CGCall.cpp revision 193326
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/RecordLayout.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Attributes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetData.h"
29
30#include "ABIInfo.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35/***/
36
37// FIXME: Use iterator and sidestep silly type array creation.
38
39const
40CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) {
41  return getFunctionInfo(FTNP->getResultType(),
42                         llvm::SmallVector<QualType, 16>());
43}
44
45const
46CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) {
47  llvm::SmallVector<QualType, 16> ArgTys;
48  // FIXME: Kill copy.
49  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
50    ArgTys.push_back(FTP->getArgType(i));
51  return getFunctionInfo(FTP->getResultType(), ArgTys);
52}
53
54const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
55  llvm::SmallVector<QualType, 16> ArgTys;
56  // Add the 'this' pointer unless this is a static method.
57  if (MD->isInstance())
58    ArgTys.push_back(MD->getThisType(Context));
59
60  const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType();
61  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
62    ArgTys.push_back(FTP->getArgType(i));
63  return getFunctionInfo(FTP->getResultType(), ArgTys);
64}
65
66const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
67  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
68    if (MD->isInstance())
69      return getFunctionInfo(MD);
70
71  const FunctionType *FTy = FD->getType()->getAsFunctionType();
72  if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy))
73    return getFunctionInfo(FTP);
74  return getFunctionInfo(cast<FunctionNoProtoType>(FTy));
75}
76
77const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
78  llvm::SmallVector<QualType, 16> ArgTys;
79  ArgTys.push_back(MD->getSelfDecl()->getType());
80  ArgTys.push_back(Context.getObjCSelType());
81  // FIXME: Kill copy?
82  for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
83         e = MD->param_end(); i != e; ++i)
84    ArgTys.push_back((*i)->getType());
85  return getFunctionInfo(MD->getResultType(), ArgTys);
86}
87
88const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
89                                                    const CallArgList &Args) {
90  // FIXME: Kill copy.
91  llvm::SmallVector<QualType, 16> ArgTys;
92  for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
93       i != e; ++i)
94    ArgTys.push_back(i->second);
95  return getFunctionInfo(ResTy, ArgTys);
96}
97
98const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
99                                                  const FunctionArgList &Args) {
100  // FIXME: Kill copy.
101  llvm::SmallVector<QualType, 16> ArgTys;
102  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
103       i != e; ++i)
104    ArgTys.push_back(i->second);
105  return getFunctionInfo(ResTy, ArgTys);
106}
107
108const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
109                               const llvm::SmallVector<QualType, 16> &ArgTys) {
110  // Lookup or create unique function info.
111  llvm::FoldingSetNodeID ID;
112  CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end());
113
114  void *InsertPos = 0;
115  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
116  if (FI)
117    return *FI;
118
119  // Construct the function info.
120  FI = new CGFunctionInfo(ResTy, ArgTys);
121  FunctionInfos.InsertNode(FI, InsertPos);
122
123  // Compute ABI information.
124  getABIInfo().computeInfo(*FI, getContext());
125
126  return *FI;
127}
128
129/***/
130
131ABIInfo::~ABIInfo() {}
132
133void ABIArgInfo::dump() const {
134  fprintf(stderr, "(ABIArgInfo Kind=");
135  switch (TheKind) {
136  case Direct:
137    fprintf(stderr, "Direct");
138    break;
139  case Ignore:
140    fprintf(stderr, "Ignore");
141    break;
142  case Coerce:
143    fprintf(stderr, "Coerce Type=");
144    getCoerceToType()->print(llvm::errs());
145    break;
146  case Indirect:
147    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
148    break;
149  case Expand:
150    fprintf(stderr, "Expand");
151    break;
152  }
153  fprintf(stderr, ")\n");
154}
155
156/***/
157
158static bool isEmptyRecord(ASTContext &Context, QualType T);
159
160/// isEmptyField - Return true iff a the field is "empty", that is it
161/// is an unnamed bit-field or an (array of) empty record(s).
162static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
163  if (FD->isUnnamedBitfield())
164    return true;
165
166  QualType FT = FD->getType();
167  // Constant arrays of empty records count as empty, strip them off.
168  while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
169    FT = AT->getElementType();
170
171  return isEmptyRecord(Context, FT);
172}
173
174/// isEmptyRecord - Return true iff a structure contains only empty
175/// fields. Note that a structure with a flexible array member is not
176/// considered empty.
177static bool isEmptyRecord(ASTContext &Context, QualType T) {
178  const RecordType *RT = T->getAsRecordType();
179  if (!RT)
180    return 0;
181  const RecordDecl *RD = RT->getDecl();
182  if (RD->hasFlexibleArrayMember())
183    return false;
184  for (RecordDecl::field_iterator i = RD->field_begin(Context),
185         e = RD->field_end(Context); i != e; ++i)
186    if (!isEmptyField(Context, *i))
187      return false;
188  return true;
189}
190
191/// isSingleElementStruct - Determine if a structure is a "single
192/// element struct", i.e. it has exactly one non-empty field or
193/// exactly one field which is itself a single element
194/// struct. Structures with flexible array members are never
195/// considered single element structs.
196///
197/// \return The field declaration for the single non-empty field, if
198/// it exists.
199static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
200  const RecordType *RT = T->getAsStructureType();
201  if (!RT)
202    return 0;
203
204  const RecordDecl *RD = RT->getDecl();
205  if (RD->hasFlexibleArrayMember())
206    return 0;
207
208  const Type *Found = 0;
209  for (RecordDecl::field_iterator i = RD->field_begin(Context),
210         e = RD->field_end(Context); i != e; ++i) {
211    const FieldDecl *FD = *i;
212    QualType FT = FD->getType();
213
214    // Ignore empty fields.
215    if (isEmptyField(Context, FD))
216      continue;
217
218    // If we already found an element then this isn't a single-element
219    // struct.
220    if (Found)
221      return 0;
222
223    // Treat single element arrays as the element.
224    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
225      if (AT->getSize().getZExtValue() != 1)
226        break;
227      FT = AT->getElementType();
228    }
229
230    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
231      Found = FT.getTypePtr();
232    } else {
233      Found = isSingleElementStruct(FT, Context);
234      if (!Found)
235        return 0;
236    }
237  }
238
239  return Found;
240}
241
242static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
243  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
244    return false;
245
246  uint64_t Size = Context.getTypeSize(Ty);
247  return Size == 32 || Size == 64;
248}
249
250static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
251                                           ASTContext &Context) {
252  for (RecordDecl::field_iterator i = RD->field_begin(Context),
253         e = RD->field_end(Context); i != e; ++i) {
254    const FieldDecl *FD = *i;
255
256    if (!is32Or64BitBasicType(FD->getType(), Context))
257      return false;
258
259    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
260    // how to expand them yet, and the predicate for telling if a bitfield still
261    // counts as "basic" is more complicated than what we were doing previously.
262    if (FD->isBitField())
263      return false;
264  }
265
266  return true;
267}
268
269namespace {
270/// DefaultABIInfo - The default implementation for ABI specific
271/// details. This implementation provides information which results in
272/// self-consistent and sensible LLVM IR generation, but does not
273/// conform to any particular ABI.
274class DefaultABIInfo : public ABIInfo {
275  ABIArgInfo classifyReturnType(QualType RetTy,
276                                ASTContext &Context) const;
277
278  ABIArgInfo classifyArgumentType(QualType RetTy,
279                                  ASTContext &Context) const;
280
281  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
282    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
283    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
284         it != ie; ++it)
285      it->info = classifyArgumentType(it->type, Context);
286  }
287
288  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
289                                 CodeGenFunction &CGF) const;
290};
291
292/// X86_32ABIInfo - The X86-32 ABI information.
293class X86_32ABIInfo : public ABIInfo {
294  ASTContext &Context;
295  bool IsDarwin;
296
297  static bool isRegisterSize(unsigned Size) {
298    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
299  }
300
301  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
302
303public:
304  ABIArgInfo classifyReturnType(QualType RetTy,
305                                ASTContext &Context) const;
306
307  ABIArgInfo classifyArgumentType(QualType RetTy,
308                                  ASTContext &Context) const;
309
310  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
311    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
312    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
313         it != ie; ++it)
314      it->info = classifyArgumentType(it->type, Context);
315  }
316
317  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
318                                 CodeGenFunction &CGF) const;
319
320  X86_32ABIInfo(ASTContext &Context, bool d)
321    : ABIInfo(), Context(Context), IsDarwin(d) {}
322};
323}
324
325
326/// shouldReturnTypeInRegister - Determine if the given type should be
327/// passed in a register (for the Darwin ABI).
328bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
329                                               ASTContext &Context) {
330  uint64_t Size = Context.getTypeSize(Ty);
331
332  // Type must be register sized.
333  if (!isRegisterSize(Size))
334    return false;
335
336  if (Ty->isVectorType()) {
337    // 64- and 128- bit vectors inside structures are not returned in
338    // registers.
339    if (Size == 64 || Size == 128)
340      return false;
341
342    return true;
343  }
344
345  // If this is a builtin, pointer, or complex type, it is ok.
346  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
347    return true;
348
349  // Arrays are treated like records.
350  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
351    return shouldReturnTypeInRegister(AT->getElementType(), Context);
352
353  // Otherwise, it must be a record type.
354  const RecordType *RT = Ty->getAsRecordType();
355  if (!RT) return false;
356
357  // Structure types are passed in register if all fields would be
358  // passed in a register.
359  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
360         e = RT->getDecl()->field_end(Context); i != e; ++i) {
361    const FieldDecl *FD = *i;
362
363    // Empty fields are ignored.
364    if (isEmptyField(Context, FD))
365      continue;
366
367    // Check fields recursively.
368    if (!shouldReturnTypeInRegister(FD->getType(), Context))
369      return false;
370  }
371
372  return true;
373}
374
375ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
376                                            ASTContext &Context) const {
377  if (RetTy->isVoidType()) {
378    return ABIArgInfo::getIgnore();
379  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
380    // On Darwin, some vectors are returned in registers.
381    if (IsDarwin) {
382      uint64_t Size = Context.getTypeSize(RetTy);
383
384      // 128-bit vectors are a special case; they are returned in
385      // registers and we need to make sure to pick a type the LLVM
386      // backend will like.
387      if (Size == 128)
388        return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
389                                                           2));
390
391      // Always return in register if it fits in a general purpose
392      // register, or if it is 64 bits and has a single element.
393      if ((Size == 8 || Size == 16 || Size == 32) ||
394          (Size == 64 && VT->getNumElements() == 1))
395        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
396
397      return ABIArgInfo::getIndirect(0);
398    }
399
400    return ABIArgInfo::getDirect();
401  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
402    // Structures with flexible arrays are always indirect.
403    if (const RecordType *RT = RetTy->getAsStructureType())
404      if (RT->getDecl()->hasFlexibleArrayMember())
405        return ABIArgInfo::getIndirect(0);
406
407    // Outside of Darwin, structs and unions are always indirect.
408    if (!IsDarwin && !RetTy->isAnyComplexType())
409      return ABIArgInfo::getIndirect(0);
410
411    // Classify "single element" structs as their element type.
412    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
413      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
414        if (BT->isIntegerType()) {
415          // We need to use the size of the structure, padding
416          // bit-fields can adjust that to be larger than the single
417          // element type.
418          uint64_t Size = Context.getTypeSize(RetTy);
419          return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
420        } else if (BT->getKind() == BuiltinType::Float) {
421          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
422                 "Unexpect single element structure size!");
423          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
424        } else if (BT->getKind() == BuiltinType::Double) {
425          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
426                 "Unexpect single element structure size!");
427          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
428        }
429      } else if (SeltTy->isPointerType()) {
430        // FIXME: It would be really nice if this could come out as the proper
431        // pointer type.
432        llvm::Type *PtrTy =
433          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
434        return ABIArgInfo::getCoerce(PtrTy);
435      } else if (SeltTy->isVectorType()) {
436        // 64- and 128-bit vectors are never returned in a
437        // register when inside a structure.
438        uint64_t Size = Context.getTypeSize(RetTy);
439        if (Size == 64 || Size == 128)
440          return ABIArgInfo::getIndirect(0);
441
442        return classifyReturnType(QualType(SeltTy, 0), Context);
443      }
444    }
445
446    // Small structures which are register sized are generally returned
447    // in a register.
448    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
449      uint64_t Size = Context.getTypeSize(RetTy);
450      return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
451    }
452
453    return ABIArgInfo::getIndirect(0);
454  } else {
455    return ABIArgInfo::getDirect();
456  }
457}
458
459ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
460                                               ASTContext &Context) const {
461  // FIXME: Set alignment on indirect arguments.
462  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
463    // Structures with flexible arrays are always indirect.
464    if (const RecordType *RT = Ty->getAsStructureType())
465      if (RT->getDecl()->hasFlexibleArrayMember())
466        return ABIArgInfo::getIndirect(0);
467
468    // Ignore empty structs.
469    uint64_t Size = Context.getTypeSize(Ty);
470    if (Ty->isStructureType() && Size == 0)
471      return ABIArgInfo::getIgnore();
472
473    // Expand structs with size <= 128-bits which consist only of
474    // basic types (int, long long, float, double, xxx*). This is
475    // non-recursive and does not ignore empty fields.
476    if (const RecordType *RT = Ty->getAsStructureType()) {
477      if (Context.getTypeSize(Ty) <= 4*32 &&
478          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
479        return ABIArgInfo::getExpand();
480    }
481
482    return ABIArgInfo::getIndirect(0);
483  } else {
484    return ABIArgInfo::getDirect();
485  }
486}
487
488llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
489                                      CodeGenFunction &CGF) const {
490  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
491  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
492
493  CGBuilderTy &Builder = CGF.Builder;
494  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
495                                                       "ap");
496  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
497  llvm::Type *PTy =
498    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
499  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
500
501  uint64_t Offset =
502    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
503  llvm::Value *NextAddr =
504    Builder.CreateGEP(Addr,
505                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
506                      "ap.next");
507  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
508
509  return AddrTyped;
510}
511
512namespace {
513/// X86_64ABIInfo - The X86_64 ABI information.
514class X86_64ABIInfo : public ABIInfo {
515  enum Class {
516    Integer = 0,
517    SSE,
518    SSEUp,
519    X87,
520    X87Up,
521    ComplexX87,
522    NoClass,
523    Memory
524  };
525
526  /// merge - Implement the X86_64 ABI merging algorithm.
527  ///
528  /// Merge an accumulating classification \arg Accum with a field
529  /// classification \arg Field.
530  ///
531  /// \param Accum - The accumulating classification. This should
532  /// always be either NoClass or the result of a previous merge
533  /// call. In addition, this should never be Memory (the caller
534  /// should just return Memory for the aggregate).
535  Class merge(Class Accum, Class Field) const;
536
537  /// classify - Determine the x86_64 register classes in which the
538  /// given type T should be passed.
539  ///
540  /// \param Lo - The classification for the parts of the type
541  /// residing in the low word of the containing object.
542  ///
543  /// \param Hi - The classification for the parts of the type
544  /// residing in the high word of the containing object.
545  ///
546  /// \param OffsetBase - The bit offset of this type in the
547  /// containing object.  Some parameters are classified different
548  /// depending on whether they straddle an eightbyte boundary.
549  ///
550  /// If a word is unused its result will be NoClass; if a type should
551  /// be passed in Memory then at least the classification of \arg Lo
552  /// will be Memory.
553  ///
554  /// The \arg Lo class will be NoClass iff the argument is ignored.
555  ///
556  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
557  /// also be ComplexX87.
558  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
559                Class &Lo, Class &Hi) const;
560
561  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
562  /// to coerce to, chose the best way to pass Ty in the same place
563  /// that \arg CoerceTo would be passed, but while keeping the
564  /// emitted code as simple as possible.
565  ///
566  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
567  /// the ways we might want to pass things, instead of constructing an LLVM
568  /// type. This makes this code more explicit, and it makes it clearer that we
569  /// are also doing this for correctness in the case of passing scalar types.
570  ABIArgInfo getCoerceResult(QualType Ty,
571                             const llvm::Type *CoerceTo,
572                             ASTContext &Context) const;
573
574  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
575  /// such that the argument will be passed in memory.
576  ABIArgInfo getIndirectResult(QualType Ty,
577                               ASTContext &Context) const;
578
579  ABIArgInfo classifyReturnType(QualType RetTy,
580                                ASTContext &Context) const;
581
582  ABIArgInfo classifyArgumentType(QualType Ty,
583                                  ASTContext &Context,
584                                  unsigned &neededInt,
585                                  unsigned &neededSSE) const;
586
587public:
588  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
589
590  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
591                                 CodeGenFunction &CGF) const;
592};
593}
594
595X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
596                                          Class Field) const {
597  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
598  // classified recursively so that always two fields are
599  // considered. The resulting class is calculated according to
600  // the classes of the fields in the eightbyte:
601  //
602  // (a) If both classes are equal, this is the resulting class.
603  //
604  // (b) If one of the classes is NO_CLASS, the resulting class is
605  // the other class.
606  //
607  // (c) If one of the classes is MEMORY, the result is the MEMORY
608  // class.
609  //
610  // (d) If one of the classes is INTEGER, the result is the
611  // INTEGER.
612  //
613  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
614  // MEMORY is used as class.
615  //
616  // (f) Otherwise class SSE is used.
617
618  // Accum should never be memory (we should have returned) or
619  // ComplexX87 (because this cannot be passed in a structure).
620  assert((Accum != Memory && Accum != ComplexX87) &&
621         "Invalid accumulated classification during merge.");
622  if (Accum == Field || Field == NoClass)
623    return Accum;
624  else if (Field == Memory)
625    return Memory;
626  else if (Accum == NoClass)
627    return Field;
628  else if (Accum == Integer || Field == Integer)
629    return Integer;
630  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
631           Accum == X87 || Accum == X87Up)
632    return Memory;
633  else
634    return SSE;
635}
636
637void X86_64ABIInfo::classify(QualType Ty,
638                             ASTContext &Context,
639                             uint64_t OffsetBase,
640                             Class &Lo, Class &Hi) const {
641  // FIXME: This code can be simplified by introducing a simple value class for
642  // Class pairs with appropriate constructor methods for the various
643  // situations.
644
645  // FIXME: Some of the split computations are wrong; unaligned vectors
646  // shouldn't be passed in registers for example, so there is no chance they
647  // can straddle an eightbyte. Verify & simplify.
648
649  Lo = Hi = NoClass;
650
651  Class &Current = OffsetBase < 64 ? Lo : Hi;
652  Current = Memory;
653
654  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
655    BuiltinType::Kind k = BT->getKind();
656
657    if (k == BuiltinType::Void) {
658      Current = NoClass;
659    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
660      Lo = Integer;
661      Hi = Integer;
662    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
663      Current = Integer;
664    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
665      Current = SSE;
666    } else if (k == BuiltinType::LongDouble) {
667      Lo = X87;
668      Hi = X87Up;
669    }
670    // FIXME: _Decimal32 and _Decimal64 are SSE.
671    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
672  } else if (const EnumType *ET = Ty->getAsEnumType()) {
673    // Classify the underlying integer type.
674    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
675  } else if (Ty->hasPointerRepresentation()) {
676    Current = Integer;
677  } else if (const VectorType *VT = Ty->getAsVectorType()) {
678    uint64_t Size = Context.getTypeSize(VT);
679    if (Size == 32) {
680      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
681      // float> as integer.
682      Current = Integer;
683
684      // If this type crosses an eightbyte boundary, it should be
685      // split.
686      uint64_t EB_Real = (OffsetBase) / 64;
687      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
688      if (EB_Real != EB_Imag)
689        Hi = Lo;
690    } else if (Size == 64) {
691      // gcc passes <1 x double> in memory. :(
692      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
693        return;
694
695      // gcc passes <1 x long long> as INTEGER.
696      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
697        Current = Integer;
698      else
699        Current = SSE;
700
701      // If this type crosses an eightbyte boundary, it should be
702      // split.
703      if (OffsetBase && OffsetBase != 64)
704        Hi = Lo;
705    } else if (Size == 128) {
706      Lo = SSE;
707      Hi = SSEUp;
708    }
709  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
710    QualType ET = Context.getCanonicalType(CT->getElementType());
711
712    uint64_t Size = Context.getTypeSize(Ty);
713    if (ET->isIntegralType()) {
714      if (Size <= 64)
715        Current = Integer;
716      else if (Size <= 128)
717        Lo = Hi = Integer;
718    } else if (ET == Context.FloatTy)
719      Current = SSE;
720    else if (ET == Context.DoubleTy)
721      Lo = Hi = SSE;
722    else if (ET == Context.LongDoubleTy)
723      Current = ComplexX87;
724
725    // If this complex type crosses an eightbyte boundary then it
726    // should be split.
727    uint64_t EB_Real = (OffsetBase) / 64;
728    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
729    if (Hi == NoClass && EB_Real != EB_Imag)
730      Hi = Lo;
731  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
732    // Arrays are treated like structures.
733
734    uint64_t Size = Context.getTypeSize(Ty);
735
736    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
737    // than two eightbytes, ..., it has class MEMORY.
738    if (Size > 128)
739      return;
740
741    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
742    // fields, it has class MEMORY.
743    //
744    // Only need to check alignment of array base.
745    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
746      return;
747
748    // Otherwise implement simplified merge. We could be smarter about
749    // this, but it isn't worth it and would be harder to verify.
750    Current = NoClass;
751    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
752    uint64_t ArraySize = AT->getSize().getZExtValue();
753    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
754      Class FieldLo, FieldHi;
755      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
756      Lo = merge(Lo, FieldLo);
757      Hi = merge(Hi, FieldHi);
758      if (Lo == Memory || Hi == Memory)
759        break;
760    }
761
762    // Do post merger cleanup (see below). Only case we worry about is Memory.
763    if (Hi == Memory)
764      Lo = Memory;
765    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
766  } else if (const RecordType *RT = Ty->getAsRecordType()) {
767    uint64_t Size = Context.getTypeSize(Ty);
768
769    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
770    // than two eightbytes, ..., it has class MEMORY.
771    if (Size > 128)
772      return;
773
774    const RecordDecl *RD = RT->getDecl();
775
776    // Assume variable sized types are passed in memory.
777    if (RD->hasFlexibleArrayMember())
778      return;
779
780    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
781
782    // Reset Lo class, this will be recomputed.
783    Current = NoClass;
784    unsigned idx = 0;
785    for (RecordDecl::field_iterator i = RD->field_begin(Context),
786           e = RD->field_end(Context); i != e; ++i, ++idx) {
787      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
788      bool BitField = i->isBitField();
789
790      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
791      // fields, it has class MEMORY.
792      //
793      // Note, skip this test for bit-fields, see below.
794      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
795        Lo = Memory;
796        return;
797      }
798
799      // Classify this field.
800      //
801      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
802      // exceeds a single eightbyte, each is classified
803      // separately. Each eightbyte gets initialized to class
804      // NO_CLASS.
805      Class FieldLo, FieldHi;
806
807      // Bit-fields require special handling, they do not force the
808      // structure to be passed in memory even if unaligned, and
809      // therefore they can straddle an eightbyte.
810      if (BitField) {
811        // Ignore padding bit-fields.
812        if (i->isUnnamedBitfield())
813          continue;
814
815        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
816        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
817
818        uint64_t EB_Lo = Offset / 64;
819        uint64_t EB_Hi = (Offset + Size - 1) / 64;
820        FieldLo = FieldHi = NoClass;
821        if (EB_Lo) {
822          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
823          FieldLo = NoClass;
824          FieldHi = Integer;
825        } else {
826          FieldLo = Integer;
827          FieldHi = EB_Hi ? Integer : NoClass;
828        }
829      } else
830        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
831      Lo = merge(Lo, FieldLo);
832      Hi = merge(Hi, FieldHi);
833      if (Lo == Memory || Hi == Memory)
834        break;
835    }
836
837    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
838    //
839    // (a) If one of the classes is MEMORY, the whole argument is
840    // passed in memory.
841    //
842    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
843
844    // The first of these conditions is guaranteed by how we implement
845    // the merge (just bail).
846    //
847    // The second condition occurs in the case of unions; for example
848    // union { _Complex double; unsigned; }.
849    if (Hi == Memory)
850      Lo = Memory;
851    if (Hi == SSEUp && Lo != SSE)
852      Hi = SSE;
853  }
854}
855
856ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
857                                          const llvm::Type *CoerceTo,
858                                          ASTContext &Context) const {
859  if (CoerceTo == llvm::Type::Int64Ty) {
860    // Integer and pointer types will end up in a general purpose
861    // register.
862    if (Ty->isIntegralType() || Ty->isPointerType())
863      return ABIArgInfo::getDirect();
864
865  } else if (CoerceTo == llvm::Type::DoubleTy) {
866    // FIXME: It would probably be better to make CGFunctionInfo only map using
867    // canonical types than to canonize here.
868    QualType CTy = Context.getCanonicalType(Ty);
869
870    // Float and double end up in a single SSE reg.
871    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
872      return ABIArgInfo::getDirect();
873
874  }
875
876  return ABIArgInfo::getCoerce(CoerceTo);
877}
878
879ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
880                                            ASTContext &Context) const {
881  // If this is a scalar LLVM value then assume LLVM will pass it in the right
882  // place naturally.
883  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
884    return ABIArgInfo::getDirect();
885
886  // FIXME: Set alignment correctly.
887  return ABIArgInfo::getIndirect(0);
888}
889
890ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
891                                            ASTContext &Context) const {
892  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
893  // classification algorithm.
894  X86_64ABIInfo::Class Lo, Hi;
895  classify(RetTy, Context, 0, Lo, Hi);
896
897  // Check some invariants.
898  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
899  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
900  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
901
902  const llvm::Type *ResType = 0;
903  switch (Lo) {
904  case NoClass:
905    return ABIArgInfo::getIgnore();
906
907  case SSEUp:
908  case X87Up:
909    assert(0 && "Invalid classification for lo word.");
910
911    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
912    // hidden argument.
913  case Memory:
914    return getIndirectResult(RetTy, Context);
915
916    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
917    // available register of the sequence %rax, %rdx is used.
918  case Integer:
919    ResType = llvm::Type::Int64Ty; break;
920
921    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
922    // available SSE register of the sequence %xmm0, %xmm1 is used.
923  case SSE:
924    ResType = llvm::Type::DoubleTy; break;
925
926    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
927    // returned on the X87 stack in %st0 as 80-bit x87 number.
928  case X87:
929    ResType = llvm::Type::X86_FP80Ty; break;
930
931    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
932    // part of the value is returned in %st0 and the imaginary part in
933    // %st1.
934  case ComplexX87:
935    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
936    ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
937                                    llvm::Type::X86_FP80Ty,
938                                    NULL);
939    break;
940  }
941
942  switch (Hi) {
943    // Memory was handled previously and X87 should
944    // never occur as a hi class.
945  case Memory:
946  case X87:
947    assert(0 && "Invalid classification for hi word.");
948
949  case ComplexX87: // Previously handled.
950  case NoClass: break;
951
952  case Integer:
953    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
954    break;
955  case SSE:
956    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
957    break;
958
959    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
960    // is passed in the upper half of the last used SSE register.
961    //
962    // SSEUP should always be preceeded by SSE, just widen.
963  case SSEUp:
964    assert(Lo == SSE && "Unexpected SSEUp classification.");
965    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
966    break;
967
968    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
969    // returned together with the previous X87 value in %st0.
970  case X87Up:
971    // If X87Up is preceeded by X87, we don't need to do
972    // anything. However, in some cases with unions it may not be
973    // preceeded by X87. In such situations we follow gcc and pass the
974    // extra bits in an SSE reg.
975    if (Lo != X87)
976      ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
977    break;
978  }
979
980  return getCoerceResult(RetTy, ResType, Context);
981}
982
983ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
984                                               unsigned &neededInt,
985                                               unsigned &neededSSE) const {
986  X86_64ABIInfo::Class Lo, Hi;
987  classify(Ty, Context, 0, Lo, Hi);
988
989  // Check some invariants.
990  // FIXME: Enforce these by construction.
991  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
992  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
993  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
994
995  neededInt = 0;
996  neededSSE = 0;
997  const llvm::Type *ResType = 0;
998  switch (Lo) {
999  case NoClass:
1000    return ABIArgInfo::getIgnore();
1001
1002    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1003    // on the stack.
1004  case Memory:
1005
1006    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1007    // COMPLEX_X87, it is passed in memory.
1008  case X87:
1009  case ComplexX87:
1010    return getIndirectResult(Ty, Context);
1011
1012  case SSEUp:
1013  case X87Up:
1014    assert(0 && "Invalid classification for lo word.");
1015
1016    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1017    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1018    // and %r9 is used.
1019  case Integer:
1020    ++neededInt;
1021    ResType = llvm::Type::Int64Ty;
1022    break;
1023
1024    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1025    // available SSE register is used, the registers are taken in the
1026    // order from %xmm0 to %xmm7.
1027  case SSE:
1028    ++neededSSE;
1029    ResType = llvm::Type::DoubleTy;
1030    break;
1031  }
1032
1033  switch (Hi) {
1034    // Memory was handled previously, ComplexX87 and X87 should
1035    // never occur as hi classes, and X87Up must be preceed by X87,
1036    // which is passed in memory.
1037  case Memory:
1038  case X87:
1039  case ComplexX87:
1040    assert(0 && "Invalid classification for hi word.");
1041    break;
1042
1043  case NoClass: break;
1044  case Integer:
1045    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
1046    ++neededInt;
1047    break;
1048
1049    // X87Up generally doesn't occur here (long double is passed in
1050    // memory), except in situations involving unions.
1051  case X87Up:
1052  case SSE:
1053    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
1054    ++neededSSE;
1055    break;
1056
1057    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1058    // eightbyte is passed in the upper half of the last used SSE
1059    // register.
1060  case SSEUp:
1061    assert(Lo == SSE && "Unexpected SSEUp classification.");
1062    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
1063    break;
1064  }
1065
1066  return getCoerceResult(Ty, ResType, Context);
1067}
1068
1069void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1070  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1071
1072  // Keep track of the number of assigned registers.
1073  unsigned freeIntRegs = 6, freeSSERegs = 8;
1074
1075  // If the return value is indirect, then the hidden argument is consuming one
1076  // integer register.
1077  if (FI.getReturnInfo().isIndirect())
1078    --freeIntRegs;
1079
1080  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1081  // get assigned (in left-to-right order) for passing as follows...
1082  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1083       it != ie; ++it) {
1084    unsigned neededInt, neededSSE;
1085    it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
1086
1087    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1088    // eightbyte of an argument, the whole argument is passed on the
1089    // stack. If registers have already been assigned for some
1090    // eightbytes of such an argument, the assignments get reverted.
1091    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1092      freeIntRegs -= neededInt;
1093      freeSSERegs -= neededSSE;
1094    } else {
1095      it->info = getIndirectResult(it->type, Context);
1096    }
1097  }
1098}
1099
1100static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1101                                        QualType Ty,
1102                                        CodeGenFunction &CGF) {
1103  llvm::Value *overflow_arg_area_p =
1104    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1105  llvm::Value *overflow_arg_area =
1106    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1107
1108  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1109  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1110  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1111  if (Align > 8) {
1112    // Note that we follow the ABI & gcc here, even though the type
1113    // could in theory have an alignment greater than 16. This case
1114    // shouldn't ever matter in practice.
1115
1116    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1117    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
1118    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1119    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1120                                                    llvm::Type::Int64Ty);
1121    llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
1122    overflow_arg_area =
1123      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1124                                 overflow_arg_area->getType(),
1125                                 "overflow_arg_area.align");
1126  }
1127
1128  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1129  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1130  llvm::Value *Res =
1131    CGF.Builder.CreateBitCast(overflow_arg_area,
1132                              llvm::PointerType::getUnqual(LTy));
1133
1134  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1135  // l->overflow_arg_area + sizeof(type).
1136  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1137  // an 8 byte boundary.
1138
1139  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1140  llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1141                                               (SizeInBytes + 7)  & ~7);
1142  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1143                                            "overflow_arg_area.next");
1144  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1145
1146  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1147  return Res;
1148}
1149
1150llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1151                                      CodeGenFunction &CGF) const {
1152  // Assume that va_list type is correct; should be pointer to LLVM type:
1153  // struct {
1154  //   i32 gp_offset;
1155  //   i32 fp_offset;
1156  //   i8* overflow_arg_area;
1157  //   i8* reg_save_area;
1158  // };
1159  unsigned neededInt, neededSSE;
1160  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
1161                                       neededInt, neededSSE);
1162
1163  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1164  // in the registers. If not go to step 7.
1165  if (!neededInt && !neededSSE)
1166    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1167
1168  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1169  // general purpose registers needed to pass type and num_fp to hold
1170  // the number of floating point registers needed.
1171
1172  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1173  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1174  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1175  //
1176  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1177  // register save space).
1178
1179  llvm::Value *InRegs = 0;
1180  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1181  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1182  if (neededInt) {
1183    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1184    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1185    InRegs =
1186      CGF.Builder.CreateICmpULE(gp_offset,
1187                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1188                                                       48 - neededInt * 8),
1189                                "fits_in_gp");
1190  }
1191
1192  if (neededSSE) {
1193    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1194    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1195    llvm::Value *FitsInFP =
1196      CGF.Builder.CreateICmpULE(fp_offset,
1197                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1198                                                       176 - neededSSE * 16),
1199                                "fits_in_fp");
1200    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1201  }
1202
1203  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1204  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1205  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1206  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1207
1208  // Emit code to load the value if it was passed in registers.
1209
1210  CGF.EmitBlock(InRegBlock);
1211
1212  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1213  // an offset of l->gp_offset and/or l->fp_offset. This may require
1214  // copying to a temporary location in case the parameter is passed
1215  // in different register classes or requires an alignment greater
1216  // than 8 for general purpose registers and 16 for XMM registers.
1217  //
1218  // FIXME: This really results in shameful code when we end up needing to
1219  // collect arguments from different places; often what should result in a
1220  // simple assembling of a structure from scattered addresses has many more
1221  // loads than necessary. Can we clean this up?
1222  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1223  llvm::Value *RegAddr =
1224    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1225                           "reg_save_area");
1226  if (neededInt && neededSSE) {
1227    // FIXME: Cleanup.
1228    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1229    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1230    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1231    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1232    const llvm::Type *TyLo = ST->getElementType(0);
1233    const llvm::Type *TyHi = ST->getElementType(1);
1234    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
1235           "Unexpected ABI info for mixed regs");
1236    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1237    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1238    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1239    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1240    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
1241    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
1242    llvm::Value *V =
1243      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1244    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1245    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1246    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1247
1248    RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
1249  } else if (neededInt) {
1250    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1251    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1252                                        llvm::PointerType::getUnqual(LTy));
1253  } else {
1254    if (neededSSE == 1) {
1255      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1256      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1257                                          llvm::PointerType::getUnqual(LTy));
1258    } else {
1259      assert(neededSSE == 2 && "Invalid number of needed registers!");
1260      // SSE registers are spaced 16 bytes apart in the register save
1261      // area, we need to collect the two eightbytes together.
1262      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1263      llvm::Value *RegAddrHi =
1264        CGF.Builder.CreateGEP(RegAddrLo,
1265                              llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
1266      const llvm::Type *DblPtrTy =
1267        llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
1268      const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
1269                                                         llvm::Type::DoubleTy,
1270                                                         NULL);
1271      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1272      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1273                                                           DblPtrTy));
1274      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1275      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1276                                                           DblPtrTy));
1277      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1278      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1279                                          llvm::PointerType::getUnqual(LTy));
1280    }
1281  }
1282
1283  // AMD64-ABI 3.5.7p5: Step 5. Set:
1284  // l->gp_offset = l->gp_offset + num_gp * 8
1285  // l->fp_offset = l->fp_offset + num_fp * 16.
1286  if (neededInt) {
1287    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1288                                                 neededInt * 8);
1289    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1290                            gp_offset_p);
1291  }
1292  if (neededSSE) {
1293    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1294                                                 neededSSE * 16);
1295    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1296                            fp_offset_p);
1297  }
1298  CGF.EmitBranch(ContBlock);
1299
1300  // Emit code to load the value if it was passed in memory.
1301
1302  CGF.EmitBlock(InMemBlock);
1303  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1304
1305  // Return the appropriate result.
1306
1307  CGF.EmitBlock(ContBlock);
1308  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1309                                                 "vaarg.addr");
1310  ResAddr->reserveOperandSpace(2);
1311  ResAddr->addIncoming(RegAddr, InRegBlock);
1312  ResAddr->addIncoming(MemAddr, InMemBlock);
1313
1314  return ResAddr;
1315}
1316
1317// ABI Info for PIC16
1318class PIC16ABIInfo : public ABIInfo {
1319  ABIArgInfo classifyReturnType(QualType RetTy,
1320                                ASTContext &Context) const;
1321
1322  ABIArgInfo classifyArgumentType(QualType RetTy,
1323                                  ASTContext &Context) const;
1324
1325  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1326    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1327    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1328         it != ie; ++it)
1329      it->info = classifyArgumentType(it->type, Context);
1330  }
1331
1332  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1333                                 CodeGenFunction &CGF) const;
1334
1335};
1336
1337ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1338                                              ASTContext &Context) const {
1339  if (RetTy->isVoidType()) {
1340    return ABIArgInfo::getIgnore();
1341  } else {
1342    return ABIArgInfo::getDirect();
1343  }
1344}
1345
1346ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1347                                                ASTContext &Context) const {
1348  return ABIArgInfo::getDirect();
1349}
1350
1351llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1352                                       CodeGenFunction &CGF) const {
1353  return 0;
1354}
1355
1356class ARMABIInfo : public ABIInfo {
1357  ABIArgInfo classifyReturnType(QualType RetTy,
1358                                ASTContext &Context) const;
1359
1360  ABIArgInfo classifyArgumentType(QualType RetTy,
1361                                  ASTContext &Context) const;
1362
1363  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
1364
1365  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1366                                 CodeGenFunction &CGF) const;
1367};
1368
1369void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1370  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1371  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1372       it != ie; ++it) {
1373    it->info = classifyArgumentType(it->type, Context);
1374  }
1375}
1376
1377ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1378                                            ASTContext &Context) const {
1379  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1380    return ABIArgInfo::getDirect();
1381  }
1382  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1383  // backend doesn't support byval.
1384  // FIXME: This doesn't handle alignment > 64 bits.
1385  const llvm::Type* ElemTy;
1386  unsigned SizeRegs;
1387  if (Context.getTypeAlign(Ty) > 32) {
1388    ElemTy = llvm::Type::Int64Ty;
1389    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1390  } else {
1391    ElemTy = llvm::Type::Int32Ty;
1392    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1393  }
1394  std::vector<const llvm::Type*> LLVMFields;
1395  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1396  const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
1397  return ABIArgInfo::getCoerce(STy);
1398}
1399
1400ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1401                                          ASTContext &Context) const {
1402  if (RetTy->isVoidType()) {
1403    return ABIArgInfo::getIgnore();
1404  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1405    // Aggregates <= 4 bytes are returned in r0; other aggregates
1406    // are returned indirectly.
1407    uint64_t Size = Context.getTypeSize(RetTy);
1408    if (Size <= 32)
1409      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
1410    return ABIArgInfo::getIndirect(0);
1411  } else {
1412    return ABIArgInfo::getDirect();
1413  }
1414}
1415
1416llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1417                                      CodeGenFunction &CGF) const {
1418  // FIXME: Need to handle alignment
1419  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1420  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1421
1422  CGBuilderTy &Builder = CGF.Builder;
1423  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1424                                                       "ap");
1425  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1426  llvm::Type *PTy =
1427    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1428  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1429
1430  uint64_t Offset =
1431    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1432  llvm::Value *NextAddr =
1433    Builder.CreateGEP(Addr,
1434                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
1435                      "ap.next");
1436  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1437
1438  return AddrTyped;
1439}
1440
1441ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
1442                                              ASTContext &Context) const {
1443  if (RetTy->isVoidType()) {
1444    return ABIArgInfo::getIgnore();
1445  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1446    return ABIArgInfo::getIndirect(0);
1447  } else {
1448    return ABIArgInfo::getDirect();
1449  }
1450}
1451
1452ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
1453                                                ASTContext &Context) const {
1454  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
1455    return ABIArgInfo::getIndirect(0);
1456  } else {
1457    return ABIArgInfo::getDirect();
1458  }
1459}
1460
1461llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1462                                       CodeGenFunction &CGF) const {
1463  return 0;
1464}
1465
1466const ABIInfo &CodeGenTypes::getABIInfo() const {
1467  if (TheABIInfo)
1468    return *TheABIInfo;
1469
1470  // For now we just cache this in the CodeGenTypes and don't bother
1471  // to free it.
1472  const char *TargetPrefix = getContext().Target.getTargetPrefix();
1473  if (strcmp(TargetPrefix, "x86") == 0) {
1474    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
1475    switch (getContext().Target.getPointerWidth(0)) {
1476    case 32:
1477      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
1478    case 64:
1479      return *(TheABIInfo = new X86_64ABIInfo());
1480    }
1481  } else if (strcmp(TargetPrefix, "arm") == 0) {
1482    // FIXME: Support for OABI?
1483    return *(TheABIInfo = new ARMABIInfo());
1484  } else if (strcmp(TargetPrefix, "pic16") == 0) {
1485    return *(TheABIInfo = new PIC16ABIInfo());
1486  }
1487
1488  return *(TheABIInfo = new DefaultABIInfo);
1489}
1490
1491/***/
1492
1493CGFunctionInfo::CGFunctionInfo(QualType ResTy,
1494                               const llvm::SmallVector<QualType, 16> &ArgTys) {
1495  NumArgs = ArgTys.size();
1496  Args = new ArgInfo[1 + NumArgs];
1497  Args[0].type = ResTy;
1498  for (unsigned i = 0; i < NumArgs; ++i)
1499    Args[1 + i].type = ArgTys[i];
1500}
1501
1502/***/
1503
1504void CodeGenTypes::GetExpandedTypes(QualType Ty,
1505                                    std::vector<const llvm::Type*> &ArgTys) {
1506  const RecordType *RT = Ty->getAsStructureType();
1507  assert(RT && "Can only expand structure types.");
1508  const RecordDecl *RD = RT->getDecl();
1509  assert(!RD->hasFlexibleArrayMember() &&
1510         "Cannot expand structure with flexible array.");
1511
1512  for (RecordDecl::field_iterator i = RD->field_begin(Context),
1513         e = RD->field_end(Context); i != e; ++i) {
1514    const FieldDecl *FD = *i;
1515    assert(!FD->isBitField() &&
1516           "Cannot expand structure with bit-field members.");
1517
1518    QualType FT = FD->getType();
1519    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1520      GetExpandedTypes(FT, ArgTys);
1521    } else {
1522      ArgTys.push_back(ConvertType(FT));
1523    }
1524  }
1525}
1526
1527llvm::Function::arg_iterator
1528CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1529                                    llvm::Function::arg_iterator AI) {
1530  const RecordType *RT = Ty->getAsStructureType();
1531  assert(RT && "Can only expand structure types.");
1532
1533  RecordDecl *RD = RT->getDecl();
1534  assert(LV.isSimple() &&
1535         "Unexpected non-simple lvalue during struct expansion.");
1536  llvm::Value *Addr = LV.getAddress();
1537  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1538         e = RD->field_end(getContext()); i != e; ++i) {
1539    FieldDecl *FD = *i;
1540    QualType FT = FD->getType();
1541
1542    // FIXME: What are the right qualifiers here?
1543    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1544    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1545      AI = ExpandTypeFromArgs(FT, LV, AI);
1546    } else {
1547      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
1548      ++AI;
1549    }
1550  }
1551
1552  return AI;
1553}
1554
1555void
1556CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1557                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
1558  const RecordType *RT = Ty->getAsStructureType();
1559  assert(RT && "Can only expand structure types.");
1560
1561  RecordDecl *RD = RT->getDecl();
1562  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1563  llvm::Value *Addr = RV.getAggregateAddr();
1564  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1565         e = RD->field_end(getContext()); i != e; ++i) {
1566    FieldDecl *FD = *i;
1567    QualType FT = FD->getType();
1568
1569    // FIXME: What are the right qualifiers here?
1570    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1571    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1572      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
1573    } else {
1574      RValue RV = EmitLoadOfLValue(LV, FT);
1575      assert(RV.isScalar() &&
1576             "Unexpected non-scalar rvalue during struct expansion.");
1577      Args.push_back(RV.getScalarVal());
1578    }
1579  }
1580}
1581
1582/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1583/// a pointer to an object of type \arg Ty.
1584///
1585/// This safely handles the case when the src type is smaller than the
1586/// destination type; in this situation the values of bits which not
1587/// present in the src are undefined.
1588static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
1589                                      const llvm::Type *Ty,
1590                                      CodeGenFunction &CGF) {
1591  const llvm::Type *SrcTy =
1592    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
1593  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
1594  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
1595
1596  // If load is legal, just bitcast the src pointer.
1597  if (SrcSize >= DstSize) {
1598    // Generally SrcSize is never greater than DstSize, since this means we are
1599    // losing bits. However, this can happen in cases where the structure has
1600    // additional padding, for example due to a user specified alignment.
1601    //
1602    // FIXME: Assert that we aren't truncating non-padding bits when have access
1603    // to that information.
1604    llvm::Value *Casted =
1605      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
1606    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1607    // FIXME: Use better alignment / avoid requiring aligned load.
1608    Load->setAlignment(1);
1609    return Load;
1610  } else {
1611    // Otherwise do coercion through memory. This is stupid, but
1612    // simple.
1613    llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
1614    llvm::Value *Casted =
1615      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
1616    llvm::StoreInst *Store =
1617      CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
1618    // FIXME: Use better alignment / avoid requiring aligned store.
1619    Store->setAlignment(1);
1620    return CGF.Builder.CreateLoad(Tmp);
1621  }
1622}
1623
1624/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1625/// where the source and destination may have different types.
1626///
1627/// This safely handles the case when the src type is larger than the
1628/// destination type; the upper bits of the src will be lost.
1629static void CreateCoercedStore(llvm::Value *Src,
1630                               llvm::Value *DstPtr,
1631                               CodeGenFunction &CGF) {
1632  const llvm::Type *SrcTy = Src->getType();
1633  const llvm::Type *DstTy =
1634    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1635
1636  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
1637  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
1638
1639  // If store is legal, just bitcast the src pointer.
1640  if (SrcSize >= DstSize) {
1641    // Generally SrcSize is never greater than DstSize, since this means we are
1642    // losing bits. However, this can happen in cases where the structure has
1643    // additional padding, for example due to a user specified alignment.
1644    //
1645    // FIXME: Assert that we aren't truncating non-padding bits when have access
1646    // to that information.
1647    llvm::Value *Casted =
1648      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1649    // FIXME: Use better alignment / avoid requiring aligned store.
1650    CGF.Builder.CreateStore(Src, Casted)->setAlignment(1);
1651  } else {
1652    // Otherwise do coercion through memory. This is stupid, but
1653    // simple.
1654    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1655    CGF.Builder.CreateStore(Src, Tmp);
1656    llvm::Value *Casted =
1657      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
1658    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1659    // FIXME: Use better alignment / avoid requiring aligned load.
1660    Load->setAlignment(1);
1661    CGF.Builder.CreateStore(Load, DstPtr);
1662  }
1663}
1664
1665/***/
1666
1667bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
1668  return FI.getReturnInfo().isIndirect();
1669}
1670
1671const llvm::FunctionType *
1672CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
1673  std::vector<const llvm::Type*> ArgTys;
1674
1675  const llvm::Type *ResultType = 0;
1676
1677  QualType RetTy = FI.getReturnType();
1678  const ABIArgInfo &RetAI = FI.getReturnInfo();
1679  switch (RetAI.getKind()) {
1680  case ABIArgInfo::Expand:
1681    assert(0 && "Invalid ABI kind for return argument");
1682
1683  case ABIArgInfo::Direct:
1684    ResultType = ConvertType(RetTy);
1685    break;
1686
1687  case ABIArgInfo::Indirect: {
1688    assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
1689    ResultType = llvm::Type::VoidTy;
1690    const llvm::Type *STy = ConvertType(RetTy);
1691    ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
1692    break;
1693  }
1694
1695  case ABIArgInfo::Ignore:
1696    ResultType = llvm::Type::VoidTy;
1697    break;
1698
1699  case ABIArgInfo::Coerce:
1700    ResultType = RetAI.getCoerceToType();
1701    break;
1702  }
1703
1704  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1705         ie = FI.arg_end(); it != ie; ++it) {
1706    const ABIArgInfo &AI = it->info;
1707
1708    switch (AI.getKind()) {
1709    case ABIArgInfo::Ignore:
1710      break;
1711
1712    case ABIArgInfo::Coerce:
1713      ArgTys.push_back(AI.getCoerceToType());
1714      break;
1715
1716    case ABIArgInfo::Indirect: {
1717      // indirect arguments are always on the stack, which is addr space #0.
1718      const llvm::Type *LTy = ConvertTypeForMem(it->type);
1719      ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
1720      break;
1721    }
1722
1723    case ABIArgInfo::Direct:
1724      ArgTys.push_back(ConvertType(it->type));
1725      break;
1726
1727    case ABIArgInfo::Expand:
1728      GetExpandedTypes(it->type, ArgTys);
1729      break;
1730    }
1731  }
1732
1733  return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
1734}
1735
1736void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1737                                           const Decl *TargetDecl,
1738                                           AttributeListType &PAL) {
1739  unsigned FuncAttrs = 0;
1740  unsigned RetAttrs = 0;
1741
1742  // FIXME: handle sseregparm someday...
1743  if (TargetDecl) {
1744    if (TargetDecl->hasAttr<NoThrowAttr>())
1745      FuncAttrs |= llvm::Attribute::NoUnwind;
1746    if (TargetDecl->hasAttr<NoReturnAttr>())
1747      FuncAttrs |= llvm::Attribute::NoReturn;
1748    if (TargetDecl->hasAttr<ConstAttr>())
1749      FuncAttrs |= llvm::Attribute::ReadNone;
1750    else if (TargetDecl->hasAttr<PureAttr>())
1751      FuncAttrs |= llvm::Attribute::ReadOnly;
1752  }
1753
1754  QualType RetTy = FI.getReturnType();
1755  unsigned Index = 1;
1756  const ABIArgInfo &RetAI = FI.getReturnInfo();
1757  switch (RetAI.getKind()) {
1758  case ABIArgInfo::Direct:
1759    if (RetTy->isPromotableIntegerType()) {
1760      if (RetTy->isSignedIntegerType()) {
1761        RetAttrs |= llvm::Attribute::SExt;
1762      } else if (RetTy->isUnsignedIntegerType()) {
1763        RetAttrs |= llvm::Attribute::ZExt;
1764      }
1765    }
1766    break;
1767
1768  case ABIArgInfo::Indirect:
1769    PAL.push_back(llvm::AttributeWithIndex::get(Index,
1770                                                llvm::Attribute::StructRet |
1771                                                llvm::Attribute::NoAlias));
1772    ++Index;
1773    // sret disables readnone and readonly
1774    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1775                   llvm::Attribute::ReadNone);
1776    break;
1777
1778  case ABIArgInfo::Ignore:
1779  case ABIArgInfo::Coerce:
1780    break;
1781
1782  case ABIArgInfo::Expand:
1783    assert(0 && "Invalid ABI kind for return argument");
1784  }
1785
1786  if (RetAttrs)
1787    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
1788
1789  // FIXME: we need to honour command line settings also...
1790  // FIXME: RegParm should be reduced in case of nested functions and/or global
1791  // register variable.
1792  signed RegParm = 0;
1793  if (TargetDecl)
1794    if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>())
1795      RegParm = RegParmAttr->getNumParams();
1796
1797  unsigned PointerWidth = getContext().Target.getPointerWidth(0);
1798  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1799         ie = FI.arg_end(); it != ie; ++it) {
1800    QualType ParamType = it->type;
1801    const ABIArgInfo &AI = it->info;
1802    unsigned Attributes = 0;
1803
1804    switch (AI.getKind()) {
1805    case ABIArgInfo::Coerce:
1806      break;
1807
1808    case ABIArgInfo::Indirect:
1809      Attributes |= llvm::Attribute::ByVal;
1810      Attributes |=
1811        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1812      // byval disables readnone and readonly.
1813      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1814                     llvm::Attribute::ReadNone);
1815      break;
1816
1817    case ABIArgInfo::Direct:
1818      if (ParamType->isPromotableIntegerType()) {
1819        if (ParamType->isSignedIntegerType()) {
1820          Attributes |= llvm::Attribute::SExt;
1821        } else if (ParamType->isUnsignedIntegerType()) {
1822          Attributes |= llvm::Attribute::ZExt;
1823        }
1824      }
1825      if (RegParm > 0 &&
1826          (ParamType->isIntegerType() || ParamType->isPointerType())) {
1827        RegParm -=
1828          (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
1829        if (RegParm >= 0)
1830          Attributes |= llvm::Attribute::InReg;
1831      }
1832      // FIXME: handle sseregparm someday...
1833      break;
1834
1835    case ABIArgInfo::Ignore:
1836      // Skip increment, no matching LLVM parameter.
1837      continue;
1838
1839    case ABIArgInfo::Expand: {
1840      std::vector<const llvm::Type*> Tys;
1841      // FIXME: This is rather inefficient. Do we ever actually need to do
1842      // anything here? The result should be just reconstructed on the other
1843      // side, so extension should be a non-issue.
1844      getTypes().GetExpandedTypes(ParamType, Tys);
1845      Index += Tys.size();
1846      continue;
1847    }
1848    }
1849
1850    if (Attributes)
1851      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
1852    ++Index;
1853  }
1854  if (FuncAttrs)
1855    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1856}
1857
1858void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1859                                         llvm::Function *Fn,
1860                                         const FunctionArgList &Args) {
1861  // FIXME: We no longer need the types from FunctionArgList; lift up and
1862  // simplify.
1863
1864  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1865  llvm::Function::arg_iterator AI = Fn->arg_begin();
1866
1867  // Name the struct return argument.
1868  if (CGM.ReturnTypeUsesSret(FI)) {
1869    AI->setName("agg.result");
1870    ++AI;
1871  }
1872
1873  assert(FI.arg_size() == Args.size() &&
1874         "Mismatch between function signature & arguments.");
1875  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1876  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1877       i != e; ++i, ++info_it) {
1878    const VarDecl *Arg = i->first;
1879    QualType Ty = info_it->type;
1880    const ABIArgInfo &ArgI = info_it->info;
1881
1882    switch (ArgI.getKind()) {
1883    case ABIArgInfo::Indirect: {
1884      llvm::Value* V = AI;
1885      if (hasAggregateLLVMType(Ty)) {
1886        // Do nothing, aggregates and complex variables are accessed by
1887        // reference.
1888      } else {
1889        // Load scalar value from indirect argument.
1890        V = EmitLoadOfScalar(V, false, Ty);
1891        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1892          // This must be a promotion, for something like
1893          // "void a(x) short x; {..."
1894          V = EmitScalarConversion(V, Ty, Arg->getType());
1895        }
1896      }
1897      EmitParmDecl(*Arg, V);
1898      break;
1899    }
1900
1901    case ABIArgInfo::Direct: {
1902      assert(AI != Fn->arg_end() && "Argument mismatch!");
1903      llvm::Value* V = AI;
1904      if (hasAggregateLLVMType(Ty)) {
1905        // Create a temporary alloca to hold the argument; the rest of
1906        // codegen expects to access aggregates & complex values by
1907        // reference.
1908        V = CreateTempAlloca(ConvertTypeForMem(Ty));
1909        Builder.CreateStore(AI, V);
1910      } else {
1911        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1912          // This must be a promotion, for something like
1913          // "void a(x) short x; {..."
1914          V = EmitScalarConversion(V, Ty, Arg->getType());
1915        }
1916      }
1917      EmitParmDecl(*Arg, V);
1918      break;
1919    }
1920
1921    case ABIArgInfo::Expand: {
1922      // If this structure was expanded into multiple arguments then
1923      // we need to create a temporary and reconstruct it from the
1924      // arguments.
1925      std::string Name = Arg->getNameAsString();
1926      llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),
1927                                           (Name + ".addr").c_str());
1928      // FIXME: What are the right qualifiers here?
1929      llvm::Function::arg_iterator End =
1930        ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
1931      EmitParmDecl(*Arg, Temp);
1932
1933      // Name the arguments used in expansion and increment AI.
1934      unsigned Index = 0;
1935      for (; AI != End; ++AI, ++Index)
1936        AI->setName(Name + "." + llvm::utostr(Index));
1937      continue;
1938    }
1939
1940    case ABIArgInfo::Ignore:
1941      // Initialize the local variable appropriately.
1942      if (hasAggregateLLVMType(Ty)) {
1943        EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty)));
1944      } else {
1945        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
1946      }
1947
1948      // Skip increment, no matching LLVM parameter.
1949      continue;
1950
1951    case ABIArgInfo::Coerce: {
1952      assert(AI != Fn->arg_end() && "Argument mismatch!");
1953      // FIXME: This is very wasteful; EmitParmDecl is just going to drop the
1954      // result in a new alloca anyway, so we could just store into that
1955      // directly if we broke the abstraction down more.
1956      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce");
1957      CreateCoercedStore(AI, V, *this);
1958      // Match to what EmitParmDecl is expecting for this type.
1959      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1960        V = EmitLoadOfScalar(V, false, Ty);
1961        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1962          // This must be a promotion, for something like
1963          // "void a(x) short x; {..."
1964          V = EmitScalarConversion(V, Ty, Arg->getType());
1965        }
1966      }
1967      EmitParmDecl(*Arg, V);
1968      break;
1969    }
1970    }
1971
1972    ++AI;
1973  }
1974  assert(AI == Fn->arg_end() && "Argument mismatch!");
1975}
1976
1977void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1978                                         llvm::Value *ReturnValue) {
1979  llvm::Value *RV = 0;
1980
1981  // Functions with no result always return void.
1982  if (ReturnValue) {
1983    QualType RetTy = FI.getReturnType();
1984    const ABIArgInfo &RetAI = FI.getReturnInfo();
1985
1986    switch (RetAI.getKind()) {
1987    case ABIArgInfo::Indirect:
1988      if (RetTy->isAnyComplexType()) {
1989        ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1990        StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1991      } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1992        EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
1993      } else {
1994        EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1995                          false, RetTy);
1996      }
1997      break;
1998
1999    case ABIArgInfo::Direct:
2000      // The internal return value temp always will have
2001      // pointer-to-return-type type.
2002      RV = Builder.CreateLoad(ReturnValue);
2003      break;
2004
2005    case ABIArgInfo::Ignore:
2006      break;
2007
2008    case ABIArgInfo::Coerce:
2009      RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
2010      break;
2011
2012    case ABIArgInfo::Expand:
2013      assert(0 && "Invalid ABI kind for return argument");
2014    }
2015  }
2016
2017  if (RV) {
2018    Builder.CreateRet(RV);
2019  } else {
2020    Builder.CreateRetVoid();
2021  }
2022}
2023
2024RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
2025  if (ArgType->isReferenceType())
2026    return EmitReferenceBindingToExpr(E, ArgType);
2027
2028  return EmitAnyExprToTemp(E);
2029}
2030
2031RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2032                                 llvm::Value *Callee,
2033                                 const CallArgList &CallArgs,
2034                                 const Decl *TargetDecl) {
2035  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2036  llvm::SmallVector<llvm::Value*, 16> Args;
2037
2038  // Handle struct-return functions by passing a pointer to the
2039  // location that we would like to return into.
2040  QualType RetTy = CallInfo.getReturnType();
2041  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2042  if (CGM.ReturnTypeUsesSret(CallInfo)) {
2043    // Create a temporary alloca to hold the result of the call. :(
2044    Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy)));
2045  }
2046
2047  assert(CallInfo.arg_size() == CallArgs.size() &&
2048         "Mismatch between function signature & arguments.");
2049  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2050  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2051       I != E; ++I, ++info_it) {
2052    const ABIArgInfo &ArgInfo = info_it->info;
2053    RValue RV = I->first;
2054
2055    switch (ArgInfo.getKind()) {
2056    case ABIArgInfo::Indirect:
2057      if (RV.isScalar() || RV.isComplex()) {
2058        // Make a temporary alloca to pass the argument.
2059        Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second)));
2060        if (RV.isScalar())
2061          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second);
2062        else
2063          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
2064      } else {
2065        Args.push_back(RV.getAggregateAddr());
2066      }
2067      break;
2068
2069    case ABIArgInfo::Direct:
2070      if (RV.isScalar()) {
2071        Args.push_back(RV.getScalarVal());
2072      } else if (RV.isComplex()) {
2073        llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
2074        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
2075        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
2076        Args.push_back(Tmp);
2077      } else {
2078        Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
2079      }
2080      break;
2081
2082    case ABIArgInfo::Ignore:
2083      break;
2084
2085    case ABIArgInfo::Coerce: {
2086      // FIXME: Avoid the conversion through memory if possible.
2087      llvm::Value *SrcPtr;
2088      if (RV.isScalar()) {
2089        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2090        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second);
2091      } else if (RV.isComplex()) {
2092        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2093        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2094      } else
2095        SrcPtr = RV.getAggregateAddr();
2096      Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2097                                       *this));
2098      break;
2099    }
2100
2101    case ABIArgInfo::Expand:
2102      ExpandTypeToArgs(I->second, RV, Args);
2103      break;
2104    }
2105  }
2106
2107  llvm::BasicBlock *InvokeDest = getInvokeDest();
2108  CodeGen::AttributeListType AttributeList;
2109  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList);
2110  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2111                                                   AttributeList.end());
2112
2113  llvm::CallSite CS;
2114  if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
2115    CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
2116  } else {
2117    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2118    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
2119                              Args.data(), Args.data()+Args.size());
2120    EmitBlock(Cont);
2121  }
2122
2123  CS.setAttributes(Attrs);
2124  if (const llvm::Function *F =  dyn_cast<llvm::Function>(Callee->stripPointerCasts()))
2125    CS.setCallingConv(F->getCallingConv());
2126
2127  // If the call doesn't return, finish the basic block and clear the
2128  // insertion point; this allows the rest of IRgen to discard
2129  // unreachable code.
2130  if (CS.doesNotReturn()) {
2131    Builder.CreateUnreachable();
2132    Builder.ClearInsertionPoint();
2133
2134    // FIXME: For now, emit a dummy basic block because expr emitters in
2135    // generally are not ready to handle emitting expressions at unreachable
2136    // points.
2137    EnsureInsertPoint();
2138
2139    // Return a reasonable RValue.
2140    return GetUndefRValue(RetTy);
2141  }
2142
2143  llvm::Instruction *CI = CS.getInstruction();
2144  if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy)
2145    CI->setName("call");
2146
2147  switch (RetAI.getKind()) {
2148  case ABIArgInfo::Indirect:
2149    if (RetTy->isAnyComplexType())
2150      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2151    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2152      return RValue::getAggregate(Args[0]);
2153    return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));
2154
2155  case ABIArgInfo::Direct:
2156    if (RetTy->isAnyComplexType()) {
2157      llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2158      llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2159      return RValue::getComplex(std::make_pair(Real, Imag));
2160    }
2161    if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2162      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp");
2163      Builder.CreateStore(CI, V);
2164      return RValue::getAggregate(V);
2165    }
2166    return RValue::get(CI);
2167
2168  case ABIArgInfo::Ignore:
2169    // If we are ignoring an argument that had a result, make sure to
2170    // construct the appropriate return value for our caller.
2171    return GetUndefRValue(RetTy);
2172
2173  case ABIArgInfo::Coerce: {
2174    // FIXME: Avoid the conversion through memory if possible.
2175    llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce");
2176    CreateCoercedStore(CI, V, *this);
2177    if (RetTy->isAnyComplexType())
2178      return RValue::getComplex(LoadComplexFromAddr(V, false));
2179    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2180      return RValue::getAggregate(V);
2181    return RValue::get(EmitLoadOfScalar(V, false, RetTy));
2182  }
2183
2184  case ABIArgInfo::Expand:
2185    assert(0 && "Invalid ABI kind for return argument");
2186  }
2187
2188  assert(0 && "Unhandled ABIArgInfo::Kind");
2189  return RValue::get(0);
2190}
2191
2192/* VarArg handling */
2193
2194llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2195  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2196}
2197