1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/ABI.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34
35#define MANGLE_CHECKER 0
36
37#if MANGLE_CHECKER
38#include <cxxabi.h>
39#endif
40
41using namespace clang;
42
43namespace {
44
45/// Retrieve the declaration context that should be used when mangling the given
46/// declaration.
47static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48  // The ABI assumes that lambda closure types that occur within
49  // default arguments live in the context of the function. However, due to
50  // the way in which Clang parses and creates function declarations, this is
51  // not the case: the lambda closure type ends up living in the context
52  // where the function itself resides, because the function declaration itself
53  // had not yet been created. Fix the context here.
54  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55    if (RD->isLambda())
56      if (ParmVarDecl *ContextParam
57            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58        return ContextParam->getDeclContext();
59  }
60
61  // Perform the same check for block literals.
62  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63    if (ParmVarDecl *ContextParam
64          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65      return ContextParam->getDeclContext();
66  }
67
68  const DeclContext *DC = D->getDeclContext();
69  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70    return getEffectiveDeclContext(CD);
71
72  if (const auto *VD = dyn_cast<VarDecl>(D))
73    if (VD->isExternC())
74      return VD->getASTContext().getTranslationUnitDecl();
75
76  if (const auto *FD = dyn_cast<FunctionDecl>(D))
77    if (FD->isExternC())
78      return FD->getASTContext().getTranslationUnitDecl();
79
80  return DC;
81}
82
83static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84  return getEffectiveDeclContext(cast<Decl>(DC));
85}
86
87static bool isLocalContainerContext(const DeclContext *DC) {
88  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89}
90
91static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92  const DeclContext *DC = getEffectiveDeclContext(D);
93  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94    if (isLocalContainerContext(DC))
95      return dyn_cast<RecordDecl>(D);
96    D = cast<Decl>(DC);
97    DC = getEffectiveDeclContext(D);
98  }
99  return nullptr;
100}
101
102static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104    return ftd->getTemplatedDecl();
105
106  return fn;
107}
108
109static const NamedDecl *getStructor(const NamedDecl *decl) {
110  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111  return (fn ? getStructor(fn) : decl);
112}
113
114static bool isLambda(const NamedDecl *ND) {
115  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116  if (!Record)
117    return false;
118
119  return Record->isLambda();
120}
121
122static const unsigned UnknownArity = ~0U;
123
124class ItaniumMangleContextImpl : public ItaniumMangleContext {
125  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128
129public:
130  explicit ItaniumMangleContextImpl(ASTContext &Context,
131                                    DiagnosticsEngine &Diags)
132      : ItaniumMangleContext(Context, Diags) {}
133
134  /// @name Mangler Entry Points
135  /// @{
136
137  bool shouldMangleCXXName(const NamedDecl *D) override;
138  bool shouldMangleStringLiteral(const StringLiteral *) override {
139    return false;
140  }
141  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
142  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                   raw_ostream &) override;
144  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                          const ThisAdjustment &ThisAdjustment,
146                          raw_ostream &) override;
147  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                raw_ostream &) override;
149  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                           const CXXRecordDecl *Type, raw_ostream &) override;
153  void mangleCXXRTTI(QualType T, raw_ostream &) override;
154  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155  void mangleTypeName(QualType T, raw_ostream &) override;
156  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
157                     raw_ostream &) override;
158  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
159                     raw_ostream &) override;
160
161  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
162  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
163  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
164  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
165  void mangleDynamicAtExitDestructor(const VarDecl *D,
166                                     raw_ostream &Out) override;
167  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
168                                 raw_ostream &Out) override;
169  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
170                             raw_ostream &Out) override;
171  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
172  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
173                                       raw_ostream &) override;
174
175  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
176
177  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
178    // Lambda closure types are already numbered.
179    if (isLambda(ND))
180      return false;
181
182    // Anonymous tags are already numbered.
183    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
184      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
185        return false;
186    }
187
188    // Use the canonical number for externally visible decls.
189    if (ND->isExternallyVisible()) {
190      unsigned discriminator = getASTContext().getManglingNumber(ND);
191      if (discriminator == 1)
192        return false;
193      disc = discriminator - 2;
194      return true;
195    }
196
197    // Make up a reasonable number for internal decls.
198    unsigned &discriminator = Uniquifier[ND];
199    if (!discriminator) {
200      const DeclContext *DC = getEffectiveDeclContext(ND);
201      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
202    }
203    if (discriminator == 1)
204      return false;
205    disc = discriminator-2;
206    return true;
207  }
208  /// @}
209};
210
211/// Manage the mangling of a single name.
212class CXXNameMangler {
213  ItaniumMangleContextImpl &Context;
214  raw_ostream &Out;
215
216  /// The "structor" is the top-level declaration being mangled, if
217  /// that's not a template specialization; otherwise it's the pattern
218  /// for that specialization.
219  const NamedDecl *Structor;
220  unsigned StructorType;
221
222  /// The next substitution sequence number.
223  unsigned SeqID;
224
225  class FunctionTypeDepthState {
226    unsigned Bits;
227
228    enum { InResultTypeMask = 1 };
229
230  public:
231    FunctionTypeDepthState() : Bits(0) {}
232
233    /// The number of function types we're inside.
234    unsigned getDepth() const {
235      return Bits >> 1;
236    }
237
238    /// True if we're in the return type of the innermost function type.
239    bool isInResultType() const {
240      return Bits & InResultTypeMask;
241    }
242
243    FunctionTypeDepthState push() {
244      FunctionTypeDepthState tmp = *this;
245      Bits = (Bits & ~InResultTypeMask) + 2;
246      return tmp;
247    }
248
249    void enterResultType() {
250      Bits |= InResultTypeMask;
251    }
252
253    void leaveResultType() {
254      Bits &= ~InResultTypeMask;
255    }
256
257    void pop(FunctionTypeDepthState saved) {
258      assert(getDepth() == saved.getDepth() + 1);
259      Bits = saved.Bits;
260    }
261
262  } FunctionTypeDepth;
263
264  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
265
266  ASTContext &getASTContext() const { return Context.getASTContext(); }
267
268public:
269  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
270                 const NamedDecl *D = nullptr)
271    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
272      SeqID(0) {
273    // These can't be mangled without a ctor type or dtor type.
274    assert(!D || (!isa<CXXDestructorDecl>(D) &&
275                  !isa<CXXConstructorDecl>(D)));
276  }
277  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
278                 const CXXConstructorDecl *D, CXXCtorType Type)
279    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
280      SeqID(0) { }
281  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
282                 const CXXDestructorDecl *D, CXXDtorType Type)
283    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
284      SeqID(0) { }
285
286#if MANGLE_CHECKER
287  ~CXXNameMangler() {
288    if (Out.str()[0] == '\01')
289      return;
290
291    int status = 0;
292    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
293    assert(status == 0 && "Could not demangle mangled name!");
294    free(result);
295  }
296#endif
297  raw_ostream &getStream() { return Out; }
298
299  void mangle(const NamedDecl *D);
300  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
301  void mangleNumber(const llvm::APSInt &I);
302  void mangleNumber(int64_t Number);
303  void mangleFloat(const llvm::APFloat &F);
304  void mangleFunctionEncoding(const FunctionDecl *FD);
305  void mangleSeqID(unsigned SeqID);
306  void mangleName(const NamedDecl *ND);
307  void mangleType(QualType T);
308  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
309
310private:
311
312  bool mangleSubstitution(const NamedDecl *ND);
313  bool mangleSubstitution(QualType T);
314  bool mangleSubstitution(TemplateName Template);
315  bool mangleSubstitution(uintptr_t Ptr);
316
317  void mangleExistingSubstitution(QualType type);
318  void mangleExistingSubstitution(TemplateName name);
319
320  bool mangleStandardSubstitution(const NamedDecl *ND);
321
322  void addSubstitution(const NamedDecl *ND) {
323    ND = cast<NamedDecl>(ND->getCanonicalDecl());
324
325    addSubstitution(reinterpret_cast<uintptr_t>(ND));
326  }
327  void addSubstitution(QualType T);
328  void addSubstitution(TemplateName Template);
329  void addSubstitution(uintptr_t Ptr);
330
331  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
332                              bool recursive = false);
333  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
334                            DeclarationName name,
335                            unsigned KnownArity = UnknownArity);
336
337  void mangleName(const TemplateDecl *TD,
338                  const TemplateArgument *TemplateArgs,
339                  unsigned NumTemplateArgs);
340  void mangleUnqualifiedName(const NamedDecl *ND) {
341    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
342  }
343  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
344                             unsigned KnownArity);
345  void mangleUnscopedName(const NamedDecl *ND);
346  void mangleUnscopedTemplateName(const TemplateDecl *ND);
347  void mangleUnscopedTemplateName(TemplateName);
348  void mangleSourceName(const IdentifierInfo *II);
349  void mangleLocalName(const Decl *D);
350  void mangleBlockForPrefix(const BlockDecl *Block);
351  void mangleUnqualifiedBlock(const BlockDecl *Block);
352  void mangleLambda(const CXXRecordDecl *Lambda);
353  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
354                        bool NoFunction=false);
355  void mangleNestedName(const TemplateDecl *TD,
356                        const TemplateArgument *TemplateArgs,
357                        unsigned NumTemplateArgs);
358  void manglePrefix(NestedNameSpecifier *qualifier);
359  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
360  void manglePrefix(QualType type);
361  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
362  void mangleTemplatePrefix(TemplateName Template);
363  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
364                                      StringRef Prefix = "");
365  void mangleOperatorName(DeclarationName Name, unsigned Arity);
366  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
367  void mangleQualifiers(Qualifiers Quals);
368  void mangleRefQualifier(RefQualifierKind RefQualifier);
369
370  void mangleObjCMethodName(const ObjCMethodDecl *MD);
371
372  // Declare manglers for every type class.
373#define ABSTRACT_TYPE(CLASS, PARENT)
374#define NON_CANONICAL_TYPE(CLASS, PARENT)
375#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
376#include "clang/AST/TypeNodes.def"
377
378  void mangleType(const TagType*);
379  void mangleType(TemplateName);
380  void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType,
381                              const FunctionDecl *FD = nullptr);
382  void mangleNeonVectorType(const VectorType *T);
383  void mangleAArch64NeonVectorType(const VectorType *T);
384
385  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
386  void mangleMemberExprBase(const Expr *base, bool isArrow);
387  void mangleMemberExpr(const Expr *base, bool isArrow,
388                        NestedNameSpecifier *qualifier,
389                        NamedDecl *firstQualifierLookup,
390                        DeclarationName name,
391                        unsigned knownArity);
392  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
393  void mangleInitListElements(const InitListExpr *InitList);
394  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
395  void mangleCXXCtorType(CXXCtorType T);
396  void mangleCXXDtorType(CXXDtorType T);
397
398  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
399                          unsigned NumTemplateArgs);
400  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
401                          unsigned NumTemplateArgs);
402  void mangleTemplateArgs(const TemplateArgumentList &AL);
403  void mangleTemplateArg(TemplateArgument A);
404
405  void mangleTemplateParameter(unsigned Index);
406
407  void mangleFunctionParam(const ParmVarDecl *parm);
408};
409
410}
411
412bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
413  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
414  if (FD) {
415    LanguageLinkage L = FD->getLanguageLinkage();
416    // Overloadable functions need mangling.
417    if (FD->hasAttr<OverloadableAttr>())
418      return true;
419
420    // "main" is not mangled.
421    if (FD->isMain())
422      return false;
423
424    // C++ functions and those whose names are not a simple identifier need
425    // mangling.
426    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
427      return true;
428
429    // C functions are not mangled.
430    if (L == CLanguageLinkage)
431      return false;
432  }
433
434  // Otherwise, no mangling is done outside C++ mode.
435  if (!getASTContext().getLangOpts().CPlusPlus)
436    return false;
437
438  const VarDecl *VD = dyn_cast<VarDecl>(D);
439  if (VD) {
440    // C variables are not mangled.
441    if (VD->isExternC())
442      return false;
443
444    // Variables at global scope with non-internal linkage are not mangled
445    const DeclContext *DC = getEffectiveDeclContext(D);
446    // Check for extern variable declared locally.
447    if (DC->isFunctionOrMethod() && D->hasLinkage())
448      while (!DC->isNamespace() && !DC->isTranslationUnit())
449        DC = getEffectiveParentContext(DC);
450    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
451        !isa<VarTemplateSpecializationDecl>(D))
452      return false;
453  }
454
455  return true;
456}
457
458void CXXNameMangler::mangle(const NamedDecl *D) {
459  // <mangled-name> ::= _Z <encoding>
460  //            ::= <data name>
461  //            ::= <special-name>
462  Out << "_Z";
463  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
464    mangleFunctionEncoding(FD);
465  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
466    mangleName(VD);
467  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
468    mangleName(IFD->getAnonField());
469  else
470    mangleName(cast<FieldDecl>(D));
471}
472
473void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
474  // <encoding> ::= <function name> <bare-function-type>
475  mangleName(FD);
476
477  // Don't mangle in the type if this isn't a decl we should typically mangle.
478  if (!Context.shouldMangleDeclName(FD))
479    return;
480
481  if (FD->hasAttr<EnableIfAttr>()) {
482    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
483    Out << "Ua9enable_ifI";
484    // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
485    // it here.
486    for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
487                                         E = FD->getAttrs().rend();
488         I != E; ++I) {
489      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
490      if (!EIA)
491        continue;
492      Out << 'X';
493      mangleExpression(EIA->getCond());
494      Out << 'E';
495    }
496    Out << 'E';
497    FunctionTypeDepth.pop(Saved);
498  }
499
500  // Whether the mangling of a function type includes the return type depends on
501  // the context and the nature of the function. The rules for deciding whether
502  // the return type is included are:
503  //
504  //   1. Template functions (names or types) have return types encoded, with
505  //   the exceptions listed below.
506  //   2. Function types not appearing as part of a function name mangling,
507  //   e.g. parameters, pointer types, etc., have return type encoded, with the
508  //   exceptions listed below.
509  //   3. Non-template function names do not have return types encoded.
510  //
511  // The exceptions mentioned in (1) and (2) above, for which the return type is
512  // never included, are
513  //   1. Constructors.
514  //   2. Destructors.
515  //   3. Conversion operator functions, e.g. operator int.
516  bool MangleReturnType = false;
517  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
518    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
519          isa<CXXConversionDecl>(FD)))
520      MangleReturnType = true;
521
522    // Mangle the type of the primary template.
523    FD = PrimaryTemplate->getTemplatedDecl();
524  }
525
526  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
527                         MangleReturnType, FD);
528}
529
530static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
531  while (isa<LinkageSpecDecl>(DC)) {
532    DC = getEffectiveParentContext(DC);
533  }
534
535  return DC;
536}
537
538/// Return whether a given namespace is the 'std' namespace.
539static bool isStd(const NamespaceDecl *NS) {
540  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
541                                ->isTranslationUnit())
542    return false;
543
544  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
545  return II && II->isStr("std");
546}
547
548// isStdNamespace - Return whether a given decl context is a toplevel 'std'
549// namespace.
550static bool isStdNamespace(const DeclContext *DC) {
551  if (!DC->isNamespace())
552    return false;
553
554  return isStd(cast<NamespaceDecl>(DC));
555}
556
557static const TemplateDecl *
558isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
559  // Check if we have a function template.
560  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
561    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
562      TemplateArgs = FD->getTemplateSpecializationArgs();
563      return TD;
564    }
565  }
566
567  // Check if we have a class template.
568  if (const ClassTemplateSpecializationDecl *Spec =
569        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
570    TemplateArgs = &Spec->getTemplateArgs();
571    return Spec->getSpecializedTemplate();
572  }
573
574  // Check if we have a variable template.
575  if (const VarTemplateSpecializationDecl *Spec =
576          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
577    TemplateArgs = &Spec->getTemplateArgs();
578    return Spec->getSpecializedTemplate();
579  }
580
581  return nullptr;
582}
583
584void CXXNameMangler::mangleName(const NamedDecl *ND) {
585  //  <name> ::= <nested-name>
586  //         ::= <unscoped-name>
587  //         ::= <unscoped-template-name> <template-args>
588  //         ::= <local-name>
589  //
590  const DeclContext *DC = getEffectiveDeclContext(ND);
591
592  // If this is an extern variable declared locally, the relevant DeclContext
593  // is that of the containing namespace, or the translation unit.
594  // FIXME: This is a hack; extern variables declared locally should have
595  // a proper semantic declaration context!
596  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
597    while (!DC->isNamespace() && !DC->isTranslationUnit())
598      DC = getEffectiveParentContext(DC);
599  else if (GetLocalClassDecl(ND)) {
600    mangleLocalName(ND);
601    return;
602  }
603
604  DC = IgnoreLinkageSpecDecls(DC);
605
606  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
607    // Check if we have a template.
608    const TemplateArgumentList *TemplateArgs = nullptr;
609    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
610      mangleUnscopedTemplateName(TD);
611      mangleTemplateArgs(*TemplateArgs);
612      return;
613    }
614
615    mangleUnscopedName(ND);
616    return;
617  }
618
619  if (isLocalContainerContext(DC)) {
620    mangleLocalName(ND);
621    return;
622  }
623
624  mangleNestedName(ND, DC);
625}
626void CXXNameMangler::mangleName(const TemplateDecl *TD,
627                                const TemplateArgument *TemplateArgs,
628                                unsigned NumTemplateArgs) {
629  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
630
631  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
632    mangleUnscopedTemplateName(TD);
633    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
634  } else {
635    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
636  }
637}
638
639void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
640  //  <unscoped-name> ::= <unqualified-name>
641  //                  ::= St <unqualified-name>   # ::std::
642
643  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
644    Out << "St";
645
646  mangleUnqualifiedName(ND);
647}
648
649void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
650  //     <unscoped-template-name> ::= <unscoped-name>
651  //                              ::= <substitution>
652  if (mangleSubstitution(ND))
653    return;
654
655  // <template-template-param> ::= <template-param>
656  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
657    mangleTemplateParameter(TTP->getIndex());
658  else
659    mangleUnscopedName(ND->getTemplatedDecl());
660
661  addSubstitution(ND);
662}
663
664void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
665  //     <unscoped-template-name> ::= <unscoped-name>
666  //                              ::= <substitution>
667  if (TemplateDecl *TD = Template.getAsTemplateDecl())
668    return mangleUnscopedTemplateName(TD);
669
670  if (mangleSubstitution(Template))
671    return;
672
673  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
674  assert(Dependent && "Not a dependent template name?");
675  if (const IdentifierInfo *Id = Dependent->getIdentifier())
676    mangleSourceName(Id);
677  else
678    mangleOperatorName(Dependent->getOperator(), UnknownArity);
679
680  addSubstitution(Template);
681}
682
683void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
684  // ABI:
685  //   Floating-point literals are encoded using a fixed-length
686  //   lowercase hexadecimal string corresponding to the internal
687  //   representation (IEEE on Itanium), high-order bytes first,
688  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
689  //   on Itanium.
690  // The 'without leading zeroes' thing seems to be an editorial
691  // mistake; see the discussion on cxx-abi-dev beginning on
692  // 2012-01-16.
693
694  // Our requirements here are just barely weird enough to justify
695  // using a custom algorithm instead of post-processing APInt::toString().
696
697  llvm::APInt valueBits = f.bitcastToAPInt();
698  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
699  assert(numCharacters != 0);
700
701  // Allocate a buffer of the right number of characters.
702  SmallVector<char, 20> buffer(numCharacters);
703
704  // Fill the buffer left-to-right.
705  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
706    // The bit-index of the next hex digit.
707    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
708
709    // Project out 4 bits starting at 'digitIndex'.
710    llvm::integerPart hexDigit
711      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
712    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
713    hexDigit &= 0xF;
714
715    // Map that over to a lowercase hex digit.
716    static const char charForHex[16] = {
717      '0', '1', '2', '3', '4', '5', '6', '7',
718      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
719    };
720    buffer[stringIndex] = charForHex[hexDigit];
721  }
722
723  Out.write(buffer.data(), numCharacters);
724}
725
726void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
727  if (Value.isSigned() && Value.isNegative()) {
728    Out << 'n';
729    Value.abs().print(Out, /*signed*/ false);
730  } else {
731    Value.print(Out, /*signed*/ false);
732  }
733}
734
735void CXXNameMangler::mangleNumber(int64_t Number) {
736  //  <number> ::= [n] <non-negative decimal integer>
737  if (Number < 0) {
738    Out << 'n';
739    Number = -Number;
740  }
741
742  Out << Number;
743}
744
745void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
746  //  <call-offset>  ::= h <nv-offset> _
747  //                 ::= v <v-offset> _
748  //  <nv-offset>    ::= <offset number>        # non-virtual base override
749  //  <v-offset>     ::= <offset number> _ <virtual offset number>
750  //                      # virtual base override, with vcall offset
751  if (!Virtual) {
752    Out << 'h';
753    mangleNumber(NonVirtual);
754    Out << '_';
755    return;
756  }
757
758  Out << 'v';
759  mangleNumber(NonVirtual);
760  Out << '_';
761  mangleNumber(Virtual);
762  Out << '_';
763}
764
765void CXXNameMangler::manglePrefix(QualType type) {
766  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
767    if (!mangleSubstitution(QualType(TST, 0))) {
768      mangleTemplatePrefix(TST->getTemplateName());
769
770      // FIXME: GCC does not appear to mangle the template arguments when
771      // the template in question is a dependent template name. Should we
772      // emulate that badness?
773      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
774      addSubstitution(QualType(TST, 0));
775    }
776  } else if (const auto *DTST =
777                 type->getAs<DependentTemplateSpecializationType>()) {
778    if (!mangleSubstitution(QualType(DTST, 0))) {
779      TemplateName Template = getASTContext().getDependentTemplateName(
780          DTST->getQualifier(), DTST->getIdentifier());
781      mangleTemplatePrefix(Template);
782
783      // FIXME: GCC does not appear to mangle the template arguments when
784      // the template in question is a dependent template name. Should we
785      // emulate that badness?
786      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
787      addSubstitution(QualType(DTST, 0));
788    }
789  } else {
790    // We use the QualType mangle type variant here because it handles
791    // substitutions.
792    mangleType(type);
793  }
794}
795
796/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
797///
798/// \param recursive - true if this is being called recursively,
799///   i.e. if there is more prefix "to the right".
800void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
801                                            bool recursive) {
802
803  // x, ::x
804  // <unresolved-name> ::= [gs] <base-unresolved-name>
805
806  // T::x / decltype(p)::x
807  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
808
809  // T::N::x /decltype(p)::N::x
810  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
811  //                       <base-unresolved-name>
812
813  // A::x, N::y, A<T>::z; "gs" means leading "::"
814  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
815  //                       <base-unresolved-name>
816
817  switch (qualifier->getKind()) {
818  case NestedNameSpecifier::Global:
819    Out << "gs";
820
821    // We want an 'sr' unless this is the entire NNS.
822    if (recursive)
823      Out << "sr";
824
825    // We never want an 'E' here.
826    return;
827
828  case NestedNameSpecifier::Super:
829    llvm_unreachable("Can't mangle __super specifier");
830
831  case NestedNameSpecifier::Namespace:
832    if (qualifier->getPrefix())
833      mangleUnresolvedPrefix(qualifier->getPrefix(),
834                             /*recursive*/ true);
835    else
836      Out << "sr";
837    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
838    break;
839  case NestedNameSpecifier::NamespaceAlias:
840    if (qualifier->getPrefix())
841      mangleUnresolvedPrefix(qualifier->getPrefix(),
842                             /*recursive*/ true);
843    else
844      Out << "sr";
845    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
846    break;
847
848  case NestedNameSpecifier::TypeSpec:
849  case NestedNameSpecifier::TypeSpecWithTemplate: {
850    const Type *type = qualifier->getAsType();
851
852    // We only want to use an unresolved-type encoding if this is one of:
853    //   - a decltype
854    //   - a template type parameter
855    //   - a template template parameter with arguments
856    // In all of these cases, we should have no prefix.
857    if (qualifier->getPrefix()) {
858      mangleUnresolvedPrefix(qualifier->getPrefix(),
859                             /*recursive*/ true);
860    } else {
861      // Otherwise, all the cases want this.
862      Out << "sr";
863    }
864
865    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
866      return;
867
868    break;
869  }
870
871  case NestedNameSpecifier::Identifier:
872    // Member expressions can have these without prefixes.
873    if (qualifier->getPrefix())
874      mangleUnresolvedPrefix(qualifier->getPrefix(),
875                             /*recursive*/ true);
876    else
877      Out << "sr";
878
879    mangleSourceName(qualifier->getAsIdentifier());
880    break;
881  }
882
883  // If this was the innermost part of the NNS, and we fell out to
884  // here, append an 'E'.
885  if (!recursive)
886    Out << 'E';
887}
888
889/// Mangle an unresolved-name, which is generally used for names which
890/// weren't resolved to specific entities.
891void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
892                                          DeclarationName name,
893                                          unsigned knownArity) {
894  if (qualifier) mangleUnresolvedPrefix(qualifier);
895  switch (name.getNameKind()) {
896    // <base-unresolved-name> ::= <simple-id>
897    case DeclarationName::Identifier:
898      mangleSourceName(name.getAsIdentifierInfo());
899      break;
900    // <base-unresolved-name> ::= dn <destructor-name>
901    case DeclarationName::CXXDestructorName:
902      Out << "dn";
903      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
904      break;
905    // <base-unresolved-name> ::= on <operator-name>
906    case DeclarationName::CXXConversionFunctionName:
907    case DeclarationName::CXXLiteralOperatorName:
908    case DeclarationName::CXXOperatorName:
909      Out << "on";
910      mangleOperatorName(name, knownArity);
911      break;
912    case DeclarationName::CXXConstructorName:
913      llvm_unreachable("Can't mangle a constructor name!");
914    case DeclarationName::CXXUsingDirective:
915      llvm_unreachable("Can't mangle a using directive name!");
916    case DeclarationName::ObjCMultiArgSelector:
917    case DeclarationName::ObjCOneArgSelector:
918    case DeclarationName::ObjCZeroArgSelector:
919      llvm_unreachable("Can't mangle Objective-C selector names here!");
920  }
921}
922
923void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
924                                           DeclarationName Name,
925                                           unsigned KnownArity) {
926  unsigned Arity = KnownArity;
927  //  <unqualified-name> ::= <operator-name>
928  //                     ::= <ctor-dtor-name>
929  //                     ::= <source-name>
930  switch (Name.getNameKind()) {
931  case DeclarationName::Identifier: {
932    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
933      // We must avoid conflicts between internally- and externally-
934      // linked variable and function declaration names in the same TU:
935      //   void test() { extern void foo(); }
936      //   static void foo();
937      // This naming convention is the same as that followed by GCC,
938      // though it shouldn't actually matter.
939      if (ND && ND->getFormalLinkage() == InternalLinkage &&
940          getEffectiveDeclContext(ND)->isFileContext())
941        Out << 'L';
942
943      mangleSourceName(II);
944      break;
945    }
946
947    // Otherwise, an anonymous entity.  We must have a declaration.
948    assert(ND && "mangling empty name without declaration");
949
950    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
951      if (NS->isAnonymousNamespace()) {
952        // This is how gcc mangles these names.
953        Out << "12_GLOBAL__N_1";
954        break;
955      }
956    }
957
958    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
959      // We must have an anonymous union or struct declaration.
960      const RecordDecl *RD =
961        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
962
963      // Itanium C++ ABI 5.1.2:
964      //
965      //   For the purposes of mangling, the name of an anonymous union is
966      //   considered to be the name of the first named data member found by a
967      //   pre-order, depth-first, declaration-order walk of the data members of
968      //   the anonymous union. If there is no such data member (i.e., if all of
969      //   the data members in the union are unnamed), then there is no way for
970      //   a program to refer to the anonymous union, and there is therefore no
971      //   need to mangle its name.
972      assert(RD->isAnonymousStructOrUnion()
973             && "Expected anonymous struct or union!");
974      const FieldDecl *FD = RD->findFirstNamedDataMember();
975
976      // It's actually possible for various reasons for us to get here
977      // with an empty anonymous struct / union.  Fortunately, it
978      // doesn't really matter what name we generate.
979      if (!FD) break;
980      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
981
982      mangleSourceName(FD->getIdentifier());
983      break;
984    }
985
986    // Class extensions have no name as a category, and it's possible
987    // for them to be the semantic parent of certain declarations
988    // (primarily, tag decls defined within declarations).  Such
989    // declarations will always have internal linkage, so the name
990    // doesn't really matter, but we shouldn't crash on them.  For
991    // safety, just handle all ObjC containers here.
992    if (isa<ObjCContainerDecl>(ND))
993      break;
994
995    // We must have an anonymous struct.
996    const TagDecl *TD = cast<TagDecl>(ND);
997    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
998      assert(TD->getDeclContext() == D->getDeclContext() &&
999             "Typedef should not be in another decl context!");
1000      assert(D->getDeclName().getAsIdentifierInfo() &&
1001             "Typedef was not named!");
1002      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1003      break;
1004    }
1005
1006    // <unnamed-type-name> ::= <closure-type-name>
1007    //
1008    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1009    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1010    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1011      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1012        mangleLambda(Record);
1013        break;
1014      }
1015    }
1016
1017    if (TD->isExternallyVisible()) {
1018      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1019      Out << "Ut";
1020      if (UnnamedMangle > 1)
1021        Out << UnnamedMangle - 2;
1022      Out << '_';
1023      break;
1024    }
1025
1026    // Get a unique id for the anonymous struct.
1027    unsigned AnonStructId = Context.getAnonymousStructId(TD);
1028
1029    // Mangle it as a source name in the form
1030    // [n] $_<id>
1031    // where n is the length of the string.
1032    SmallString<8> Str;
1033    Str += "$_";
1034    Str += llvm::utostr(AnonStructId);
1035
1036    Out << Str.size();
1037    Out << Str;
1038    break;
1039  }
1040
1041  case DeclarationName::ObjCZeroArgSelector:
1042  case DeclarationName::ObjCOneArgSelector:
1043  case DeclarationName::ObjCMultiArgSelector:
1044    llvm_unreachable("Can't mangle Objective-C selector names here!");
1045
1046  case DeclarationName::CXXConstructorName:
1047    if (ND == Structor)
1048      // If the named decl is the C++ constructor we're mangling, use the type
1049      // we were given.
1050      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1051    else
1052      // Otherwise, use the complete constructor name. This is relevant if a
1053      // class with a constructor is declared within a constructor.
1054      mangleCXXCtorType(Ctor_Complete);
1055    break;
1056
1057  case DeclarationName::CXXDestructorName:
1058    if (ND == Structor)
1059      // If the named decl is the C++ destructor we're mangling, use the type we
1060      // were given.
1061      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1062    else
1063      // Otherwise, use the complete destructor name. This is relevant if a
1064      // class with a destructor is declared within a destructor.
1065      mangleCXXDtorType(Dtor_Complete);
1066    break;
1067
1068  case DeclarationName::CXXOperatorName:
1069    if (ND && Arity == UnknownArity) {
1070      Arity = cast<FunctionDecl>(ND)->getNumParams();
1071
1072      // If we have a member function, we need to include the 'this' pointer.
1073      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1074        if (!MD->isStatic())
1075          Arity++;
1076    }
1077  // FALLTHROUGH
1078  case DeclarationName::CXXConversionFunctionName:
1079  case DeclarationName::CXXLiteralOperatorName:
1080    mangleOperatorName(Name, Arity);
1081    break;
1082
1083  case DeclarationName::CXXUsingDirective:
1084    llvm_unreachable("Can't mangle a using directive name!");
1085  }
1086}
1087
1088void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1089  // <source-name> ::= <positive length number> <identifier>
1090  // <number> ::= [n] <non-negative decimal integer>
1091  // <identifier> ::= <unqualified source code identifier>
1092  Out << II->getLength() << II->getName();
1093}
1094
1095void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1096                                      const DeclContext *DC,
1097                                      bool NoFunction) {
1098  // <nested-name>
1099  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1100  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1101  //       <template-args> E
1102
1103  Out << 'N';
1104  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1105    Qualifiers MethodQuals =
1106        Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1107    // We do not consider restrict a distinguishing attribute for overloading
1108    // purposes so we must not mangle it.
1109    MethodQuals.removeRestrict();
1110    mangleQualifiers(MethodQuals);
1111    mangleRefQualifier(Method->getRefQualifier());
1112  }
1113
1114  // Check if we have a template.
1115  const TemplateArgumentList *TemplateArgs = nullptr;
1116  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1117    mangleTemplatePrefix(TD, NoFunction);
1118    mangleTemplateArgs(*TemplateArgs);
1119  }
1120  else {
1121    manglePrefix(DC, NoFunction);
1122    mangleUnqualifiedName(ND);
1123  }
1124
1125  Out << 'E';
1126}
1127void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1128                                      const TemplateArgument *TemplateArgs,
1129                                      unsigned NumTemplateArgs) {
1130  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1131
1132  Out << 'N';
1133
1134  mangleTemplatePrefix(TD);
1135  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1136
1137  Out << 'E';
1138}
1139
1140void CXXNameMangler::mangleLocalName(const Decl *D) {
1141  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1142  //              := Z <function encoding> E s [<discriminator>]
1143  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1144  //                 _ <entity name>
1145  // <discriminator> := _ <non-negative number>
1146  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1147  const RecordDecl *RD = GetLocalClassDecl(D);
1148  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1149
1150  Out << 'Z';
1151
1152  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1153    mangleObjCMethodName(MD);
1154  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1155    mangleBlockForPrefix(BD);
1156  else
1157    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1158
1159  Out << 'E';
1160
1161  if (RD) {
1162    // The parameter number is omitted for the last parameter, 0 for the
1163    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1164    // <entity name> will of course contain a <closure-type-name>: Its
1165    // numbering will be local to the particular argument in which it appears
1166    // -- other default arguments do not affect its encoding.
1167    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1168    if (CXXRD->isLambda()) {
1169      if (const ParmVarDecl *Parm
1170              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1171        if (const FunctionDecl *Func
1172              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1173          Out << 'd';
1174          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1175          if (Num > 1)
1176            mangleNumber(Num - 2);
1177          Out << '_';
1178        }
1179      }
1180    }
1181
1182    // Mangle the name relative to the closest enclosing function.
1183    // equality ok because RD derived from ND above
1184    if (D == RD)  {
1185      mangleUnqualifiedName(RD);
1186    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1187      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1188      mangleUnqualifiedBlock(BD);
1189    } else {
1190      const NamedDecl *ND = cast<NamedDecl>(D);
1191      mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1192    }
1193  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1194    // Mangle a block in a default parameter; see above explanation for
1195    // lambdas.
1196    if (const ParmVarDecl *Parm
1197            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1198      if (const FunctionDecl *Func
1199            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1200        Out << 'd';
1201        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1202        if (Num > 1)
1203          mangleNumber(Num - 2);
1204        Out << '_';
1205      }
1206    }
1207
1208    mangleUnqualifiedBlock(BD);
1209  } else {
1210    mangleUnqualifiedName(cast<NamedDecl>(D));
1211  }
1212
1213  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1214    unsigned disc;
1215    if (Context.getNextDiscriminator(ND, disc)) {
1216      if (disc < 10)
1217        Out << '_' << disc;
1218      else
1219        Out << "__" << disc << '_';
1220    }
1221  }
1222}
1223
1224void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1225  if (GetLocalClassDecl(Block)) {
1226    mangleLocalName(Block);
1227    return;
1228  }
1229  const DeclContext *DC = getEffectiveDeclContext(Block);
1230  if (isLocalContainerContext(DC)) {
1231    mangleLocalName(Block);
1232    return;
1233  }
1234  manglePrefix(getEffectiveDeclContext(Block));
1235  mangleUnqualifiedBlock(Block);
1236}
1237
1238void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1239  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1240    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1241        Context->getDeclContext()->isRecord()) {
1242      if (const IdentifierInfo *Name
1243            = cast<NamedDecl>(Context)->getIdentifier()) {
1244        mangleSourceName(Name);
1245        Out << 'M';
1246      }
1247    }
1248  }
1249
1250  // If we have a block mangling number, use it.
1251  unsigned Number = Block->getBlockManglingNumber();
1252  // Otherwise, just make up a number. It doesn't matter what it is because
1253  // the symbol in question isn't externally visible.
1254  if (!Number)
1255    Number = Context.getBlockId(Block, false);
1256  Out << "Ub";
1257  if (Number > 0)
1258    Out << Number - 1;
1259  Out << '_';
1260}
1261
1262void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1263  // If the context of a closure type is an initializer for a class member
1264  // (static or nonstatic), it is encoded in a qualified name with a final
1265  // <prefix> of the form:
1266  //
1267  //   <data-member-prefix> := <member source-name> M
1268  //
1269  // Technically, the data-member-prefix is part of the <prefix>. However,
1270  // since a closure type will always be mangled with a prefix, it's easier
1271  // to emit that last part of the prefix here.
1272  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1273    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1274        Context->getDeclContext()->isRecord()) {
1275      if (const IdentifierInfo *Name
1276            = cast<NamedDecl>(Context)->getIdentifier()) {
1277        mangleSourceName(Name);
1278        Out << 'M';
1279      }
1280    }
1281  }
1282
1283  Out << "Ul";
1284  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1285                                   getAs<FunctionProtoType>();
1286  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1287                         Lambda->getLambdaStaticInvoker());
1288  Out << "E";
1289
1290  // The number is omitted for the first closure type with a given
1291  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1292  // (in lexical order) with that same <lambda-sig> and context.
1293  //
1294  // The AST keeps track of the number for us.
1295  unsigned Number = Lambda->getLambdaManglingNumber();
1296  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1297  if (Number > 1)
1298    mangleNumber(Number - 2);
1299  Out << '_';
1300}
1301
1302void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1303  switch (qualifier->getKind()) {
1304  case NestedNameSpecifier::Global:
1305    // nothing
1306    return;
1307
1308  case NestedNameSpecifier::Super:
1309    llvm_unreachable("Can't mangle __super specifier");
1310
1311  case NestedNameSpecifier::Namespace:
1312    mangleName(qualifier->getAsNamespace());
1313    return;
1314
1315  case NestedNameSpecifier::NamespaceAlias:
1316    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1317    return;
1318
1319  case NestedNameSpecifier::TypeSpec:
1320  case NestedNameSpecifier::TypeSpecWithTemplate:
1321    manglePrefix(QualType(qualifier->getAsType(), 0));
1322    return;
1323
1324  case NestedNameSpecifier::Identifier:
1325    // Member expressions can have these without prefixes, but that
1326    // should end up in mangleUnresolvedPrefix instead.
1327    assert(qualifier->getPrefix());
1328    manglePrefix(qualifier->getPrefix());
1329
1330    mangleSourceName(qualifier->getAsIdentifier());
1331    return;
1332  }
1333
1334  llvm_unreachable("unexpected nested name specifier");
1335}
1336
1337void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1338  //  <prefix> ::= <prefix> <unqualified-name>
1339  //           ::= <template-prefix> <template-args>
1340  //           ::= <template-param>
1341  //           ::= # empty
1342  //           ::= <substitution>
1343
1344  DC = IgnoreLinkageSpecDecls(DC);
1345
1346  if (DC->isTranslationUnit())
1347    return;
1348
1349  if (NoFunction && isLocalContainerContext(DC))
1350    return;
1351
1352  assert(!isLocalContainerContext(DC));
1353
1354  const NamedDecl *ND = cast<NamedDecl>(DC);
1355  if (mangleSubstitution(ND))
1356    return;
1357
1358  // Check if we have a template.
1359  const TemplateArgumentList *TemplateArgs = nullptr;
1360  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1361    mangleTemplatePrefix(TD);
1362    mangleTemplateArgs(*TemplateArgs);
1363  } else {
1364    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1365    mangleUnqualifiedName(ND);
1366  }
1367
1368  addSubstitution(ND);
1369}
1370
1371void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1372  // <template-prefix> ::= <prefix> <template unqualified-name>
1373  //                   ::= <template-param>
1374  //                   ::= <substitution>
1375  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1376    return mangleTemplatePrefix(TD);
1377
1378  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1379    manglePrefix(Qualified->getQualifier());
1380
1381  if (OverloadedTemplateStorage *Overloaded
1382                                      = Template.getAsOverloadedTemplate()) {
1383    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1384                          UnknownArity);
1385    return;
1386  }
1387
1388  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1389  assert(Dependent && "Unknown template name kind?");
1390  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1391    manglePrefix(Qualifier);
1392  mangleUnscopedTemplateName(Template);
1393}
1394
1395void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1396                                          bool NoFunction) {
1397  // <template-prefix> ::= <prefix> <template unqualified-name>
1398  //                   ::= <template-param>
1399  //                   ::= <substitution>
1400  // <template-template-param> ::= <template-param>
1401  //                               <substitution>
1402
1403  if (mangleSubstitution(ND))
1404    return;
1405
1406  // <template-template-param> ::= <template-param>
1407  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1408    mangleTemplateParameter(TTP->getIndex());
1409  } else {
1410    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1411    mangleUnqualifiedName(ND->getTemplatedDecl());
1412  }
1413
1414  addSubstitution(ND);
1415}
1416
1417/// Mangles a template name under the production <type>.  Required for
1418/// template template arguments.
1419///   <type> ::= <class-enum-type>
1420///          ::= <template-param>
1421///          ::= <substitution>
1422void CXXNameMangler::mangleType(TemplateName TN) {
1423  if (mangleSubstitution(TN))
1424    return;
1425
1426  TemplateDecl *TD = nullptr;
1427
1428  switch (TN.getKind()) {
1429  case TemplateName::QualifiedTemplate:
1430    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1431    goto HaveDecl;
1432
1433  case TemplateName::Template:
1434    TD = TN.getAsTemplateDecl();
1435    goto HaveDecl;
1436
1437  HaveDecl:
1438    if (isa<TemplateTemplateParmDecl>(TD))
1439      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1440    else
1441      mangleName(TD);
1442    break;
1443
1444  case TemplateName::OverloadedTemplate:
1445    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1446
1447  case TemplateName::DependentTemplate: {
1448    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1449    assert(Dependent->isIdentifier());
1450
1451    // <class-enum-type> ::= <name>
1452    // <name> ::= <nested-name>
1453    mangleUnresolvedPrefix(Dependent->getQualifier());
1454    mangleSourceName(Dependent->getIdentifier());
1455    break;
1456  }
1457
1458  case TemplateName::SubstTemplateTemplateParm: {
1459    // Substituted template parameters are mangled as the substituted
1460    // template.  This will check for the substitution twice, which is
1461    // fine, but we have to return early so that we don't try to *add*
1462    // the substitution twice.
1463    SubstTemplateTemplateParmStorage *subst
1464      = TN.getAsSubstTemplateTemplateParm();
1465    mangleType(subst->getReplacement());
1466    return;
1467  }
1468
1469  case TemplateName::SubstTemplateTemplateParmPack: {
1470    // FIXME: not clear how to mangle this!
1471    // template <template <class> class T...> class A {
1472    //   template <template <class> class U...> void foo(B<T,U> x...);
1473    // };
1474    Out << "_SUBSTPACK_";
1475    break;
1476  }
1477  }
1478
1479  addSubstitution(TN);
1480}
1481
1482bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1483                                                    StringRef Prefix) {
1484  // Only certain other types are valid as prefixes;  enumerate them.
1485  switch (Ty->getTypeClass()) {
1486  case Type::Builtin:
1487  case Type::Complex:
1488  case Type::Adjusted:
1489  case Type::Decayed:
1490  case Type::Pointer:
1491  case Type::BlockPointer:
1492  case Type::LValueReference:
1493  case Type::RValueReference:
1494  case Type::MemberPointer:
1495  case Type::ConstantArray:
1496  case Type::IncompleteArray:
1497  case Type::VariableArray:
1498  case Type::DependentSizedArray:
1499  case Type::DependentSizedExtVector:
1500  case Type::Vector:
1501  case Type::ExtVector:
1502  case Type::FunctionProto:
1503  case Type::FunctionNoProto:
1504  case Type::Paren:
1505  case Type::Attributed:
1506  case Type::Auto:
1507  case Type::PackExpansion:
1508  case Type::ObjCObject:
1509  case Type::ObjCInterface:
1510  case Type::ObjCObjectPointer:
1511  case Type::Atomic:
1512  case Type::Pipe:
1513    llvm_unreachable("type is illegal as a nested name specifier");
1514
1515  case Type::SubstTemplateTypeParmPack:
1516    // FIXME: not clear how to mangle this!
1517    // template <class T...> class A {
1518    //   template <class U...> void foo(decltype(T::foo(U())) x...);
1519    // };
1520    Out << "_SUBSTPACK_";
1521    break;
1522
1523  // <unresolved-type> ::= <template-param>
1524  //                   ::= <decltype>
1525  //                   ::= <template-template-param> <template-args>
1526  // (this last is not official yet)
1527  case Type::TypeOfExpr:
1528  case Type::TypeOf:
1529  case Type::Decltype:
1530  case Type::TemplateTypeParm:
1531  case Type::UnaryTransform:
1532  case Type::SubstTemplateTypeParm:
1533  unresolvedType:
1534    // Some callers want a prefix before the mangled type.
1535    Out << Prefix;
1536
1537    // This seems to do everything we want.  It's not really
1538    // sanctioned for a substituted template parameter, though.
1539    mangleType(Ty);
1540
1541    // We never want to print 'E' directly after an unresolved-type,
1542    // so we return directly.
1543    return true;
1544
1545  case Type::Typedef:
1546    mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
1547    break;
1548
1549  case Type::UnresolvedUsing:
1550    mangleSourceName(
1551        cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
1552    break;
1553
1554  case Type::Enum:
1555  case Type::Record:
1556    mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
1557    break;
1558
1559  case Type::TemplateSpecialization: {
1560    const TemplateSpecializationType *TST =
1561        cast<TemplateSpecializationType>(Ty);
1562    TemplateName TN = TST->getTemplateName();
1563    switch (TN.getKind()) {
1564    case TemplateName::Template:
1565    case TemplateName::QualifiedTemplate: {
1566      TemplateDecl *TD = TN.getAsTemplateDecl();
1567
1568      // If the base is a template template parameter, this is an
1569      // unresolved type.
1570      assert(TD && "no template for template specialization type");
1571      if (isa<TemplateTemplateParmDecl>(TD))
1572        goto unresolvedType;
1573
1574      mangleSourceName(TD->getIdentifier());
1575      break;
1576    }
1577
1578    case TemplateName::OverloadedTemplate:
1579    case TemplateName::DependentTemplate:
1580      llvm_unreachable("invalid base for a template specialization type");
1581
1582    case TemplateName::SubstTemplateTemplateParm: {
1583      SubstTemplateTemplateParmStorage *subst =
1584          TN.getAsSubstTemplateTemplateParm();
1585      mangleExistingSubstitution(subst->getReplacement());
1586      break;
1587    }
1588
1589    case TemplateName::SubstTemplateTemplateParmPack: {
1590      // FIXME: not clear how to mangle this!
1591      // template <template <class U> class T...> class A {
1592      //   template <class U...> void foo(decltype(T<U>::foo) x...);
1593      // };
1594      Out << "_SUBSTPACK_";
1595      break;
1596    }
1597    }
1598
1599    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1600    break;
1601  }
1602
1603  case Type::InjectedClassName:
1604    mangleSourceName(
1605        cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
1606    break;
1607
1608  case Type::DependentName:
1609    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1610    break;
1611
1612  case Type::DependentTemplateSpecialization: {
1613    const DependentTemplateSpecializationType *DTST =
1614        cast<DependentTemplateSpecializationType>(Ty);
1615    mangleSourceName(DTST->getIdentifier());
1616    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1617    break;
1618  }
1619
1620  case Type::Elaborated:
1621    return mangleUnresolvedTypeOrSimpleId(
1622        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1623  }
1624
1625  return false;
1626}
1627
1628void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1629  switch (Name.getNameKind()) {
1630  case DeclarationName::CXXConstructorName:
1631  case DeclarationName::CXXDestructorName:
1632  case DeclarationName::CXXUsingDirective:
1633  case DeclarationName::Identifier:
1634  case DeclarationName::ObjCMultiArgSelector:
1635  case DeclarationName::ObjCOneArgSelector:
1636  case DeclarationName::ObjCZeroArgSelector:
1637    llvm_unreachable("Not an operator name");
1638
1639  case DeclarationName::CXXConversionFunctionName:
1640    // <operator-name> ::= cv <type>    # (cast)
1641    Out << "cv";
1642    mangleType(Name.getCXXNameType());
1643    break;
1644
1645  case DeclarationName::CXXLiteralOperatorName:
1646    Out << "li";
1647    mangleSourceName(Name.getCXXLiteralIdentifier());
1648    return;
1649
1650  case DeclarationName::CXXOperatorName:
1651    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1652    break;
1653  }
1654}
1655
1656
1657
1658void
1659CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1660  switch (OO) {
1661  // <operator-name> ::= nw     # new
1662  case OO_New: Out << "nw"; break;
1663  //              ::= na        # new[]
1664  case OO_Array_New: Out << "na"; break;
1665  //              ::= dl        # delete
1666  case OO_Delete: Out << "dl"; break;
1667  //              ::= da        # delete[]
1668  case OO_Array_Delete: Out << "da"; break;
1669  //              ::= ps        # + (unary)
1670  //              ::= pl        # + (binary or unknown)
1671  case OO_Plus:
1672    Out << (Arity == 1? "ps" : "pl"); break;
1673  //              ::= ng        # - (unary)
1674  //              ::= mi        # - (binary or unknown)
1675  case OO_Minus:
1676    Out << (Arity == 1? "ng" : "mi"); break;
1677  //              ::= ad        # & (unary)
1678  //              ::= an        # & (binary or unknown)
1679  case OO_Amp:
1680    Out << (Arity == 1? "ad" : "an"); break;
1681  //              ::= de        # * (unary)
1682  //              ::= ml        # * (binary or unknown)
1683  case OO_Star:
1684    // Use binary when unknown.
1685    Out << (Arity == 1? "de" : "ml"); break;
1686  //              ::= co        # ~
1687  case OO_Tilde: Out << "co"; break;
1688  //              ::= dv        # /
1689  case OO_Slash: Out << "dv"; break;
1690  //              ::= rm        # %
1691  case OO_Percent: Out << "rm"; break;
1692  //              ::= or        # |
1693  case OO_Pipe: Out << "or"; break;
1694  //              ::= eo        # ^
1695  case OO_Caret: Out << "eo"; break;
1696  //              ::= aS        # =
1697  case OO_Equal: Out << "aS"; break;
1698  //              ::= pL        # +=
1699  case OO_PlusEqual: Out << "pL"; break;
1700  //              ::= mI        # -=
1701  case OO_MinusEqual: Out << "mI"; break;
1702  //              ::= mL        # *=
1703  case OO_StarEqual: Out << "mL"; break;
1704  //              ::= dV        # /=
1705  case OO_SlashEqual: Out << "dV"; break;
1706  //              ::= rM        # %=
1707  case OO_PercentEqual: Out << "rM"; break;
1708  //              ::= aN        # &=
1709  case OO_AmpEqual: Out << "aN"; break;
1710  //              ::= oR        # |=
1711  case OO_PipeEqual: Out << "oR"; break;
1712  //              ::= eO        # ^=
1713  case OO_CaretEqual: Out << "eO"; break;
1714  //              ::= ls        # <<
1715  case OO_LessLess: Out << "ls"; break;
1716  //              ::= rs        # >>
1717  case OO_GreaterGreater: Out << "rs"; break;
1718  //              ::= lS        # <<=
1719  case OO_LessLessEqual: Out << "lS"; break;
1720  //              ::= rS        # >>=
1721  case OO_GreaterGreaterEqual: Out << "rS"; break;
1722  //              ::= eq        # ==
1723  case OO_EqualEqual: Out << "eq"; break;
1724  //              ::= ne        # !=
1725  case OO_ExclaimEqual: Out << "ne"; break;
1726  //              ::= lt        # <
1727  case OO_Less: Out << "lt"; break;
1728  //              ::= gt        # >
1729  case OO_Greater: Out << "gt"; break;
1730  //              ::= le        # <=
1731  case OO_LessEqual: Out << "le"; break;
1732  //              ::= ge        # >=
1733  case OO_GreaterEqual: Out << "ge"; break;
1734  //              ::= nt        # !
1735  case OO_Exclaim: Out << "nt"; break;
1736  //              ::= aa        # &&
1737  case OO_AmpAmp: Out << "aa"; break;
1738  //              ::= oo        # ||
1739  case OO_PipePipe: Out << "oo"; break;
1740  //              ::= pp        # ++
1741  case OO_PlusPlus: Out << "pp"; break;
1742  //              ::= mm        # --
1743  case OO_MinusMinus: Out << "mm"; break;
1744  //              ::= cm        # ,
1745  case OO_Comma: Out << "cm"; break;
1746  //              ::= pm        # ->*
1747  case OO_ArrowStar: Out << "pm"; break;
1748  //              ::= pt        # ->
1749  case OO_Arrow: Out << "pt"; break;
1750  //              ::= cl        # ()
1751  case OO_Call: Out << "cl"; break;
1752  //              ::= ix        # []
1753  case OO_Subscript: Out << "ix"; break;
1754
1755  //              ::= qu        # ?
1756  // The conditional operator can't be overloaded, but we still handle it when
1757  // mangling expressions.
1758  case OO_Conditional: Out << "qu"; break;
1759  // Proposal on cxx-abi-dev, 2015-10-21.
1760  //              ::= aw        # co_await
1761  case OO_Coawait: Out << "aw"; break;
1762
1763  case OO_None:
1764  case NUM_OVERLOADED_OPERATORS:
1765    llvm_unreachable("Not an overloaded operator");
1766  }
1767}
1768
1769void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1770  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1771  if (Quals.hasRestrict())
1772    Out << 'r';
1773  if (Quals.hasVolatile())
1774    Out << 'V';
1775  if (Quals.hasConst())
1776    Out << 'K';
1777
1778  if (Quals.hasAddressSpace()) {
1779    // Address space extension:
1780    //
1781    //   <type> ::= U <target-addrspace>
1782    //   <type> ::= U <OpenCL-addrspace>
1783    //   <type> ::= U <CUDA-addrspace>
1784
1785    SmallString<64> ASString;
1786    unsigned AS = Quals.getAddressSpace();
1787
1788    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1789      //  <target-addrspace> ::= "AS" <address-space-number>
1790      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1791      ASString = "AS" + llvm::utostr_32(TargetAS);
1792    } else {
1793      switch (AS) {
1794      default: llvm_unreachable("Not a language specific address space");
1795      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1796      case LangAS::opencl_global:   ASString = "CLglobal";   break;
1797      case LangAS::opencl_local:    ASString = "CLlocal";    break;
1798      case LangAS::opencl_constant: ASString = "CLconstant"; break;
1799      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1800      case LangAS::cuda_device:     ASString = "CUdevice";   break;
1801      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1802      case LangAS::cuda_shared:     ASString = "CUshared";   break;
1803      }
1804    }
1805    Out << 'U' << ASString.size() << ASString;
1806  }
1807
1808  StringRef LifetimeName;
1809  switch (Quals.getObjCLifetime()) {
1810  // Objective-C ARC Extension:
1811  //
1812  //   <type> ::= U "__strong"
1813  //   <type> ::= U "__weak"
1814  //   <type> ::= U "__autoreleasing"
1815  case Qualifiers::OCL_None:
1816    break;
1817
1818  case Qualifiers::OCL_Weak:
1819    LifetimeName = "__weak";
1820    break;
1821
1822  case Qualifiers::OCL_Strong:
1823    LifetimeName = "__strong";
1824    break;
1825
1826  case Qualifiers::OCL_Autoreleasing:
1827    LifetimeName = "__autoreleasing";
1828    break;
1829
1830  case Qualifiers::OCL_ExplicitNone:
1831    // The __unsafe_unretained qualifier is *not* mangled, so that
1832    // __unsafe_unretained types in ARC produce the same manglings as the
1833    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1834    // better ABI compatibility.
1835    //
1836    // It's safe to do this because unqualified 'id' won't show up
1837    // in any type signatures that need to be mangled.
1838    break;
1839  }
1840  if (!LifetimeName.empty())
1841    Out << 'U' << LifetimeName.size() << LifetimeName;
1842}
1843
1844void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1845  // <ref-qualifier> ::= R                # lvalue reference
1846  //                 ::= O                # rvalue-reference
1847  switch (RefQualifier) {
1848  case RQ_None:
1849    break;
1850
1851  case RQ_LValue:
1852    Out << 'R';
1853    break;
1854
1855  case RQ_RValue:
1856    Out << 'O';
1857    break;
1858  }
1859}
1860
1861void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1862  Context.mangleObjCMethodName(MD, Out);
1863}
1864
1865static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1866  if (Quals)
1867    return true;
1868  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1869    return true;
1870  if (Ty->isOpenCLSpecificType())
1871    return true;
1872  if (Ty->isBuiltinType())
1873    return false;
1874
1875  return true;
1876}
1877
1878void CXXNameMangler::mangleType(QualType T) {
1879  // If our type is instantiation-dependent but not dependent, we mangle
1880  // it as it was written in the source, removing any top-level sugar.
1881  // Otherwise, use the canonical type.
1882  //
1883  // FIXME: This is an approximation of the instantiation-dependent name
1884  // mangling rules, since we should really be using the type as written and
1885  // augmented via semantic analysis (i.e., with implicit conversions and
1886  // default template arguments) for any instantiation-dependent type.
1887  // Unfortunately, that requires several changes to our AST:
1888  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1889  //     uniqued, so that we can handle substitutions properly
1890  //   - Default template arguments will need to be represented in the
1891  //     TemplateSpecializationType, since they need to be mangled even though
1892  //     they aren't written.
1893  //   - Conversions on non-type template arguments need to be expressed, since
1894  //     they can affect the mangling of sizeof/alignof.
1895  if (!T->isInstantiationDependentType() || T->isDependentType())
1896    T = T.getCanonicalType();
1897  else {
1898    // Desugar any types that are purely sugar.
1899    do {
1900      // Don't desugar through template specialization types that aren't
1901      // type aliases. We need to mangle the template arguments as written.
1902      if (const TemplateSpecializationType *TST
1903                                      = dyn_cast<TemplateSpecializationType>(T))
1904        if (!TST->isTypeAlias())
1905          break;
1906
1907      QualType Desugared
1908        = T.getSingleStepDesugaredType(Context.getASTContext());
1909      if (Desugared == T)
1910        break;
1911
1912      T = Desugared;
1913    } while (true);
1914  }
1915  SplitQualType split = T.split();
1916  Qualifiers quals = split.Quals;
1917  const Type *ty = split.Ty;
1918
1919  bool isSubstitutable = isTypeSubstitutable(quals, ty);
1920  if (isSubstitutable && mangleSubstitution(T))
1921    return;
1922
1923  // If we're mangling a qualified array type, push the qualifiers to
1924  // the element type.
1925  if (quals && isa<ArrayType>(T)) {
1926    ty = Context.getASTContext().getAsArrayType(T);
1927    quals = Qualifiers();
1928
1929    // Note that we don't update T: we want to add the
1930    // substitution at the original type.
1931  }
1932
1933  if (quals) {
1934    mangleQualifiers(quals);
1935    // Recurse:  even if the qualified type isn't yet substitutable,
1936    // the unqualified type might be.
1937    mangleType(QualType(ty, 0));
1938  } else {
1939    switch (ty->getTypeClass()) {
1940#define ABSTRACT_TYPE(CLASS, PARENT)
1941#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1942    case Type::CLASS: \
1943      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1944      return;
1945#define TYPE(CLASS, PARENT) \
1946    case Type::CLASS: \
1947      mangleType(static_cast<const CLASS##Type*>(ty)); \
1948      break;
1949#include "clang/AST/TypeNodes.def"
1950    }
1951  }
1952
1953  // Add the substitution.
1954  if (isSubstitutable)
1955    addSubstitution(T);
1956}
1957
1958void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1959  if (!mangleStandardSubstitution(ND))
1960    mangleName(ND);
1961}
1962
1963void CXXNameMangler::mangleType(const BuiltinType *T) {
1964  //  <type>         ::= <builtin-type>
1965  //  <builtin-type> ::= v  # void
1966  //                 ::= w  # wchar_t
1967  //                 ::= b  # bool
1968  //                 ::= c  # char
1969  //                 ::= a  # signed char
1970  //                 ::= h  # unsigned char
1971  //                 ::= s  # short
1972  //                 ::= t  # unsigned short
1973  //                 ::= i  # int
1974  //                 ::= j  # unsigned int
1975  //                 ::= l  # long
1976  //                 ::= m  # unsigned long
1977  //                 ::= x  # long long, __int64
1978  //                 ::= y  # unsigned long long, __int64
1979  //                 ::= n  # __int128
1980  //                 ::= o  # unsigned __int128
1981  //                 ::= f  # float
1982  //                 ::= d  # double
1983  //                 ::= e  # long double, __float80
1984  // UNSUPPORTED:    ::= g  # __float128
1985  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1986  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1987  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1988  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1989  //                 ::= Di # char32_t
1990  //                 ::= Ds # char16_t
1991  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1992  //                 ::= u <source-name>    # vendor extended type
1993  switch (T->getKind()) {
1994  case BuiltinType::Void:
1995    Out << 'v';
1996    break;
1997  case BuiltinType::Bool:
1998    Out << 'b';
1999    break;
2000  case BuiltinType::Char_U:
2001  case BuiltinType::Char_S:
2002    Out << 'c';
2003    break;
2004  case BuiltinType::UChar:
2005    Out << 'h';
2006    break;
2007  case BuiltinType::UShort:
2008    Out << 't';
2009    break;
2010  case BuiltinType::UInt:
2011    Out << 'j';
2012    break;
2013  case BuiltinType::ULong:
2014    Out << 'm';
2015    break;
2016  case BuiltinType::ULongLong:
2017    Out << 'y';
2018    break;
2019  case BuiltinType::UInt128:
2020    Out << 'o';
2021    break;
2022  case BuiltinType::SChar:
2023    Out << 'a';
2024    break;
2025  case BuiltinType::WChar_S:
2026  case BuiltinType::WChar_U:
2027    Out << 'w';
2028    break;
2029  case BuiltinType::Char16:
2030    Out << "Ds";
2031    break;
2032  case BuiltinType::Char32:
2033    Out << "Di";
2034    break;
2035  case BuiltinType::Short:
2036    Out << 's';
2037    break;
2038  case BuiltinType::Int:
2039    Out << 'i';
2040    break;
2041  case BuiltinType::Long:
2042    Out << 'l';
2043    break;
2044  case BuiltinType::LongLong:
2045    Out << 'x';
2046    break;
2047  case BuiltinType::Int128:
2048    Out << 'n';
2049    break;
2050  case BuiltinType::Half:
2051    Out << "Dh";
2052    break;
2053  case BuiltinType::Float:
2054    Out << 'f';
2055    break;
2056  case BuiltinType::Double:
2057    Out << 'd';
2058    break;
2059  case BuiltinType::LongDouble:
2060    Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2061                ? 'g'
2062                : 'e');
2063    break;
2064  case BuiltinType::NullPtr:
2065    Out << "Dn";
2066    break;
2067
2068#define BUILTIN_TYPE(Id, SingletonId)
2069#define PLACEHOLDER_TYPE(Id, SingletonId) \
2070  case BuiltinType::Id:
2071#include "clang/AST/BuiltinTypes.def"
2072  case BuiltinType::Dependent:
2073    llvm_unreachable("mangling a placeholder type");
2074  case BuiltinType::ObjCId:
2075    Out << "11objc_object";
2076    break;
2077  case BuiltinType::ObjCClass:
2078    Out << "10objc_class";
2079    break;
2080  case BuiltinType::ObjCSel:
2081    Out << "13objc_selector";
2082    break;
2083  case BuiltinType::OCLImage1d:
2084    Out << "11ocl_image1d";
2085    break;
2086  case BuiltinType::OCLImage1dArray:
2087    Out << "16ocl_image1darray";
2088    break;
2089  case BuiltinType::OCLImage1dBuffer:
2090    Out << "17ocl_image1dbuffer";
2091    break;
2092  case BuiltinType::OCLImage2d:
2093    Out << "11ocl_image2d";
2094    break;
2095  case BuiltinType::OCLImage2dArray:
2096    Out << "16ocl_image2darray";
2097    break;
2098  case BuiltinType::OCLImage2dDepth:
2099    Out << "16ocl_image2ddepth";
2100    break;
2101  case BuiltinType::OCLImage2dArrayDepth:
2102    Out << "21ocl_image2darraydepth";
2103    break;
2104  case BuiltinType::OCLImage2dMSAA:
2105    Out << "15ocl_image2dmsaa";
2106    break;
2107  case BuiltinType::OCLImage2dArrayMSAA:
2108    Out << "20ocl_image2darraymsaa";
2109    break;
2110  case BuiltinType::OCLImage2dMSAADepth:
2111    Out << "20ocl_image2dmsaadepth";
2112    break;
2113  case BuiltinType::OCLImage2dArrayMSAADepth:
2114    Out << "35ocl_image2darraymsaadepth";
2115    break;
2116  case BuiltinType::OCLImage3d:
2117    Out << "11ocl_image3d";
2118    break;
2119  case BuiltinType::OCLSampler:
2120    Out << "11ocl_sampler";
2121    break;
2122  case BuiltinType::OCLEvent:
2123    Out << "9ocl_event";
2124    break;
2125  case BuiltinType::OCLClkEvent:
2126    Out << "12ocl_clkevent";
2127    break;
2128  case BuiltinType::OCLQueue:
2129    Out << "9ocl_queue";
2130    break;
2131  case BuiltinType::OCLNDRange:
2132    Out << "11ocl_ndrange";
2133    break;
2134  case BuiltinType::OCLReserveID:
2135    Out << "13ocl_reserveid";
2136    break;
2137  }
2138}
2139
2140// <type>          ::= <function-type>
2141// <function-type> ::= [<CV-qualifiers>] F [Y]
2142//                      <bare-function-type> [<ref-qualifier>] E
2143void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2144  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2145  // e.g. "const" in "int (A::*)() const".
2146  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2147
2148  Out << 'F';
2149
2150  // FIXME: We don't have enough information in the AST to produce the 'Y'
2151  // encoding for extern "C" function types.
2152  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2153
2154  // Mangle the ref-qualifier, if present.
2155  mangleRefQualifier(T->getRefQualifier());
2156
2157  Out << 'E';
2158}
2159
2160void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2161  // Function types without prototypes can arise when mangling a function type
2162  // within an overloadable function in C. We mangle these as the absence of any
2163  // parameter types (not even an empty parameter list).
2164  Out << 'F';
2165
2166  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2167
2168  FunctionTypeDepth.enterResultType();
2169  mangleType(T->getReturnType());
2170  FunctionTypeDepth.leaveResultType();
2171
2172  FunctionTypeDepth.pop(saved);
2173  Out << 'E';
2174}
2175
2176void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2177                                            bool MangleReturnType,
2178                                            const FunctionDecl *FD) {
2179  // We should never be mangling something without a prototype.
2180  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2181
2182  // Record that we're in a function type.  See mangleFunctionParam
2183  // for details on what we're trying to achieve here.
2184  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2185
2186  // <bare-function-type> ::= <signature type>+
2187  if (MangleReturnType) {
2188    FunctionTypeDepth.enterResultType();
2189    mangleType(Proto->getReturnType());
2190    FunctionTypeDepth.leaveResultType();
2191  }
2192
2193  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2194    //   <builtin-type> ::= v   # void
2195    Out << 'v';
2196
2197    FunctionTypeDepth.pop(saved);
2198    return;
2199  }
2200
2201  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2202  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2203    const auto &ParamTy = Proto->getParamType(I);
2204    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2205
2206    if (FD) {
2207      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2208        // Attr can only take 1 character, so we can hardcode the length below.
2209        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2210        Out << "U17pass_object_size" << Attr->getType();
2211      }
2212    }
2213  }
2214
2215  FunctionTypeDepth.pop(saved);
2216
2217  // <builtin-type>      ::= z  # ellipsis
2218  if (Proto->isVariadic())
2219    Out << 'z';
2220}
2221
2222// <type>            ::= <class-enum-type>
2223// <class-enum-type> ::= <name>
2224void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2225  mangleName(T->getDecl());
2226}
2227
2228// <type>            ::= <class-enum-type>
2229// <class-enum-type> ::= <name>
2230void CXXNameMangler::mangleType(const EnumType *T) {
2231  mangleType(static_cast<const TagType*>(T));
2232}
2233void CXXNameMangler::mangleType(const RecordType *T) {
2234  mangleType(static_cast<const TagType*>(T));
2235}
2236void CXXNameMangler::mangleType(const TagType *T) {
2237  mangleName(T->getDecl());
2238}
2239
2240// <type>       ::= <array-type>
2241// <array-type> ::= A <positive dimension number> _ <element type>
2242//              ::= A [<dimension expression>] _ <element type>
2243void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2244  Out << 'A' << T->getSize() << '_';
2245  mangleType(T->getElementType());
2246}
2247void CXXNameMangler::mangleType(const VariableArrayType *T) {
2248  Out << 'A';
2249  // decayed vla types (size 0) will just be skipped.
2250  if (T->getSizeExpr())
2251    mangleExpression(T->getSizeExpr());
2252  Out << '_';
2253  mangleType(T->getElementType());
2254}
2255void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2256  Out << 'A';
2257  mangleExpression(T->getSizeExpr());
2258  Out << '_';
2259  mangleType(T->getElementType());
2260}
2261void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2262  Out << "A_";
2263  mangleType(T->getElementType());
2264}
2265
2266// <type>                   ::= <pointer-to-member-type>
2267// <pointer-to-member-type> ::= M <class type> <member type>
2268void CXXNameMangler::mangleType(const MemberPointerType *T) {
2269  Out << 'M';
2270  mangleType(QualType(T->getClass(), 0));
2271  QualType PointeeType = T->getPointeeType();
2272  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2273    mangleType(FPT);
2274
2275    // Itanium C++ ABI 5.1.8:
2276    //
2277    //   The type of a non-static member function is considered to be different,
2278    //   for the purposes of substitution, from the type of a namespace-scope or
2279    //   static member function whose type appears similar. The types of two
2280    //   non-static member functions are considered to be different, for the
2281    //   purposes of substitution, if the functions are members of different
2282    //   classes. In other words, for the purposes of substitution, the class of
2283    //   which the function is a member is considered part of the type of
2284    //   function.
2285
2286    // Given that we already substitute member function pointers as a
2287    // whole, the net effect of this rule is just to unconditionally
2288    // suppress substitution on the function type in a member pointer.
2289    // We increment the SeqID here to emulate adding an entry to the
2290    // substitution table.
2291    ++SeqID;
2292  } else
2293    mangleType(PointeeType);
2294}
2295
2296// <type>           ::= <template-param>
2297void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2298  mangleTemplateParameter(T->getIndex());
2299}
2300
2301// <type>           ::= <template-param>
2302void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2303  // FIXME: not clear how to mangle this!
2304  // template <class T...> class A {
2305  //   template <class U...> void foo(T(*)(U) x...);
2306  // };
2307  Out << "_SUBSTPACK_";
2308}
2309
2310// <type> ::= P <type>   # pointer-to
2311void CXXNameMangler::mangleType(const PointerType *T) {
2312  Out << 'P';
2313  mangleType(T->getPointeeType());
2314}
2315void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2316  Out << 'P';
2317  mangleType(T->getPointeeType());
2318}
2319
2320// <type> ::= R <type>   # reference-to
2321void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2322  Out << 'R';
2323  mangleType(T->getPointeeType());
2324}
2325
2326// <type> ::= O <type>   # rvalue reference-to (C++0x)
2327void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2328  Out << 'O';
2329  mangleType(T->getPointeeType());
2330}
2331
2332// <type> ::= C <type>   # complex pair (C 2000)
2333void CXXNameMangler::mangleType(const ComplexType *T) {
2334  Out << 'C';
2335  mangleType(T->getElementType());
2336}
2337
2338// ARM's ABI for Neon vector types specifies that they should be mangled as
2339// if they are structs (to match ARM's initial implementation).  The
2340// vector type must be one of the special types predefined by ARM.
2341void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2342  QualType EltType = T->getElementType();
2343  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2344  const char *EltName = nullptr;
2345  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2346    switch (cast<BuiltinType>(EltType)->getKind()) {
2347    case BuiltinType::SChar:
2348    case BuiltinType::UChar:
2349      EltName = "poly8_t";
2350      break;
2351    case BuiltinType::Short:
2352    case BuiltinType::UShort:
2353      EltName = "poly16_t";
2354      break;
2355    case BuiltinType::ULongLong:
2356      EltName = "poly64_t";
2357      break;
2358    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2359    }
2360  } else {
2361    switch (cast<BuiltinType>(EltType)->getKind()) {
2362    case BuiltinType::SChar:     EltName = "int8_t"; break;
2363    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2364    case BuiltinType::Short:     EltName = "int16_t"; break;
2365    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2366    case BuiltinType::Int:       EltName = "int32_t"; break;
2367    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2368    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2369    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2370    case BuiltinType::Double:    EltName = "float64_t"; break;
2371    case BuiltinType::Float:     EltName = "float32_t"; break;
2372    case BuiltinType::Half:      EltName = "float16_t";break;
2373    default:
2374      llvm_unreachable("unexpected Neon vector element type");
2375    }
2376  }
2377  const char *BaseName = nullptr;
2378  unsigned BitSize = (T->getNumElements() *
2379                      getASTContext().getTypeSize(EltType));
2380  if (BitSize == 64)
2381    BaseName = "__simd64_";
2382  else {
2383    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2384    BaseName = "__simd128_";
2385  }
2386  Out << strlen(BaseName) + strlen(EltName);
2387  Out << BaseName << EltName;
2388}
2389
2390static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2391  switch (EltType->getKind()) {
2392  case BuiltinType::SChar:
2393    return "Int8";
2394  case BuiltinType::Short:
2395    return "Int16";
2396  case BuiltinType::Int:
2397    return "Int32";
2398  case BuiltinType::Long:
2399  case BuiltinType::LongLong:
2400    return "Int64";
2401  case BuiltinType::UChar:
2402    return "Uint8";
2403  case BuiltinType::UShort:
2404    return "Uint16";
2405  case BuiltinType::UInt:
2406    return "Uint32";
2407  case BuiltinType::ULong:
2408  case BuiltinType::ULongLong:
2409    return "Uint64";
2410  case BuiltinType::Half:
2411    return "Float16";
2412  case BuiltinType::Float:
2413    return "Float32";
2414  case BuiltinType::Double:
2415    return "Float64";
2416  default:
2417    llvm_unreachable("Unexpected vector element base type");
2418  }
2419}
2420
2421// AArch64's ABI for Neon vector types specifies that they should be mangled as
2422// the equivalent internal name. The vector type must be one of the special
2423// types predefined by ARM.
2424void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2425  QualType EltType = T->getElementType();
2426  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2427  unsigned BitSize =
2428      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2429  (void)BitSize; // Silence warning.
2430
2431  assert((BitSize == 64 || BitSize == 128) &&
2432         "Neon vector type not 64 or 128 bits");
2433
2434  StringRef EltName;
2435  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2436    switch (cast<BuiltinType>(EltType)->getKind()) {
2437    case BuiltinType::UChar:
2438      EltName = "Poly8";
2439      break;
2440    case BuiltinType::UShort:
2441      EltName = "Poly16";
2442      break;
2443    case BuiltinType::ULong:
2444    case BuiltinType::ULongLong:
2445      EltName = "Poly64";
2446      break;
2447    default:
2448      llvm_unreachable("unexpected Neon polynomial vector element type");
2449    }
2450  } else
2451    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2452
2453  std::string TypeName =
2454      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
2455  Out << TypeName.length() << TypeName;
2456}
2457
2458// GNU extension: vector types
2459// <type>                  ::= <vector-type>
2460// <vector-type>           ::= Dv <positive dimension number> _
2461//                                    <extended element type>
2462//                         ::= Dv [<dimension expression>] _ <element type>
2463// <extended element type> ::= <element type>
2464//                         ::= p # AltiVec vector pixel
2465//                         ::= b # Altivec vector bool
2466void CXXNameMangler::mangleType(const VectorType *T) {
2467  if ((T->getVectorKind() == VectorType::NeonVector ||
2468       T->getVectorKind() == VectorType::NeonPolyVector)) {
2469    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2470    llvm::Triple::ArchType Arch =
2471        getASTContext().getTargetInfo().getTriple().getArch();
2472    if ((Arch == llvm::Triple::aarch64 ||
2473         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2474      mangleAArch64NeonVectorType(T);
2475    else
2476      mangleNeonVectorType(T);
2477    return;
2478  }
2479  Out << "Dv" << T->getNumElements() << '_';
2480  if (T->getVectorKind() == VectorType::AltiVecPixel)
2481    Out << 'p';
2482  else if (T->getVectorKind() == VectorType::AltiVecBool)
2483    Out << 'b';
2484  else
2485    mangleType(T->getElementType());
2486}
2487void CXXNameMangler::mangleType(const ExtVectorType *T) {
2488  mangleType(static_cast<const VectorType*>(T));
2489}
2490void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2491  Out << "Dv";
2492  mangleExpression(T->getSizeExpr());
2493  Out << '_';
2494  mangleType(T->getElementType());
2495}
2496
2497void CXXNameMangler::mangleType(const PackExpansionType *T) {
2498  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2499  Out << "Dp";
2500  mangleType(T->getPattern());
2501}
2502
2503void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2504  mangleSourceName(T->getDecl()->getIdentifier());
2505}
2506
2507void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2508  // Treat __kindof as a vendor extended type qualifier.
2509  if (T->isKindOfType())
2510    Out << "U8__kindof";
2511
2512  if (!T->qual_empty()) {
2513    // Mangle protocol qualifiers.
2514    SmallString<64> QualStr;
2515    llvm::raw_svector_ostream QualOS(QualStr);
2516    QualOS << "objcproto";
2517    for (const auto *I : T->quals()) {
2518      StringRef name = I->getName();
2519      QualOS << name.size() << name;
2520    }
2521    Out << 'U' << QualStr.size() << QualStr;
2522  }
2523
2524  mangleType(T->getBaseType());
2525
2526  if (T->isSpecialized()) {
2527    // Mangle type arguments as I <type>+ E
2528    Out << 'I';
2529    for (auto typeArg : T->getTypeArgs())
2530      mangleType(typeArg);
2531    Out << 'E';
2532  }
2533}
2534
2535void CXXNameMangler::mangleType(const BlockPointerType *T) {
2536  Out << "U13block_pointer";
2537  mangleType(T->getPointeeType());
2538}
2539
2540void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2541  // Mangle injected class name types as if the user had written the
2542  // specialization out fully.  It may not actually be possible to see
2543  // this mangling, though.
2544  mangleType(T->getInjectedSpecializationType());
2545}
2546
2547void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2548  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2549    mangleName(TD, T->getArgs(), T->getNumArgs());
2550  } else {
2551    if (mangleSubstitution(QualType(T, 0)))
2552      return;
2553
2554    mangleTemplatePrefix(T->getTemplateName());
2555
2556    // FIXME: GCC does not appear to mangle the template arguments when
2557    // the template in question is a dependent template name. Should we
2558    // emulate that badness?
2559    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2560    addSubstitution(QualType(T, 0));
2561  }
2562}
2563
2564void CXXNameMangler::mangleType(const DependentNameType *T) {
2565  // Proposal by cxx-abi-dev, 2014-03-26
2566  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2567  //                                 # dependent elaborated type specifier using
2568  //                                 # 'typename'
2569  //                   ::= Ts <name> # dependent elaborated type specifier using
2570  //                                 # 'struct' or 'class'
2571  //                   ::= Tu <name> # dependent elaborated type specifier using
2572  //                                 # 'union'
2573  //                   ::= Te <name> # dependent elaborated type specifier using
2574  //                                 # 'enum'
2575  switch (T->getKeyword()) {
2576    case ETK_Typename:
2577      break;
2578    case ETK_Struct:
2579    case ETK_Class:
2580    case ETK_Interface:
2581      Out << "Ts";
2582      break;
2583    case ETK_Union:
2584      Out << "Tu";
2585      break;
2586    case ETK_Enum:
2587      Out << "Te";
2588      break;
2589    default:
2590      llvm_unreachable("unexpected keyword for dependent type name");
2591  }
2592  // Typename types are always nested
2593  Out << 'N';
2594  manglePrefix(T->getQualifier());
2595  mangleSourceName(T->getIdentifier());
2596  Out << 'E';
2597}
2598
2599void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2600  // Dependently-scoped template types are nested if they have a prefix.
2601  Out << 'N';
2602
2603  // TODO: avoid making this TemplateName.
2604  TemplateName Prefix =
2605    getASTContext().getDependentTemplateName(T->getQualifier(),
2606                                             T->getIdentifier());
2607  mangleTemplatePrefix(Prefix);
2608
2609  // FIXME: GCC does not appear to mangle the template arguments when
2610  // the template in question is a dependent template name. Should we
2611  // emulate that badness?
2612  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2613  Out << 'E';
2614}
2615
2616void CXXNameMangler::mangleType(const TypeOfType *T) {
2617  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2618  // "extension with parameters" mangling.
2619  Out << "u6typeof";
2620}
2621
2622void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2623  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2624  // "extension with parameters" mangling.
2625  Out << "u6typeof";
2626}
2627
2628void CXXNameMangler::mangleType(const DecltypeType *T) {
2629  Expr *E = T->getUnderlyingExpr();
2630
2631  // type ::= Dt <expression> E  # decltype of an id-expression
2632  //                             #   or class member access
2633  //      ::= DT <expression> E  # decltype of an expression
2634
2635  // This purports to be an exhaustive list of id-expressions and
2636  // class member accesses.  Note that we do not ignore parentheses;
2637  // parentheses change the semantics of decltype for these
2638  // expressions (and cause the mangler to use the other form).
2639  if (isa<DeclRefExpr>(E) ||
2640      isa<MemberExpr>(E) ||
2641      isa<UnresolvedLookupExpr>(E) ||
2642      isa<DependentScopeDeclRefExpr>(E) ||
2643      isa<CXXDependentScopeMemberExpr>(E) ||
2644      isa<UnresolvedMemberExpr>(E))
2645    Out << "Dt";
2646  else
2647    Out << "DT";
2648  mangleExpression(E);
2649  Out << 'E';
2650}
2651
2652void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2653  // If this is dependent, we need to record that. If not, we simply
2654  // mangle it as the underlying type since they are equivalent.
2655  if (T->isDependentType()) {
2656    Out << 'U';
2657
2658    switch (T->getUTTKind()) {
2659      case UnaryTransformType::EnumUnderlyingType:
2660        Out << "3eut";
2661        break;
2662    }
2663  }
2664
2665  mangleType(T->getUnderlyingType());
2666}
2667
2668void CXXNameMangler::mangleType(const AutoType *T) {
2669  QualType D = T->getDeducedType();
2670  // <builtin-type> ::= Da  # dependent auto
2671  if (D.isNull()) {
2672    assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2673           "shouldn't need to mangle __auto_type!");
2674    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2675  } else
2676    mangleType(D);
2677}
2678
2679void CXXNameMangler::mangleType(const AtomicType *T) {
2680  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2681  // (Until there's a standardized mangling...)
2682  Out << "U7_Atomic";
2683  mangleType(T->getValueType());
2684}
2685
2686void CXXNameMangler::mangleType(const PipeType *T) {
2687  // Pipe type mangling rules are described in SPIR 2.0 specification
2688  // A.1 Data types and A.3 Summary of changes
2689  // <type> ::= 8ocl_pipe
2690  Out << "8ocl_pipe";
2691}
2692
2693void CXXNameMangler::mangleIntegerLiteral(QualType T,
2694                                          const llvm::APSInt &Value) {
2695  //  <expr-primary> ::= L <type> <value number> E # integer literal
2696  Out << 'L';
2697
2698  mangleType(T);
2699  if (T->isBooleanType()) {
2700    // Boolean values are encoded as 0/1.
2701    Out << (Value.getBoolValue() ? '1' : '0');
2702  } else {
2703    mangleNumber(Value);
2704  }
2705  Out << 'E';
2706
2707}
2708
2709void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
2710  // Ignore member expressions involving anonymous unions.
2711  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
2712    if (!RT->getDecl()->isAnonymousStructOrUnion())
2713      break;
2714    const auto *ME = dyn_cast<MemberExpr>(Base);
2715    if (!ME)
2716      break;
2717    Base = ME->getBase();
2718    IsArrow = ME->isArrow();
2719  }
2720
2721  if (Base->isImplicitCXXThis()) {
2722    // Note: GCC mangles member expressions to the implicit 'this' as
2723    // *this., whereas we represent them as this->. The Itanium C++ ABI
2724    // does not specify anything here, so we follow GCC.
2725    Out << "dtdefpT";
2726  } else {
2727    Out << (IsArrow ? "pt" : "dt");
2728    mangleExpression(Base);
2729  }
2730}
2731
2732/// Mangles a member expression.
2733void CXXNameMangler::mangleMemberExpr(const Expr *base,
2734                                      bool isArrow,
2735                                      NestedNameSpecifier *qualifier,
2736                                      NamedDecl *firstQualifierLookup,
2737                                      DeclarationName member,
2738                                      unsigned arity) {
2739  // <expression> ::= dt <expression> <unresolved-name>
2740  //              ::= pt <expression> <unresolved-name>
2741  if (base)
2742    mangleMemberExprBase(base, isArrow);
2743  mangleUnresolvedName(qualifier, member, arity);
2744}
2745
2746/// Look at the callee of the given call expression and determine if
2747/// it's a parenthesized id-expression which would have triggered ADL
2748/// otherwise.
2749static bool isParenthesizedADLCallee(const CallExpr *call) {
2750  const Expr *callee = call->getCallee();
2751  const Expr *fn = callee->IgnoreParens();
2752
2753  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2754  // too, but for those to appear in the callee, it would have to be
2755  // parenthesized.
2756  if (callee == fn) return false;
2757
2758  // Must be an unresolved lookup.
2759  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2760  if (!lookup) return false;
2761
2762  assert(!lookup->requiresADL());
2763
2764  // Must be an unqualified lookup.
2765  if (lookup->getQualifier()) return false;
2766
2767  // Must not have found a class member.  Note that if one is a class
2768  // member, they're all class members.
2769  if (lookup->getNumDecls() > 0 &&
2770      (*lookup->decls_begin())->isCXXClassMember())
2771    return false;
2772
2773  // Otherwise, ADL would have been triggered.
2774  return true;
2775}
2776
2777void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2778  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2779  Out << CastEncoding;
2780  mangleType(ECE->getType());
2781  mangleExpression(ECE->getSubExpr());
2782}
2783
2784void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
2785  if (auto *Syntactic = InitList->getSyntacticForm())
2786    InitList = Syntactic;
2787  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2788    mangleExpression(InitList->getInit(i));
2789}
2790
2791void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2792  // <expression> ::= <unary operator-name> <expression>
2793  //              ::= <binary operator-name> <expression> <expression>
2794  //              ::= <trinary operator-name> <expression> <expression> <expression>
2795  //              ::= cv <type> expression           # conversion with one argument
2796  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2797  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
2798  //              ::= sc <type> <expression>         # static_cast<type> (expression)
2799  //              ::= cc <type> <expression>         # const_cast<type> (expression)
2800  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
2801  //              ::= st <type>                      # sizeof (a type)
2802  //              ::= at <type>                      # alignof (a type)
2803  //              ::= <template-param>
2804  //              ::= <function-param>
2805  //              ::= sr <type> <unqualified-name>                   # dependent name
2806  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2807  //              ::= ds <expression> <expression>                   # expr.*expr
2808  //              ::= sZ <template-param>                            # size of a parameter pack
2809  //              ::= sZ <function-param>    # size of a function parameter pack
2810  //              ::= <expr-primary>
2811  // <expr-primary> ::= L <type> <value number> E    # integer literal
2812  //                ::= L <type <value float> E      # floating literal
2813  //                ::= L <mangled-name> E           # external name
2814  //                ::= fpT                          # 'this' expression
2815  QualType ImplicitlyConvertedToType;
2816
2817recurse:
2818  switch (E->getStmtClass()) {
2819  case Expr::NoStmtClass:
2820#define ABSTRACT_STMT(Type)
2821#define EXPR(Type, Base)
2822#define STMT(Type, Base) \
2823  case Expr::Type##Class:
2824#include "clang/AST/StmtNodes.inc"
2825    // fallthrough
2826
2827  // These all can only appear in local or variable-initialization
2828  // contexts and so should never appear in a mangling.
2829  case Expr::AddrLabelExprClass:
2830  case Expr::DesignatedInitUpdateExprClass:
2831  case Expr::ImplicitValueInitExprClass:
2832  case Expr::NoInitExprClass:
2833  case Expr::ParenListExprClass:
2834  case Expr::LambdaExprClass:
2835  case Expr::MSPropertyRefExprClass:
2836  case Expr::MSPropertySubscriptExprClass:
2837  case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
2838  case Expr::OMPArraySectionExprClass:
2839    llvm_unreachable("unexpected statement kind");
2840
2841  // FIXME: invent manglings for all these.
2842  case Expr::BlockExprClass:
2843  case Expr::ChooseExprClass:
2844  case Expr::CompoundLiteralExprClass:
2845  case Expr::DesignatedInitExprClass:
2846  case Expr::ExtVectorElementExprClass:
2847  case Expr::GenericSelectionExprClass:
2848  case Expr::ObjCEncodeExprClass:
2849  case Expr::ObjCIsaExprClass:
2850  case Expr::ObjCIvarRefExprClass:
2851  case Expr::ObjCMessageExprClass:
2852  case Expr::ObjCPropertyRefExprClass:
2853  case Expr::ObjCProtocolExprClass:
2854  case Expr::ObjCSelectorExprClass:
2855  case Expr::ObjCStringLiteralClass:
2856  case Expr::ObjCBoxedExprClass:
2857  case Expr::ObjCArrayLiteralClass:
2858  case Expr::ObjCDictionaryLiteralClass:
2859  case Expr::ObjCSubscriptRefExprClass:
2860  case Expr::ObjCIndirectCopyRestoreExprClass:
2861  case Expr::OffsetOfExprClass:
2862  case Expr::PredefinedExprClass:
2863  case Expr::ShuffleVectorExprClass:
2864  case Expr::ConvertVectorExprClass:
2865  case Expr::StmtExprClass:
2866  case Expr::TypeTraitExprClass:
2867  case Expr::ArrayTypeTraitExprClass:
2868  case Expr::ExpressionTraitExprClass:
2869  case Expr::VAArgExprClass:
2870  case Expr::CUDAKernelCallExprClass:
2871  case Expr::AsTypeExprClass:
2872  case Expr::PseudoObjectExprClass:
2873  case Expr::AtomicExprClass:
2874  {
2875    // As bad as this diagnostic is, it's better than crashing.
2876    DiagnosticsEngine &Diags = Context.getDiags();
2877    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2878                                     "cannot yet mangle expression type %0");
2879    Diags.Report(E->getExprLoc(), DiagID)
2880      << E->getStmtClassName() << E->getSourceRange();
2881    break;
2882  }
2883
2884  case Expr::CXXUuidofExprClass: {
2885    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2886    if (UE->isTypeOperand()) {
2887      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2888      Out << "u8__uuidoft";
2889      mangleType(UuidT);
2890    } else {
2891      Expr *UuidExp = UE->getExprOperand();
2892      Out << "u8__uuidofz";
2893      mangleExpression(UuidExp, Arity);
2894    }
2895    break;
2896  }
2897
2898  // Even gcc-4.5 doesn't mangle this.
2899  case Expr::BinaryConditionalOperatorClass: {
2900    DiagnosticsEngine &Diags = Context.getDiags();
2901    unsigned DiagID =
2902      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2903                "?: operator with omitted middle operand cannot be mangled");
2904    Diags.Report(E->getExprLoc(), DiagID)
2905      << E->getStmtClassName() << E->getSourceRange();
2906    break;
2907  }
2908
2909  // These are used for internal purposes and cannot be meaningfully mangled.
2910  case Expr::OpaqueValueExprClass:
2911    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2912
2913  case Expr::InitListExprClass: {
2914    Out << "il";
2915    mangleInitListElements(cast<InitListExpr>(E));
2916    Out << "E";
2917    break;
2918  }
2919
2920  case Expr::CXXDefaultArgExprClass:
2921    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2922    break;
2923
2924  case Expr::CXXDefaultInitExprClass:
2925    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2926    break;
2927
2928  case Expr::CXXStdInitializerListExprClass:
2929    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2930    break;
2931
2932  case Expr::SubstNonTypeTemplateParmExprClass:
2933    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2934                     Arity);
2935    break;
2936
2937  case Expr::UserDefinedLiteralClass:
2938    // We follow g++'s approach of mangling a UDL as a call to the literal
2939    // operator.
2940  case Expr::CXXMemberCallExprClass: // fallthrough
2941  case Expr::CallExprClass: {
2942    const CallExpr *CE = cast<CallExpr>(E);
2943
2944    // <expression> ::= cp <simple-id> <expression>* E
2945    // We use this mangling only when the call would use ADL except
2946    // for being parenthesized.  Per discussion with David
2947    // Vandervoorde, 2011.04.25.
2948    if (isParenthesizedADLCallee(CE)) {
2949      Out << "cp";
2950      // The callee here is a parenthesized UnresolvedLookupExpr with
2951      // no qualifier and should always get mangled as a <simple-id>
2952      // anyway.
2953
2954    // <expression> ::= cl <expression>* E
2955    } else {
2956      Out << "cl";
2957    }
2958
2959    unsigned CallArity = CE->getNumArgs();
2960    for (const Expr *Arg : CE->arguments())
2961      if (isa<PackExpansionExpr>(Arg))
2962        CallArity = UnknownArity;
2963
2964    mangleExpression(CE->getCallee(), CallArity);
2965    for (const Expr *Arg : CE->arguments())
2966      mangleExpression(Arg);
2967    Out << 'E';
2968    break;
2969  }
2970
2971  case Expr::CXXNewExprClass: {
2972    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2973    if (New->isGlobalNew()) Out << "gs";
2974    Out << (New->isArray() ? "na" : "nw");
2975    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2976           E = New->placement_arg_end(); I != E; ++I)
2977      mangleExpression(*I);
2978    Out << '_';
2979    mangleType(New->getAllocatedType());
2980    if (New->hasInitializer()) {
2981      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2982        Out << "il";
2983      else
2984        Out << "pi";
2985      const Expr *Init = New->getInitializer();
2986      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2987        // Directly inline the initializers.
2988        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2989                                                  E = CCE->arg_end();
2990             I != E; ++I)
2991          mangleExpression(*I);
2992      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2993        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2994          mangleExpression(PLE->getExpr(i));
2995      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2996                 isa<InitListExpr>(Init)) {
2997        // Only take InitListExprs apart for list-initialization.
2998        mangleInitListElements(cast<InitListExpr>(Init));
2999      } else
3000        mangleExpression(Init);
3001    }
3002    Out << 'E';
3003    break;
3004  }
3005
3006  case Expr::CXXPseudoDestructorExprClass: {
3007    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3008    if (const Expr *Base = PDE->getBase())
3009      mangleMemberExprBase(Base, PDE->isArrow());
3010    NestedNameSpecifier *Qualifier = PDE->getQualifier();
3011    QualType ScopeType;
3012    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3013      if (Qualifier) {
3014        mangleUnresolvedPrefix(Qualifier,
3015                               /*Recursive=*/true);
3016        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3017        Out << 'E';
3018      } else {
3019        Out << "sr";
3020        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3021          Out << 'E';
3022      }
3023    } else if (Qualifier) {
3024      mangleUnresolvedPrefix(Qualifier);
3025    }
3026    // <base-unresolved-name> ::= dn <destructor-name>
3027    Out << "dn";
3028    QualType DestroyedType = PDE->getDestroyedType();
3029    mangleUnresolvedTypeOrSimpleId(DestroyedType);
3030    break;
3031  }
3032
3033  case Expr::MemberExprClass: {
3034    const MemberExpr *ME = cast<MemberExpr>(E);
3035    mangleMemberExpr(ME->getBase(), ME->isArrow(),
3036                     ME->getQualifier(), nullptr,
3037                     ME->getMemberDecl()->getDeclName(), Arity);
3038    break;
3039  }
3040
3041  case Expr::UnresolvedMemberExprClass: {
3042    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3043    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3044                     ME->isArrow(), ME->getQualifier(), nullptr,
3045                     ME->getMemberName(), Arity);
3046    if (ME->hasExplicitTemplateArgs())
3047      mangleTemplateArgs(ME->getTemplateArgs(), ME->getNumTemplateArgs());
3048    break;
3049  }
3050
3051  case Expr::CXXDependentScopeMemberExprClass: {
3052    const CXXDependentScopeMemberExpr *ME
3053      = cast<CXXDependentScopeMemberExpr>(E);
3054    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3055                     ME->isArrow(), ME->getQualifier(),
3056                     ME->getFirstQualifierFoundInScope(),
3057                     ME->getMember(), Arity);
3058    if (ME->hasExplicitTemplateArgs())
3059      mangleTemplateArgs(ME->getTemplateArgs(), ME->getNumTemplateArgs());
3060    break;
3061  }
3062
3063  case Expr::UnresolvedLookupExprClass: {
3064    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3065    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
3066
3067    // All the <unresolved-name> productions end in a
3068    // base-unresolved-name, where <template-args> are just tacked
3069    // onto the end.
3070    if (ULE->hasExplicitTemplateArgs())
3071      mangleTemplateArgs(ULE->getTemplateArgs(), ULE->getNumTemplateArgs());
3072    break;
3073  }
3074
3075  case Expr::CXXUnresolvedConstructExprClass: {
3076    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3077    unsigned N = CE->arg_size();
3078
3079    Out << "cv";
3080    mangleType(CE->getType());
3081    if (N != 1) Out << '_';
3082    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3083    if (N != 1) Out << 'E';
3084    break;
3085  }
3086
3087  case Expr::CXXConstructExprClass: {
3088    const auto *CE = cast<CXXConstructExpr>(E);
3089    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3090      assert(
3091          CE->getNumArgs() >= 1 &&
3092          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3093          "implicit CXXConstructExpr must have one argument");
3094      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3095    }
3096    Out << "il";
3097    for (auto *E : CE->arguments())
3098      mangleExpression(E);
3099    Out << "E";
3100    break;
3101  }
3102
3103  case Expr::CXXTemporaryObjectExprClass: {
3104    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3105    unsigned N = CE->getNumArgs();
3106    bool List = CE->isListInitialization();
3107
3108    if (List)
3109      Out << "tl";
3110    else
3111      Out << "cv";
3112    mangleType(CE->getType());
3113    if (!List && N != 1)
3114      Out << '_';
3115    if (CE->isStdInitListInitialization()) {
3116      // We implicitly created a std::initializer_list<T> for the first argument
3117      // of a constructor of type U in an expression of the form U{a, b, c}.
3118      // Strip all the semantic gunk off the initializer list.
3119      auto *SILE =
3120          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3121      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3122      mangleInitListElements(ILE);
3123    } else {
3124      for (auto *E : CE->arguments())
3125        mangleExpression(E);
3126    }
3127    if (List || N != 1)
3128      Out << 'E';
3129    break;
3130  }
3131
3132  case Expr::CXXScalarValueInitExprClass:
3133    Out << "cv";
3134    mangleType(E->getType());
3135    Out << "_E";
3136    break;
3137
3138  case Expr::CXXNoexceptExprClass:
3139    Out << "nx";
3140    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3141    break;
3142
3143  case Expr::UnaryExprOrTypeTraitExprClass: {
3144    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3145
3146    if (!SAE->isInstantiationDependent()) {
3147      // Itanium C++ ABI:
3148      //   If the operand of a sizeof or alignof operator is not
3149      //   instantiation-dependent it is encoded as an integer literal
3150      //   reflecting the result of the operator.
3151      //
3152      //   If the result of the operator is implicitly converted to a known
3153      //   integer type, that type is used for the literal; otherwise, the type
3154      //   of std::size_t or std::ptrdiff_t is used.
3155      QualType T = (ImplicitlyConvertedToType.isNull() ||
3156                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3157                                                    : ImplicitlyConvertedToType;
3158      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3159      mangleIntegerLiteral(T, V);
3160      break;
3161    }
3162
3163    switch(SAE->getKind()) {
3164    case UETT_SizeOf:
3165      Out << 's';
3166      break;
3167    case UETT_AlignOf:
3168      Out << 'a';
3169      break;
3170    case UETT_VecStep: {
3171      DiagnosticsEngine &Diags = Context.getDiags();
3172      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3173                                     "cannot yet mangle vec_step expression");
3174      Diags.Report(DiagID);
3175      return;
3176    }
3177    case UETT_OpenMPRequiredSimdAlign:
3178      DiagnosticsEngine &Diags = Context.getDiags();
3179      unsigned DiagID = Diags.getCustomDiagID(
3180          DiagnosticsEngine::Error,
3181          "cannot yet mangle __builtin_omp_required_simd_align expression");
3182      Diags.Report(DiagID);
3183      return;
3184    }
3185    if (SAE->isArgumentType()) {
3186      Out << 't';
3187      mangleType(SAE->getArgumentType());
3188    } else {
3189      Out << 'z';
3190      mangleExpression(SAE->getArgumentExpr());
3191    }
3192    break;
3193  }
3194
3195  case Expr::CXXThrowExprClass: {
3196    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3197    //  <expression> ::= tw <expression>  # throw expression
3198    //               ::= tr               # rethrow
3199    if (TE->getSubExpr()) {
3200      Out << "tw";
3201      mangleExpression(TE->getSubExpr());
3202    } else {
3203      Out << "tr";
3204    }
3205    break;
3206  }
3207
3208  case Expr::CXXTypeidExprClass: {
3209    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3210    //  <expression> ::= ti <type>        # typeid (type)
3211    //               ::= te <expression>  # typeid (expression)
3212    if (TIE->isTypeOperand()) {
3213      Out << "ti";
3214      mangleType(TIE->getTypeOperand(Context.getASTContext()));
3215    } else {
3216      Out << "te";
3217      mangleExpression(TIE->getExprOperand());
3218    }
3219    break;
3220  }
3221
3222  case Expr::CXXDeleteExprClass: {
3223    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3224    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3225    //               ::= [gs] da <expression>  # [::] delete [] expr
3226    if (DE->isGlobalDelete()) Out << "gs";
3227    Out << (DE->isArrayForm() ? "da" : "dl");
3228    mangleExpression(DE->getArgument());
3229    break;
3230  }
3231
3232  case Expr::UnaryOperatorClass: {
3233    const UnaryOperator *UO = cast<UnaryOperator>(E);
3234    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3235                       /*Arity=*/1);
3236    mangleExpression(UO->getSubExpr());
3237    break;
3238  }
3239
3240  case Expr::ArraySubscriptExprClass: {
3241    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3242
3243    // Array subscript is treated as a syntactically weird form of
3244    // binary operator.
3245    Out << "ix";
3246    mangleExpression(AE->getLHS());
3247    mangleExpression(AE->getRHS());
3248    break;
3249  }
3250
3251  case Expr::CompoundAssignOperatorClass: // fallthrough
3252  case Expr::BinaryOperatorClass: {
3253    const BinaryOperator *BO = cast<BinaryOperator>(E);
3254    if (BO->getOpcode() == BO_PtrMemD)
3255      Out << "ds";
3256    else
3257      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3258                         /*Arity=*/2);
3259    mangleExpression(BO->getLHS());
3260    mangleExpression(BO->getRHS());
3261    break;
3262  }
3263
3264  case Expr::ConditionalOperatorClass: {
3265    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3266    mangleOperatorName(OO_Conditional, /*Arity=*/3);
3267    mangleExpression(CO->getCond());
3268    mangleExpression(CO->getLHS(), Arity);
3269    mangleExpression(CO->getRHS(), Arity);
3270    break;
3271  }
3272
3273  case Expr::ImplicitCastExprClass: {
3274    ImplicitlyConvertedToType = E->getType();
3275    E = cast<ImplicitCastExpr>(E)->getSubExpr();
3276    goto recurse;
3277  }
3278
3279  case Expr::ObjCBridgedCastExprClass: {
3280    // Mangle ownership casts as a vendor extended operator __bridge,
3281    // __bridge_transfer, or __bridge_retain.
3282    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3283    Out << "v1U" << Kind.size() << Kind;
3284  }
3285  // Fall through to mangle the cast itself.
3286
3287  case Expr::CStyleCastExprClass:
3288    mangleCastExpression(E, "cv");
3289    break;
3290
3291  case Expr::CXXFunctionalCastExprClass: {
3292    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3293    // FIXME: Add isImplicit to CXXConstructExpr.
3294    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3295      if (CCE->getParenOrBraceRange().isInvalid())
3296        Sub = CCE->getArg(0)->IgnoreImplicit();
3297    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3298      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3299    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3300      Out << "tl";
3301      mangleType(E->getType());
3302      mangleInitListElements(IL);
3303      Out << "E";
3304    } else {
3305      mangleCastExpression(E, "cv");
3306    }
3307    break;
3308  }
3309
3310  case Expr::CXXStaticCastExprClass:
3311    mangleCastExpression(E, "sc");
3312    break;
3313  case Expr::CXXDynamicCastExprClass:
3314    mangleCastExpression(E, "dc");
3315    break;
3316  case Expr::CXXReinterpretCastExprClass:
3317    mangleCastExpression(E, "rc");
3318    break;
3319  case Expr::CXXConstCastExprClass:
3320    mangleCastExpression(E, "cc");
3321    break;
3322
3323  case Expr::CXXOperatorCallExprClass: {
3324    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3325    unsigned NumArgs = CE->getNumArgs();
3326    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3327    // Mangle the arguments.
3328    for (unsigned i = 0; i != NumArgs; ++i)
3329      mangleExpression(CE->getArg(i));
3330    break;
3331  }
3332
3333  case Expr::ParenExprClass:
3334    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3335    break;
3336
3337  case Expr::DeclRefExprClass: {
3338    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3339
3340    switch (D->getKind()) {
3341    default:
3342      //  <expr-primary> ::= L <mangled-name> E # external name
3343      Out << 'L';
3344      mangle(D);
3345      Out << 'E';
3346      break;
3347
3348    case Decl::ParmVar:
3349      mangleFunctionParam(cast<ParmVarDecl>(D));
3350      break;
3351
3352    case Decl::EnumConstant: {
3353      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3354      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3355      break;
3356    }
3357
3358    case Decl::NonTypeTemplateParm: {
3359      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3360      mangleTemplateParameter(PD->getIndex());
3361      break;
3362    }
3363
3364    }
3365
3366    break;
3367  }
3368
3369  case Expr::SubstNonTypeTemplateParmPackExprClass:
3370    // FIXME: not clear how to mangle this!
3371    // template <unsigned N...> class A {
3372    //   template <class U...> void foo(U (&x)[N]...);
3373    // };
3374    Out << "_SUBSTPACK_";
3375    break;
3376
3377  case Expr::FunctionParmPackExprClass: {
3378    // FIXME: not clear how to mangle this!
3379    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3380    Out << "v110_SUBSTPACK";
3381    mangleFunctionParam(FPPE->getParameterPack());
3382    break;
3383  }
3384
3385  case Expr::DependentScopeDeclRefExprClass: {
3386    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3387    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3388
3389    // All the <unresolved-name> productions end in a
3390    // base-unresolved-name, where <template-args> are just tacked
3391    // onto the end.
3392    if (DRE->hasExplicitTemplateArgs())
3393      mangleTemplateArgs(DRE->getTemplateArgs(), DRE->getNumTemplateArgs());
3394    break;
3395  }
3396
3397  case Expr::CXXBindTemporaryExprClass:
3398    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3399    break;
3400
3401  case Expr::ExprWithCleanupsClass:
3402    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3403    break;
3404
3405  case Expr::FloatingLiteralClass: {
3406    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3407    Out << 'L';
3408    mangleType(FL->getType());
3409    mangleFloat(FL->getValue());
3410    Out << 'E';
3411    break;
3412  }
3413
3414  case Expr::CharacterLiteralClass:
3415    Out << 'L';
3416    mangleType(E->getType());
3417    Out << cast<CharacterLiteral>(E)->getValue();
3418    Out << 'E';
3419    break;
3420
3421  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3422  case Expr::ObjCBoolLiteralExprClass:
3423    Out << "Lb";
3424    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3425    Out << 'E';
3426    break;
3427
3428  case Expr::CXXBoolLiteralExprClass:
3429    Out << "Lb";
3430    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3431    Out << 'E';
3432    break;
3433
3434  case Expr::IntegerLiteralClass: {
3435    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3436    if (E->getType()->isSignedIntegerType())
3437      Value.setIsSigned(true);
3438    mangleIntegerLiteral(E->getType(), Value);
3439    break;
3440  }
3441
3442  case Expr::ImaginaryLiteralClass: {
3443    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3444    // Mangle as if a complex literal.
3445    // Proposal from David Vandevoorde, 2010.06.30.
3446    Out << 'L';
3447    mangleType(E->getType());
3448    if (const FloatingLiteral *Imag =
3449          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3450      // Mangle a floating-point zero of the appropriate type.
3451      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3452      Out << '_';
3453      mangleFloat(Imag->getValue());
3454    } else {
3455      Out << "0_";
3456      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3457      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3458        Value.setIsSigned(true);
3459      mangleNumber(Value);
3460    }
3461    Out << 'E';
3462    break;
3463  }
3464
3465  case Expr::StringLiteralClass: {
3466    // Revised proposal from David Vandervoorde, 2010.07.15.
3467    Out << 'L';
3468    assert(isa<ConstantArrayType>(E->getType()));
3469    mangleType(E->getType());
3470    Out << 'E';
3471    break;
3472  }
3473
3474  case Expr::GNUNullExprClass:
3475    // FIXME: should this really be mangled the same as nullptr?
3476    // fallthrough
3477
3478  case Expr::CXXNullPtrLiteralExprClass: {
3479    Out << "LDnE";
3480    break;
3481  }
3482
3483  case Expr::PackExpansionExprClass:
3484    Out << "sp";
3485    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3486    break;
3487
3488  case Expr::SizeOfPackExprClass: {
3489    auto *SPE = cast<SizeOfPackExpr>(E);
3490    if (SPE->isPartiallySubstituted()) {
3491      Out << "sP";
3492      for (const auto &A : SPE->getPartialArguments())
3493        mangleTemplateArg(A);
3494      Out << "E";
3495      break;
3496    }
3497
3498    Out << "sZ";
3499    const NamedDecl *Pack = SPE->getPack();
3500    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3501      mangleTemplateParameter(TTP->getIndex());
3502    else if (const NonTypeTemplateParmDecl *NTTP
3503                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3504      mangleTemplateParameter(NTTP->getIndex());
3505    else if (const TemplateTemplateParmDecl *TempTP
3506                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3507      mangleTemplateParameter(TempTP->getIndex());
3508    else
3509      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3510    break;
3511  }
3512
3513  case Expr::MaterializeTemporaryExprClass: {
3514    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3515    break;
3516  }
3517
3518  case Expr::CXXFoldExprClass: {
3519    auto *FE = cast<CXXFoldExpr>(E);
3520    if (FE->isLeftFold())
3521      Out << (FE->getInit() ? "fL" : "fl");
3522    else
3523      Out << (FE->getInit() ? "fR" : "fr");
3524
3525    if (FE->getOperator() == BO_PtrMemD)
3526      Out << "ds";
3527    else
3528      mangleOperatorName(
3529          BinaryOperator::getOverloadedOperator(FE->getOperator()),
3530          /*Arity=*/2);
3531
3532    if (FE->getLHS())
3533      mangleExpression(FE->getLHS());
3534    if (FE->getRHS())
3535      mangleExpression(FE->getRHS());
3536    break;
3537  }
3538
3539  case Expr::CXXThisExprClass:
3540    Out << "fpT";
3541    break;
3542
3543  case Expr::CoawaitExprClass:
3544    // FIXME: Propose a non-vendor mangling.
3545    Out << "v18co_await";
3546    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3547    break;
3548
3549  case Expr::CoyieldExprClass:
3550    // FIXME: Propose a non-vendor mangling.
3551    Out << "v18co_yield";
3552    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
3553    break;
3554  }
3555}
3556
3557/// Mangle an expression which refers to a parameter variable.
3558///
3559/// <expression>     ::= <function-param>
3560/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3561/// <function-param> ::= fp <top-level CV-qualifiers>
3562///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3563/// <function-param> ::= fL <L-1 non-negative number>
3564///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3565/// <function-param> ::= fL <L-1 non-negative number>
3566///                      p <top-level CV-qualifiers>
3567///                      <I-1 non-negative number> _         # L > 0, I > 0
3568///
3569/// L is the nesting depth of the parameter, defined as 1 if the
3570/// parameter comes from the innermost function prototype scope
3571/// enclosing the current context, 2 if from the next enclosing
3572/// function prototype scope, and so on, with one special case: if
3573/// we've processed the full parameter clause for the innermost
3574/// function type, then L is one less.  This definition conveniently
3575/// makes it irrelevant whether a function's result type was written
3576/// trailing or leading, but is otherwise overly complicated; the
3577/// numbering was first designed without considering references to
3578/// parameter in locations other than return types, and then the
3579/// mangling had to be generalized without changing the existing
3580/// manglings.
3581///
3582/// I is the zero-based index of the parameter within its parameter
3583/// declaration clause.  Note that the original ABI document describes
3584/// this using 1-based ordinals.
3585void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3586  unsigned parmDepth = parm->getFunctionScopeDepth();
3587  unsigned parmIndex = parm->getFunctionScopeIndex();
3588
3589  // Compute 'L'.
3590  // parmDepth does not include the declaring function prototype.
3591  // FunctionTypeDepth does account for that.
3592  assert(parmDepth < FunctionTypeDepth.getDepth());
3593  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3594  if (FunctionTypeDepth.isInResultType())
3595    nestingDepth--;
3596
3597  if (nestingDepth == 0) {
3598    Out << "fp";
3599  } else {
3600    Out << "fL" << (nestingDepth - 1) << 'p';
3601  }
3602
3603  // Top-level qualifiers.  We don't have to worry about arrays here,
3604  // because parameters declared as arrays should already have been
3605  // transformed to have pointer type. FIXME: apparently these don't
3606  // get mangled if used as an rvalue of a known non-class type?
3607  assert(!parm->getType()->isArrayType()
3608         && "parameter's type is still an array type?");
3609  mangleQualifiers(parm->getType().getQualifiers());
3610
3611  // Parameter index.
3612  if (parmIndex != 0) {
3613    Out << (parmIndex - 1);
3614  }
3615  Out << '_';
3616}
3617
3618void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3619  // <ctor-dtor-name> ::= C1  # complete object constructor
3620  //                  ::= C2  # base object constructor
3621  //
3622  // In addition, C5 is a comdat name with C1 and C2 in it.
3623  switch (T) {
3624  case Ctor_Complete:
3625    Out << "C1";
3626    break;
3627  case Ctor_Base:
3628    Out << "C2";
3629    break;
3630  case Ctor_Comdat:
3631    Out << "C5";
3632    break;
3633  case Ctor_DefaultClosure:
3634  case Ctor_CopyingClosure:
3635    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
3636  }
3637}
3638
3639void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3640  // <ctor-dtor-name> ::= D0  # deleting destructor
3641  //                  ::= D1  # complete object destructor
3642  //                  ::= D2  # base object destructor
3643  //
3644  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3645  switch (T) {
3646  case Dtor_Deleting:
3647    Out << "D0";
3648    break;
3649  case Dtor_Complete:
3650    Out << "D1";
3651    break;
3652  case Dtor_Base:
3653    Out << "D2";
3654    break;
3655  case Dtor_Comdat:
3656    Out << "D5";
3657    break;
3658  }
3659}
3660
3661void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
3662                                        unsigned NumTemplateArgs) {
3663  // <template-args> ::= I <template-arg>+ E
3664  Out << 'I';
3665  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3666    mangleTemplateArg(TemplateArgs[i].getArgument());
3667  Out << 'E';
3668}
3669
3670void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3671  // <template-args> ::= I <template-arg>+ E
3672  Out << 'I';
3673  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3674    mangleTemplateArg(AL[i]);
3675  Out << 'E';
3676}
3677
3678void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3679                                        unsigned NumTemplateArgs) {
3680  // <template-args> ::= I <template-arg>+ E
3681  Out << 'I';
3682  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3683    mangleTemplateArg(TemplateArgs[i]);
3684  Out << 'E';
3685}
3686
3687void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3688  // <template-arg> ::= <type>              # type or template
3689  //                ::= X <expression> E    # expression
3690  //                ::= <expr-primary>      # simple expressions
3691  //                ::= J <template-arg>* E # argument pack
3692  if (!A.isInstantiationDependent() || A.isDependent())
3693    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3694
3695  switch (A.getKind()) {
3696  case TemplateArgument::Null:
3697    llvm_unreachable("Cannot mangle NULL template argument");
3698
3699  case TemplateArgument::Type:
3700    mangleType(A.getAsType());
3701    break;
3702  case TemplateArgument::Template:
3703    // This is mangled as <type>.
3704    mangleType(A.getAsTemplate());
3705    break;
3706  case TemplateArgument::TemplateExpansion:
3707    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3708    Out << "Dp";
3709    mangleType(A.getAsTemplateOrTemplatePattern());
3710    break;
3711  case TemplateArgument::Expression: {
3712    // It's possible to end up with a DeclRefExpr here in certain
3713    // dependent cases, in which case we should mangle as a
3714    // declaration.
3715    const Expr *E = A.getAsExpr()->IgnoreParens();
3716    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3717      const ValueDecl *D = DRE->getDecl();
3718      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3719        Out << 'L';
3720        mangle(D);
3721        Out << 'E';
3722        break;
3723      }
3724    }
3725
3726    Out << 'X';
3727    mangleExpression(E);
3728    Out << 'E';
3729    break;
3730  }
3731  case TemplateArgument::Integral:
3732    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3733    break;
3734  case TemplateArgument::Declaration: {
3735    //  <expr-primary> ::= L <mangled-name> E # external name
3736    // Clang produces AST's where pointer-to-member-function expressions
3737    // and pointer-to-function expressions are represented as a declaration not
3738    // an expression. We compensate for it here to produce the correct mangling.
3739    ValueDecl *D = A.getAsDecl();
3740    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3741    if (compensateMangling) {
3742      Out << 'X';
3743      mangleOperatorName(OO_Amp, 1);
3744    }
3745
3746    Out << 'L';
3747    // References to external entities use the mangled name; if the name would
3748    // not normally be manged then mangle it as unqualified.
3749    mangle(D);
3750    Out << 'E';
3751
3752    if (compensateMangling)
3753      Out << 'E';
3754
3755    break;
3756  }
3757  case TemplateArgument::NullPtr: {
3758    //  <expr-primary> ::= L <type> 0 E
3759    Out << 'L';
3760    mangleType(A.getNullPtrType());
3761    Out << "0E";
3762    break;
3763  }
3764  case TemplateArgument::Pack: {
3765    //  <template-arg> ::= J <template-arg>* E
3766    Out << 'J';
3767    for (const auto &P : A.pack_elements())
3768      mangleTemplateArg(P);
3769    Out << 'E';
3770  }
3771  }
3772}
3773
3774void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3775  // <template-param> ::= T_    # first template parameter
3776  //                  ::= T <parameter-2 non-negative number> _
3777  if (Index == 0)
3778    Out << "T_";
3779  else
3780    Out << 'T' << (Index - 1) << '_';
3781}
3782
3783void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3784  if (SeqID == 1)
3785    Out << '0';
3786  else if (SeqID > 1) {
3787    SeqID--;
3788
3789    // <seq-id> is encoded in base-36, using digits and upper case letters.
3790    char Buffer[7]; // log(2**32) / log(36) ~= 7
3791    MutableArrayRef<char> BufferRef(Buffer);
3792    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3793
3794    for (; SeqID != 0; SeqID /= 36) {
3795      unsigned C = SeqID % 36;
3796      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3797    }
3798
3799    Out.write(I.base(), I - BufferRef.rbegin());
3800  }
3801  Out << '_';
3802}
3803
3804void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3805  bool result = mangleSubstitution(type);
3806  assert(result && "no existing substitution for type");
3807  (void) result;
3808}
3809
3810void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3811  bool result = mangleSubstitution(tname);
3812  assert(result && "no existing substitution for template name");
3813  (void) result;
3814}
3815
3816// <substitution> ::= S <seq-id> _
3817//                ::= S_
3818bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3819  // Try one of the standard substitutions first.
3820  if (mangleStandardSubstitution(ND))
3821    return true;
3822
3823  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3824  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3825}
3826
3827/// Determine whether the given type has any qualifiers that are relevant for
3828/// substitutions.
3829static bool hasMangledSubstitutionQualifiers(QualType T) {
3830  Qualifiers Qs = T.getQualifiers();
3831  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3832}
3833
3834bool CXXNameMangler::mangleSubstitution(QualType T) {
3835  if (!hasMangledSubstitutionQualifiers(T)) {
3836    if (const RecordType *RT = T->getAs<RecordType>())
3837      return mangleSubstitution(RT->getDecl());
3838  }
3839
3840  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3841
3842  return mangleSubstitution(TypePtr);
3843}
3844
3845bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3846  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3847    return mangleSubstitution(TD);
3848
3849  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3850  return mangleSubstitution(
3851                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3852}
3853
3854bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3855  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3856  if (I == Substitutions.end())
3857    return false;
3858
3859  unsigned SeqID = I->second;
3860  Out << 'S';
3861  mangleSeqID(SeqID);
3862
3863  return true;
3864}
3865
3866static bool isCharType(QualType T) {
3867  if (T.isNull())
3868    return false;
3869
3870  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3871    T->isSpecificBuiltinType(BuiltinType::Char_U);
3872}
3873
3874/// Returns whether a given type is a template specialization of a given name
3875/// with a single argument of type char.
3876static bool isCharSpecialization(QualType T, const char *Name) {
3877  if (T.isNull())
3878    return false;
3879
3880  const RecordType *RT = T->getAs<RecordType>();
3881  if (!RT)
3882    return false;
3883
3884  const ClassTemplateSpecializationDecl *SD =
3885    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3886  if (!SD)
3887    return false;
3888
3889  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3890    return false;
3891
3892  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3893  if (TemplateArgs.size() != 1)
3894    return false;
3895
3896  if (!isCharType(TemplateArgs[0].getAsType()))
3897    return false;
3898
3899  return SD->getIdentifier()->getName() == Name;
3900}
3901
3902template <std::size_t StrLen>
3903static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3904                                       const char (&Str)[StrLen]) {
3905  if (!SD->getIdentifier()->isStr(Str))
3906    return false;
3907
3908  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3909  if (TemplateArgs.size() != 2)
3910    return false;
3911
3912  if (!isCharType(TemplateArgs[0].getAsType()))
3913    return false;
3914
3915  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3916    return false;
3917
3918  return true;
3919}
3920
3921bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3922  // <substitution> ::= St # ::std::
3923  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3924    if (isStd(NS)) {
3925      Out << "St";
3926      return true;
3927    }
3928  }
3929
3930  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3931    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3932      return false;
3933
3934    // <substitution> ::= Sa # ::std::allocator
3935    if (TD->getIdentifier()->isStr("allocator")) {
3936      Out << "Sa";
3937      return true;
3938    }
3939
3940    // <<substitution> ::= Sb # ::std::basic_string
3941    if (TD->getIdentifier()->isStr("basic_string")) {
3942      Out << "Sb";
3943      return true;
3944    }
3945  }
3946
3947  if (const ClassTemplateSpecializationDecl *SD =
3948        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3949    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3950      return false;
3951
3952    //    <substitution> ::= Ss # ::std::basic_string<char,
3953    //                            ::std::char_traits<char>,
3954    //                            ::std::allocator<char> >
3955    if (SD->getIdentifier()->isStr("basic_string")) {
3956      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3957
3958      if (TemplateArgs.size() != 3)
3959        return false;
3960
3961      if (!isCharType(TemplateArgs[0].getAsType()))
3962        return false;
3963
3964      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3965        return false;
3966
3967      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3968        return false;
3969
3970      Out << "Ss";
3971      return true;
3972    }
3973
3974    //    <substitution> ::= Si # ::std::basic_istream<char,
3975    //                            ::std::char_traits<char> >
3976    if (isStreamCharSpecialization(SD, "basic_istream")) {
3977      Out << "Si";
3978      return true;
3979    }
3980
3981    //    <substitution> ::= So # ::std::basic_ostream<char,
3982    //                            ::std::char_traits<char> >
3983    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3984      Out << "So";
3985      return true;
3986    }
3987
3988    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3989    //                            ::std::char_traits<char> >
3990    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3991      Out << "Sd";
3992      return true;
3993    }
3994  }
3995  return false;
3996}
3997
3998void CXXNameMangler::addSubstitution(QualType T) {
3999  if (!hasMangledSubstitutionQualifiers(T)) {
4000    if (const RecordType *RT = T->getAs<RecordType>()) {
4001      addSubstitution(RT->getDecl());
4002      return;
4003    }
4004  }
4005
4006  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4007  addSubstitution(TypePtr);
4008}
4009
4010void CXXNameMangler::addSubstitution(TemplateName Template) {
4011  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4012    return addSubstitution(TD);
4013
4014  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4015  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4016}
4017
4018void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4019  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4020  Substitutions[Ptr] = SeqID++;
4021}
4022
4023//
4024
4025/// Mangles the name of the declaration D and emits that name to the given
4026/// output stream.
4027///
4028/// If the declaration D requires a mangled name, this routine will emit that
4029/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4030/// and this routine will return false. In this case, the caller should just
4031/// emit the identifier of the declaration (\c D->getIdentifier()) as its
4032/// name.
4033void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4034                                             raw_ostream &Out) {
4035  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4036          "Invalid mangleName() call, argument is not a variable or function!");
4037  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4038         "Invalid mangleName() call on 'structor decl!");
4039
4040  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4041                                 getASTContext().getSourceManager(),
4042                                 "Mangling declaration");
4043
4044  CXXNameMangler Mangler(*this, Out, D);
4045  Mangler.mangle(D);
4046}
4047
4048void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4049                                             CXXCtorType Type,
4050                                             raw_ostream &Out) {
4051  CXXNameMangler Mangler(*this, Out, D, Type);
4052  Mangler.mangle(D);
4053}
4054
4055void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4056                                             CXXDtorType Type,
4057                                             raw_ostream &Out) {
4058  CXXNameMangler Mangler(*this, Out, D, Type);
4059  Mangler.mangle(D);
4060}
4061
4062void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4063                                                   raw_ostream &Out) {
4064  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4065  Mangler.mangle(D);
4066}
4067
4068void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4069                                                   raw_ostream &Out) {
4070  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4071  Mangler.mangle(D);
4072}
4073
4074void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4075                                           const ThunkInfo &Thunk,
4076                                           raw_ostream &Out) {
4077  //  <special-name> ::= T <call-offset> <base encoding>
4078  //                      # base is the nominal target function of thunk
4079  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4080  //                      # base is the nominal target function of thunk
4081  //                      # first call-offset is 'this' adjustment
4082  //                      # second call-offset is result adjustment
4083
4084  assert(!isa<CXXDestructorDecl>(MD) &&
4085         "Use mangleCXXDtor for destructor decls!");
4086  CXXNameMangler Mangler(*this, Out);
4087  Mangler.getStream() << "_ZT";
4088  if (!Thunk.Return.isEmpty())
4089    Mangler.getStream() << 'c';
4090
4091  // Mangle the 'this' pointer adjustment.
4092  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4093                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
4094
4095  // Mangle the return pointer adjustment if there is one.
4096  if (!Thunk.Return.isEmpty())
4097    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4098                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
4099
4100  Mangler.mangleFunctionEncoding(MD);
4101}
4102
4103void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4104    const CXXDestructorDecl *DD, CXXDtorType Type,
4105    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4106  //  <special-name> ::= T <call-offset> <base encoding>
4107  //                      # base is the nominal target function of thunk
4108  CXXNameMangler Mangler(*this, Out, DD, Type);
4109  Mangler.getStream() << "_ZT";
4110
4111  // Mangle the 'this' pointer adjustment.
4112  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4113                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4114
4115  Mangler.mangleFunctionEncoding(DD);
4116}
4117
4118/// Returns the mangled name for a guard variable for the passed in VarDecl.
4119void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4120                                                         raw_ostream &Out) {
4121  //  <special-name> ::= GV <object name>       # Guard variable for one-time
4122  //                                            # initialization
4123  CXXNameMangler Mangler(*this, Out);
4124  Mangler.getStream() << "_ZGV";
4125  Mangler.mangleName(D);
4126}
4127
4128void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4129                                                        raw_ostream &Out) {
4130  // These symbols are internal in the Itanium ABI, so the names don't matter.
4131  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4132  // avoid duplicate symbols.
4133  Out << "__cxx_global_var_init";
4134}
4135
4136void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4137                                                             raw_ostream &Out) {
4138  // Prefix the mangling of D with __dtor_.
4139  CXXNameMangler Mangler(*this, Out);
4140  Mangler.getStream() << "__dtor_";
4141  if (shouldMangleDeclName(D))
4142    Mangler.mangle(D);
4143  else
4144    Mangler.getStream() << D->getName();
4145}
4146
4147void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4148    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4149  CXXNameMangler Mangler(*this, Out);
4150  Mangler.getStream() << "__filt_";
4151  if (shouldMangleDeclName(EnclosingDecl))
4152    Mangler.mangle(EnclosingDecl);
4153  else
4154    Mangler.getStream() << EnclosingDecl->getName();
4155}
4156
4157void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4158    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4159  CXXNameMangler Mangler(*this, Out);
4160  Mangler.getStream() << "__fin_";
4161  if (shouldMangleDeclName(EnclosingDecl))
4162    Mangler.mangle(EnclosingDecl);
4163  else
4164    Mangler.getStream() << EnclosingDecl->getName();
4165}
4166
4167void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4168                                                            raw_ostream &Out) {
4169  //  <special-name> ::= TH <object name>
4170  CXXNameMangler Mangler(*this, Out);
4171  Mangler.getStream() << "_ZTH";
4172  Mangler.mangleName(D);
4173}
4174
4175void
4176ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4177                                                          raw_ostream &Out) {
4178  //  <special-name> ::= TW <object name>
4179  CXXNameMangler Mangler(*this, Out);
4180  Mangler.getStream() << "_ZTW";
4181  Mangler.mangleName(D);
4182}
4183
4184void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4185                                                        unsigned ManglingNumber,
4186                                                        raw_ostream &Out) {
4187  // We match the GCC mangling here.
4188  //  <special-name> ::= GR <object name>
4189  CXXNameMangler Mangler(*this, Out);
4190  Mangler.getStream() << "_ZGR";
4191  Mangler.mangleName(D);
4192  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4193  Mangler.mangleSeqID(ManglingNumber - 1);
4194}
4195
4196void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4197                                               raw_ostream &Out) {
4198  // <special-name> ::= TV <type>  # virtual table
4199  CXXNameMangler Mangler(*this, Out);
4200  Mangler.getStream() << "_ZTV";
4201  Mangler.mangleNameOrStandardSubstitution(RD);
4202}
4203
4204void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4205                                            raw_ostream &Out) {
4206  // <special-name> ::= TT <type>  # VTT structure
4207  CXXNameMangler Mangler(*this, Out);
4208  Mangler.getStream() << "_ZTT";
4209  Mangler.mangleNameOrStandardSubstitution(RD);
4210}
4211
4212void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4213                                                   int64_t Offset,
4214                                                   const CXXRecordDecl *Type,
4215                                                   raw_ostream &Out) {
4216  // <special-name> ::= TC <type> <offset number> _ <base type>
4217  CXXNameMangler Mangler(*this, Out);
4218  Mangler.getStream() << "_ZTC";
4219  Mangler.mangleNameOrStandardSubstitution(RD);
4220  Mangler.getStream() << Offset;
4221  Mangler.getStream() << '_';
4222  Mangler.mangleNameOrStandardSubstitution(Type);
4223}
4224
4225void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4226  // <special-name> ::= TI <type>  # typeinfo structure
4227  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4228  CXXNameMangler Mangler(*this, Out);
4229  Mangler.getStream() << "_ZTI";
4230  Mangler.mangleType(Ty);
4231}
4232
4233void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4234                                                 raw_ostream &Out) {
4235  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4236  CXXNameMangler Mangler(*this, Out);
4237  Mangler.getStream() << "_ZTS";
4238  Mangler.mangleType(Ty);
4239}
4240
4241void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4242  mangleCXXRTTIName(Ty, Out);
4243}
4244
4245void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4246  llvm_unreachable("Can't mangle string literals");
4247}
4248
4249ItaniumMangleContext *
4250ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4251  return new ItaniumMangleContextImpl(Context, Diags);
4252}
4253