(callee, None, name);
2987}
2988
2989/// Emits a call to the given nounwind runtime function.
2990llvm::CallInst *
2991CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2992                                         ArrayRef<llvm::Value*> args,
2993                                         const llvm::Twine &name) {
2994  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2995  call->setDoesNotThrow();
2996  return call;
2997}
2998
2999/// Emits a simple call (never an invoke) to the given no-arguments
3000/// runtime function.
3001llvm::CallInst *
3002CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3003                                 const llvm::Twine &name) {
3004  return EmitRuntimeCall(callee, None, name);
3005}
3006
3007/// Emits a simple call (never an invoke) to the given runtime
3008/// function.
3009llvm::CallInst *
3010CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3011                                 ArrayRef<llvm::Value*> args,
3012                                 const llvm::Twine &name) {
3013  llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3014  call->setCallingConv(getRuntimeCC());
3015  return call;
3016}
3017
3018/// Emits a call or invoke to the given noreturn runtime function.
3019void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3020                                               ArrayRef<llvm::Value*> args) {
3021  if (getInvokeDest()) {
3022    llvm::InvokeInst *invoke =
3023      Builder.CreateInvoke(callee,
3024                           getUnreachableBlock(),
3025                           getInvokeDest(),
3026                           args);
3027    invoke->setDoesNotReturn();
3028    invoke->setCallingConv(getRuntimeCC());
3029  } else {
3030    llvm::CallInst *call = Builder.CreateCall(callee, args);
3031    call->setDoesNotReturn();
3032    call->setCallingConv(getRuntimeCC());
3033    Builder.CreateUnreachable();
3034  }
3035}
3036
3037/// Emits a call or invoke instruction to the given nullary runtime
3038/// function.
3039llvm::CallSite
3040CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3041                                         const Twine &name) {
3042  return EmitRuntimeCallOrInvoke(callee, None, name);
3043}
3044
3045/// Emits a call or invoke instruction to the given runtime function.
3046llvm::CallSite
3047CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3048                                         ArrayRef<llvm::Value*> args,
3049                                         const Twine &name) {
3050  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3051  callSite.setCallingConv(getRuntimeCC());
3052  return callSite;
3053}
3054
3055llvm::CallSite
3056CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3057                                  const Twine &Name) {
3058  return EmitCallOrInvoke(Callee, None, Name);
3059}
3060
3061/// Emits a call or invoke instruction to the given function, depending
3062/// on the current state of the EH stack.
3063llvm::CallSite
3064CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3065                                  ArrayRef<llvm::Value *> Args,
3066                                  const Twine &Name) {
3067  llvm::BasicBlock *InvokeDest = getInvokeDest();
3068
3069  llvm::Instruction *Inst;
3070  if (!InvokeDest)
3071    Inst = Builder.CreateCall(Callee, Args, Name);
3072  else {
3073    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3074    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3075    EmitBlock(ContBB);
3076  }
3077
3078  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3079  // optimizer it can aggressively ignore unwind edges.
3080  if (CGM.getLangOpts().ObjCAutoRefCount)
3081    AddObjCARCExceptionMetadata(Inst);
3082
3083  return llvm::CallSite(Inst);
3084}
3085
3086/// \brief Store a non-aggregate value to an address to initialize it.  For
3087/// initialization, a non-atomic store will be used.
3088static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3089                                        LValue Dst) {
3090  if (Src.isScalar())
3091    CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3092  else
3093    CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3094}
3095
3096void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3097                                                  llvm::Value *New) {
3098  DeferredReplacements.push_back(std::make_pair(Old, New));
3099}
3100
3101RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3102                                 llvm::Value *Callee,
3103                                 ReturnValueSlot ReturnValue,
3104                                 const CallArgList &CallArgs,
3105                                 const Decl *TargetDecl,
3106                                 llvm::Instruction **callOrInvoke) {
3107  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3108
3109  // Handle struct-return functions by passing a pointer to the
3110  // location that we would like to return into.
3111  QualType RetTy = CallInfo.getReturnType();
3112  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3113
3114  llvm::FunctionType *IRFuncTy =
3115    cast<llvm::FunctionType>(
3116                  cast<llvm::PointerType>(Callee->getType())->getElementType());
3117
3118  // If we're using inalloca, insert the allocation after the stack save.
3119  // FIXME: Do this earlier rather than hacking it in here!
3120  llvm::AllocaInst *ArgMemory = nullptr;
3121  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3122    llvm::Instruction *IP = CallArgs.getStackBase();
3123    llvm::AllocaInst *AI;
3124    if (IP) {
3125      IP = IP->getNextNode();
3126      AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3127    } else {
3128      AI = CreateTempAlloca(ArgStruct, "argmem");
3129    }
3130    AI->setUsedWithInAlloca(true);
3131    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3132    ArgMemory = AI;
3133  }
3134
3135  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3136  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3137
3138  // If the call returns a temporary with struct return, create a temporary
3139  // alloca to hold the result, unless one is given to us.
3140  llvm::Value *SRetPtr = nullptr;
3141  size_t UnusedReturnSize = 0;
3142  if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3143    SRetPtr = ReturnValue.getValue();
3144    if (!SRetPtr) {
3145      SRetPtr = CreateMemTemp(RetTy);
3146      if (HaveInsertPoint() && ReturnValue.isUnused()) {
3147        uint64_t size =
3148            CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3149        if (EmitLifetimeStart(size, SRetPtr))
3150          UnusedReturnSize = size;
3151      }
3152    }
3153    if (IRFunctionArgs.hasSRetArg()) {
3154      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3155    } else {
3156      llvm::Value *Addr =
3157          Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3158                                  RetAI.getInAllocaFieldIndex());
3159      Builder.CreateStore(SRetPtr, Addr);
3160    }
3161  }
3162
3163  assert(CallInfo.arg_size() == CallArgs.size() &&
3164         "Mismatch between function signature & arguments.");
3165  unsigned ArgNo = 0;
3166  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3167  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3168       I != E; ++I, ++info_it, ++ArgNo) {
3169    const ABIArgInfo &ArgInfo = info_it->info;
3170    RValue RV = I->RV;
3171
3172    CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3173
3174    // Insert a padding argument to ensure proper alignment.
3175    if (IRFunctionArgs.hasPaddingArg(ArgNo))
3176      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3177          llvm::UndefValue::get(ArgInfo.getPaddingType());
3178
3179    unsigned FirstIRArg, NumIRArgs;
3180    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3181
3182    switch (ArgInfo.getKind()) {
3183    case ABIArgInfo::InAlloca: {
3184      assert(NumIRArgs == 0);
3185      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3186      if (RV.isAggregate()) {
3187        // Replace the placeholder with the appropriate argument slot GEP.
3188        llvm::Instruction *Placeholder =
3189            cast<llvm::Instruction>(RV.getAggregateAddr());
3190        CGBuilderTy::InsertPoint IP = Builder.saveIP();
3191        Builder.SetInsertPoint(Placeholder);
3192        llvm::Value *Addr =
3193            Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3194                                    ArgInfo.getInAllocaFieldIndex());
3195        Builder.restoreIP(IP);
3196        deferPlaceholderReplacement(Placeholder, Addr);
3197      } else {
3198        // Store the RValue into the argument struct.
3199        llvm::Value *Addr =
3200            Builder.CreateStructGEP(ArgMemory->getAllocatedType(), ArgMemory,
3201                                    ArgInfo.getInAllocaFieldIndex());
3202        unsigned AS = Addr->getType()->getPointerAddressSpace();
3203        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3204        // There are some cases where a trivial bitcast is not avoidable.  The
3205        // definition of a type later in a translation unit may change it's type
3206        // from {}* to (%struct.foo*)*.
3207        if (Addr->getType() != MemType)
3208          Addr = Builder.CreateBitCast(Addr, MemType);
3209        LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3210        EmitInitStoreOfNonAggregate(*this, RV, argLV);
3211      }
3212      break;
3213    }
3214
3215    case ABIArgInfo::Indirect: {
3216      assert(NumIRArgs == 1);
3217      if (RV.isScalar() || RV.isComplex()) {
3218        // Make a temporary alloca to pass the argument.
3219        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3220        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3221          AI->setAlignment(ArgInfo.getIndirectAlign());
3222        IRCallArgs[FirstIRArg] = AI;
3223
3224        LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3225        EmitInitStoreOfNonAggregate(*this, RV, argLV);
3226      } else {
3227        // We want to avoid creating an unnecessary temporary+copy here;
3228        // however, we need one in three cases:
3229        // 1. If the argument is not byval, and we are required to copy the
3230        //    source.  (This case doesn't occur on any common architecture.)
3231        // 2. If the argument is byval, RV is not sufficiently aligned, and
3232        //    we cannot force it to be sufficiently aligned.
3233        // 3. If the argument is byval, but RV is located in an address space
3234        //    different than that of the argument (0).
3235        llvm::Value *Addr = RV.getAggregateAddr();
3236        unsigned Align = ArgInfo.getIndirectAlign();
3237        const llvm::DataLayout *TD = &CGM.getDataLayout();
3238        const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3239        const unsigned ArgAddrSpace =
3240            (FirstIRArg < IRFuncTy->getNumParams()
3241                 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3242                 : 0);
3243        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3244            (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3245             llvm::getOrEnforceKnownAlignment(Addr, Align, *TD) < Align) ||
3246            (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3247          // Create an aligned temporary, and copy to it.
3248          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3249          if (Align > AI->getAlignment())
3250            AI->setAlignment(Align);
3251          IRCallArgs[FirstIRArg] = AI;
3252          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3253        } else {
3254          // Skip the extra memcpy call.
3255          IRCallArgs[FirstIRArg] = Addr;
3256        }
3257      }
3258      break;
3259    }
3260
3261    case ABIArgInfo::Ignore:
3262      assert(NumIRArgs == 0);
3263      break;
3264
3265    case ABIArgInfo::Extend:
3266    case ABIArgInfo::Direct: {
3267      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3268          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3269          ArgInfo.getDirectOffset() == 0) {
3270        assert(NumIRArgs == 1);
3271        llvm::Value *V;
3272        if (RV.isScalar())
3273          V = RV.getScalarVal();
3274        else
3275          V = Builder.CreateLoad(RV.getAggregateAddr());
3276
3277        // We might have to widen integers, but we should never truncate.
3278        if (ArgInfo.getCoerceToType() != V->getType() &&
3279            V->getType()->isIntegerTy())
3280          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3281
3282        // If the argument doesn't match, perform a bitcast to coerce it.  This
3283        // can happen due to trivial type mismatches.
3284        if (FirstIRArg < IRFuncTy->getNumParams() &&
3285            V->getType() != IRFuncTy->getParamType(FirstIRArg))
3286          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3287        IRCallArgs[FirstIRArg] = V;
3288        break;
3289      }
3290
3291      // FIXME: Avoid the conversion through memory if possible.
3292      llvm::Value *SrcPtr;
3293      CharUnits SrcAlign;
3294      if (RV.isScalar() || RV.isComplex()) {
3295        SrcPtr = CreateMemTemp(I->Ty, "coerce");
3296        SrcAlign = TypeAlign;
3297        LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3298        EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3299      } else {
3300        SrcPtr = RV.getAggregateAddr();
3301        // This alignment is guaranteed by EmitCallArg.
3302        SrcAlign = TypeAlign;
3303      }
3304
3305      // If the value is offset in memory, apply the offset now.
3306      if (unsigned Offs = ArgInfo.getDirectOffset()) {
3307        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3308        SrcPtr = Builder.CreateConstGEP1_32(Builder.getInt8Ty(), SrcPtr, Offs);
3309        SrcPtr = Builder.CreateBitCast(SrcPtr,
3310                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3311        SrcAlign = SrcAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs));
3312      }
3313
3314      // Fast-isel and the optimizer generally like scalar values better than
3315      // FCAs, so we flatten them if this is safe to do for this argument.
3316      llvm::StructType *STy =
3317            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3318      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3319        llvm::Type *SrcTy =
3320          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3321        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3322        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3323
3324        // If the source type is smaller than the destination type of the
3325        // coerce-to logic, copy the source value into a temp alloca the size
3326        // of the destination type to allow loading all of it. The bits past
3327        // the source value are left undef.
3328        if (SrcSize < DstSize) {
3329          llvm::AllocaInst *TempAlloca
3330            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3331          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3332          SrcPtr = TempAlloca;
3333        } else {
3334          SrcPtr = Builder.CreateBitCast(SrcPtr,
3335                                         llvm::PointerType::getUnqual(STy));
3336        }
3337
3338        assert(NumIRArgs == STy->getNumElements());
3339        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3340          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(STy, SrcPtr, 0, i);
3341          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3342          // We don't know what we're loading from.
3343          LI->setAlignment(1);
3344          IRCallArgs[FirstIRArg + i] = LI;
3345        }
3346      } else {
3347        // In the simple case, just pass the coerced loaded value.
3348        assert(NumIRArgs == 1);
3349        IRCallArgs[FirstIRArg] =
3350            CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
3351                              SrcAlign, *this);
3352      }
3353
3354      break;
3355    }
3356
3357    case ABIArgInfo::Expand:
3358      unsigned IRArgPos = FirstIRArg;
3359      ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3360      assert(IRArgPos == FirstIRArg + NumIRArgs);
3361      break;
3362    }
3363  }
3364
3365  if (ArgMemory) {
3366    llvm::Value *Arg = ArgMemory;
3367    if (CallInfo.isVariadic()) {
3368      // When passing non-POD arguments by value to variadic functions, we will
3369      // end up with a variadic prototype and an inalloca call site.  In such
3370      // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3371      // the callee.
3372      unsigned CalleeAS =
3373          cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3374      Callee = Builder.CreateBitCast(
3375          Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3376    } else {
3377      llvm::Type *LastParamTy =
3378          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3379      if (Arg->getType() != LastParamTy) {
3380#ifndef NDEBUG
3381        // Assert that these structs have equivalent element types.
3382        llvm::StructType *FullTy = CallInfo.getArgStruct();
3383        llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3384            cast<llvm::PointerType>(LastParamTy)->getElementType());
3385        assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3386        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3387                                                DE = DeclaredTy->element_end(),
3388                                                FI = FullTy->element_begin();
3389             DI != DE; ++DI, ++FI)
3390          assert(*DI == *FI);
3391#endif
3392        Arg = Builder.CreateBitCast(Arg, LastParamTy);
3393      }
3394    }
3395    assert(IRFunctionArgs.hasInallocaArg());
3396    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3397  }
3398
3399  if (!CallArgs.getCleanupsToDeactivate().empty())
3400    deactivateArgCleanupsBeforeCall(*this, CallArgs);
3401
3402  // If the callee is a bitcast of a function to a varargs pointer to function
3403  // type, check to see if we can remove the bitcast.  This handles some cases
3404  // with unprototyped functions.
3405  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3406    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3407      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3408      llvm::FunctionType *CurFT =
3409        cast<llvm::FunctionType>(CurPT->getElementType());
3410      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3411
3412      if (CE->getOpcode() == llvm::Instruction::BitCast &&
3413          ActualFT->getReturnType() == CurFT->getReturnType() &&
3414          ActualFT->getNumParams() == CurFT->getNumParams() &&
3415          ActualFT->getNumParams() == IRCallArgs.size() &&
3416          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3417        bool ArgsMatch = true;
3418        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3419          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3420            ArgsMatch = false;
3421            break;
3422          }
3423
3424        // Strip the cast if we can get away with it.  This is a nice cleanup,
3425        // but also allows us to inline the function at -O0 if it is marked
3426        // always_inline.
3427        if (ArgsMatch)
3428          Callee = CalleeF;
3429      }
3430    }
3431
3432  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3433  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3434    // Inalloca argument can have different type.
3435    if (IRFunctionArgs.hasInallocaArg() &&
3436        i == IRFunctionArgs.getInallocaArgNo())
3437      continue;
3438    if (i < IRFuncTy->getNumParams())
3439      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3440  }
3441
3442  unsigned CallingConv;
3443  CodeGen::AttributeListType AttributeList;
3444  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3445                             CallingConv, true);
3446  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3447                                                     AttributeList);
3448
3449  llvm::BasicBlock *InvokeDest = nullptr;
3450  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3451                          llvm::Attribute::NoUnwind) ||
3452      currentFunctionUsesSEHTry())
3453    InvokeDest = getInvokeDest();
3454
3455  llvm::CallSite CS;
3456  if (!InvokeDest) {
3457    CS = Builder.CreateCall(Callee, IRCallArgs);
3458  } else {
3459    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3460    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3461    EmitBlock(Cont);
3462  }
3463  if (callOrInvoke)
3464    *callOrInvoke = CS.getInstruction();
3465
3466  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3467      !CS.hasFnAttr(llvm::Attribute::NoInline))
3468    Attrs =
3469        Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3470                           llvm::Attribute::AlwaysInline);
3471
3472  // Disable inlining inside SEH __try blocks.
3473  if (isSEHTryScope())
3474    Attrs =
3475        Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3476                           llvm::Attribute::NoInline);
3477
3478  CS.setAttributes(Attrs);
3479  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3480
3481  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3482  // optimizer it can aggressively ignore unwind edges.
3483  if (CGM.getLangOpts().ObjCAutoRefCount)
3484    AddObjCARCExceptionMetadata(CS.getInstruction());
3485
3486  // If the call doesn't return, finish the basic block and clear the
3487  // insertion point; this allows the rest of IRgen to discard
3488  // unreachable code.
3489  if (CS.doesNotReturn()) {
3490    if (UnusedReturnSize)
3491      EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3492                      SRetPtr);
3493
3494    Builder.CreateUnreachable();
3495    Builder.ClearInsertionPoint();
3496
3497    // FIXME: For now, emit a dummy basic block because expr emitters in
3498    // generally are not ready to handle emitting expressions at unreachable
3499    // points.
3500    EnsureInsertPoint();
3501
3502    // Return a reasonable RValue.
3503    return GetUndefRValue(RetTy);
3504  }
3505
3506  llvm::Instruction *CI = CS.getInstruction();
3507  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3508    CI->setName("call");
3509
3510  // Emit any writebacks immediately.  Arguably this should happen
3511  // after any return-value munging.
3512  if (CallArgs.hasWritebacks())
3513    emitWritebacks(*this, CallArgs);
3514
3515  // The stack cleanup for inalloca arguments has to run out of the normal
3516  // lexical order, so deactivate it and run it manually here.
3517  CallArgs.freeArgumentMemory(*this);
3518
3519  RValue Ret = [&] {
3520    switch (RetAI.getKind()) {
3521    case ABIArgInfo::InAlloca:
3522    case ABIArgInfo::Indirect: {
3523      RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3524      if (UnusedReturnSize)
3525        EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3526                        SRetPtr);
3527      return ret;
3528    }
3529
3530    case ABIArgInfo::Ignore:
3531      // If we are ignoring an argument that had a result, make sure to
3532      // construct the appropriate return value for our caller.
3533      return GetUndefRValue(RetTy);
3534
3535    case ABIArgInfo::Extend:
3536    case ABIArgInfo::Direct: {
3537      llvm::Type *RetIRTy = ConvertType(RetTy);
3538      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3539        switch (getEvaluationKind(RetTy)) {
3540        case TEK_Complex: {
3541          llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3542          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3543          return RValue::getComplex(std::make_pair(Real, Imag));
3544        }
3545        case TEK_Aggregate: {
3546          llvm::Value *DestPtr = ReturnValue.getValue();
3547          bool DestIsVolatile = ReturnValue.isVolatile();
3548          CharUnits DestAlign = getContext().getTypeAlignInChars(RetTy);
3549
3550          if (!DestPtr) {
3551            DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3552            DestIsVolatile = false;
3553          }
3554          BuildAggStore(*this, CI, DestPtr, DestIsVolatile, DestAlign);
3555          return RValue::getAggregate(DestPtr);
3556        }
3557        case TEK_Scalar: {
3558          // If the argument doesn't match, perform a bitcast to coerce it.  This
3559          // can happen due to trivial type mismatches.
3560          llvm::Value *V = CI;
3561          if (V->getType() != RetIRTy)
3562            V = Builder.CreateBitCast(V, RetIRTy);
3563          return RValue::get(V);
3564        }
3565        }
3566        llvm_unreachable("bad evaluation kind");
3567      }
3568
3569      llvm::Value *DestPtr = ReturnValue.getValue();
3570      bool DestIsVolatile = ReturnValue.isVolatile();
3571      CharUnits DestAlign = getContext().getTypeAlignInChars(RetTy);
3572
3573      if (!DestPtr) {
3574        DestPtr = CreateMemTemp(RetTy, "coerce");
3575        DestIsVolatile = false;
3576      }
3577
3578      // If the value is offset in memory, apply the offset now.
3579      llvm::Value *StorePtr = DestPtr;
3580      CharUnits StoreAlign = DestAlign;
3581      if (unsigned Offs = RetAI.getDirectOffset()) {
3582        StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3583        StorePtr =
3584            Builder.CreateConstGEP1_32(Builder.getInt8Ty(), StorePtr, Offs);
3585        StorePtr = Builder.CreateBitCast(StorePtr,
3586                           llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3587        StoreAlign =
3588          StoreAlign.alignmentAtOffset(CharUnits::fromQuantity(Offs));
3589      }
3590      CreateCoercedStore(CI, StorePtr, DestIsVolatile, StoreAlign, *this);
3591
3592      return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3593    }
3594
3595    case ABIArgInfo::Expand:
3596      llvm_unreachable("Invalid ABI kind for return argument");
3597    }
3598
3599    llvm_unreachable("Unhandled ABIArgInfo::Kind");
3600  } ();
3601
3602  if (Ret.isScalar() && TargetDecl) {
3603    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3604      llvm::Value *OffsetValue = nullptr;
3605      if (const auto *Offset = AA->getOffset())
3606        OffsetValue = EmitScalarExpr(Offset);
3607
3608      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3609      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3610      EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3611                              OffsetValue);
3612    }
3613  }
3614
3615  return Ret;
3616}
3617
3618/* VarArg handling */
3619
3620llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3621  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3622}
3623