CGCall.cpp revision 251662
1//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/MC/SubtargetFeature.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace clang;
34using namespace CodeGen;
35
36/***/
37
38static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39  switch (CC) {
40  default: return llvm::CallingConv::C;
41  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47  // TODO: add support for CC_X86Pascal to llvm
48  }
49}
50
51/// Derives the 'this' type for codegen purposes, i.e. ignoring method
52/// qualification.
53/// FIXME: address space qualification?
54static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57}
58
59/// Returns the canonical formal type of the given C++ method.
60static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61  return MD->getType()->getCanonicalTypeUnqualified()
62           .getAs<FunctionProtoType>();
63}
64
65/// Returns the "extra-canonicalized" return type, which discards
66/// qualifiers on the return type.  Codegen doesn't care about them,
67/// and it makes ABI code a little easier to be able to assume that
68/// all parameter and return types are top-level unqualified.
69static CanQualType GetReturnType(QualType RetTy) {
70  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71}
72
73/// Arrange the argument and result information for a value of the given
74/// unprototyped freestanding function type.
75const CGFunctionInfo &
76CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77  // When translating an unprototyped function type, always use a
78  // variadic type.
79  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                 None, FTNP->getExtInfo(), RequiredArgs(0));
81}
82
83/// Arrange the LLVM function layout for a value of the given function
84/// type, on top of any implicit parameters already stored.  Use the
85/// given ExtInfo instead of the ExtInfo from the function type.
86static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                       SmallVectorImpl<CanQualType> &prefix,
88                                             CanQual<FunctionProtoType> FTP,
89                                              FunctionType::ExtInfo extInfo) {
90  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91  // FIXME: Kill copy.
92  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93    prefix.push_back(FTP->getArgType(i));
94  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96}
97
98/// Arrange the argument and result information for a free function (i.e.
99/// not a C++ or ObjC instance method) of the given type.
100static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                      SmallVectorImpl<CanQualType> &prefix,
102                                            CanQual<FunctionProtoType> FTP) {
103  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104}
105
106/// Given the formal ext-info of a C++ instance method, adjust it
107/// according to the C++ ABI in effect.
108static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                FunctionType::ExtInfo &extInfo,
110                                bool isVariadic) {
111  if (extInfo.getCC() == CC_Default) {
112    CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113    extInfo = extInfo.withCallingConv(CC);
114  }
115}
116
117/// Arrange the argument and result information for a free function (i.e.
118/// not a C++ or ObjC instance method) of the given type.
119static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                      SmallVectorImpl<CanQualType> &prefix,
121                                            CanQual<FunctionProtoType> FTP) {
122  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123  adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125}
126
127/// Arrange the argument and result information for a value of the
128/// given freestanding function type.
129const CGFunctionInfo &
130CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131  SmallVector<CanQualType, 16> argTypes;
132  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133}
134
135static CallingConv getCallingConventionForDecl(const Decl *D) {
136  // Set the appropriate calling convention for the Function.
137  if (D->hasAttr<StdCallAttr>())
138    return CC_X86StdCall;
139
140  if (D->hasAttr<FastCallAttr>())
141    return CC_X86FastCall;
142
143  if (D->hasAttr<ThisCallAttr>())
144    return CC_X86ThisCall;
145
146  if (D->hasAttr<PascalAttr>())
147    return CC_X86Pascal;
148
149  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151
152  if (D->hasAttr<PnaclCallAttr>())
153    return CC_PnaclCall;
154
155  if (D->hasAttr<IntelOclBiccAttr>())
156    return CC_IntelOclBicc;
157
158  return CC_C;
159}
160
161/// Arrange the argument and result information for a call to an
162/// unknown C++ non-static member function of the given abstract type.
163/// The member function must be an ordinary function, i.e. not a
164/// constructor or destructor.
165const CGFunctionInfo &
166CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                   const FunctionProtoType *FTP) {
168  SmallVector<CanQualType, 16> argTypes;
169
170  // Add the 'this' pointer.
171  argTypes.push_back(GetThisType(Context, RD));
172
173  return ::arrangeCXXMethodType(*this, argTypes,
174              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175}
176
177/// Arrange the argument and result information for a declaration or
178/// definition of the given C++ non-static member function.  The
179/// member function must be an ordinary function, i.e. not a
180/// constructor or destructor.
181const CGFunctionInfo &
182CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185
186  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187
188  if (MD->isInstance()) {
189    // The abstract case is perfectly fine.
190    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191  }
192
193  return arrangeFreeFunctionType(prototype);
194}
195
196/// Arrange the argument and result information for a declaration
197/// or definition to the given constructor variant.
198const CGFunctionInfo &
199CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                               CXXCtorType ctorKind) {
201  SmallVector<CanQualType, 16> argTypes;
202  argTypes.push_back(GetThisType(Context, D->getParent()));
203  CanQualType resultType = Context.VoidTy;
204
205  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
206
207  CanQual<FunctionProtoType> FTP = GetFormalType(D);
208
209  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
210
211  // Add the formal parameters.
212  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
213    argTypes.push_back(FTP->getArgType(i));
214
215  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
216  adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
217  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
218}
219
220/// Arrange the argument and result information for a declaration,
221/// definition, or call to the given destructor variant.  It so
222/// happens that all three cases produce the same information.
223const CGFunctionInfo &
224CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
225                                   CXXDtorType dtorKind) {
226  SmallVector<CanQualType, 2> argTypes;
227  argTypes.push_back(GetThisType(Context, D->getParent()));
228  CanQualType resultType = Context.VoidTy;
229
230  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
231
232  CanQual<FunctionProtoType> FTP = GetFormalType(D);
233  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
234  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
235
236  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
237  adjustCXXMethodInfo(*this, extInfo, false);
238  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
239                                 RequiredArgs::All);
240}
241
242/// Arrange the argument and result information for the declaration or
243/// definition of the given function.
244const CGFunctionInfo &
245CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
246  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
247    if (MD->isInstance())
248      return arrangeCXXMethodDeclaration(MD);
249
250  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
251
252  assert(isa<FunctionType>(FTy));
253
254  // When declaring a function without a prototype, always use a
255  // non-variadic type.
256  if (isa<FunctionNoProtoType>(FTy)) {
257    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
258    return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
259                                   noProto->getExtInfo(), RequiredArgs::All);
260  }
261
262  assert(isa<FunctionProtoType>(FTy));
263  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
264}
265
266/// Arrange the argument and result information for the declaration or
267/// definition of an Objective-C method.
268const CGFunctionInfo &
269CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
270  // It happens that this is the same as a call with no optional
271  // arguments, except also using the formal 'self' type.
272  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
273}
274
275/// Arrange the argument and result information for the function type
276/// through which to perform a send to the given Objective-C method,
277/// using the given receiver type.  The receiver type is not always
278/// the 'self' type of the method or even an Objective-C pointer type.
279/// This is *not* the right method for actually performing such a
280/// message send, due to the possibility of optional arguments.
281const CGFunctionInfo &
282CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
283                                              QualType receiverType) {
284  SmallVector<CanQualType, 16> argTys;
285  argTys.push_back(Context.getCanonicalParamType(receiverType));
286  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
287  // FIXME: Kill copy?
288  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
289         e = MD->param_end(); i != e; ++i) {
290    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
291  }
292
293  FunctionType::ExtInfo einfo;
294  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
295
296  if (getContext().getLangOpts().ObjCAutoRefCount &&
297      MD->hasAttr<NSReturnsRetainedAttr>())
298    einfo = einfo.withProducesResult(true);
299
300  RequiredArgs required =
301    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
302
303  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
304                                 einfo, required);
305}
306
307const CGFunctionInfo &
308CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
309  // FIXME: Do we need to handle ObjCMethodDecl?
310  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
311
312  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
313    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
314
315  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
316    return arrangeCXXDestructor(DD, GD.getDtorType());
317
318  return arrangeFunctionDeclaration(FD);
319}
320
321/// Arrange a call as unto a free function, except possibly with an
322/// additional number of formal parameters considered required.
323static const CGFunctionInfo &
324arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
325                            const CallArgList &args,
326                            const FunctionType *fnType,
327                            unsigned numExtraRequiredArgs) {
328  assert(args.size() >= numExtraRequiredArgs);
329
330  // In most cases, there are no optional arguments.
331  RequiredArgs required = RequiredArgs::All;
332
333  // If we have a variadic prototype, the required arguments are the
334  // extra prefix plus the arguments in the prototype.
335  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
336    if (proto->isVariadic())
337      required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
338
339  // If we don't have a prototype at all, but we're supposed to
340  // explicitly use the variadic convention for unprototyped calls,
341  // treat all of the arguments as required but preserve the nominal
342  // possibility of variadics.
343  } else if (CGT.CGM.getTargetCodeGenInfo()
344               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
345    required = RequiredArgs(args.size());
346  }
347
348  return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
349                                     fnType->getExtInfo(), required);
350}
351
352/// Figure out the rules for calling a function with the given formal
353/// type using the given arguments.  The arguments are necessary
354/// because the function might be unprototyped, in which case it's
355/// target-dependent in crazy ways.
356const CGFunctionInfo &
357CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
358                                      const FunctionType *fnType) {
359  return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
360}
361
362/// A block function call is essentially a free-function call with an
363/// extra implicit argument.
364const CGFunctionInfo &
365CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
366                                       const FunctionType *fnType) {
367  return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
368}
369
370const CGFunctionInfo &
371CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
372                                      const CallArgList &args,
373                                      FunctionType::ExtInfo info,
374                                      RequiredArgs required) {
375  // FIXME: Kill copy.
376  SmallVector<CanQualType, 16> argTypes;
377  for (CallArgList::const_iterator i = args.begin(), e = args.end();
378       i != e; ++i)
379    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
380  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
381                                 required);
382}
383
384/// Arrange a call to a C++ method, passing the given arguments.
385const CGFunctionInfo &
386CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
387                                   const FunctionProtoType *FPT,
388                                   RequiredArgs required) {
389  // FIXME: Kill copy.
390  SmallVector<CanQualType, 16> argTypes;
391  for (CallArgList::const_iterator i = args.begin(), e = args.end();
392       i != e; ++i)
393    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
394
395  FunctionType::ExtInfo info = FPT->getExtInfo();
396  adjustCXXMethodInfo(*this, info, FPT->isVariadic());
397  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
398                                 argTypes, info, required);
399}
400
401const CGFunctionInfo &
402CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
403                                         const FunctionArgList &args,
404                                         const FunctionType::ExtInfo &info,
405                                         bool isVariadic) {
406  // FIXME: Kill copy.
407  SmallVector<CanQualType, 16> argTypes;
408  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
409       i != e; ++i)
410    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
411
412  RequiredArgs required =
413    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
414  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
415                                 required);
416}
417
418const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
419  return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
420                                 FunctionType::ExtInfo(), RequiredArgs::All);
421}
422
423/// Arrange the argument and result information for an abstract value
424/// of a given function type.  This is the method which all of the
425/// above functions ultimately defer to.
426const CGFunctionInfo &
427CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
428                                      ArrayRef<CanQualType> argTypes,
429                                      FunctionType::ExtInfo info,
430                                      RequiredArgs required) {
431#ifndef NDEBUG
432  for (ArrayRef<CanQualType>::const_iterator
433         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
434    assert(I->isCanonicalAsParam());
435#endif
436
437  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
438
439  // Lookup or create unique function info.
440  llvm::FoldingSetNodeID ID;
441  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
442
443  void *insertPos = 0;
444  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
445  if (FI)
446    return *FI;
447
448  // Construct the function info.  We co-allocate the ArgInfos.
449  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
450  FunctionInfos.InsertNode(FI, insertPos);
451
452  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
453  assert(inserted && "Recursively being processed?");
454
455  // Compute ABI information.
456  getABIInfo().computeInfo(*FI);
457
458  // Loop over all of the computed argument and return value info.  If any of
459  // them are direct or extend without a specified coerce type, specify the
460  // default now.
461  ABIArgInfo &retInfo = FI->getReturnInfo();
462  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
463    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
464
465  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
466       I != E; ++I)
467    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
468      I->info.setCoerceToType(ConvertType(I->type));
469
470  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
471  assert(erased && "Not in set?");
472
473  return *FI;
474}
475
476CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
477                                       const FunctionType::ExtInfo &info,
478                                       CanQualType resultType,
479                                       ArrayRef<CanQualType> argTypes,
480                                       RequiredArgs required) {
481  void *buffer = operator new(sizeof(CGFunctionInfo) +
482                              sizeof(ArgInfo) * (argTypes.size() + 1));
483  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
484  FI->CallingConvention = llvmCC;
485  FI->EffectiveCallingConvention = llvmCC;
486  FI->ASTCallingConvention = info.getCC();
487  FI->NoReturn = info.getNoReturn();
488  FI->ReturnsRetained = info.getProducesResult();
489  FI->Required = required;
490  FI->HasRegParm = info.getHasRegParm();
491  FI->RegParm = info.getRegParm();
492  FI->NumArgs = argTypes.size();
493  FI->getArgsBuffer()[0].type = resultType;
494  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
495    FI->getArgsBuffer()[i + 1].type = argTypes[i];
496  return FI;
497}
498
499/***/
500
501void CodeGenTypes::GetExpandedTypes(QualType type,
502                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
503  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
504    uint64_t NumElts = AT->getSize().getZExtValue();
505    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
506      GetExpandedTypes(AT->getElementType(), expandedTypes);
507  } else if (const RecordType *RT = type->getAs<RecordType>()) {
508    const RecordDecl *RD = RT->getDecl();
509    assert(!RD->hasFlexibleArrayMember() &&
510           "Cannot expand structure with flexible array.");
511    if (RD->isUnion()) {
512      // Unions can be here only in degenerative cases - all the fields are same
513      // after flattening. Thus we have to use the "largest" field.
514      const FieldDecl *LargestFD = 0;
515      CharUnits UnionSize = CharUnits::Zero();
516
517      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
518           i != e; ++i) {
519        const FieldDecl *FD = *i;
520        assert(!FD->isBitField() &&
521               "Cannot expand structure with bit-field members.");
522        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
523        if (UnionSize < FieldSize) {
524          UnionSize = FieldSize;
525          LargestFD = FD;
526        }
527      }
528      if (LargestFD)
529        GetExpandedTypes(LargestFD->getType(), expandedTypes);
530    } else {
531      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
532           i != e; ++i) {
533        assert(!i->isBitField() &&
534               "Cannot expand structure with bit-field members.");
535        GetExpandedTypes(i->getType(), expandedTypes);
536      }
537    }
538  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
539    llvm::Type *EltTy = ConvertType(CT->getElementType());
540    expandedTypes.push_back(EltTy);
541    expandedTypes.push_back(EltTy);
542  } else
543    expandedTypes.push_back(ConvertType(type));
544}
545
546llvm::Function::arg_iterator
547CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
548                                    llvm::Function::arg_iterator AI) {
549  assert(LV.isSimple() &&
550         "Unexpected non-simple lvalue during struct expansion.");
551
552  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
553    unsigned NumElts = AT->getSize().getZExtValue();
554    QualType EltTy = AT->getElementType();
555    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
556      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
557      LValue LV = MakeAddrLValue(EltAddr, EltTy);
558      AI = ExpandTypeFromArgs(EltTy, LV, AI);
559    }
560  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
561    RecordDecl *RD = RT->getDecl();
562    if (RD->isUnion()) {
563      // Unions can be here only in degenerative cases - all the fields are same
564      // after flattening. Thus we have to use the "largest" field.
565      const FieldDecl *LargestFD = 0;
566      CharUnits UnionSize = CharUnits::Zero();
567
568      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
569           i != e; ++i) {
570        const FieldDecl *FD = *i;
571        assert(!FD->isBitField() &&
572               "Cannot expand structure with bit-field members.");
573        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
574        if (UnionSize < FieldSize) {
575          UnionSize = FieldSize;
576          LargestFD = FD;
577        }
578      }
579      if (LargestFD) {
580        // FIXME: What are the right qualifiers here?
581        LValue SubLV = EmitLValueForField(LV, LargestFD);
582        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
583      }
584    } else {
585      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
586           i != e; ++i) {
587        FieldDecl *FD = *i;
588        QualType FT = FD->getType();
589
590        // FIXME: What are the right qualifiers here?
591        LValue SubLV = EmitLValueForField(LV, FD);
592        AI = ExpandTypeFromArgs(FT, SubLV, AI);
593      }
594    }
595  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
596    QualType EltTy = CT->getElementType();
597    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
598    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
599    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
600    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
601  } else {
602    EmitStoreThroughLValue(RValue::get(AI), LV);
603    ++AI;
604  }
605
606  return AI;
607}
608
609/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
610/// accessing some number of bytes out of it, try to gep into the struct to get
611/// at its inner goodness.  Dive as deep as possible without entering an element
612/// with an in-memory size smaller than DstSize.
613static llvm::Value *
614EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
615                                   llvm::StructType *SrcSTy,
616                                   uint64_t DstSize, CodeGenFunction &CGF) {
617  // We can't dive into a zero-element struct.
618  if (SrcSTy->getNumElements() == 0) return SrcPtr;
619
620  llvm::Type *FirstElt = SrcSTy->getElementType(0);
621
622  // If the first elt is at least as large as what we're looking for, or if the
623  // first element is the same size as the whole struct, we can enter it.
624  uint64_t FirstEltSize =
625    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
626  if (FirstEltSize < DstSize &&
627      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
628    return SrcPtr;
629
630  // GEP into the first element.
631  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
632
633  // If the first element is a struct, recurse.
634  llvm::Type *SrcTy =
635    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
636  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
637    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
638
639  return SrcPtr;
640}
641
642/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
643/// are either integers or pointers.  This does a truncation of the value if it
644/// is too large or a zero extension if it is too small.
645static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
646                                             llvm::Type *Ty,
647                                             CodeGenFunction &CGF) {
648  if (Val->getType() == Ty)
649    return Val;
650
651  if (isa<llvm::PointerType>(Val->getType())) {
652    // If this is Pointer->Pointer avoid conversion to and from int.
653    if (isa<llvm::PointerType>(Ty))
654      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
655
656    // Convert the pointer to an integer so we can play with its width.
657    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
658  }
659
660  llvm::Type *DestIntTy = Ty;
661  if (isa<llvm::PointerType>(DestIntTy))
662    DestIntTy = CGF.IntPtrTy;
663
664  if (Val->getType() != DestIntTy)
665    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
666
667  if (isa<llvm::PointerType>(Ty))
668    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
669  return Val;
670}
671
672
673
674/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
675/// a pointer to an object of type \arg Ty.
676///
677/// This safely handles the case when the src type is smaller than the
678/// destination type; in this situation the values of bits which not
679/// present in the src are undefined.
680static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
681                                      llvm::Type *Ty,
682                                      CodeGenFunction &CGF) {
683  llvm::Type *SrcTy =
684    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
685
686  // If SrcTy and Ty are the same, just do a load.
687  if (SrcTy == Ty)
688    return CGF.Builder.CreateLoad(SrcPtr);
689
690  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
691
692  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
693    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
694    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
695  }
696
697  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
698
699  // If the source and destination are integer or pointer types, just do an
700  // extension or truncation to the desired type.
701  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
702      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
703    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
704    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
705  }
706
707  // If load is legal, just bitcast the src pointer.
708  if (SrcSize >= DstSize) {
709    // Generally SrcSize is never greater than DstSize, since this means we are
710    // losing bits. However, this can happen in cases where the structure has
711    // additional padding, for example due to a user specified alignment.
712    //
713    // FIXME: Assert that we aren't truncating non-padding bits when have access
714    // to that information.
715    llvm::Value *Casted =
716      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
717    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
718    // FIXME: Use better alignment / avoid requiring aligned load.
719    Load->setAlignment(1);
720    return Load;
721  }
722
723  // Otherwise do coercion through memory. This is stupid, but
724  // simple.
725  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
726  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
727  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
728  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
729  // FIXME: Use better alignment.
730  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
731      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
732      1, false);
733  return CGF.Builder.CreateLoad(Tmp);
734}
735
736// Function to store a first-class aggregate into memory.  We prefer to
737// store the elements rather than the aggregate to be more friendly to
738// fast-isel.
739// FIXME: Do we need to recurse here?
740static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
741                          llvm::Value *DestPtr, bool DestIsVolatile,
742                          bool LowAlignment) {
743  // Prefer scalar stores to first-class aggregate stores.
744  if (llvm::StructType *STy =
745        dyn_cast<llvm::StructType>(Val->getType())) {
746    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
747      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
748      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
749      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
750                                                    DestIsVolatile);
751      if (LowAlignment)
752        SI->setAlignment(1);
753    }
754  } else {
755    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
756    if (LowAlignment)
757      SI->setAlignment(1);
758  }
759}
760
761/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
762/// where the source and destination may have different types.
763///
764/// This safely handles the case when the src type is larger than the
765/// destination type; the upper bits of the src will be lost.
766static void CreateCoercedStore(llvm::Value *Src,
767                               llvm::Value *DstPtr,
768                               bool DstIsVolatile,
769                               CodeGenFunction &CGF) {
770  llvm::Type *SrcTy = Src->getType();
771  llvm::Type *DstTy =
772    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
773  if (SrcTy == DstTy) {
774    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
775    return;
776  }
777
778  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
779
780  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
781    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
782    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
783  }
784
785  // If the source and destination are integer or pointer types, just do an
786  // extension or truncation to the desired type.
787  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
788      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
789    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
790    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
791    return;
792  }
793
794  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
795
796  // If store is legal, just bitcast the src pointer.
797  if (SrcSize <= DstSize) {
798    llvm::Value *Casted =
799      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
800    // FIXME: Use better alignment / avoid requiring aligned store.
801    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
802  } else {
803    // Otherwise do coercion through memory. This is stupid, but
804    // simple.
805
806    // Generally SrcSize is never greater than DstSize, since this means we are
807    // losing bits. However, this can happen in cases where the structure has
808    // additional padding, for example due to a user specified alignment.
809    //
810    // FIXME: Assert that we aren't truncating non-padding bits when have access
811    // to that information.
812    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
813    CGF.Builder.CreateStore(Src, Tmp);
814    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
815    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
816    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
817    // FIXME: Use better alignment.
818    CGF.Builder.CreateMemCpy(DstCasted, Casted,
819        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
820        1, false);
821  }
822}
823
824/***/
825
826bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
827  return FI.getReturnInfo().isIndirect();
828}
829
830bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
831  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
832    switch (BT->getKind()) {
833    default:
834      return false;
835    case BuiltinType::Float:
836      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
837    case BuiltinType::Double:
838      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
839    case BuiltinType::LongDouble:
840      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
841    }
842  }
843
844  return false;
845}
846
847bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
848  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
849    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
850      if (BT->getKind() == BuiltinType::LongDouble)
851        return getTarget().useObjCFP2RetForComplexLongDouble();
852    }
853  }
854
855  return false;
856}
857
858llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
859  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
860  return GetFunctionType(FI);
861}
862
863llvm::FunctionType *
864CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
865
866  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
867  assert(Inserted && "Recursively being processed?");
868
869  SmallVector<llvm::Type*, 8> argTypes;
870  llvm::Type *resultType = 0;
871
872  const ABIArgInfo &retAI = FI.getReturnInfo();
873  switch (retAI.getKind()) {
874  case ABIArgInfo::Expand:
875    llvm_unreachable("Invalid ABI kind for return argument");
876
877  case ABIArgInfo::Extend:
878  case ABIArgInfo::Direct:
879    resultType = retAI.getCoerceToType();
880    break;
881
882  case ABIArgInfo::Indirect: {
883    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
884    resultType = llvm::Type::getVoidTy(getLLVMContext());
885
886    QualType ret = FI.getReturnType();
887    llvm::Type *ty = ConvertType(ret);
888    unsigned addressSpace = Context.getTargetAddressSpace(ret);
889    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
890    break;
891  }
892
893  case ABIArgInfo::Ignore:
894    resultType = llvm::Type::getVoidTy(getLLVMContext());
895    break;
896  }
897
898  // Add in all of the required arguments.
899  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
900  if (FI.isVariadic()) {
901    ie = it + FI.getRequiredArgs().getNumRequiredArgs();
902  } else {
903    ie = FI.arg_end();
904  }
905  for (; it != ie; ++it) {
906    const ABIArgInfo &argAI = it->info;
907
908    // Insert a padding type to ensure proper alignment.
909    if (llvm::Type *PaddingType = argAI.getPaddingType())
910      argTypes.push_back(PaddingType);
911
912    switch (argAI.getKind()) {
913    case ABIArgInfo::Ignore:
914      break;
915
916    case ABIArgInfo::Indirect: {
917      // indirect arguments are always on the stack, which is addr space #0.
918      llvm::Type *LTy = ConvertTypeForMem(it->type);
919      argTypes.push_back(LTy->getPointerTo());
920      break;
921    }
922
923    case ABIArgInfo::Extend:
924    case ABIArgInfo::Direct: {
925      // If the coerce-to type is a first class aggregate, flatten it.  Either
926      // way is semantically identical, but fast-isel and the optimizer
927      // generally likes scalar values better than FCAs.
928      llvm::Type *argType = argAI.getCoerceToType();
929      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
930        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
931          argTypes.push_back(st->getElementType(i));
932      } else {
933        argTypes.push_back(argType);
934      }
935      break;
936    }
937
938    case ABIArgInfo::Expand:
939      GetExpandedTypes(it->type, argTypes);
940      break;
941    }
942  }
943
944  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
945  assert(Erased && "Not in set?");
946
947  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
948}
949
950llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
951  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
952  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
953
954  if (!isFuncTypeConvertible(FPT))
955    return llvm::StructType::get(getLLVMContext());
956
957  const CGFunctionInfo *Info;
958  if (isa<CXXDestructorDecl>(MD))
959    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
960  else
961    Info = &arrangeCXXMethodDeclaration(MD);
962  return GetFunctionType(*Info);
963}
964
965void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
966                                           const Decl *TargetDecl,
967                                           AttributeListType &PAL,
968                                           unsigned &CallingConv,
969                                           bool AttrOnCallSite) {
970  llvm::AttrBuilder FuncAttrs;
971  llvm::AttrBuilder RetAttrs;
972
973  CallingConv = FI.getEffectiveCallingConvention();
974
975  if (FI.isNoReturn())
976    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
977
978  // FIXME: handle sseregparm someday...
979  if (TargetDecl) {
980    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
981      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
982    if (TargetDecl->hasAttr<NoThrowAttr>())
983      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
984    if (TargetDecl->hasAttr<NoReturnAttr>())
985      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
986
987    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
988      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
989      if (FPT && FPT->isNothrow(getContext()))
990        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
991      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
992      // These attributes are not inherited by overloads.
993      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
994      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
995        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
996    }
997
998    // 'const' and 'pure' attribute functions are also nounwind.
999    if (TargetDecl->hasAttr<ConstAttr>()) {
1000      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1001      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1002    } else if (TargetDecl->hasAttr<PureAttr>()) {
1003      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1004      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1005    }
1006    if (TargetDecl->hasAttr<MallocAttr>())
1007      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1008  }
1009
1010  if (CodeGenOpts.OptimizeSize)
1011    FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1012  if (CodeGenOpts.OptimizeSize == 2)
1013    FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1014  if (CodeGenOpts.DisableRedZone)
1015    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1016  if (CodeGenOpts.NoImplicitFloat)
1017    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1018
1019  if (AttrOnCallSite) {
1020    // Attributes that should go on the call site only.
1021    if (!CodeGenOpts.SimplifyLibCalls)
1022      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1023  } else {
1024    // Attributes that should go on the function, but not the call site.
1025    if (!CodeGenOpts.DisableFPElim) {
1026      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1027      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1028    } else if (CodeGenOpts.OmitLeafFramePointer) {
1029      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1030      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1031    } else {
1032      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1033      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1034    }
1035
1036    FuncAttrs.addAttribute("less-precise-fpmad",
1037                           CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
1038    FuncAttrs.addAttribute("no-infs-fp-math",
1039                           CodeGenOpts.NoInfsFPMath ? "true" : "false");
1040    FuncAttrs.addAttribute("no-nans-fp-math",
1041                           CodeGenOpts.NoNaNsFPMath ? "true" : "false");
1042    FuncAttrs.addAttribute("unsafe-fp-math",
1043                           CodeGenOpts.UnsafeFPMath ? "true" : "false");
1044    FuncAttrs.addAttribute("use-soft-float",
1045                           CodeGenOpts.SoftFloat ? "true" : "false");
1046  }
1047
1048  QualType RetTy = FI.getReturnType();
1049  unsigned Index = 1;
1050  const ABIArgInfo &RetAI = FI.getReturnInfo();
1051  switch (RetAI.getKind()) {
1052  case ABIArgInfo::Extend:
1053   if (RetTy->hasSignedIntegerRepresentation())
1054     RetAttrs.addAttribute(llvm::Attribute::SExt);
1055   else if (RetTy->hasUnsignedIntegerRepresentation())
1056     RetAttrs.addAttribute(llvm::Attribute::ZExt);
1057    break;
1058  case ABIArgInfo::Direct:
1059  case ABIArgInfo::Ignore:
1060    break;
1061
1062  case ABIArgInfo::Indirect: {
1063    llvm::AttrBuilder SRETAttrs;
1064    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1065    if (RetAI.getInReg())
1066      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1067    PAL.push_back(llvm::
1068                  AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1069
1070    ++Index;
1071    // sret disables readnone and readonly
1072    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1073      .removeAttribute(llvm::Attribute::ReadNone);
1074    break;
1075  }
1076
1077  case ABIArgInfo::Expand:
1078    llvm_unreachable("Invalid ABI kind for return argument");
1079  }
1080
1081  if (RetAttrs.hasAttributes())
1082    PAL.push_back(llvm::
1083                  AttributeSet::get(getLLVMContext(),
1084                                    llvm::AttributeSet::ReturnIndex,
1085                                    RetAttrs));
1086
1087  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1088         ie = FI.arg_end(); it != ie; ++it) {
1089    QualType ParamType = it->type;
1090    const ABIArgInfo &AI = it->info;
1091    llvm::AttrBuilder Attrs;
1092
1093    if (AI.getPaddingType()) {
1094      if (AI.getPaddingInReg())
1095        PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1096                                              llvm::Attribute::InReg));
1097      // Increment Index if there is padding.
1098      ++Index;
1099    }
1100
1101    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1102    // have the corresponding parameter variable.  It doesn't make
1103    // sense to do it here because parameters are so messed up.
1104    switch (AI.getKind()) {
1105    case ABIArgInfo::Extend:
1106      if (ParamType->isSignedIntegerOrEnumerationType())
1107        Attrs.addAttribute(llvm::Attribute::SExt);
1108      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1109        Attrs.addAttribute(llvm::Attribute::ZExt);
1110      // FALL THROUGH
1111    case ABIArgInfo::Direct:
1112      if (AI.getInReg())
1113        Attrs.addAttribute(llvm::Attribute::InReg);
1114
1115      // FIXME: handle sseregparm someday...
1116
1117      if (llvm::StructType *STy =
1118          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1119        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1120        if (Attrs.hasAttributes())
1121          for (unsigned I = 0; I < Extra; ++I)
1122            PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1123                                                  Attrs));
1124        Index += Extra;
1125      }
1126      break;
1127
1128    case ABIArgInfo::Indirect:
1129      if (AI.getInReg())
1130        Attrs.addAttribute(llvm::Attribute::InReg);
1131
1132      if (AI.getIndirectByVal())
1133        Attrs.addAttribute(llvm::Attribute::ByVal);
1134
1135      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1136
1137      // byval disables readnone and readonly.
1138      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1139        .removeAttribute(llvm::Attribute::ReadNone);
1140      break;
1141
1142    case ABIArgInfo::Ignore:
1143      // Skip increment, no matching LLVM parameter.
1144      continue;
1145
1146    case ABIArgInfo::Expand: {
1147      SmallVector<llvm::Type*, 8> types;
1148      // FIXME: This is rather inefficient. Do we ever actually need to do
1149      // anything here? The result should be just reconstructed on the other
1150      // side, so extension should be a non-issue.
1151      getTypes().GetExpandedTypes(ParamType, types);
1152      Index += types.size();
1153      continue;
1154    }
1155    }
1156
1157    if (Attrs.hasAttributes())
1158      PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1159    ++Index;
1160  }
1161  if (FuncAttrs.hasAttributes())
1162    PAL.push_back(llvm::
1163                  AttributeSet::get(getLLVMContext(),
1164                                    llvm::AttributeSet::FunctionIndex,
1165                                    FuncAttrs));
1166}
1167
1168/// An argument came in as a promoted argument; demote it back to its
1169/// declared type.
1170static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1171                                         const VarDecl *var,
1172                                         llvm::Value *value) {
1173  llvm::Type *varType = CGF.ConvertType(var->getType());
1174
1175  // This can happen with promotions that actually don't change the
1176  // underlying type, like the enum promotions.
1177  if (value->getType() == varType) return value;
1178
1179  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1180         && "unexpected promotion type");
1181
1182  if (isa<llvm::IntegerType>(varType))
1183    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1184
1185  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1186}
1187
1188void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1189                                         llvm::Function *Fn,
1190                                         const FunctionArgList &Args) {
1191  // If this is an implicit-return-zero function, go ahead and
1192  // initialize the return value.  TODO: it might be nice to have
1193  // a more general mechanism for this that didn't require synthesized
1194  // return statements.
1195  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1196    if (FD->hasImplicitReturnZero()) {
1197      QualType RetTy = FD->getResultType().getUnqualifiedType();
1198      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1199      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1200      Builder.CreateStore(Zero, ReturnValue);
1201    }
1202  }
1203
1204  // FIXME: We no longer need the types from FunctionArgList; lift up and
1205  // simplify.
1206
1207  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1208  llvm::Function::arg_iterator AI = Fn->arg_begin();
1209
1210  // Name the struct return argument.
1211  if (CGM.ReturnTypeUsesSRet(FI)) {
1212    AI->setName("agg.result");
1213    AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1214                                        AI->getArgNo() + 1,
1215                                        llvm::Attribute::NoAlias));
1216    ++AI;
1217  }
1218
1219  assert(FI.arg_size() == Args.size() &&
1220         "Mismatch between function signature & arguments.");
1221  unsigned ArgNo = 1;
1222  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1223  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1224       i != e; ++i, ++info_it, ++ArgNo) {
1225    const VarDecl *Arg = *i;
1226    QualType Ty = info_it->type;
1227    const ABIArgInfo &ArgI = info_it->info;
1228
1229    bool isPromoted =
1230      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1231
1232    // Skip the dummy padding argument.
1233    if (ArgI.getPaddingType())
1234      ++AI;
1235
1236    switch (ArgI.getKind()) {
1237    case ABIArgInfo::Indirect: {
1238      llvm::Value *V = AI;
1239
1240      if (!hasScalarEvaluationKind(Ty)) {
1241        // Aggregates and complex variables are accessed by reference.  All we
1242        // need to do is realign the value, if requested
1243        if (ArgI.getIndirectRealign()) {
1244          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1245
1246          // Copy from the incoming argument pointer to the temporary with the
1247          // appropriate alignment.
1248          //
1249          // FIXME: We should have a common utility for generating an aggregate
1250          // copy.
1251          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1252          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1253          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1254          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1255          Builder.CreateMemCpy(Dst,
1256                               Src,
1257                               llvm::ConstantInt::get(IntPtrTy,
1258                                                      Size.getQuantity()),
1259                               ArgI.getIndirectAlign(),
1260                               false);
1261          V = AlignedTemp;
1262        }
1263      } else {
1264        // Load scalar value from indirect argument.
1265        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1266        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1267
1268        if (isPromoted)
1269          V = emitArgumentDemotion(*this, Arg, V);
1270      }
1271      EmitParmDecl(*Arg, V, ArgNo);
1272      break;
1273    }
1274
1275    case ABIArgInfo::Extend:
1276    case ABIArgInfo::Direct: {
1277
1278      // If we have the trivial case, handle it with no muss and fuss.
1279      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1280          ArgI.getCoerceToType() == ConvertType(Ty) &&
1281          ArgI.getDirectOffset() == 0) {
1282        assert(AI != Fn->arg_end() && "Argument mismatch!");
1283        llvm::Value *V = AI;
1284
1285        if (Arg->getType().isRestrictQualified())
1286          AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1287                                              AI->getArgNo() + 1,
1288                                              llvm::Attribute::NoAlias));
1289
1290        // Ensure the argument is the correct type.
1291        if (V->getType() != ArgI.getCoerceToType())
1292          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1293
1294        if (isPromoted)
1295          V = emitArgumentDemotion(*this, Arg, V);
1296
1297        // Because of merging of function types from multiple decls it is
1298        // possible for the type of an argument to not match the corresponding
1299        // type in the function type. Since we are codegening the callee
1300        // in here, add a cast to the argument type.
1301        llvm::Type *LTy = ConvertType(Arg->getType());
1302        if (V->getType() != LTy)
1303          V = Builder.CreateBitCast(V, LTy);
1304
1305        EmitParmDecl(*Arg, V, ArgNo);
1306        break;
1307      }
1308
1309      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1310
1311      // The alignment we need to use is the max of the requested alignment for
1312      // the argument plus the alignment required by our access code below.
1313      unsigned AlignmentToUse =
1314        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1315      AlignmentToUse = std::max(AlignmentToUse,
1316                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1317
1318      Alloca->setAlignment(AlignmentToUse);
1319      llvm::Value *V = Alloca;
1320      llvm::Value *Ptr = V;    // Pointer to store into.
1321
1322      // If the value is offset in memory, apply the offset now.
1323      if (unsigned Offs = ArgI.getDirectOffset()) {
1324        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1325        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1326        Ptr = Builder.CreateBitCast(Ptr,
1327                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1328      }
1329
1330      // If the coerce-to type is a first class aggregate, we flatten it and
1331      // pass the elements. Either way is semantically identical, but fast-isel
1332      // and the optimizer generally likes scalar values better than FCAs.
1333      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1334      if (STy && STy->getNumElements() > 1) {
1335        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1336        llvm::Type *DstTy =
1337          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1338        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1339
1340        if (SrcSize <= DstSize) {
1341          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1342
1343          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1344            assert(AI != Fn->arg_end() && "Argument mismatch!");
1345            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1346            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1347            Builder.CreateStore(AI++, EltPtr);
1348          }
1349        } else {
1350          llvm::AllocaInst *TempAlloca =
1351            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1352          TempAlloca->setAlignment(AlignmentToUse);
1353          llvm::Value *TempV = TempAlloca;
1354
1355          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1356            assert(AI != Fn->arg_end() && "Argument mismatch!");
1357            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1358            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1359            Builder.CreateStore(AI++, EltPtr);
1360          }
1361
1362          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1363        }
1364      } else {
1365        // Simple case, just do a coerced store of the argument into the alloca.
1366        assert(AI != Fn->arg_end() && "Argument mismatch!");
1367        AI->setName(Arg->getName() + ".coerce");
1368        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1369      }
1370
1371
1372      // Match to what EmitParmDecl is expecting for this type.
1373      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1374        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1375        if (isPromoted)
1376          V = emitArgumentDemotion(*this, Arg, V);
1377      }
1378      EmitParmDecl(*Arg, V, ArgNo);
1379      continue;  // Skip ++AI increment, already done.
1380    }
1381
1382    case ABIArgInfo::Expand: {
1383      // If this structure was expanded into multiple arguments then
1384      // we need to create a temporary and reconstruct it from the
1385      // arguments.
1386      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1387      CharUnits Align = getContext().getDeclAlign(Arg);
1388      Alloca->setAlignment(Align.getQuantity());
1389      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1390      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1391      EmitParmDecl(*Arg, Alloca, ArgNo);
1392
1393      // Name the arguments used in expansion and increment AI.
1394      unsigned Index = 0;
1395      for (; AI != End; ++AI, ++Index)
1396        AI->setName(Arg->getName() + "." + Twine(Index));
1397      continue;
1398    }
1399
1400    case ABIArgInfo::Ignore:
1401      // Initialize the local variable appropriately.
1402      if (!hasScalarEvaluationKind(Ty))
1403        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1404      else
1405        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1406                     ArgNo);
1407
1408      // Skip increment, no matching LLVM parameter.
1409      continue;
1410    }
1411
1412    ++AI;
1413  }
1414  assert(AI == Fn->arg_end() && "Argument mismatch!");
1415}
1416
1417static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1418  while (insn->use_empty()) {
1419    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1420    if (!bitcast) return;
1421
1422    // This is "safe" because we would have used a ConstantExpr otherwise.
1423    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1424    bitcast->eraseFromParent();
1425  }
1426}
1427
1428/// Try to emit a fused autorelease of a return result.
1429static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1430                                                    llvm::Value *result) {
1431  // We must be immediately followed the cast.
1432  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1433  if (BB->empty()) return 0;
1434  if (&BB->back() != result) return 0;
1435
1436  llvm::Type *resultType = result->getType();
1437
1438  // result is in a BasicBlock and is therefore an Instruction.
1439  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1440
1441  SmallVector<llvm::Instruction*,4> insnsToKill;
1442
1443  // Look for:
1444  //  %generator = bitcast %type1* %generator2 to %type2*
1445  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1446    // We would have emitted this as a constant if the operand weren't
1447    // an Instruction.
1448    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1449
1450    // Require the generator to be immediately followed by the cast.
1451    if (generator->getNextNode() != bitcast)
1452      return 0;
1453
1454    insnsToKill.push_back(bitcast);
1455  }
1456
1457  // Look for:
1458  //   %generator = call i8* @objc_retain(i8* %originalResult)
1459  // or
1460  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1461  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1462  if (!call) return 0;
1463
1464  bool doRetainAutorelease;
1465
1466  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1467    doRetainAutorelease = true;
1468  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1469                                          .objc_retainAutoreleasedReturnValue) {
1470    doRetainAutorelease = false;
1471
1472    // If we emitted an assembly marker for this call (and the
1473    // ARCEntrypoints field should have been set if so), go looking
1474    // for that call.  If we can't find it, we can't do this
1475    // optimization.  But it should always be the immediately previous
1476    // instruction, unless we needed bitcasts around the call.
1477    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1478      llvm::Instruction *prev = call->getPrevNode();
1479      assert(prev);
1480      if (isa<llvm::BitCastInst>(prev)) {
1481        prev = prev->getPrevNode();
1482        assert(prev);
1483      }
1484      assert(isa<llvm::CallInst>(prev));
1485      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1486               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1487      insnsToKill.push_back(prev);
1488    }
1489  } else {
1490    return 0;
1491  }
1492
1493  result = call->getArgOperand(0);
1494  insnsToKill.push_back(call);
1495
1496  // Keep killing bitcasts, for sanity.  Note that we no longer care
1497  // about precise ordering as long as there's exactly one use.
1498  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1499    if (!bitcast->hasOneUse()) break;
1500    insnsToKill.push_back(bitcast);
1501    result = bitcast->getOperand(0);
1502  }
1503
1504  // Delete all the unnecessary instructions, from latest to earliest.
1505  for (SmallVectorImpl<llvm::Instruction*>::iterator
1506         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1507    (*i)->eraseFromParent();
1508
1509  // Do the fused retain/autorelease if we were asked to.
1510  if (doRetainAutorelease)
1511    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1512
1513  // Cast back to the result type.
1514  return CGF.Builder.CreateBitCast(result, resultType);
1515}
1516
1517/// If this is a +1 of the value of an immutable 'self', remove it.
1518static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1519                                          llvm::Value *result) {
1520  // This is only applicable to a method with an immutable 'self'.
1521  const ObjCMethodDecl *method =
1522    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1523  if (!method) return 0;
1524  const VarDecl *self = method->getSelfDecl();
1525  if (!self->getType().isConstQualified()) return 0;
1526
1527  // Look for a retain call.
1528  llvm::CallInst *retainCall =
1529    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1530  if (!retainCall ||
1531      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1532    return 0;
1533
1534  // Look for an ordinary load of 'self'.
1535  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1536  llvm::LoadInst *load =
1537    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1538  if (!load || load->isAtomic() || load->isVolatile() ||
1539      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1540    return 0;
1541
1542  // Okay!  Burn it all down.  This relies for correctness on the
1543  // assumption that the retain is emitted as part of the return and
1544  // that thereafter everything is used "linearly".
1545  llvm::Type *resultType = result->getType();
1546  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1547  assert(retainCall->use_empty());
1548  retainCall->eraseFromParent();
1549  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1550
1551  return CGF.Builder.CreateBitCast(load, resultType);
1552}
1553
1554/// Emit an ARC autorelease of the result of a function.
1555///
1556/// \return the value to actually return from the function
1557static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1558                                            llvm::Value *result) {
1559  // If we're returning 'self', kill the initial retain.  This is a
1560  // heuristic attempt to "encourage correctness" in the really unfortunate
1561  // case where we have a return of self during a dealloc and we desperately
1562  // need to avoid the possible autorelease.
1563  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1564    return self;
1565
1566  // At -O0, try to emit a fused retain/autorelease.
1567  if (CGF.shouldUseFusedARCCalls())
1568    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1569      return fused;
1570
1571  return CGF.EmitARCAutoreleaseReturnValue(result);
1572}
1573
1574/// Heuristically search for a dominating store to the return-value slot.
1575static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1576  // If there are multiple uses of the return-value slot, just check
1577  // for something immediately preceding the IP.  Sometimes this can
1578  // happen with how we generate implicit-returns; it can also happen
1579  // with noreturn cleanups.
1580  if (!CGF.ReturnValue->hasOneUse()) {
1581    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1582    if (IP->empty()) return 0;
1583    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1584    if (!store) return 0;
1585    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1586    assert(!store->isAtomic() && !store->isVolatile()); // see below
1587    return store;
1588  }
1589
1590  llvm::StoreInst *store =
1591    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1592  if (!store) return 0;
1593
1594  // These aren't actually possible for non-coerced returns, and we
1595  // only care about non-coerced returns on this code path.
1596  assert(!store->isAtomic() && !store->isVolatile());
1597
1598  // Now do a first-and-dirty dominance check: just walk up the
1599  // single-predecessors chain from the current insertion point.
1600  llvm::BasicBlock *StoreBB = store->getParent();
1601  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1602  while (IP != StoreBB) {
1603    if (!(IP = IP->getSinglePredecessor()))
1604      return 0;
1605  }
1606
1607  // Okay, the store's basic block dominates the insertion point; we
1608  // can do our thing.
1609  return store;
1610}
1611
1612/// Check whether 'this' argument of a callsite matches 'this' of the caller.
1613static bool checkThisPointer(llvm::Value *ThisArg, llvm::Value *This) {
1614  if (ThisArg == This)
1615    return true;
1616  // Check whether ThisArg is a bitcast of This.
1617  llvm::BitCastInst *Bitcast;
1618  if ((Bitcast = dyn_cast<llvm::BitCastInst>(ThisArg)) &&
1619      Bitcast->getOperand(0) == This)
1620    return true;
1621  return false;
1622}
1623
1624void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1625                                         bool EmitRetDbgLoc) {
1626  // Functions with no result always return void.
1627  if (ReturnValue == 0) {
1628    Builder.CreateRetVoid();
1629    return;
1630  }
1631
1632  llvm::DebugLoc RetDbgLoc;
1633  llvm::Value *RV = 0;
1634  QualType RetTy = FI.getReturnType();
1635  const ABIArgInfo &RetAI = FI.getReturnInfo();
1636
1637  switch (RetAI.getKind()) {
1638  case ABIArgInfo::Indirect: {
1639    switch (getEvaluationKind(RetTy)) {
1640    case TEK_Complex: {
1641      ComplexPairTy RT =
1642        EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1643      EmitStoreOfComplex(RT,
1644                       MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1645                         /*isInit*/ true);
1646      break;
1647    }
1648    case TEK_Aggregate:
1649      // Do nothing; aggregrates get evaluated directly into the destination.
1650      break;
1651    case TEK_Scalar:
1652      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1653                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1654                        /*isInit*/ true);
1655      break;
1656    }
1657    break;
1658  }
1659
1660  case ABIArgInfo::Extend:
1661  case ABIArgInfo::Direct:
1662    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1663        RetAI.getDirectOffset() == 0) {
1664      // The internal return value temp always will have pointer-to-return-type
1665      // type, just do a load.
1666
1667      // If there is a dominating store to ReturnValue, we can elide
1668      // the load, zap the store, and usually zap the alloca.
1669      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1670        // Reuse the debug location from the store unless we're told not to.
1671        if (EmitRetDbgLoc)
1672          RetDbgLoc = SI->getDebugLoc();
1673        // Get the stored value and nuke the now-dead store.
1674        RV = SI->getValueOperand();
1675        SI->eraseFromParent();
1676
1677        // If that was the only use of the return value, nuke it as well now.
1678        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1679          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1680          ReturnValue = 0;
1681        }
1682
1683      // Otherwise, we have to do a simple load.
1684      } else {
1685        RV = Builder.CreateLoad(ReturnValue);
1686      }
1687    } else {
1688      llvm::Value *V = ReturnValue;
1689      // If the value is offset in memory, apply the offset now.
1690      if (unsigned Offs = RetAI.getDirectOffset()) {
1691        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1692        V = Builder.CreateConstGEP1_32(V, Offs);
1693        V = Builder.CreateBitCast(V,
1694                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1695      }
1696
1697      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1698    }
1699
1700    // In ARC, end functions that return a retainable type with a call
1701    // to objc_autoreleaseReturnValue.
1702    if (AutoreleaseResult) {
1703      assert(getLangOpts().ObjCAutoRefCount &&
1704             !FI.isReturnsRetained() &&
1705             RetTy->isObjCRetainableType());
1706      RV = emitAutoreleaseOfResult(*this, RV);
1707    }
1708
1709    break;
1710
1711  case ABIArgInfo::Ignore:
1712    break;
1713
1714  case ABIArgInfo::Expand:
1715    llvm_unreachable("Invalid ABI kind for return argument");
1716  }
1717
1718  // If this function returns 'this', the last instruction is a CallInst
1719  // that returns 'this', and 'this' argument of the CallInst points to
1720  // the same object as CXXThisValue, use the return value from the CallInst.
1721  // We will not need to keep 'this' alive through the callsite. It also enables
1722  // optimizations in the backend, such as tail call optimization.
1723  if (CalleeWithThisReturn && CGM.getCXXABI().HasThisReturn(CurGD)) {
1724    llvm::BasicBlock *IP = Builder.GetInsertBlock();
1725    llvm::CallInst *Callsite;
1726    if (!IP->empty() && (Callsite = dyn_cast<llvm::CallInst>(&IP->back())) &&
1727        Callsite->getCalledFunction() == CalleeWithThisReturn &&
1728        checkThisPointer(Callsite->getOperand(0), CXXThisValue))
1729      RV = Builder.CreateBitCast(Callsite, RetAI.getCoerceToType());
1730  }
1731  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1732  if (!RetDbgLoc.isUnknown())
1733    Ret->setDebugLoc(RetDbgLoc);
1734}
1735
1736void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1737                                          const VarDecl *param) {
1738  // StartFunction converted the ABI-lowered parameter(s) into a
1739  // local alloca.  We need to turn that into an r-value suitable
1740  // for EmitCall.
1741  llvm::Value *local = GetAddrOfLocalVar(param);
1742
1743  QualType type = param->getType();
1744
1745  // For the most part, we just need to load the alloca, except:
1746  // 1) aggregate r-values are actually pointers to temporaries, and
1747  // 2) references to non-scalars are pointers directly to the aggregate.
1748  // I don't know why references to scalars are different here.
1749  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1750    if (!hasScalarEvaluationKind(ref->getPointeeType()))
1751      return args.add(RValue::getAggregate(local), type);
1752
1753    // Locals which are references to scalars are represented
1754    // with allocas holding the pointer.
1755    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1756  }
1757
1758  args.add(convertTempToRValue(local, type), type);
1759}
1760
1761static bool isProvablyNull(llvm::Value *addr) {
1762  return isa<llvm::ConstantPointerNull>(addr);
1763}
1764
1765static bool isProvablyNonNull(llvm::Value *addr) {
1766  return isa<llvm::AllocaInst>(addr);
1767}
1768
1769/// Emit the actual writing-back of a writeback.
1770static void emitWriteback(CodeGenFunction &CGF,
1771                          const CallArgList::Writeback &writeback) {
1772  const LValue &srcLV = writeback.Source;
1773  llvm::Value *srcAddr = srcLV.getAddress();
1774  assert(!isProvablyNull(srcAddr) &&
1775         "shouldn't have writeback for provably null argument");
1776
1777  llvm::BasicBlock *contBB = 0;
1778
1779  // If the argument wasn't provably non-null, we need to null check
1780  // before doing the store.
1781  bool provablyNonNull = isProvablyNonNull(srcAddr);
1782  if (!provablyNonNull) {
1783    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1784    contBB = CGF.createBasicBlock("icr.done");
1785
1786    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1787    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1788    CGF.EmitBlock(writebackBB);
1789  }
1790
1791  // Load the value to writeback.
1792  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1793
1794  // Cast it back, in case we're writing an id to a Foo* or something.
1795  value = CGF.Builder.CreateBitCast(value,
1796               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1797                            "icr.writeback-cast");
1798
1799  // Perform the writeback.
1800
1801  // If we have a "to use" value, it's something we need to emit a use
1802  // of.  This has to be carefully threaded in: if it's done after the
1803  // release it's potentially undefined behavior (and the optimizer
1804  // will ignore it), and if it happens before the retain then the
1805  // optimizer could move the release there.
1806  if (writeback.ToUse) {
1807    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1808
1809    // Retain the new value.  No need to block-copy here:  the block's
1810    // being passed up the stack.
1811    value = CGF.EmitARCRetainNonBlock(value);
1812
1813    // Emit the intrinsic use here.
1814    CGF.EmitARCIntrinsicUse(writeback.ToUse);
1815
1816    // Load the old value (primitively).
1817    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1818
1819    // Put the new value in place (primitively).
1820    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1821
1822    // Release the old value.
1823    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1824
1825  // Otherwise, we can just do a normal lvalue store.
1826  } else {
1827    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1828  }
1829
1830  // Jump to the continuation block.
1831  if (!provablyNonNull)
1832    CGF.EmitBlock(contBB);
1833}
1834
1835static void emitWritebacks(CodeGenFunction &CGF,
1836                           const CallArgList &args) {
1837  for (CallArgList::writeback_iterator
1838         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1839    emitWriteback(CGF, *i);
1840}
1841
1842static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1843  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1844    if (uop->getOpcode() == UO_AddrOf)
1845      return uop->getSubExpr();
1846  return 0;
1847}
1848
1849/// Emit an argument that's being passed call-by-writeback.  That is,
1850/// we are passing the address of
1851static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1852                             const ObjCIndirectCopyRestoreExpr *CRE) {
1853  LValue srcLV;
1854
1855  // Make an optimistic effort to emit the address as an l-value.
1856  // This can fail if the the argument expression is more complicated.
1857  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1858    srcLV = CGF.EmitLValue(lvExpr);
1859
1860  // Otherwise, just emit it as a scalar.
1861  } else {
1862    llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1863
1864    QualType srcAddrType =
1865      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1866    srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1867  }
1868  llvm::Value *srcAddr = srcLV.getAddress();
1869
1870  // The dest and src types don't necessarily match in LLVM terms
1871  // because of the crazy ObjC compatibility rules.
1872
1873  llvm::PointerType *destType =
1874    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1875
1876  // If the address is a constant null, just pass the appropriate null.
1877  if (isProvablyNull(srcAddr)) {
1878    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1879             CRE->getType());
1880    return;
1881  }
1882
1883  // Create the temporary.
1884  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1885                                           "icr.temp");
1886  // Loading an l-value can introduce a cleanup if the l-value is __weak,
1887  // and that cleanup will be conditional if we can't prove that the l-value
1888  // isn't null, so we need to register a dominating point so that the cleanups
1889  // system will make valid IR.
1890  CodeGenFunction::ConditionalEvaluation condEval(CGF);
1891
1892  // Zero-initialize it if we're not doing a copy-initialization.
1893  bool shouldCopy = CRE->shouldCopy();
1894  if (!shouldCopy) {
1895    llvm::Value *null =
1896      llvm::ConstantPointerNull::get(
1897        cast<llvm::PointerType>(destType->getElementType()));
1898    CGF.Builder.CreateStore(null, temp);
1899  }
1900
1901  llvm::BasicBlock *contBB = 0;
1902  llvm::BasicBlock *originBB = 0;
1903
1904  // If the address is *not* known to be non-null, we need to switch.
1905  llvm::Value *finalArgument;
1906
1907  bool provablyNonNull = isProvablyNonNull(srcAddr);
1908  if (provablyNonNull) {
1909    finalArgument = temp;
1910  } else {
1911    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1912
1913    finalArgument = CGF.Builder.CreateSelect(isNull,
1914                                   llvm::ConstantPointerNull::get(destType),
1915                                             temp, "icr.argument");
1916
1917    // If we need to copy, then the load has to be conditional, which
1918    // means we need control flow.
1919    if (shouldCopy) {
1920      originBB = CGF.Builder.GetInsertBlock();
1921      contBB = CGF.createBasicBlock("icr.cont");
1922      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1923      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1924      CGF.EmitBlock(copyBB);
1925      condEval.begin(CGF);
1926    }
1927  }
1928
1929  llvm::Value *valueToUse = 0;
1930
1931  // Perform a copy if necessary.
1932  if (shouldCopy) {
1933    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1934    assert(srcRV.isScalar());
1935
1936    llvm::Value *src = srcRV.getScalarVal();
1937    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1938                                    "icr.cast");
1939
1940    // Use an ordinary store, not a store-to-lvalue.
1941    CGF.Builder.CreateStore(src, temp);
1942
1943    // If optimization is enabled, and the value was held in a
1944    // __strong variable, we need to tell the optimizer that this
1945    // value has to stay alive until we're doing the store back.
1946    // This is because the temporary is effectively unretained,
1947    // and so otherwise we can violate the high-level semantics.
1948    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1949        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1950      valueToUse = src;
1951    }
1952  }
1953
1954  // Finish the control flow if we needed it.
1955  if (shouldCopy && !provablyNonNull) {
1956    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1957    CGF.EmitBlock(contBB);
1958
1959    // Make a phi for the value to intrinsically use.
1960    if (valueToUse) {
1961      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1962                                                      "icr.to-use");
1963      phiToUse->addIncoming(valueToUse, copyBB);
1964      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1965                            originBB);
1966      valueToUse = phiToUse;
1967    }
1968
1969    condEval.end(CGF);
1970  }
1971
1972  args.addWriteback(srcLV, temp, valueToUse);
1973  args.add(RValue::get(finalArgument), CRE->getType());
1974}
1975
1976void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1977                                  QualType type) {
1978  if (const ObjCIndirectCopyRestoreExpr *CRE
1979        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1980    assert(getLangOpts().ObjCAutoRefCount);
1981    assert(getContext().hasSameType(E->getType(), type));
1982    return emitWritebackArg(*this, args, CRE);
1983  }
1984
1985  assert(type->isReferenceType() == E->isGLValue() &&
1986         "reference binding to unmaterialized r-value!");
1987
1988  if (E->isGLValue()) {
1989    assert(E->getObjectKind() == OK_Ordinary);
1990    return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1991                    type);
1992  }
1993
1994  if (hasAggregateEvaluationKind(type) &&
1995      isa<ImplicitCastExpr>(E) &&
1996      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1997    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1998    assert(L.isSimple());
1999    args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2000    return;
2001  }
2002
2003  args.add(EmitAnyExprToTemp(E), type);
2004}
2005
2006// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2007// optimizer it can aggressively ignore unwind edges.
2008void
2009CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2010  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2011      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2012    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2013                      CGM.getNoObjCARCExceptionsMetadata());
2014}
2015
2016/// Emits a call to the given no-arguments nounwind runtime function.
2017llvm::CallInst *
2018CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2019                                         const llvm::Twine &name) {
2020  return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2021}
2022
2023/// Emits a call to the given nounwind runtime function.
2024llvm::CallInst *
2025CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2026                                         ArrayRef<llvm::Value*> args,
2027                                         const llvm::Twine &name) {
2028  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2029  call->setDoesNotThrow();
2030  return call;
2031}
2032
2033/// Emits a simple call (never an invoke) to the given no-arguments
2034/// runtime function.
2035llvm::CallInst *
2036CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2037                                 const llvm::Twine &name) {
2038  return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2039}
2040
2041/// Emits a simple call (never an invoke) to the given runtime
2042/// function.
2043llvm::CallInst *
2044CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2045                                 ArrayRef<llvm::Value*> args,
2046                                 const llvm::Twine &name) {
2047  llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2048  call->setCallingConv(getRuntimeCC());
2049  return call;
2050}
2051
2052/// Emits a call or invoke to the given noreturn runtime function.
2053void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2054                                               ArrayRef<llvm::Value*> args) {
2055  if (getInvokeDest()) {
2056    llvm::InvokeInst *invoke =
2057      Builder.CreateInvoke(callee,
2058                           getUnreachableBlock(),
2059                           getInvokeDest(),
2060                           args);
2061    invoke->setDoesNotReturn();
2062    invoke->setCallingConv(getRuntimeCC());
2063  } else {
2064    llvm::CallInst *call = Builder.CreateCall(callee, args);
2065    call->setDoesNotReturn();
2066    call->setCallingConv(getRuntimeCC());
2067    Builder.CreateUnreachable();
2068  }
2069}
2070
2071/// Emits a call or invoke instruction to the given nullary runtime
2072/// function.
2073llvm::CallSite
2074CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2075                                         const Twine &name) {
2076  return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2077}
2078
2079/// Emits a call or invoke instruction to the given runtime function.
2080llvm::CallSite
2081CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2082                                         ArrayRef<llvm::Value*> args,
2083                                         const Twine &name) {
2084  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2085  callSite.setCallingConv(getRuntimeCC());
2086  return callSite;
2087}
2088
2089llvm::CallSite
2090CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2091                                  const Twine &Name) {
2092  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2093}
2094
2095/// Emits a call or invoke instruction to the given function, depending
2096/// on the current state of the EH stack.
2097llvm::CallSite
2098CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2099                                  ArrayRef<llvm::Value *> Args,
2100                                  const Twine &Name) {
2101  llvm::BasicBlock *InvokeDest = getInvokeDest();
2102
2103  llvm::Instruction *Inst;
2104  if (!InvokeDest)
2105    Inst = Builder.CreateCall(Callee, Args, Name);
2106  else {
2107    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2108    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2109    EmitBlock(ContBB);
2110  }
2111
2112  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2113  // optimizer it can aggressively ignore unwind edges.
2114  if (CGM.getLangOpts().ObjCAutoRefCount)
2115    AddObjCARCExceptionMetadata(Inst);
2116
2117  return Inst;
2118}
2119
2120static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2121                            llvm::FunctionType *FTy) {
2122  if (ArgNo < FTy->getNumParams())
2123    assert(Elt->getType() == FTy->getParamType(ArgNo));
2124  else
2125    assert(FTy->isVarArg());
2126  ++ArgNo;
2127}
2128
2129void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2130                                       SmallVector<llvm::Value*,16> &Args,
2131                                       llvm::FunctionType *IRFuncTy) {
2132  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2133    unsigned NumElts = AT->getSize().getZExtValue();
2134    QualType EltTy = AT->getElementType();
2135    llvm::Value *Addr = RV.getAggregateAddr();
2136    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2137      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2138      RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2139      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2140    }
2141  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2142    RecordDecl *RD = RT->getDecl();
2143    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2144    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2145
2146    if (RD->isUnion()) {
2147      const FieldDecl *LargestFD = 0;
2148      CharUnits UnionSize = CharUnits::Zero();
2149
2150      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2151           i != e; ++i) {
2152        const FieldDecl *FD = *i;
2153        assert(!FD->isBitField() &&
2154               "Cannot expand structure with bit-field members.");
2155        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2156        if (UnionSize < FieldSize) {
2157          UnionSize = FieldSize;
2158          LargestFD = FD;
2159        }
2160      }
2161      if (LargestFD) {
2162        RValue FldRV = EmitRValueForField(LV, LargestFD);
2163        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2164      }
2165    } else {
2166      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2167           i != e; ++i) {
2168        FieldDecl *FD = *i;
2169
2170        RValue FldRV = EmitRValueForField(LV, FD);
2171        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2172      }
2173    }
2174  } else if (Ty->isAnyComplexType()) {
2175    ComplexPairTy CV = RV.getComplexVal();
2176    Args.push_back(CV.first);
2177    Args.push_back(CV.second);
2178  } else {
2179    assert(RV.isScalar() &&
2180           "Unexpected non-scalar rvalue during struct expansion.");
2181
2182    // Insert a bitcast as needed.
2183    llvm::Value *V = RV.getScalarVal();
2184    if (Args.size() < IRFuncTy->getNumParams() &&
2185        V->getType() != IRFuncTy->getParamType(Args.size()))
2186      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2187
2188    Args.push_back(V);
2189  }
2190}
2191
2192
2193RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2194                                 llvm::Value *Callee,
2195                                 ReturnValueSlot ReturnValue,
2196                                 const CallArgList &CallArgs,
2197                                 const Decl *TargetDecl,
2198                                 llvm::Instruction **callOrInvoke) {
2199  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2200  SmallVector<llvm::Value*, 16> Args;
2201
2202  // Handle struct-return functions by passing a pointer to the
2203  // location that we would like to return into.
2204  QualType RetTy = CallInfo.getReturnType();
2205  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2206
2207  // IRArgNo - Keep track of the argument number in the callee we're looking at.
2208  unsigned IRArgNo = 0;
2209  llvm::FunctionType *IRFuncTy =
2210    cast<llvm::FunctionType>(
2211                  cast<llvm::PointerType>(Callee->getType())->getElementType());
2212
2213  // If the call returns a temporary with struct return, create a temporary
2214  // alloca to hold the result, unless one is given to us.
2215  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2216    llvm::Value *Value = ReturnValue.getValue();
2217    if (!Value)
2218      Value = CreateMemTemp(RetTy);
2219    Args.push_back(Value);
2220    checkArgMatches(Value, IRArgNo, IRFuncTy);
2221  }
2222
2223  assert(CallInfo.arg_size() == CallArgs.size() &&
2224         "Mismatch between function signature & arguments.");
2225  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2226  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2227       I != E; ++I, ++info_it) {
2228    const ABIArgInfo &ArgInfo = info_it->info;
2229    RValue RV = I->RV;
2230
2231    CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2232
2233    // Insert a padding argument to ensure proper alignment.
2234    if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2235      Args.push_back(llvm::UndefValue::get(PaddingType));
2236      ++IRArgNo;
2237    }
2238
2239    switch (ArgInfo.getKind()) {
2240    case ABIArgInfo::Indirect: {
2241      if (RV.isScalar() || RV.isComplex()) {
2242        // Make a temporary alloca to pass the argument.
2243        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2244        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2245          AI->setAlignment(ArgInfo.getIndirectAlign());
2246        Args.push_back(AI);
2247
2248        LValue argLV =
2249          MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2250
2251        if (RV.isScalar())
2252          EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2253        else
2254          EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2255
2256        // Validate argument match.
2257        checkArgMatches(AI, IRArgNo, IRFuncTy);
2258      } else {
2259        // We want to avoid creating an unnecessary temporary+copy here;
2260        // however, we need one in three cases:
2261        // 1. If the argument is not byval, and we are required to copy the
2262        //    source.  (This case doesn't occur on any common architecture.)
2263        // 2. If the argument is byval, RV is not sufficiently aligned, and
2264        //    we cannot force it to be sufficiently aligned.
2265        // 3. If the argument is byval, but RV is located in an address space
2266        //    different than that of the argument (0).
2267        llvm::Value *Addr = RV.getAggregateAddr();
2268        unsigned Align = ArgInfo.getIndirectAlign();
2269        const llvm::DataLayout *TD = &CGM.getDataLayout();
2270        const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2271        const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2272          IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2273        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2274            (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2275             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2276             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2277          // Create an aligned temporary, and copy to it.
2278          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2279          if (Align > AI->getAlignment())
2280            AI->setAlignment(Align);
2281          Args.push_back(AI);
2282          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2283
2284          // Validate argument match.
2285          checkArgMatches(AI, IRArgNo, IRFuncTy);
2286        } else {
2287          // Skip the extra memcpy call.
2288          Args.push_back(Addr);
2289
2290          // Validate argument match.
2291          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2292        }
2293      }
2294      break;
2295    }
2296
2297    case ABIArgInfo::Ignore:
2298      break;
2299
2300    case ABIArgInfo::Extend:
2301    case ABIArgInfo::Direct: {
2302      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2303          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2304          ArgInfo.getDirectOffset() == 0) {
2305        llvm::Value *V;
2306        if (RV.isScalar())
2307          V = RV.getScalarVal();
2308        else
2309          V = Builder.CreateLoad(RV.getAggregateAddr());
2310
2311        // If the argument doesn't match, perform a bitcast to coerce it.  This
2312        // can happen due to trivial type mismatches.
2313        if (IRArgNo < IRFuncTy->getNumParams() &&
2314            V->getType() != IRFuncTy->getParamType(IRArgNo))
2315          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2316        Args.push_back(V);
2317
2318        checkArgMatches(V, IRArgNo, IRFuncTy);
2319        break;
2320      }
2321
2322      // FIXME: Avoid the conversion through memory if possible.
2323      llvm::Value *SrcPtr;
2324      if (RV.isScalar() || RV.isComplex()) {
2325        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2326        LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2327        if (RV.isScalar()) {
2328          EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2329        } else {
2330          EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2331        }
2332      } else
2333        SrcPtr = RV.getAggregateAddr();
2334
2335      // If the value is offset in memory, apply the offset now.
2336      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2337        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2338        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2339        SrcPtr = Builder.CreateBitCast(SrcPtr,
2340                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2341
2342      }
2343
2344      // If the coerce-to type is a first class aggregate, we flatten it and
2345      // pass the elements. Either way is semantically identical, but fast-isel
2346      // and the optimizer generally likes scalar values better than FCAs.
2347      if (llvm::StructType *STy =
2348            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2349        llvm::Type *SrcTy =
2350          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2351        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2352        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2353
2354        // If the source type is smaller than the destination type of the
2355        // coerce-to logic, copy the source value into a temp alloca the size
2356        // of the destination type to allow loading all of it. The bits past
2357        // the source value are left undef.
2358        if (SrcSize < DstSize) {
2359          llvm::AllocaInst *TempAlloca
2360            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2361          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2362          SrcPtr = TempAlloca;
2363        } else {
2364          SrcPtr = Builder.CreateBitCast(SrcPtr,
2365                                         llvm::PointerType::getUnqual(STy));
2366        }
2367
2368        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2369          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2370          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2371          // We don't know what we're loading from.
2372          LI->setAlignment(1);
2373          Args.push_back(LI);
2374
2375          // Validate argument match.
2376          checkArgMatches(LI, IRArgNo, IRFuncTy);
2377        }
2378      } else {
2379        // In the simple case, just pass the coerced loaded value.
2380        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2381                                         *this));
2382
2383        // Validate argument match.
2384        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2385      }
2386
2387      break;
2388    }
2389
2390    case ABIArgInfo::Expand:
2391      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2392      IRArgNo = Args.size();
2393      break;
2394    }
2395  }
2396
2397  // If the callee is a bitcast of a function to a varargs pointer to function
2398  // type, check to see if we can remove the bitcast.  This handles some cases
2399  // with unprototyped functions.
2400  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2401    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2402      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2403      llvm::FunctionType *CurFT =
2404        cast<llvm::FunctionType>(CurPT->getElementType());
2405      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2406
2407      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2408          ActualFT->getReturnType() == CurFT->getReturnType() &&
2409          ActualFT->getNumParams() == CurFT->getNumParams() &&
2410          ActualFT->getNumParams() == Args.size() &&
2411          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2412        bool ArgsMatch = true;
2413        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2414          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2415            ArgsMatch = false;
2416            break;
2417          }
2418
2419        // Strip the cast if we can get away with it.  This is a nice cleanup,
2420        // but also allows us to inline the function at -O0 if it is marked
2421        // always_inline.
2422        if (ArgsMatch)
2423          Callee = CalleeF;
2424      }
2425    }
2426
2427  unsigned CallingConv;
2428  CodeGen::AttributeListType AttributeList;
2429  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2430                             CallingConv, true);
2431  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2432                                                     AttributeList);
2433
2434  llvm::BasicBlock *InvokeDest = 0;
2435  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2436                          llvm::Attribute::NoUnwind))
2437    InvokeDest = getInvokeDest();
2438
2439  llvm::CallSite CS;
2440  if (!InvokeDest) {
2441    CS = Builder.CreateCall(Callee, Args);
2442  } else {
2443    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2444    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2445    EmitBlock(Cont);
2446  }
2447  if (callOrInvoke)
2448    *callOrInvoke = CS.getInstruction();
2449
2450  CS.setAttributes(Attrs);
2451  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2452
2453  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2454  // optimizer it can aggressively ignore unwind edges.
2455  if (CGM.getLangOpts().ObjCAutoRefCount)
2456    AddObjCARCExceptionMetadata(CS.getInstruction());
2457
2458  // If the call doesn't return, finish the basic block and clear the
2459  // insertion point; this allows the rest of IRgen to discard
2460  // unreachable code.
2461  if (CS.doesNotReturn()) {
2462    Builder.CreateUnreachable();
2463    Builder.ClearInsertionPoint();
2464
2465    // FIXME: For now, emit a dummy basic block because expr emitters in
2466    // generally are not ready to handle emitting expressions at unreachable
2467    // points.
2468    EnsureInsertPoint();
2469
2470    // Return a reasonable RValue.
2471    return GetUndefRValue(RetTy);
2472  }
2473
2474  llvm::Instruction *CI = CS.getInstruction();
2475  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2476    CI->setName("call");
2477
2478  // Emit any writebacks immediately.  Arguably this should happen
2479  // after any return-value munging.
2480  if (CallArgs.hasWritebacks())
2481    emitWritebacks(*this, CallArgs);
2482
2483  switch (RetAI.getKind()) {
2484  case ABIArgInfo::Indirect:
2485    return convertTempToRValue(Args[0], RetTy);
2486
2487  case ABIArgInfo::Ignore:
2488    // If we are ignoring an argument that had a result, make sure to
2489    // construct the appropriate return value for our caller.
2490    return GetUndefRValue(RetTy);
2491
2492  case ABIArgInfo::Extend:
2493  case ABIArgInfo::Direct: {
2494    llvm::Type *RetIRTy = ConvertType(RetTy);
2495    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2496      switch (getEvaluationKind(RetTy)) {
2497      case TEK_Complex: {
2498        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2499        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2500        return RValue::getComplex(std::make_pair(Real, Imag));
2501      }
2502      case TEK_Aggregate: {
2503        llvm::Value *DestPtr = ReturnValue.getValue();
2504        bool DestIsVolatile = ReturnValue.isVolatile();
2505
2506        if (!DestPtr) {
2507          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2508          DestIsVolatile = false;
2509        }
2510        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2511        return RValue::getAggregate(DestPtr);
2512      }
2513      case TEK_Scalar: {
2514        // If the argument doesn't match, perform a bitcast to coerce it.  This
2515        // can happen due to trivial type mismatches.
2516        llvm::Value *V = CI;
2517        if (V->getType() != RetIRTy)
2518          V = Builder.CreateBitCast(V, RetIRTy);
2519        return RValue::get(V);
2520      }
2521      }
2522      llvm_unreachable("bad evaluation kind");
2523    }
2524
2525    llvm::Value *DestPtr = ReturnValue.getValue();
2526    bool DestIsVolatile = ReturnValue.isVolatile();
2527
2528    if (!DestPtr) {
2529      DestPtr = CreateMemTemp(RetTy, "coerce");
2530      DestIsVolatile = false;
2531    }
2532
2533    // If the value is offset in memory, apply the offset now.
2534    llvm::Value *StorePtr = DestPtr;
2535    if (unsigned Offs = RetAI.getDirectOffset()) {
2536      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2537      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2538      StorePtr = Builder.CreateBitCast(StorePtr,
2539                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2540    }
2541    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2542
2543    return convertTempToRValue(DestPtr, RetTy);
2544  }
2545
2546  case ABIArgInfo::Expand:
2547    llvm_unreachable("Invalid ABI kind for return argument");
2548  }
2549
2550  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2551}
2552
2553/* VarArg handling */
2554
2555llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2556  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2557}
2558