CGCall.cpp revision 234353
1130803Smarcel//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2130803Smarcel//
3130803Smarcel//                     The LLVM Compiler Infrastructure
4130803Smarcel//
5130803Smarcel// This file is distributed under the University of Illinois Open Source
6130803Smarcel// License. See LICENSE.TXT for details.
7130803Smarcel//
8130803Smarcel//===----------------------------------------------------------------------===//
9130803Smarcel//
10130803Smarcel// These classes wrap the information about a call or function
11130803Smarcel// definition used to handle ABI compliancy.
12130803Smarcel//
13130803Smarcel//===----------------------------------------------------------------------===//
14130803Smarcel
15130803Smarcel#include "CGCall.h"
16130803Smarcel#include "CGCXXABI.h"
17130803Smarcel#include "ABIInfo.h"
18130803Smarcel#include "CodeGenFunction.h"
19130803Smarcel#include "CodeGenModule.h"
20130803Smarcel#include "TargetInfo.h"
21130803Smarcel#include "clang/Basic/TargetInfo.h"
22130803Smarcel#include "clang/AST/Decl.h"
23130803Smarcel#include "clang/AST/DeclCXX.h"
24130803Smarcel#include "clang/AST/DeclObjC.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Attributes.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace clang;
32using namespace CodeGen;
33
34/***/
35
36static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37  switch (CC) {
38  default: return llvm::CallingConv::C;
39  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44  // TODO: add support for CC_X86Pascal to llvm
45  }
46}
47
48/// Derives the 'this' type for codegen purposes, i.e. ignoring method
49/// qualification.
50/// FIXME: address space qualification?
51static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54}
55
56/// Returns the canonical formal type of the given C++ method.
57static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58  return MD->getType()->getCanonicalTypeUnqualified()
59           .getAs<FunctionProtoType>();
60}
61
62/// Returns the "extra-canonicalized" return type, which discards
63/// qualifiers on the return type.  Codegen doesn't care about them,
64/// and it makes ABI code a little easier to be able to assume that
65/// all parameter and return types are top-level unqualified.
66static CanQualType GetReturnType(QualType RetTy) {
67  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68}
69
70/// Arrange the argument and result information for a value of the
71/// given unprototyped function type.
72const CGFunctionInfo &
73CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74  // When translating an unprototyped function type, always use a
75  // variadic type.
76  return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(),
77                             ArrayRef<CanQualType>(),
78                             FTNP->getExtInfo(),
79                             RequiredArgs(0));
80}
81
82/// Arrange the argument and result information for a value of the
83/// given function type, on top of any implicit parameters already
84/// stored.
85static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT,
86                                  SmallVectorImpl<CanQualType> &argTypes,
87                                             CanQual<FunctionProtoType> FTP) {
88  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
89  // FIXME: Kill copy.
90  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
91    argTypes.push_back(FTP->getArgType(i));
92  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
93  return CGT.arrangeFunctionType(resultType, argTypes,
94                                 FTP->getExtInfo(), required);
95}
96
97/// Arrange the argument and result information for a value of the
98/// given function type.
99const CGFunctionInfo &
100CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) {
101  SmallVector<CanQualType, 16> argTypes;
102  return ::arrangeFunctionType(*this, argTypes, FTP);
103}
104
105static CallingConv getCallingConventionForDecl(const Decl *D) {
106  // Set the appropriate calling convention for the Function.
107  if (D->hasAttr<StdCallAttr>())
108    return CC_X86StdCall;
109
110  if (D->hasAttr<FastCallAttr>())
111    return CC_X86FastCall;
112
113  if (D->hasAttr<ThisCallAttr>())
114    return CC_X86ThisCall;
115
116  if (D->hasAttr<PascalAttr>())
117    return CC_X86Pascal;
118
119  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
120    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
121
122  return CC_C;
123}
124
125/// Arrange the argument and result information for a call to an
126/// unknown C++ non-static member function of the given abstract type.
127/// The member function must be an ordinary function, i.e. not a
128/// constructor or destructor.
129const CGFunctionInfo &
130CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
131                                   const FunctionProtoType *FTP) {
132  SmallVector<CanQualType, 16> argTypes;
133
134  // Add the 'this' pointer.
135  argTypes.push_back(GetThisType(Context, RD));
136
137  return ::arrangeFunctionType(*this, argTypes,
138              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
139}
140
141/// Arrange the argument and result information for a declaration or
142/// definition of the given C++ non-static member function.  The
143/// member function must be an ordinary function, i.e. not a
144/// constructor or destructor.
145const CGFunctionInfo &
146CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
147  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
148  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
149
150  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
151
152  if (MD->isInstance()) {
153    // The abstract case is perfectly fine.
154    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
155  }
156
157  return arrangeFunctionType(prototype);
158}
159
160/// Arrange the argument and result information for a declaration
161/// or definition to the given constructor variant.
162const CGFunctionInfo &
163CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
164                                               CXXCtorType ctorKind) {
165  SmallVector<CanQualType, 16> argTypes;
166  argTypes.push_back(GetThisType(Context, D->getParent()));
167  CanQualType resultType = Context.VoidTy;
168
169  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
170
171  CanQual<FunctionProtoType> FTP = GetFormalType(D);
172
173  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
174
175  // Add the formal parameters.
176  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
177    argTypes.push_back(FTP->getArgType(i));
178
179  return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required);
180}
181
182/// Arrange the argument and result information for a declaration,
183/// definition, or call to the given destructor variant.  It so
184/// happens that all three cases produce the same information.
185const CGFunctionInfo &
186CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
187                                   CXXDtorType dtorKind) {
188  SmallVector<CanQualType, 2> argTypes;
189  argTypes.push_back(GetThisType(Context, D->getParent()));
190  CanQualType resultType = Context.VoidTy;
191
192  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
193
194  CanQual<FunctionProtoType> FTP = GetFormalType(D);
195  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
196
197  return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(),
198                             RequiredArgs::All);
199}
200
201/// Arrange the argument and result information for the declaration or
202/// definition of the given function.
203const CGFunctionInfo &
204CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
205  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
206    if (MD->isInstance())
207      return arrangeCXXMethodDeclaration(MD);
208
209  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
210
211  assert(isa<FunctionType>(FTy));
212
213  // When declaring a function without a prototype, always use a
214  // non-variadic type.
215  if (isa<FunctionNoProtoType>(FTy)) {
216    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
217    return arrangeFunctionType(noProto->getResultType(),
218                               ArrayRef<CanQualType>(),
219                               noProto->getExtInfo(),
220                               RequiredArgs::All);
221  }
222
223  assert(isa<FunctionProtoType>(FTy));
224  return arrangeFunctionType(FTy.getAs<FunctionProtoType>());
225}
226
227/// Arrange the argument and result information for the declaration or
228/// definition of an Objective-C method.
229const CGFunctionInfo &
230CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
231  // It happens that this is the same as a call with no optional
232  // arguments, except also using the formal 'self' type.
233  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
234}
235
236/// Arrange the argument and result information for the function type
237/// through which to perform a send to the given Objective-C method,
238/// using the given receiver type.  The receiver type is not always
239/// the 'self' type of the method or even an Objective-C pointer type.
240/// This is *not* the right method for actually performing such a
241/// message send, due to the possibility of optional arguments.
242const CGFunctionInfo &
243CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
244                                              QualType receiverType) {
245  SmallVector<CanQualType, 16> argTys;
246  argTys.push_back(Context.getCanonicalParamType(receiverType));
247  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
248  // FIXME: Kill copy?
249  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
250         e = MD->param_end(); i != e; ++i) {
251    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
252  }
253
254  FunctionType::ExtInfo einfo;
255  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
256
257  if (getContext().getLangOpts().ObjCAutoRefCount &&
258      MD->hasAttr<NSReturnsRetainedAttr>())
259    einfo = einfo.withProducesResult(true);
260
261  RequiredArgs required =
262    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
263
264  return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys,
265                             einfo, required);
266}
267
268const CGFunctionInfo &
269CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
270  // FIXME: Do we need to handle ObjCMethodDecl?
271  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
272
273  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
274    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
275
276  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
277    return arrangeCXXDestructor(DD, GD.getDtorType());
278
279  return arrangeFunctionDeclaration(FD);
280}
281
282/// Figure out the rules for calling a function with the given formal
283/// type using the given arguments.  The arguments are necessary
284/// because the function might be unprototyped, in which case it's
285/// target-dependent in crazy ways.
286const CGFunctionInfo &
287CodeGenTypes::arrangeFunctionCall(const CallArgList &args,
288                                  const FunctionType *fnType) {
289  RequiredArgs required = RequiredArgs::All;
290  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
291    if (proto->isVariadic())
292      required = RequiredArgs(proto->getNumArgs());
293  } else if (CGM.getTargetCodeGenInfo()
294               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
295    required = RequiredArgs(0);
296  }
297
298  return arrangeFunctionCall(fnType->getResultType(), args,
299                             fnType->getExtInfo(), required);
300}
301
302const CGFunctionInfo &
303CodeGenTypes::arrangeFunctionCall(QualType resultType,
304                                  const CallArgList &args,
305                                  const FunctionType::ExtInfo &info,
306                                  RequiredArgs required) {
307  // FIXME: Kill copy.
308  SmallVector<CanQualType, 16> argTypes;
309  for (CallArgList::const_iterator i = args.begin(), e = args.end();
310       i != e; ++i)
311    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
312  return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
313                             required);
314}
315
316const CGFunctionInfo &
317CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
318                                         const FunctionArgList &args,
319                                         const FunctionType::ExtInfo &info,
320                                         bool isVariadic) {
321  // FIXME: Kill copy.
322  SmallVector<CanQualType, 16> argTypes;
323  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
324       i != e; ++i)
325    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
326
327  RequiredArgs required =
328    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
329  return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
330                             required);
331}
332
333const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
334  return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(),
335                             FunctionType::ExtInfo(), RequiredArgs::All);
336}
337
338/// Arrange the argument and result information for an abstract value
339/// of a given function type.  This is the method which all of the
340/// above functions ultimately defer to.
341const CGFunctionInfo &
342CodeGenTypes::arrangeFunctionType(CanQualType resultType,
343                                  ArrayRef<CanQualType> argTypes,
344                                  const FunctionType::ExtInfo &info,
345                                  RequiredArgs required) {
346#ifndef NDEBUG
347  for (ArrayRef<CanQualType>::const_iterator
348         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
349    assert(I->isCanonicalAsParam());
350#endif
351
352  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
353
354  // Lookup or create unique function info.
355  llvm::FoldingSetNodeID ID;
356  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
357
358  void *insertPos = 0;
359  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
360  if (FI)
361    return *FI;
362
363  // Construct the function info.  We co-allocate the ArgInfos.
364  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
365  FunctionInfos.InsertNode(FI, insertPos);
366
367  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
368  assert(inserted && "Recursively being processed?");
369
370  // Compute ABI information.
371  getABIInfo().computeInfo(*FI);
372
373  // Loop over all of the computed argument and return value info.  If any of
374  // them are direct or extend without a specified coerce type, specify the
375  // default now.
376  ABIArgInfo &retInfo = FI->getReturnInfo();
377  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
378    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
379
380  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
381       I != E; ++I)
382    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
383      I->info.setCoerceToType(ConvertType(I->type));
384
385  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
386  assert(erased && "Not in set?");
387
388  return *FI;
389}
390
391CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
392                                       const FunctionType::ExtInfo &info,
393                                       CanQualType resultType,
394                                       ArrayRef<CanQualType> argTypes,
395                                       RequiredArgs required) {
396  void *buffer = operator new(sizeof(CGFunctionInfo) +
397                              sizeof(ArgInfo) * (argTypes.size() + 1));
398  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
399  FI->CallingConvention = llvmCC;
400  FI->EffectiveCallingConvention = llvmCC;
401  FI->ASTCallingConvention = info.getCC();
402  FI->NoReturn = info.getNoReturn();
403  FI->ReturnsRetained = info.getProducesResult();
404  FI->Required = required;
405  FI->HasRegParm = info.getHasRegParm();
406  FI->RegParm = info.getRegParm();
407  FI->NumArgs = argTypes.size();
408  FI->getArgsBuffer()[0].type = resultType;
409  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
410    FI->getArgsBuffer()[i + 1].type = argTypes[i];
411  return FI;
412}
413
414/***/
415
416void CodeGenTypes::GetExpandedTypes(QualType type,
417                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
418  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
419    uint64_t NumElts = AT->getSize().getZExtValue();
420    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
421      GetExpandedTypes(AT->getElementType(), expandedTypes);
422  } else if (const RecordType *RT = type->getAsStructureType()) {
423    const RecordDecl *RD = RT->getDecl();
424    assert(!RD->hasFlexibleArrayMember() &&
425           "Cannot expand structure with flexible array.");
426    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
427         i != e; ++i) {
428      const FieldDecl *FD = *i;
429      assert(!FD->isBitField() &&
430             "Cannot expand structure with bit-field members.");
431      GetExpandedTypes(FD->getType(), expandedTypes);
432    }
433  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
434    llvm::Type *EltTy = ConvertType(CT->getElementType());
435    expandedTypes.push_back(EltTy);
436    expandedTypes.push_back(EltTy);
437  } else
438    expandedTypes.push_back(ConvertType(type));
439}
440
441llvm::Function::arg_iterator
442CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
443                                    llvm::Function::arg_iterator AI) {
444  assert(LV.isSimple() &&
445         "Unexpected non-simple lvalue during struct expansion.");
446  llvm::Value *Addr = LV.getAddress();
447
448  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
449    unsigned NumElts = AT->getSize().getZExtValue();
450    QualType EltTy = AT->getElementType();
451    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
452      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
453      LValue LV = MakeAddrLValue(EltAddr, EltTy);
454      AI = ExpandTypeFromArgs(EltTy, LV, AI);
455    }
456  } else if (const RecordType *RT = Ty->getAsStructureType()) {
457    RecordDecl *RD = RT->getDecl();
458    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
459         i != e; ++i) {
460      FieldDecl *FD = *i;
461      QualType FT = FD->getType();
462
463      // FIXME: What are the right qualifiers here?
464      LValue LV = EmitLValueForField(Addr, FD, 0);
465      AI = ExpandTypeFromArgs(FT, LV, AI);
466    }
467  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
468    QualType EltTy = CT->getElementType();
469    llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
470    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
471    llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag");
472    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
473  } else {
474    EmitStoreThroughLValue(RValue::get(AI), LV);
475    ++AI;
476  }
477
478  return AI;
479}
480
481/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
482/// accessing some number of bytes out of it, try to gep into the struct to get
483/// at its inner goodness.  Dive as deep as possible without entering an element
484/// with an in-memory size smaller than DstSize.
485static llvm::Value *
486EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
487                                   llvm::StructType *SrcSTy,
488                                   uint64_t DstSize, CodeGenFunction &CGF) {
489  // We can't dive into a zero-element struct.
490  if (SrcSTy->getNumElements() == 0) return SrcPtr;
491
492  llvm::Type *FirstElt = SrcSTy->getElementType(0);
493
494  // If the first elt is at least as large as what we're looking for, or if the
495  // first element is the same size as the whole struct, we can enter it.
496  uint64_t FirstEltSize =
497    CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
498  if (FirstEltSize < DstSize &&
499      FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
500    return SrcPtr;
501
502  // GEP into the first element.
503  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
504
505  // If the first element is a struct, recurse.
506  llvm::Type *SrcTy =
507    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
508  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
509    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
510
511  return SrcPtr;
512}
513
514/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
515/// are either integers or pointers.  This does a truncation of the value if it
516/// is too large or a zero extension if it is too small.
517static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
518                                             llvm::Type *Ty,
519                                             CodeGenFunction &CGF) {
520  if (Val->getType() == Ty)
521    return Val;
522
523  if (isa<llvm::PointerType>(Val->getType())) {
524    // If this is Pointer->Pointer avoid conversion to and from int.
525    if (isa<llvm::PointerType>(Ty))
526      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
527
528    // Convert the pointer to an integer so we can play with its width.
529    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
530  }
531
532  llvm::Type *DestIntTy = Ty;
533  if (isa<llvm::PointerType>(DestIntTy))
534    DestIntTy = CGF.IntPtrTy;
535
536  if (Val->getType() != DestIntTy)
537    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
538
539  if (isa<llvm::PointerType>(Ty))
540    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
541  return Val;
542}
543
544
545
546/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
547/// a pointer to an object of type \arg Ty.
548///
549/// This safely handles the case when the src type is smaller than the
550/// destination type; in this situation the values of bits which not
551/// present in the src are undefined.
552static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
553                                      llvm::Type *Ty,
554                                      CodeGenFunction &CGF) {
555  llvm::Type *SrcTy =
556    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
557
558  // If SrcTy and Ty are the same, just do a load.
559  if (SrcTy == Ty)
560    return CGF.Builder.CreateLoad(SrcPtr);
561
562  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
563
564  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
565    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
566    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
567  }
568
569  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
570
571  // If the source and destination are integer or pointer types, just do an
572  // extension or truncation to the desired type.
573  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
574      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
575    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
576    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
577  }
578
579  // If load is legal, just bitcast the src pointer.
580  if (SrcSize >= DstSize) {
581    // Generally SrcSize is never greater than DstSize, since this means we are
582    // losing bits. However, this can happen in cases where the structure has
583    // additional padding, for example due to a user specified alignment.
584    //
585    // FIXME: Assert that we aren't truncating non-padding bits when have access
586    // to that information.
587    llvm::Value *Casted =
588      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
589    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
590    // FIXME: Use better alignment / avoid requiring aligned load.
591    Load->setAlignment(1);
592    return Load;
593  }
594
595  // Otherwise do coercion through memory. This is stupid, but
596  // simple.
597  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
598  llvm::Value *Casted =
599    CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
600  llvm::StoreInst *Store =
601    CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
602  // FIXME: Use better alignment / avoid requiring aligned store.
603  Store->setAlignment(1);
604  return CGF.Builder.CreateLoad(Tmp);
605}
606
607// Function to store a first-class aggregate into memory.  We prefer to
608// store the elements rather than the aggregate to be more friendly to
609// fast-isel.
610// FIXME: Do we need to recurse here?
611static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
612                          llvm::Value *DestPtr, bool DestIsVolatile,
613                          bool LowAlignment) {
614  // Prefer scalar stores to first-class aggregate stores.
615  if (llvm::StructType *STy =
616        dyn_cast<llvm::StructType>(Val->getType())) {
617    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
618      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
619      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
620      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
621                                                    DestIsVolatile);
622      if (LowAlignment)
623        SI->setAlignment(1);
624    }
625  } else {
626    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
627    if (LowAlignment)
628      SI->setAlignment(1);
629  }
630}
631
632/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
633/// where the source and destination may have different types.
634///
635/// This safely handles the case when the src type is larger than the
636/// destination type; the upper bits of the src will be lost.
637static void CreateCoercedStore(llvm::Value *Src,
638                               llvm::Value *DstPtr,
639                               bool DstIsVolatile,
640                               CodeGenFunction &CGF) {
641  llvm::Type *SrcTy = Src->getType();
642  llvm::Type *DstTy =
643    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
644  if (SrcTy == DstTy) {
645    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
646    return;
647  }
648
649  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
650
651  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
652    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
653    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
654  }
655
656  // If the source and destination are integer or pointer types, just do an
657  // extension or truncation to the desired type.
658  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
659      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
660    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
661    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
662    return;
663  }
664
665  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
666
667  // If store is legal, just bitcast the src pointer.
668  if (SrcSize <= DstSize) {
669    llvm::Value *Casted =
670      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
671    // FIXME: Use better alignment / avoid requiring aligned store.
672    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
673  } else {
674    // Otherwise do coercion through memory. This is stupid, but
675    // simple.
676
677    // Generally SrcSize is never greater than DstSize, since this means we are
678    // losing bits. However, this can happen in cases where the structure has
679    // additional padding, for example due to a user specified alignment.
680    //
681    // FIXME: Assert that we aren't truncating non-padding bits when have access
682    // to that information.
683    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
684    CGF.Builder.CreateStore(Src, Tmp);
685    llvm::Value *Casted =
686      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
687    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
688    // FIXME: Use better alignment / avoid requiring aligned load.
689    Load->setAlignment(1);
690    CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
691  }
692}
693
694/***/
695
696bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
697  return FI.getReturnInfo().isIndirect();
698}
699
700bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
701  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
702    switch (BT->getKind()) {
703    default:
704      return false;
705    case BuiltinType::Float:
706      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
707    case BuiltinType::Double:
708      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
709    case BuiltinType::LongDouble:
710      return getContext().getTargetInfo().useObjCFPRetForRealType(
711        TargetInfo::LongDouble);
712    }
713  }
714
715  return false;
716}
717
718bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
719  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
720    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
721      if (BT->getKind() == BuiltinType::LongDouble)
722        return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
723    }
724  }
725
726  return false;
727}
728
729llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
730  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
731  return GetFunctionType(FI);
732}
733
734llvm::FunctionType *
735CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
736
737  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
738  assert(Inserted && "Recursively being processed?");
739
740  SmallVector<llvm::Type*, 8> argTypes;
741  llvm::Type *resultType = 0;
742
743  const ABIArgInfo &retAI = FI.getReturnInfo();
744  switch (retAI.getKind()) {
745  case ABIArgInfo::Expand:
746    llvm_unreachable("Invalid ABI kind for return argument");
747
748  case ABIArgInfo::Extend:
749  case ABIArgInfo::Direct:
750    resultType = retAI.getCoerceToType();
751    break;
752
753  case ABIArgInfo::Indirect: {
754    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
755    resultType = llvm::Type::getVoidTy(getLLVMContext());
756
757    QualType ret = FI.getReturnType();
758    llvm::Type *ty = ConvertType(ret);
759    unsigned addressSpace = Context.getTargetAddressSpace(ret);
760    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
761    break;
762  }
763
764  case ABIArgInfo::Ignore:
765    resultType = llvm::Type::getVoidTy(getLLVMContext());
766    break;
767  }
768
769  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
770         ie = FI.arg_end(); it != ie; ++it) {
771    const ABIArgInfo &argAI = it->info;
772
773    switch (argAI.getKind()) {
774    case ABIArgInfo::Ignore:
775      break;
776
777    case ABIArgInfo::Indirect: {
778      // indirect arguments are always on the stack, which is addr space #0.
779      llvm::Type *LTy = ConvertTypeForMem(it->type);
780      argTypes.push_back(LTy->getPointerTo());
781      break;
782    }
783
784    case ABIArgInfo::Extend:
785    case ABIArgInfo::Direct: {
786      // Insert a padding type to ensure proper alignment.
787      if (llvm::Type *PaddingType = argAI.getPaddingType())
788        argTypes.push_back(PaddingType);
789      // If the coerce-to type is a first class aggregate, flatten it.  Either
790      // way is semantically identical, but fast-isel and the optimizer
791      // generally likes scalar values better than FCAs.
792      llvm::Type *argType = argAI.getCoerceToType();
793      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
794        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
795          argTypes.push_back(st->getElementType(i));
796      } else {
797        argTypes.push_back(argType);
798      }
799      break;
800    }
801
802    case ABIArgInfo::Expand:
803      GetExpandedTypes(it->type, argTypes);
804      break;
805    }
806  }
807
808  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
809  assert(Erased && "Not in set?");
810
811  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
812}
813
814llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
815  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
816  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
817
818  if (!isFuncTypeConvertible(FPT))
819    return llvm::StructType::get(getLLVMContext());
820
821  const CGFunctionInfo *Info;
822  if (isa<CXXDestructorDecl>(MD))
823    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
824  else
825    Info = &arrangeCXXMethodDeclaration(MD);
826  return GetFunctionType(*Info);
827}
828
829void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
830                                           const Decl *TargetDecl,
831                                           AttributeListType &PAL,
832                                           unsigned &CallingConv) {
833  llvm::Attributes FuncAttrs;
834  llvm::Attributes RetAttrs;
835
836  CallingConv = FI.getEffectiveCallingConvention();
837
838  if (FI.isNoReturn())
839    FuncAttrs |= llvm::Attribute::NoReturn;
840
841  // FIXME: handle sseregparm someday...
842  if (TargetDecl) {
843    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
844      FuncAttrs |= llvm::Attribute::ReturnsTwice;
845    if (TargetDecl->hasAttr<NoThrowAttr>())
846      FuncAttrs |= llvm::Attribute::NoUnwind;
847    else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
848      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
849      if (FPT && FPT->isNothrow(getContext()))
850        FuncAttrs |= llvm::Attribute::NoUnwind;
851    }
852
853    if (TargetDecl->hasAttr<NoReturnAttr>())
854      FuncAttrs |= llvm::Attribute::NoReturn;
855
856    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
857      FuncAttrs |= llvm::Attribute::ReturnsTwice;
858
859    // 'const' and 'pure' attribute functions are also nounwind.
860    if (TargetDecl->hasAttr<ConstAttr>()) {
861      FuncAttrs |= llvm::Attribute::ReadNone;
862      FuncAttrs |= llvm::Attribute::NoUnwind;
863    } else if (TargetDecl->hasAttr<PureAttr>()) {
864      FuncAttrs |= llvm::Attribute::ReadOnly;
865      FuncAttrs |= llvm::Attribute::NoUnwind;
866    }
867    if (TargetDecl->hasAttr<MallocAttr>())
868      RetAttrs |= llvm::Attribute::NoAlias;
869  }
870
871  if (CodeGenOpts.OptimizeSize)
872    FuncAttrs |= llvm::Attribute::OptimizeForSize;
873  if (CodeGenOpts.DisableRedZone)
874    FuncAttrs |= llvm::Attribute::NoRedZone;
875  if (CodeGenOpts.NoImplicitFloat)
876    FuncAttrs |= llvm::Attribute::NoImplicitFloat;
877
878  QualType RetTy = FI.getReturnType();
879  unsigned Index = 1;
880  const ABIArgInfo &RetAI = FI.getReturnInfo();
881  switch (RetAI.getKind()) {
882  case ABIArgInfo::Extend:
883   if (RetTy->hasSignedIntegerRepresentation())
884     RetAttrs |= llvm::Attribute::SExt;
885   else if (RetTy->hasUnsignedIntegerRepresentation())
886     RetAttrs |= llvm::Attribute::ZExt;
887    break;
888  case ABIArgInfo::Direct:
889  case ABIArgInfo::Ignore:
890    break;
891
892  case ABIArgInfo::Indirect:
893    PAL.push_back(llvm::AttributeWithIndex::get(Index,
894                                                llvm::Attribute::StructRet));
895    ++Index;
896    // sret disables readnone and readonly
897    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
898                   llvm::Attribute::ReadNone);
899    break;
900
901  case ABIArgInfo::Expand:
902    llvm_unreachable("Invalid ABI kind for return argument");
903  }
904
905  if (RetAttrs)
906    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
907
908  // FIXME: RegParm should be reduced in case of global register variable.
909  signed RegParm;
910  if (FI.getHasRegParm())
911    RegParm = FI.getRegParm();
912  else
913    RegParm = CodeGenOpts.NumRegisterParameters;
914
915  unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
916  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
917         ie = FI.arg_end(); it != ie; ++it) {
918    QualType ParamType = it->type;
919    const ABIArgInfo &AI = it->info;
920    llvm::Attributes Attrs;
921
922    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
923    // have the corresponding parameter variable.  It doesn't make
924    // sense to do it here because parameters are so messed up.
925    switch (AI.getKind()) {
926    case ABIArgInfo::Extend:
927      if (ParamType->isSignedIntegerOrEnumerationType())
928        Attrs |= llvm::Attribute::SExt;
929      else if (ParamType->isUnsignedIntegerOrEnumerationType())
930        Attrs |= llvm::Attribute::ZExt;
931      // FALL THROUGH
932    case ABIArgInfo::Direct:
933      if (RegParm > 0 &&
934          (ParamType->isIntegerType() || ParamType->isPointerType() ||
935           ParamType->isReferenceType())) {
936        RegParm -=
937        (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
938        if (RegParm >= 0)
939          Attrs |= llvm::Attribute::InReg;
940      }
941      // FIXME: handle sseregparm someday...
942
943      // Increment Index if there is padding.
944      Index += (AI.getPaddingType() != 0);
945
946      if (llvm::StructType *STy =
947            dyn_cast<llvm::StructType>(AI.getCoerceToType()))
948        Index += STy->getNumElements()-1;  // 1 will be added below.
949      break;
950
951    case ABIArgInfo::Indirect:
952      if (AI.getIndirectByVal())
953        Attrs |= llvm::Attribute::ByVal;
954
955      Attrs |=
956        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
957      // byval disables readnone and readonly.
958      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
959                     llvm::Attribute::ReadNone);
960      break;
961
962    case ABIArgInfo::Ignore:
963      // Skip increment, no matching LLVM parameter.
964      continue;
965
966    case ABIArgInfo::Expand: {
967      SmallVector<llvm::Type*, 8> types;
968      // FIXME: This is rather inefficient. Do we ever actually need to do
969      // anything here? The result should be just reconstructed on the other
970      // side, so extension should be a non-issue.
971      getTypes().GetExpandedTypes(ParamType, types);
972      Index += types.size();
973      continue;
974    }
975    }
976
977    if (Attrs)
978      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
979    ++Index;
980  }
981  if (FuncAttrs)
982    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
983}
984
985/// An argument came in as a promoted argument; demote it back to its
986/// declared type.
987static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
988                                         const VarDecl *var,
989                                         llvm::Value *value) {
990  llvm::Type *varType = CGF.ConvertType(var->getType());
991
992  // This can happen with promotions that actually don't change the
993  // underlying type, like the enum promotions.
994  if (value->getType() == varType) return value;
995
996  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
997         && "unexpected promotion type");
998
999  if (isa<llvm::IntegerType>(varType))
1000    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1001
1002  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1003}
1004
1005void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1006                                         llvm::Function *Fn,
1007                                         const FunctionArgList &Args) {
1008  // If this is an implicit-return-zero function, go ahead and
1009  // initialize the return value.  TODO: it might be nice to have
1010  // a more general mechanism for this that didn't require synthesized
1011  // return statements.
1012  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1013    if (FD->hasImplicitReturnZero()) {
1014      QualType RetTy = FD->getResultType().getUnqualifiedType();
1015      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1016      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1017      Builder.CreateStore(Zero, ReturnValue);
1018    }
1019  }
1020
1021  // FIXME: We no longer need the types from FunctionArgList; lift up and
1022  // simplify.
1023
1024  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1025  llvm::Function::arg_iterator AI = Fn->arg_begin();
1026
1027  // Name the struct return argument.
1028  if (CGM.ReturnTypeUsesSRet(FI)) {
1029    AI->setName("agg.result");
1030    AI->addAttr(llvm::Attribute::NoAlias);
1031    ++AI;
1032  }
1033
1034  assert(FI.arg_size() == Args.size() &&
1035         "Mismatch between function signature & arguments.");
1036  unsigned ArgNo = 1;
1037  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1038  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1039       i != e; ++i, ++info_it, ++ArgNo) {
1040    const VarDecl *Arg = *i;
1041    QualType Ty = info_it->type;
1042    const ABIArgInfo &ArgI = info_it->info;
1043
1044    bool isPromoted =
1045      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1046
1047    switch (ArgI.getKind()) {
1048    case ABIArgInfo::Indirect: {
1049      llvm::Value *V = AI;
1050
1051      if (hasAggregateLLVMType(Ty)) {
1052        // Aggregates and complex variables are accessed by reference.  All we
1053        // need to do is realign the value, if requested
1054        if (ArgI.getIndirectRealign()) {
1055          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1056
1057          // Copy from the incoming argument pointer to the temporary with the
1058          // appropriate alignment.
1059          //
1060          // FIXME: We should have a common utility for generating an aggregate
1061          // copy.
1062          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1063          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1064          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1065          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1066          Builder.CreateMemCpy(Dst,
1067                               Src,
1068                               llvm::ConstantInt::get(IntPtrTy,
1069                                                      Size.getQuantity()),
1070                               ArgI.getIndirectAlign(),
1071                               false);
1072          V = AlignedTemp;
1073        }
1074      } else {
1075        // Load scalar value from indirect argument.
1076        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1077        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1078
1079        if (isPromoted)
1080          V = emitArgumentDemotion(*this, Arg, V);
1081      }
1082      EmitParmDecl(*Arg, V, ArgNo);
1083      break;
1084    }
1085
1086    case ABIArgInfo::Extend:
1087    case ABIArgInfo::Direct: {
1088      // Skip the dummy padding argument.
1089      if (ArgI.getPaddingType())
1090        ++AI;
1091
1092      // If we have the trivial case, handle it with no muss and fuss.
1093      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1094          ArgI.getCoerceToType() == ConvertType(Ty) &&
1095          ArgI.getDirectOffset() == 0) {
1096        assert(AI != Fn->arg_end() && "Argument mismatch!");
1097        llvm::Value *V = AI;
1098
1099        if (Arg->getType().isRestrictQualified())
1100          AI->addAttr(llvm::Attribute::NoAlias);
1101
1102        // Ensure the argument is the correct type.
1103        if (V->getType() != ArgI.getCoerceToType())
1104          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1105
1106        if (isPromoted)
1107          V = emitArgumentDemotion(*this, Arg, V);
1108
1109        EmitParmDecl(*Arg, V, ArgNo);
1110        break;
1111      }
1112
1113      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1114
1115      // The alignment we need to use is the max of the requested alignment for
1116      // the argument plus the alignment required by our access code below.
1117      unsigned AlignmentToUse =
1118        CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1119      AlignmentToUse = std::max(AlignmentToUse,
1120                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1121
1122      Alloca->setAlignment(AlignmentToUse);
1123      llvm::Value *V = Alloca;
1124      llvm::Value *Ptr = V;    // Pointer to store into.
1125
1126      // If the value is offset in memory, apply the offset now.
1127      if (unsigned Offs = ArgI.getDirectOffset()) {
1128        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1129        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1130        Ptr = Builder.CreateBitCast(Ptr,
1131                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1132      }
1133
1134      // If the coerce-to type is a first class aggregate, we flatten it and
1135      // pass the elements. Either way is semantically identical, but fast-isel
1136      // and the optimizer generally likes scalar values better than FCAs.
1137      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1138      if (STy && STy->getNumElements() > 1) {
1139        uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1140        llvm::Type *DstTy =
1141          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1142        uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1143
1144        if (SrcSize <= DstSize) {
1145          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1146
1147          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1148            assert(AI != Fn->arg_end() && "Argument mismatch!");
1149            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1150            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1151            Builder.CreateStore(AI++, EltPtr);
1152          }
1153        } else {
1154          llvm::AllocaInst *TempAlloca =
1155            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1156          TempAlloca->setAlignment(AlignmentToUse);
1157          llvm::Value *TempV = TempAlloca;
1158
1159          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1160            assert(AI != Fn->arg_end() && "Argument mismatch!");
1161            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1162            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1163            Builder.CreateStore(AI++, EltPtr);
1164          }
1165
1166          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1167        }
1168      } else {
1169        // Simple case, just do a coerced store of the argument into the alloca.
1170        assert(AI != Fn->arg_end() && "Argument mismatch!");
1171        AI->setName(Arg->getName() + ".coerce");
1172        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1173      }
1174
1175
1176      // Match to what EmitParmDecl is expecting for this type.
1177      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1178        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1179        if (isPromoted)
1180          V = emitArgumentDemotion(*this, Arg, V);
1181      }
1182      EmitParmDecl(*Arg, V, ArgNo);
1183      continue;  // Skip ++AI increment, already done.
1184    }
1185
1186    case ABIArgInfo::Expand: {
1187      // If this structure was expanded into multiple arguments then
1188      // we need to create a temporary and reconstruct it from the
1189      // arguments.
1190      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1191      CharUnits Align = getContext().getDeclAlign(Arg);
1192      Alloca->setAlignment(Align.getQuantity());
1193      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1194      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1195      EmitParmDecl(*Arg, Alloca, ArgNo);
1196
1197      // Name the arguments used in expansion and increment AI.
1198      unsigned Index = 0;
1199      for (; AI != End; ++AI, ++Index)
1200        AI->setName(Arg->getName() + "." + Twine(Index));
1201      continue;
1202    }
1203
1204    case ABIArgInfo::Ignore:
1205      // Initialize the local variable appropriately.
1206      if (hasAggregateLLVMType(Ty))
1207        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1208      else
1209        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1210                     ArgNo);
1211
1212      // Skip increment, no matching LLVM parameter.
1213      continue;
1214    }
1215
1216    ++AI;
1217  }
1218  assert(AI == Fn->arg_end() && "Argument mismatch!");
1219}
1220
1221static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1222  while (insn->use_empty()) {
1223    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1224    if (!bitcast) return;
1225
1226    // This is "safe" because we would have used a ConstantExpr otherwise.
1227    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1228    bitcast->eraseFromParent();
1229  }
1230}
1231
1232/// Try to emit a fused autorelease of a return result.
1233static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1234                                                    llvm::Value *result) {
1235  // We must be immediately followed the cast.
1236  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1237  if (BB->empty()) return 0;
1238  if (&BB->back() != result) return 0;
1239
1240  llvm::Type *resultType = result->getType();
1241
1242  // result is in a BasicBlock and is therefore an Instruction.
1243  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1244
1245  SmallVector<llvm::Instruction*,4> insnsToKill;
1246
1247  // Look for:
1248  //  %generator = bitcast %type1* %generator2 to %type2*
1249  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1250    // We would have emitted this as a constant if the operand weren't
1251    // an Instruction.
1252    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1253
1254    // Require the generator to be immediately followed by the cast.
1255    if (generator->getNextNode() != bitcast)
1256      return 0;
1257
1258    insnsToKill.push_back(bitcast);
1259  }
1260
1261  // Look for:
1262  //   %generator = call i8* @objc_retain(i8* %originalResult)
1263  // or
1264  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1265  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1266  if (!call) return 0;
1267
1268  bool doRetainAutorelease;
1269
1270  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1271    doRetainAutorelease = true;
1272  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1273                                          .objc_retainAutoreleasedReturnValue) {
1274    doRetainAutorelease = false;
1275
1276    // Look for an inline asm immediately preceding the call and kill it, too.
1277    llvm::Instruction *prev = call->getPrevNode();
1278    if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1279      if (asmCall->getCalledValue()
1280            == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1281        insnsToKill.push_back(prev);
1282  } else {
1283    return 0;
1284  }
1285
1286  result = call->getArgOperand(0);
1287  insnsToKill.push_back(call);
1288
1289  // Keep killing bitcasts, for sanity.  Note that we no longer care
1290  // about precise ordering as long as there's exactly one use.
1291  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1292    if (!bitcast->hasOneUse()) break;
1293    insnsToKill.push_back(bitcast);
1294    result = bitcast->getOperand(0);
1295  }
1296
1297  // Delete all the unnecessary instructions, from latest to earliest.
1298  for (SmallVectorImpl<llvm::Instruction*>::iterator
1299         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1300    (*i)->eraseFromParent();
1301
1302  // Do the fused retain/autorelease if we were asked to.
1303  if (doRetainAutorelease)
1304    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1305
1306  // Cast back to the result type.
1307  return CGF.Builder.CreateBitCast(result, resultType);
1308}
1309
1310/// If this is a +1 of the value of an immutable 'self', remove it.
1311static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1312                                          llvm::Value *result) {
1313  // This is only applicable to a method with an immutable 'self'.
1314  const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1315  if (!method) return 0;
1316  const VarDecl *self = method->getSelfDecl();
1317  if (!self->getType().isConstQualified()) return 0;
1318
1319  // Look for a retain call.
1320  llvm::CallInst *retainCall =
1321    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1322  if (!retainCall ||
1323      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1324    return 0;
1325
1326  // Look for an ordinary load of 'self'.
1327  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1328  llvm::LoadInst *load =
1329    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1330  if (!load || load->isAtomic() || load->isVolatile() ||
1331      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1332    return 0;
1333
1334  // Okay!  Burn it all down.  This relies for correctness on the
1335  // assumption that the retain is emitted as part of the return and
1336  // that thereafter everything is used "linearly".
1337  llvm::Type *resultType = result->getType();
1338  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1339  assert(retainCall->use_empty());
1340  retainCall->eraseFromParent();
1341  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1342
1343  return CGF.Builder.CreateBitCast(load, resultType);
1344}
1345
1346/// Emit an ARC autorelease of the result of a function.
1347///
1348/// \return the value to actually return from the function
1349static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1350                                            llvm::Value *result) {
1351  // If we're returning 'self', kill the initial retain.  This is a
1352  // heuristic attempt to "encourage correctness" in the really unfortunate
1353  // case where we have a return of self during a dealloc and we desperately
1354  // need to avoid the possible autorelease.
1355  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1356    return self;
1357
1358  // At -O0, try to emit a fused retain/autorelease.
1359  if (CGF.shouldUseFusedARCCalls())
1360    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1361      return fused;
1362
1363  return CGF.EmitARCAutoreleaseReturnValue(result);
1364}
1365
1366/// Heuristically search for a dominating store to the return-value slot.
1367static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1368  // If there are multiple uses of the return-value slot, just check
1369  // for something immediately preceding the IP.  Sometimes this can
1370  // happen with how we generate implicit-returns; it can also happen
1371  // with noreturn cleanups.
1372  if (!CGF.ReturnValue->hasOneUse()) {
1373    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1374    if (IP->empty()) return 0;
1375    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1376    if (!store) return 0;
1377    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1378    assert(!store->isAtomic() && !store->isVolatile()); // see below
1379    return store;
1380  }
1381
1382  llvm::StoreInst *store =
1383    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1384  if (!store) return 0;
1385
1386  // These aren't actually possible for non-coerced returns, and we
1387  // only care about non-coerced returns on this code path.
1388  assert(!store->isAtomic() && !store->isVolatile());
1389
1390  // Now do a first-and-dirty dominance check: just walk up the
1391  // single-predecessors chain from the current insertion point.
1392  llvm::BasicBlock *StoreBB = store->getParent();
1393  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1394  while (IP != StoreBB) {
1395    if (!(IP = IP->getSinglePredecessor()))
1396      return 0;
1397  }
1398
1399  // Okay, the store's basic block dominates the insertion point; we
1400  // can do our thing.
1401  return store;
1402}
1403
1404void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1405  // Functions with no result always return void.
1406  if (ReturnValue == 0) {
1407    Builder.CreateRetVoid();
1408    return;
1409  }
1410
1411  llvm::DebugLoc RetDbgLoc;
1412  llvm::Value *RV = 0;
1413  QualType RetTy = FI.getReturnType();
1414  const ABIArgInfo &RetAI = FI.getReturnInfo();
1415
1416  switch (RetAI.getKind()) {
1417  case ABIArgInfo::Indirect: {
1418    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1419    if (RetTy->isAnyComplexType()) {
1420      ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1421      StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1422    } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1423      // Do nothing; aggregrates get evaluated directly into the destination.
1424    } else {
1425      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1426                        false, Alignment, RetTy);
1427    }
1428    break;
1429  }
1430
1431  case ABIArgInfo::Extend:
1432  case ABIArgInfo::Direct:
1433    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1434        RetAI.getDirectOffset() == 0) {
1435      // The internal return value temp always will have pointer-to-return-type
1436      // type, just do a load.
1437
1438      // If there is a dominating store to ReturnValue, we can elide
1439      // the load, zap the store, and usually zap the alloca.
1440      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1441        // Get the stored value and nuke the now-dead store.
1442        RetDbgLoc = SI->getDebugLoc();
1443        RV = SI->getValueOperand();
1444        SI->eraseFromParent();
1445
1446        // If that was the only use of the return value, nuke it as well now.
1447        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1448          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1449          ReturnValue = 0;
1450        }
1451
1452      // Otherwise, we have to do a simple load.
1453      } else {
1454        RV = Builder.CreateLoad(ReturnValue);
1455      }
1456    } else {
1457      llvm::Value *V = ReturnValue;
1458      // If the value is offset in memory, apply the offset now.
1459      if (unsigned Offs = RetAI.getDirectOffset()) {
1460        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1461        V = Builder.CreateConstGEP1_32(V, Offs);
1462        V = Builder.CreateBitCast(V,
1463                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1464      }
1465
1466      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1467    }
1468
1469    // In ARC, end functions that return a retainable type with a call
1470    // to objc_autoreleaseReturnValue.
1471    if (AutoreleaseResult) {
1472      assert(getLangOpts().ObjCAutoRefCount &&
1473             !FI.isReturnsRetained() &&
1474             RetTy->isObjCRetainableType());
1475      RV = emitAutoreleaseOfResult(*this, RV);
1476    }
1477
1478    break;
1479
1480  case ABIArgInfo::Ignore:
1481    break;
1482
1483  case ABIArgInfo::Expand:
1484    llvm_unreachable("Invalid ABI kind for return argument");
1485  }
1486
1487  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1488  if (!RetDbgLoc.isUnknown())
1489    Ret->setDebugLoc(RetDbgLoc);
1490}
1491
1492void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1493                                          const VarDecl *param) {
1494  // StartFunction converted the ABI-lowered parameter(s) into a
1495  // local alloca.  We need to turn that into an r-value suitable
1496  // for EmitCall.
1497  llvm::Value *local = GetAddrOfLocalVar(param);
1498
1499  QualType type = param->getType();
1500
1501  // For the most part, we just need to load the alloca, except:
1502  // 1) aggregate r-values are actually pointers to temporaries, and
1503  // 2) references to aggregates are pointers directly to the aggregate.
1504  // I don't know why references to non-aggregates are different here.
1505  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1506    if (hasAggregateLLVMType(ref->getPointeeType()))
1507      return args.add(RValue::getAggregate(local), type);
1508
1509    // Locals which are references to scalars are represented
1510    // with allocas holding the pointer.
1511    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1512  }
1513
1514  if (type->isAnyComplexType()) {
1515    ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1516    return args.add(RValue::getComplex(complex), type);
1517  }
1518
1519  if (hasAggregateLLVMType(type))
1520    return args.add(RValue::getAggregate(local), type);
1521
1522  unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1523  llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1524  return args.add(RValue::get(value), type);
1525}
1526
1527static bool isProvablyNull(llvm::Value *addr) {
1528  return isa<llvm::ConstantPointerNull>(addr);
1529}
1530
1531static bool isProvablyNonNull(llvm::Value *addr) {
1532  return isa<llvm::AllocaInst>(addr);
1533}
1534
1535/// Emit the actual writing-back of a writeback.
1536static void emitWriteback(CodeGenFunction &CGF,
1537                          const CallArgList::Writeback &writeback) {
1538  llvm::Value *srcAddr = writeback.Address;
1539  assert(!isProvablyNull(srcAddr) &&
1540         "shouldn't have writeback for provably null argument");
1541
1542  llvm::BasicBlock *contBB = 0;
1543
1544  // If the argument wasn't provably non-null, we need to null check
1545  // before doing the store.
1546  bool provablyNonNull = isProvablyNonNull(srcAddr);
1547  if (!provablyNonNull) {
1548    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1549    contBB = CGF.createBasicBlock("icr.done");
1550
1551    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1552    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1553    CGF.EmitBlock(writebackBB);
1554  }
1555
1556  // Load the value to writeback.
1557  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1558
1559  // Cast it back, in case we're writing an id to a Foo* or something.
1560  value = CGF.Builder.CreateBitCast(value,
1561               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1562                            "icr.writeback-cast");
1563
1564  // Perform the writeback.
1565  QualType srcAddrType = writeback.AddressType;
1566  CGF.EmitStoreThroughLValue(RValue::get(value),
1567                             CGF.MakeAddrLValue(srcAddr, srcAddrType));
1568
1569  // Jump to the continuation block.
1570  if (!provablyNonNull)
1571    CGF.EmitBlock(contBB);
1572}
1573
1574static void emitWritebacks(CodeGenFunction &CGF,
1575                           const CallArgList &args) {
1576  for (CallArgList::writeback_iterator
1577         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1578    emitWriteback(CGF, *i);
1579}
1580
1581/// Emit an argument that's being passed call-by-writeback.  That is,
1582/// we are passing the address of
1583static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1584                             const ObjCIndirectCopyRestoreExpr *CRE) {
1585  llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1586
1587  // The dest and src types don't necessarily match in LLVM terms
1588  // because of the crazy ObjC compatibility rules.
1589
1590  llvm::PointerType *destType =
1591    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1592
1593  // If the address is a constant null, just pass the appropriate null.
1594  if (isProvablyNull(srcAddr)) {
1595    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1596             CRE->getType());
1597    return;
1598  }
1599
1600  QualType srcAddrType =
1601    CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1602
1603  // Create the temporary.
1604  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1605                                           "icr.temp");
1606
1607  // Zero-initialize it if we're not doing a copy-initialization.
1608  bool shouldCopy = CRE->shouldCopy();
1609  if (!shouldCopy) {
1610    llvm::Value *null =
1611      llvm::ConstantPointerNull::get(
1612        cast<llvm::PointerType>(destType->getElementType()));
1613    CGF.Builder.CreateStore(null, temp);
1614  }
1615
1616  llvm::BasicBlock *contBB = 0;
1617
1618  // If the address is *not* known to be non-null, we need to switch.
1619  llvm::Value *finalArgument;
1620
1621  bool provablyNonNull = isProvablyNonNull(srcAddr);
1622  if (provablyNonNull) {
1623    finalArgument = temp;
1624  } else {
1625    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1626
1627    finalArgument = CGF.Builder.CreateSelect(isNull,
1628                                   llvm::ConstantPointerNull::get(destType),
1629                                             temp, "icr.argument");
1630
1631    // If we need to copy, then the load has to be conditional, which
1632    // means we need control flow.
1633    if (shouldCopy) {
1634      contBB = CGF.createBasicBlock("icr.cont");
1635      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1636      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1637      CGF.EmitBlock(copyBB);
1638    }
1639  }
1640
1641  // Perform a copy if necessary.
1642  if (shouldCopy) {
1643    LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1644    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1645    assert(srcRV.isScalar());
1646
1647    llvm::Value *src = srcRV.getScalarVal();
1648    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1649                                    "icr.cast");
1650
1651    // Use an ordinary store, not a store-to-lvalue.
1652    CGF.Builder.CreateStore(src, temp);
1653  }
1654
1655  // Finish the control flow if we needed it.
1656  if (shouldCopy && !provablyNonNull)
1657    CGF.EmitBlock(contBB);
1658
1659  args.addWriteback(srcAddr, srcAddrType, temp);
1660  args.add(RValue::get(finalArgument), CRE->getType());
1661}
1662
1663void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1664                                  QualType type) {
1665  if (const ObjCIndirectCopyRestoreExpr *CRE
1666        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1667    assert(getContext().getLangOpts().ObjCAutoRefCount);
1668    assert(getContext().hasSameType(E->getType(), type));
1669    return emitWritebackArg(*this, args, CRE);
1670  }
1671
1672  assert(type->isReferenceType() == E->isGLValue() &&
1673         "reference binding to unmaterialized r-value!");
1674
1675  if (E->isGLValue()) {
1676    assert(E->getObjectKind() == OK_Ordinary);
1677    return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1678                    type);
1679  }
1680
1681  if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1682      isa<ImplicitCastExpr>(E) &&
1683      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1684    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1685    assert(L.isSimple());
1686    args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1687    return;
1688  }
1689
1690  args.add(EmitAnyExprToTemp(E), type);
1691}
1692
1693// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1694// optimizer it can aggressively ignore unwind edges.
1695void
1696CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1697  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1698      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1699    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1700                      CGM.getNoObjCARCExceptionsMetadata());
1701}
1702
1703/// Emits a call or invoke instruction to the given function, depending
1704/// on the current state of the EH stack.
1705llvm::CallSite
1706CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1707                                  ArrayRef<llvm::Value *> Args,
1708                                  const Twine &Name) {
1709  llvm::BasicBlock *InvokeDest = getInvokeDest();
1710
1711  llvm::Instruction *Inst;
1712  if (!InvokeDest)
1713    Inst = Builder.CreateCall(Callee, Args, Name);
1714  else {
1715    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1716    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1717    EmitBlock(ContBB);
1718  }
1719
1720  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1721  // optimizer it can aggressively ignore unwind edges.
1722  if (CGM.getLangOpts().ObjCAutoRefCount)
1723    AddObjCARCExceptionMetadata(Inst);
1724
1725  return Inst;
1726}
1727
1728llvm::CallSite
1729CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1730                                  const Twine &Name) {
1731  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1732}
1733
1734static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1735                            llvm::FunctionType *FTy) {
1736  if (ArgNo < FTy->getNumParams())
1737    assert(Elt->getType() == FTy->getParamType(ArgNo));
1738  else
1739    assert(FTy->isVarArg());
1740  ++ArgNo;
1741}
1742
1743void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1744                                       SmallVector<llvm::Value*,16> &Args,
1745                                       llvm::FunctionType *IRFuncTy) {
1746  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1747    unsigned NumElts = AT->getSize().getZExtValue();
1748    QualType EltTy = AT->getElementType();
1749    llvm::Value *Addr = RV.getAggregateAddr();
1750    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1751      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1752      LValue LV = MakeAddrLValue(EltAddr, EltTy);
1753      RValue EltRV;
1754      if (EltTy->isAnyComplexType())
1755        // FIXME: Volatile?
1756        EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1757      else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1758        EltRV = LV.asAggregateRValue();
1759      else
1760        EltRV = EmitLoadOfLValue(LV);
1761      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1762    }
1763  } else if (const RecordType *RT = Ty->getAsStructureType()) {
1764    RecordDecl *RD = RT->getDecl();
1765    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1766    llvm::Value *Addr = RV.getAggregateAddr();
1767    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1768         i != e; ++i) {
1769      FieldDecl *FD = *i;
1770      QualType FT = FD->getType();
1771
1772      // FIXME: What are the right qualifiers here?
1773      LValue LV = EmitLValueForField(Addr, FD, 0);
1774      RValue FldRV;
1775      if (FT->isAnyComplexType())
1776        // FIXME: Volatile?
1777        FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1778      else if (CodeGenFunction::hasAggregateLLVMType(FT))
1779        FldRV = LV.asAggregateRValue();
1780      else
1781        FldRV = EmitLoadOfLValue(LV);
1782      ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
1783    }
1784  } else if (Ty->isAnyComplexType()) {
1785    ComplexPairTy CV = RV.getComplexVal();
1786    Args.push_back(CV.first);
1787    Args.push_back(CV.second);
1788  } else {
1789    assert(RV.isScalar() &&
1790           "Unexpected non-scalar rvalue during struct expansion.");
1791
1792    // Insert a bitcast as needed.
1793    llvm::Value *V = RV.getScalarVal();
1794    if (Args.size() < IRFuncTy->getNumParams() &&
1795        V->getType() != IRFuncTy->getParamType(Args.size()))
1796      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1797
1798    Args.push_back(V);
1799  }
1800}
1801
1802
1803RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1804                                 llvm::Value *Callee,
1805                                 ReturnValueSlot ReturnValue,
1806                                 const CallArgList &CallArgs,
1807                                 const Decl *TargetDecl,
1808                                 llvm::Instruction **callOrInvoke) {
1809  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1810  SmallVector<llvm::Value*, 16> Args;
1811
1812  // Handle struct-return functions by passing a pointer to the
1813  // location that we would like to return into.
1814  QualType RetTy = CallInfo.getReturnType();
1815  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1816
1817  // IRArgNo - Keep track of the argument number in the callee we're looking at.
1818  unsigned IRArgNo = 0;
1819  llvm::FunctionType *IRFuncTy =
1820    cast<llvm::FunctionType>(
1821                  cast<llvm::PointerType>(Callee->getType())->getElementType());
1822
1823  // If the call returns a temporary with struct return, create a temporary
1824  // alloca to hold the result, unless one is given to us.
1825  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1826    llvm::Value *Value = ReturnValue.getValue();
1827    if (!Value)
1828      Value = CreateMemTemp(RetTy);
1829    Args.push_back(Value);
1830    checkArgMatches(Value, IRArgNo, IRFuncTy);
1831  }
1832
1833  assert(CallInfo.arg_size() == CallArgs.size() &&
1834         "Mismatch between function signature & arguments.");
1835  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1836  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1837       I != E; ++I, ++info_it) {
1838    const ABIArgInfo &ArgInfo = info_it->info;
1839    RValue RV = I->RV;
1840
1841    unsigned TypeAlign =
1842      getContext().getTypeAlignInChars(I->Ty).getQuantity();
1843    switch (ArgInfo.getKind()) {
1844    case ABIArgInfo::Indirect: {
1845      if (RV.isScalar() || RV.isComplex()) {
1846        // Make a temporary alloca to pass the argument.
1847        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1848        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1849          AI->setAlignment(ArgInfo.getIndirectAlign());
1850        Args.push_back(AI);
1851
1852        if (RV.isScalar())
1853          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1854                            TypeAlign, I->Ty);
1855        else
1856          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1857
1858        // Validate argument match.
1859        checkArgMatches(AI, IRArgNo, IRFuncTy);
1860      } else {
1861        // We want to avoid creating an unnecessary temporary+copy here;
1862        // however, we need one in two cases:
1863        // 1. If the argument is not byval, and we are required to copy the
1864        //    source.  (This case doesn't occur on any common architecture.)
1865        // 2. If the argument is byval, RV is not sufficiently aligned, and
1866        //    we cannot force it to be sufficiently aligned.
1867        llvm::Value *Addr = RV.getAggregateAddr();
1868        unsigned Align = ArgInfo.getIndirectAlign();
1869        const llvm::TargetData *TD = &CGM.getTargetData();
1870        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1871            (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1872             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1873          // Create an aligned temporary, and copy to it.
1874          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1875          if (Align > AI->getAlignment())
1876            AI->setAlignment(Align);
1877          Args.push_back(AI);
1878          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1879
1880          // Validate argument match.
1881          checkArgMatches(AI, IRArgNo, IRFuncTy);
1882        } else {
1883          // Skip the extra memcpy call.
1884          Args.push_back(Addr);
1885
1886          // Validate argument match.
1887          checkArgMatches(Addr, IRArgNo, IRFuncTy);
1888        }
1889      }
1890      break;
1891    }
1892
1893    case ABIArgInfo::Ignore:
1894      break;
1895
1896    case ABIArgInfo::Extend:
1897    case ABIArgInfo::Direct: {
1898      // Insert a padding argument to ensure proper alignment.
1899      if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
1900        Args.push_back(llvm::UndefValue::get(PaddingType));
1901        ++IRArgNo;
1902      }
1903
1904      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1905          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1906          ArgInfo.getDirectOffset() == 0) {
1907        llvm::Value *V;
1908        if (RV.isScalar())
1909          V = RV.getScalarVal();
1910        else
1911          V = Builder.CreateLoad(RV.getAggregateAddr());
1912
1913        // If the argument doesn't match, perform a bitcast to coerce it.  This
1914        // can happen due to trivial type mismatches.
1915        if (IRArgNo < IRFuncTy->getNumParams() &&
1916            V->getType() != IRFuncTy->getParamType(IRArgNo))
1917          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1918        Args.push_back(V);
1919
1920        checkArgMatches(V, IRArgNo, IRFuncTy);
1921        break;
1922      }
1923
1924      // FIXME: Avoid the conversion through memory if possible.
1925      llvm::Value *SrcPtr;
1926      if (RV.isScalar()) {
1927        SrcPtr = CreateMemTemp(I->Ty, "coerce");
1928        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1929      } else if (RV.isComplex()) {
1930        SrcPtr = CreateMemTemp(I->Ty, "coerce");
1931        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1932      } else
1933        SrcPtr = RV.getAggregateAddr();
1934
1935      // If the value is offset in memory, apply the offset now.
1936      if (unsigned Offs = ArgInfo.getDirectOffset()) {
1937        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1938        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1939        SrcPtr = Builder.CreateBitCast(SrcPtr,
1940                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1941
1942      }
1943
1944      // If the coerce-to type is a first class aggregate, we flatten it and
1945      // pass the elements. Either way is semantically identical, but fast-isel
1946      // and the optimizer generally likes scalar values better than FCAs.
1947      if (llvm::StructType *STy =
1948            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1949        SrcPtr = Builder.CreateBitCast(SrcPtr,
1950                                       llvm::PointerType::getUnqual(STy));
1951        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1952          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1953          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1954          // We don't know what we're loading from.
1955          LI->setAlignment(1);
1956          Args.push_back(LI);
1957
1958          // Validate argument match.
1959          checkArgMatches(LI, IRArgNo, IRFuncTy);
1960        }
1961      } else {
1962        // In the simple case, just pass the coerced loaded value.
1963        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1964                                         *this));
1965
1966        // Validate argument match.
1967        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1968      }
1969
1970      break;
1971    }
1972
1973    case ABIArgInfo::Expand:
1974      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1975      IRArgNo = Args.size();
1976      break;
1977    }
1978  }
1979
1980  // If the callee is a bitcast of a function to a varargs pointer to function
1981  // type, check to see if we can remove the bitcast.  This handles some cases
1982  // with unprototyped functions.
1983  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1984    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1985      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1986      llvm::FunctionType *CurFT =
1987        cast<llvm::FunctionType>(CurPT->getElementType());
1988      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1989
1990      if (CE->getOpcode() == llvm::Instruction::BitCast &&
1991          ActualFT->getReturnType() == CurFT->getReturnType() &&
1992          ActualFT->getNumParams() == CurFT->getNumParams() &&
1993          ActualFT->getNumParams() == Args.size() &&
1994          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1995        bool ArgsMatch = true;
1996        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1997          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1998            ArgsMatch = false;
1999            break;
2000          }
2001
2002        // Strip the cast if we can get away with it.  This is a nice cleanup,
2003        // but also allows us to inline the function at -O0 if it is marked
2004        // always_inline.
2005        if (ArgsMatch)
2006          Callee = CalleeF;
2007      }
2008    }
2009
2010  unsigned CallingConv;
2011  CodeGen::AttributeListType AttributeList;
2012  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2013  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2014                                                   AttributeList.end());
2015
2016  llvm::BasicBlock *InvokeDest = 0;
2017  if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2018    InvokeDest = getInvokeDest();
2019
2020  llvm::CallSite CS;
2021  if (!InvokeDest) {
2022    CS = Builder.CreateCall(Callee, Args);
2023  } else {
2024    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2025    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2026    EmitBlock(Cont);
2027  }
2028  if (callOrInvoke)
2029    *callOrInvoke = CS.getInstruction();
2030
2031  CS.setAttributes(Attrs);
2032  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2033
2034  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2035  // optimizer it can aggressively ignore unwind edges.
2036  if (CGM.getLangOpts().ObjCAutoRefCount)
2037    AddObjCARCExceptionMetadata(CS.getInstruction());
2038
2039  // If the call doesn't return, finish the basic block and clear the
2040  // insertion point; this allows the rest of IRgen to discard
2041  // unreachable code.
2042  if (CS.doesNotReturn()) {
2043    Builder.CreateUnreachable();
2044    Builder.ClearInsertionPoint();
2045
2046    // FIXME: For now, emit a dummy basic block because expr emitters in
2047    // generally are not ready to handle emitting expressions at unreachable
2048    // points.
2049    EnsureInsertPoint();
2050
2051    // Return a reasonable RValue.
2052    return GetUndefRValue(RetTy);
2053  }
2054
2055  llvm::Instruction *CI = CS.getInstruction();
2056  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2057    CI->setName("call");
2058
2059  // Emit any writebacks immediately.  Arguably this should happen
2060  // after any return-value munging.
2061  if (CallArgs.hasWritebacks())
2062    emitWritebacks(*this, CallArgs);
2063
2064  switch (RetAI.getKind()) {
2065  case ABIArgInfo::Indirect: {
2066    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2067    if (RetTy->isAnyComplexType())
2068      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2069    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2070      return RValue::getAggregate(Args[0]);
2071    return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2072  }
2073
2074  case ABIArgInfo::Ignore:
2075    // If we are ignoring an argument that had a result, make sure to
2076    // construct the appropriate return value for our caller.
2077    return GetUndefRValue(RetTy);
2078
2079  case ABIArgInfo::Extend:
2080  case ABIArgInfo::Direct: {
2081    llvm::Type *RetIRTy = ConvertType(RetTy);
2082    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2083      if (RetTy->isAnyComplexType()) {
2084        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2085        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2086        return RValue::getComplex(std::make_pair(Real, Imag));
2087      }
2088      if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2089        llvm::Value *DestPtr = ReturnValue.getValue();
2090        bool DestIsVolatile = ReturnValue.isVolatile();
2091
2092        if (!DestPtr) {
2093          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2094          DestIsVolatile = false;
2095        }
2096        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2097        return RValue::getAggregate(DestPtr);
2098      }
2099
2100      // If the argument doesn't match, perform a bitcast to coerce it.  This
2101      // can happen due to trivial type mismatches.
2102      llvm::Value *V = CI;
2103      if (V->getType() != RetIRTy)
2104        V = Builder.CreateBitCast(V, RetIRTy);
2105      return RValue::get(V);
2106    }
2107
2108    llvm::Value *DestPtr = ReturnValue.getValue();
2109    bool DestIsVolatile = ReturnValue.isVolatile();
2110
2111    if (!DestPtr) {
2112      DestPtr = CreateMemTemp(RetTy, "coerce");
2113      DestIsVolatile = false;
2114    }
2115
2116    // If the value is offset in memory, apply the offset now.
2117    llvm::Value *StorePtr = DestPtr;
2118    if (unsigned Offs = RetAI.getDirectOffset()) {
2119      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2120      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2121      StorePtr = Builder.CreateBitCast(StorePtr,
2122                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2123    }
2124    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2125
2126    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2127    if (RetTy->isAnyComplexType())
2128      return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2129    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2130      return RValue::getAggregate(DestPtr);
2131    return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2132  }
2133
2134  case ABIArgInfo::Expand:
2135    llvm_unreachable("Invalid ABI kind for return argument");
2136  }
2137
2138  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2139}
2140
2141/* VarArg handling */
2142
2143llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2144  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2145}
2146