ExprConstant.cpp revision 302408
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27//    too, why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/CharUnits.h"
40#include "clang/AST/Expr.h"
41#include "clang/AST/RecordLayout.h"
42#include "clang/AST/StmtVisitor.h"
43#include "clang/AST/TypeLoc.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using llvm::APSInt;
53using llvm::APFloat;
54
55static bool IsGlobalLValue(APValue::LValueBase B);
56
57namespace {
58  struct LValue;
59  struct CallStackFrame;
60  struct EvalInfo;
61
62  static QualType getType(APValue::LValueBase B) {
63    if (!B) return QualType();
64    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65      return D->getType();
66
67    const Expr *Base = B.get<const Expr*>();
68
69    // For a materialized temporary, the type of the temporary we materialized
70    // may not be the type of the expression.
71    if (const MaterializeTemporaryExpr *MTE =
72            dyn_cast<MaterializeTemporaryExpr>(Base)) {
73      SmallVector<const Expr *, 2> CommaLHSs;
74      SmallVector<SubobjectAdjustment, 2> Adjustments;
75      const Expr *Temp = MTE->GetTemporaryExpr();
76      const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                               Adjustments);
78      // Keep any cv-qualifiers from the reference if we generated a temporary
79      // for it.
80      if (Inner != Temp)
81        return Inner->getType();
82    }
83
84    return Base->getType();
85  }
86
87  /// Get an LValue path entry, which is known to not be an array index, as a
88  /// field or base class.
89  static
90  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91    APValue::BaseOrMemberType Value;
92    Value.setFromOpaqueValue(E.BaseOrMember);
93    return Value;
94  }
95
96  /// Get an LValue path entry, which is known to not be an array index, as a
97  /// field declaration.
98  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100  }
101  /// Get an LValue path entry, which is known to not be an array index, as a
102  /// base class declaration.
103  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105  }
106  /// Determine whether this LValue path entry for a base class names a virtual
107  /// base class.
108  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109    return getAsBaseOrMember(E).getInt();
110  }
111
112  /// Find the path length and type of the most-derived subobject in the given
113  /// path, and find the size of the containing array, if any.
114  static
115  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                    ArrayRef<APValue::LValuePathEntry> Path,
117                                    uint64_t &ArraySize, QualType &Type,
118                                    bool &IsArray) {
119    unsigned MostDerivedLength = 0;
120    Type = Base;
121    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
122      if (Type->isArrayType()) {
123        const ConstantArrayType *CAT =
124          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
125        Type = CAT->getElementType();
126        ArraySize = CAT->getSize().getZExtValue();
127        MostDerivedLength = I + 1;
128        IsArray = true;
129      } else if (Type->isAnyComplexType()) {
130        const ComplexType *CT = Type->castAs<ComplexType>();
131        Type = CT->getElementType();
132        ArraySize = 2;
133        MostDerivedLength = I + 1;
134        IsArray = true;
135      } else if (const FieldDecl *FD = getAsField(Path[I])) {
136        Type = FD->getType();
137        ArraySize = 0;
138        MostDerivedLength = I + 1;
139        IsArray = false;
140      } else {
141        // Path[I] describes a base class.
142        ArraySize = 0;
143        IsArray = false;
144      }
145    }
146    return MostDerivedLength;
147  }
148
149  // The order of this enum is important for diagnostics.
150  enum CheckSubobjectKind {
151    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
152    CSK_This, CSK_Real, CSK_Imag
153  };
154
155  /// A path from a glvalue to a subobject of that glvalue.
156  struct SubobjectDesignator {
157    /// True if the subobject was named in a manner not supported by C++11. Such
158    /// lvalues can still be folded, but they are not core constant expressions
159    /// and we cannot perform lvalue-to-rvalue conversions on them.
160    bool Invalid : 1;
161
162    /// Is this a pointer one past the end of an object?
163    bool IsOnePastTheEnd : 1;
164
165    /// Indicator of whether the most-derived object is an array element.
166    bool MostDerivedIsArrayElement : 1;
167
168    /// The length of the path to the most-derived object of which this is a
169    /// subobject.
170    unsigned MostDerivedPathLength : 29;
171
172    /// The size of the array of which the most-derived object is an element.
173    /// This will always be 0 if the most-derived object is not an array
174    /// element. 0 is not an indicator of whether or not the most-derived object
175    /// is an array, however, because 0-length arrays are allowed.
176    uint64_t MostDerivedArraySize;
177
178    /// The type of the most derived object referred to by this address.
179    QualType MostDerivedType;
180
181    typedef APValue::LValuePathEntry PathEntry;
182
183    /// The entries on the path from the glvalue to the designated subobject.
184    SmallVector<PathEntry, 8> Entries;
185
186    SubobjectDesignator() : Invalid(true) {}
187
188    explicit SubobjectDesignator(QualType T)
189        : Invalid(false), IsOnePastTheEnd(false),
190          MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
191          MostDerivedArraySize(0), MostDerivedType(T) {}
192
193    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
194        : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
195          MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
196          MostDerivedArraySize(0) {
197      if (!Invalid) {
198        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
199        ArrayRef<PathEntry> VEntries = V.getLValuePath();
200        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
201        if (V.getLValueBase()) {
202          bool IsArray = false;
203          MostDerivedPathLength =
204              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
205                                       V.getLValuePath(), MostDerivedArraySize,
206                                       MostDerivedType, IsArray);
207          MostDerivedIsArrayElement = IsArray;
208        }
209      }
210    }
211
212    void setInvalid() {
213      Invalid = true;
214      Entries.clear();
215    }
216
217    /// Determine whether this is a one-past-the-end pointer.
218    bool isOnePastTheEnd() const {
219      assert(!Invalid);
220      if (IsOnePastTheEnd)
221        return true;
222      if (MostDerivedIsArrayElement &&
223          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
224        return true;
225      return false;
226    }
227
228    /// Check that this refers to a valid subobject.
229    bool isValidSubobject() const {
230      if (Invalid)
231        return false;
232      return !isOnePastTheEnd();
233    }
234    /// Check that this refers to a valid subobject, and if not, produce a
235    /// relevant diagnostic and set the designator as invalid.
236    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
237
238    /// Update this designator to refer to the first element within this array.
239    void addArrayUnchecked(const ConstantArrayType *CAT) {
240      PathEntry Entry;
241      Entry.ArrayIndex = 0;
242      Entries.push_back(Entry);
243
244      // This is a most-derived object.
245      MostDerivedType = CAT->getElementType();
246      MostDerivedIsArrayElement = true;
247      MostDerivedArraySize = CAT->getSize().getZExtValue();
248      MostDerivedPathLength = Entries.size();
249    }
250    /// Update this designator to refer to the given base or member of this
251    /// object.
252    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
253      PathEntry Entry;
254      APValue::BaseOrMemberType Value(D, Virtual);
255      Entry.BaseOrMember = Value.getOpaqueValue();
256      Entries.push_back(Entry);
257
258      // If this isn't a base class, it's a new most-derived object.
259      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
260        MostDerivedType = FD->getType();
261        MostDerivedIsArrayElement = false;
262        MostDerivedArraySize = 0;
263        MostDerivedPathLength = Entries.size();
264      }
265    }
266    /// Update this designator to refer to the given complex component.
267    void addComplexUnchecked(QualType EltTy, bool Imag) {
268      PathEntry Entry;
269      Entry.ArrayIndex = Imag;
270      Entries.push_back(Entry);
271
272      // This is technically a most-derived object, though in practice this
273      // is unlikely to matter.
274      MostDerivedType = EltTy;
275      MostDerivedIsArrayElement = true;
276      MostDerivedArraySize = 2;
277      MostDerivedPathLength = Entries.size();
278    }
279    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
280    /// Add N to the address of this subobject.
281    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
282      if (Invalid) return;
283      if (MostDerivedPathLength == Entries.size() &&
284          MostDerivedIsArrayElement) {
285        Entries.back().ArrayIndex += N;
286        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
287          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
288          setInvalid();
289        }
290        return;
291      }
292      // [expr.add]p4: For the purposes of these operators, a pointer to a
293      // nonarray object behaves the same as a pointer to the first element of
294      // an array of length one with the type of the object as its element type.
295      if (IsOnePastTheEnd && N == (uint64_t)-1)
296        IsOnePastTheEnd = false;
297      else if (!IsOnePastTheEnd && N == 1)
298        IsOnePastTheEnd = true;
299      else if (N != 0) {
300        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
301        setInvalid();
302      }
303    }
304  };
305
306  /// A stack frame in the constexpr call stack.
307  struct CallStackFrame {
308    EvalInfo &Info;
309
310    /// Parent - The caller of this stack frame.
311    CallStackFrame *Caller;
312
313    /// CallLoc - The location of the call expression for this call.
314    SourceLocation CallLoc;
315
316    /// Callee - The function which was called.
317    const FunctionDecl *Callee;
318
319    /// Index - The call index of this call.
320    unsigned Index;
321
322    /// This - The binding for the this pointer in this call, if any.
323    const LValue *This;
324
325    /// Arguments - Parameter bindings for this function call, indexed by
326    /// parameters' function scope indices.
327    APValue *Arguments;
328
329    // Note that we intentionally use std::map here so that references to
330    // values are stable.
331    typedef std::map<const void*, APValue> MapTy;
332    typedef MapTy::const_iterator temp_iterator;
333    /// Temporaries - Temporary lvalues materialized within this stack frame.
334    MapTy Temporaries;
335
336    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
337                   const FunctionDecl *Callee, const LValue *This,
338                   APValue *Arguments);
339    ~CallStackFrame();
340
341    APValue *getTemporary(const void *Key) {
342      MapTy::iterator I = Temporaries.find(Key);
343      return I == Temporaries.end() ? nullptr : &I->second;
344    }
345    APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
346  };
347
348  /// Temporarily override 'this'.
349  class ThisOverrideRAII {
350  public:
351    ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
352        : Frame(Frame), OldThis(Frame.This) {
353      if (Enable)
354        Frame.This = NewThis;
355    }
356    ~ThisOverrideRAII() {
357      Frame.This = OldThis;
358    }
359  private:
360    CallStackFrame &Frame;
361    const LValue *OldThis;
362  };
363
364  /// A partial diagnostic which we might know in advance that we are not going
365  /// to emit.
366  class OptionalDiagnostic {
367    PartialDiagnostic *Diag;
368
369  public:
370    explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
371      : Diag(Diag) {}
372
373    template<typename T>
374    OptionalDiagnostic &operator<<(const T &v) {
375      if (Diag)
376        *Diag << v;
377      return *this;
378    }
379
380    OptionalDiagnostic &operator<<(const APSInt &I) {
381      if (Diag) {
382        SmallVector<char, 32> Buffer;
383        I.toString(Buffer);
384        *Diag << StringRef(Buffer.data(), Buffer.size());
385      }
386      return *this;
387    }
388
389    OptionalDiagnostic &operator<<(const APFloat &F) {
390      if (Diag) {
391        // FIXME: Force the precision of the source value down so we don't
392        // print digits which are usually useless (we don't really care here if
393        // we truncate a digit by accident in edge cases).  Ideally,
394        // APFloat::toString would automatically print the shortest
395        // representation which rounds to the correct value, but it's a bit
396        // tricky to implement.
397        unsigned precision =
398            llvm::APFloat::semanticsPrecision(F.getSemantics());
399        precision = (precision * 59 + 195) / 196;
400        SmallVector<char, 32> Buffer;
401        F.toString(Buffer, precision);
402        *Diag << StringRef(Buffer.data(), Buffer.size());
403      }
404      return *this;
405    }
406  };
407
408  /// A cleanup, and a flag indicating whether it is lifetime-extended.
409  class Cleanup {
410    llvm::PointerIntPair<APValue*, 1, bool> Value;
411
412  public:
413    Cleanup(APValue *Val, bool IsLifetimeExtended)
414        : Value(Val, IsLifetimeExtended) {}
415
416    bool isLifetimeExtended() const { return Value.getInt(); }
417    void endLifetime() {
418      *Value.getPointer() = APValue();
419    }
420  };
421
422  /// EvalInfo - This is a private struct used by the evaluator to capture
423  /// information about a subexpression as it is folded.  It retains information
424  /// about the AST context, but also maintains information about the folded
425  /// expression.
426  ///
427  /// If an expression could be evaluated, it is still possible it is not a C
428  /// "integer constant expression" or constant expression.  If not, this struct
429  /// captures information about how and why not.
430  ///
431  /// One bit of information passed *into* the request for constant folding
432  /// indicates whether the subexpression is "evaluated" or not according to C
433  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
434  /// evaluate the expression regardless of what the RHS is, but C only allows
435  /// certain things in certain situations.
436  struct EvalInfo {
437    ASTContext &Ctx;
438
439    /// EvalStatus - Contains information about the evaluation.
440    Expr::EvalStatus &EvalStatus;
441
442    /// CurrentCall - The top of the constexpr call stack.
443    CallStackFrame *CurrentCall;
444
445    /// CallStackDepth - The number of calls in the call stack right now.
446    unsigned CallStackDepth;
447
448    /// NextCallIndex - The next call index to assign.
449    unsigned NextCallIndex;
450
451    /// StepsLeft - The remaining number of evaluation steps we're permitted
452    /// to perform. This is essentially a limit for the number of statements
453    /// we will evaluate.
454    unsigned StepsLeft;
455
456    /// BottomFrame - The frame in which evaluation started. This must be
457    /// initialized after CurrentCall and CallStackDepth.
458    CallStackFrame BottomFrame;
459
460    /// A stack of values whose lifetimes end at the end of some surrounding
461    /// evaluation frame.
462    llvm::SmallVector<Cleanup, 16> CleanupStack;
463
464    /// EvaluatingDecl - This is the declaration whose initializer is being
465    /// evaluated, if any.
466    APValue::LValueBase EvaluatingDecl;
467
468    /// EvaluatingDeclValue - This is the value being constructed for the
469    /// declaration whose initializer is being evaluated, if any.
470    APValue *EvaluatingDeclValue;
471
472    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
473    /// notes attached to it will also be stored, otherwise they will not be.
474    bool HasActiveDiagnostic;
475
476    /// \brief Have we emitted a diagnostic explaining why we couldn't constant
477    /// fold (not just why it's not strictly a constant expression)?
478    bool HasFoldFailureDiagnostic;
479
480    enum EvaluationMode {
481      /// Evaluate as a constant expression. Stop if we find that the expression
482      /// is not a constant expression.
483      EM_ConstantExpression,
484
485      /// Evaluate as a potential constant expression. Keep going if we hit a
486      /// construct that we can't evaluate yet (because we don't yet know the
487      /// value of something) but stop if we hit something that could never be
488      /// a constant expression.
489      EM_PotentialConstantExpression,
490
491      /// Fold the expression to a constant. Stop if we hit a side-effect that
492      /// we can't model.
493      EM_ConstantFold,
494
495      /// Evaluate the expression looking for integer overflow and similar
496      /// issues. Don't worry about side-effects, and try to visit all
497      /// subexpressions.
498      EM_EvaluateForOverflow,
499
500      /// Evaluate in any way we know how. Don't worry about side-effects that
501      /// can't be modeled.
502      EM_IgnoreSideEffects,
503
504      /// Evaluate as a constant expression. Stop if we find that the expression
505      /// is not a constant expression. Some expressions can be retried in the
506      /// optimizer if we don't constant fold them here, but in an unevaluated
507      /// context we try to fold them immediately since the optimizer never
508      /// gets a chance to look at it.
509      EM_ConstantExpressionUnevaluated,
510
511      /// Evaluate as a potential constant expression. Keep going if we hit a
512      /// construct that we can't evaluate yet (because we don't yet know the
513      /// value of something) but stop if we hit something that could never be
514      /// a constant expression. Some expressions can be retried in the
515      /// optimizer if we don't constant fold them here, but in an unevaluated
516      /// context we try to fold them immediately since the optimizer never
517      /// gets a chance to look at it.
518      EM_PotentialConstantExpressionUnevaluated,
519
520      /// Evaluate as a constant expression. Continue evaluating if we find a
521      /// MemberExpr with a base that can't be evaluated.
522      EM_DesignatorFold,
523    } EvalMode;
524
525    /// Are we checking whether the expression is a potential constant
526    /// expression?
527    bool checkingPotentialConstantExpression() const {
528      return EvalMode == EM_PotentialConstantExpression ||
529             EvalMode == EM_PotentialConstantExpressionUnevaluated;
530    }
531
532    /// Are we checking an expression for overflow?
533    // FIXME: We should check for any kind of undefined or suspicious behavior
534    // in such constructs, not just overflow.
535    bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
536
537    EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
538      : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
539        CallStackDepth(0), NextCallIndex(1),
540        StepsLeft(getLangOpts().ConstexprStepLimit),
541        BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
542        EvaluatingDecl((const ValueDecl *)nullptr),
543        EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
544        HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
545
546    void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
547      EvaluatingDecl = Base;
548      EvaluatingDeclValue = &Value;
549    }
550
551    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
552
553    bool CheckCallLimit(SourceLocation Loc) {
554      // Don't perform any constexpr calls (other than the call we're checking)
555      // when checking a potential constant expression.
556      if (checkingPotentialConstantExpression() && CallStackDepth > 1)
557        return false;
558      if (NextCallIndex == 0) {
559        // NextCallIndex has wrapped around.
560        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
561        return false;
562      }
563      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
564        return true;
565      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
566        << getLangOpts().ConstexprCallDepth;
567      return false;
568    }
569
570    CallStackFrame *getCallFrame(unsigned CallIndex) {
571      assert(CallIndex && "no call index in getCallFrame");
572      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
573      // be null in this loop.
574      CallStackFrame *Frame = CurrentCall;
575      while (Frame->Index > CallIndex)
576        Frame = Frame->Caller;
577      return (Frame->Index == CallIndex) ? Frame : nullptr;
578    }
579
580    bool nextStep(const Stmt *S) {
581      if (!StepsLeft) {
582        Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
583        return false;
584      }
585      --StepsLeft;
586      return true;
587    }
588
589  private:
590    /// Add a diagnostic to the diagnostics list.
591    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
592      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
593      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
594      return EvalStatus.Diag->back().second;
595    }
596
597    /// Add notes containing a call stack to the current point of evaluation.
598    void addCallStack(unsigned Limit);
599
600  public:
601    /// Diagnose that the evaluation cannot be folded.
602    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
603                              = diag::note_invalid_subexpr_in_const_expr,
604                            unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
605      if (EvalStatus.Diag) {
606        // If we have a prior diagnostic, it will be noting that the expression
607        // isn't a constant expression. This diagnostic is more important,
608        // unless we require this evaluation to produce a constant expression.
609        //
610        // FIXME: We might want to show both diagnostics to the user in
611        // EM_ConstantFold mode.
612        if (!EvalStatus.Diag->empty()) {
613          switch (EvalMode) {
614          case EM_ConstantFold:
615          case EM_IgnoreSideEffects:
616          case EM_EvaluateForOverflow:
617            if (!HasFoldFailureDiagnostic)
618              break;
619            // We've already failed to fold something. Keep that diagnostic.
620          case EM_ConstantExpression:
621          case EM_PotentialConstantExpression:
622          case EM_ConstantExpressionUnevaluated:
623          case EM_PotentialConstantExpressionUnevaluated:
624          case EM_DesignatorFold:
625            HasActiveDiagnostic = false;
626            return OptionalDiagnostic();
627          }
628        }
629
630        unsigned CallStackNotes = CallStackDepth - 1;
631        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
632        if (Limit)
633          CallStackNotes = std::min(CallStackNotes, Limit + 1);
634        if (checkingPotentialConstantExpression())
635          CallStackNotes = 0;
636
637        HasActiveDiagnostic = true;
638        HasFoldFailureDiagnostic = !IsCCEDiag;
639        EvalStatus.Diag->clear();
640        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
641        addDiag(Loc, DiagId);
642        if (!checkingPotentialConstantExpression())
643          addCallStack(Limit);
644        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
645      }
646      HasActiveDiagnostic = false;
647      return OptionalDiagnostic();
648    }
649
650    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
651                              = diag::note_invalid_subexpr_in_const_expr,
652                            unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
653      if (EvalStatus.Diag)
654        return Diag(E->getExprLoc(), DiagId, ExtraNotes, IsCCEDiag);
655      HasActiveDiagnostic = false;
656      return OptionalDiagnostic();
657    }
658
659    /// Diagnose that the evaluation does not produce a C++11 core constant
660    /// expression.
661    ///
662    /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
663    /// EM_PotentialConstantExpression mode and we produce one of these.
664    template<typename LocArg>
665    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
666                                 = diag::note_invalid_subexpr_in_const_expr,
667                               unsigned ExtraNotes = 0) {
668      // Don't override a previous diagnostic. Don't bother collecting
669      // diagnostics if we're evaluating for overflow.
670      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
671        HasActiveDiagnostic = false;
672        return OptionalDiagnostic();
673      }
674      return Diag(Loc, DiagId, ExtraNotes, true);
675    }
676
677    /// Add a note to a prior diagnostic.
678    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
679      if (!HasActiveDiagnostic)
680        return OptionalDiagnostic();
681      return OptionalDiagnostic(&addDiag(Loc, DiagId));
682    }
683
684    /// Add a stack of notes to a prior diagnostic.
685    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
686      if (HasActiveDiagnostic) {
687        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
688                                Diags.begin(), Diags.end());
689      }
690    }
691
692    /// Should we continue evaluation after encountering a side-effect that we
693    /// couldn't model?
694    bool keepEvaluatingAfterSideEffect() {
695      switch (EvalMode) {
696      case EM_PotentialConstantExpression:
697      case EM_PotentialConstantExpressionUnevaluated:
698      case EM_EvaluateForOverflow:
699      case EM_IgnoreSideEffects:
700        return true;
701
702      case EM_ConstantExpression:
703      case EM_ConstantExpressionUnevaluated:
704      case EM_ConstantFold:
705      case EM_DesignatorFold:
706        return false;
707      }
708      llvm_unreachable("Missed EvalMode case");
709    }
710
711    /// Note that we have had a side-effect, and determine whether we should
712    /// keep evaluating.
713    bool noteSideEffect() {
714      EvalStatus.HasSideEffects = true;
715      return keepEvaluatingAfterSideEffect();
716    }
717
718    /// Should we continue evaluation after encountering undefined behavior?
719    bool keepEvaluatingAfterUndefinedBehavior() {
720      switch (EvalMode) {
721      case EM_EvaluateForOverflow:
722      case EM_IgnoreSideEffects:
723      case EM_ConstantFold:
724      case EM_DesignatorFold:
725        return true;
726
727      case EM_PotentialConstantExpression:
728      case EM_PotentialConstantExpressionUnevaluated:
729      case EM_ConstantExpression:
730      case EM_ConstantExpressionUnevaluated:
731        return false;
732      }
733      llvm_unreachable("Missed EvalMode case");
734    }
735
736    /// Note that we hit something that was technically undefined behavior, but
737    /// that we can evaluate past it (such as signed overflow or floating-point
738    /// division by zero.)
739    bool noteUndefinedBehavior() {
740      EvalStatus.HasUndefinedBehavior = true;
741      return keepEvaluatingAfterUndefinedBehavior();
742    }
743
744    /// Should we continue evaluation as much as possible after encountering a
745    /// construct which can't be reduced to a value?
746    bool keepEvaluatingAfterFailure() {
747      if (!StepsLeft)
748        return false;
749
750      switch (EvalMode) {
751      case EM_PotentialConstantExpression:
752      case EM_PotentialConstantExpressionUnevaluated:
753      case EM_EvaluateForOverflow:
754        return true;
755
756      case EM_ConstantExpression:
757      case EM_ConstantExpressionUnevaluated:
758      case EM_ConstantFold:
759      case EM_IgnoreSideEffects:
760      case EM_DesignatorFold:
761        return false;
762      }
763      llvm_unreachable("Missed EvalMode case");
764    }
765
766    bool allowInvalidBaseExpr() const {
767      return EvalMode == EM_DesignatorFold;
768    }
769  };
770
771  /// Object used to treat all foldable expressions as constant expressions.
772  struct FoldConstant {
773    EvalInfo &Info;
774    bool Enabled;
775    bool HadNoPriorDiags;
776    EvalInfo::EvaluationMode OldMode;
777
778    explicit FoldConstant(EvalInfo &Info, bool Enabled)
779      : Info(Info),
780        Enabled(Enabled),
781        HadNoPriorDiags(Info.EvalStatus.Diag &&
782                        Info.EvalStatus.Diag->empty() &&
783                        !Info.EvalStatus.HasSideEffects),
784        OldMode(Info.EvalMode) {
785      if (Enabled &&
786          (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
787           Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
788        Info.EvalMode = EvalInfo::EM_ConstantFold;
789    }
790    void keepDiagnostics() { Enabled = false; }
791    ~FoldConstant() {
792      if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
793          !Info.EvalStatus.HasSideEffects)
794        Info.EvalStatus.Diag->clear();
795      Info.EvalMode = OldMode;
796    }
797  };
798
799  /// RAII object used to treat the current evaluation as the correct pointer
800  /// offset fold for the current EvalMode
801  struct FoldOffsetRAII {
802    EvalInfo &Info;
803    EvalInfo::EvaluationMode OldMode;
804    explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
805        : Info(Info), OldMode(Info.EvalMode) {
806      if (!Info.checkingPotentialConstantExpression())
807        Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
808                                  : EvalInfo::EM_ConstantFold;
809    }
810
811    ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
812  };
813
814  /// RAII object used to suppress diagnostics and side-effects from a
815  /// speculative evaluation.
816  class SpeculativeEvaluationRAII {
817    EvalInfo &Info;
818    Expr::EvalStatus Old;
819
820  public:
821    SpeculativeEvaluationRAII(EvalInfo &Info,
822                        SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
823      : Info(Info), Old(Info.EvalStatus) {
824      Info.EvalStatus.Diag = NewDiag;
825      // If we're speculatively evaluating, we may have skipped over some
826      // evaluations and missed out a side effect.
827      Info.EvalStatus.HasSideEffects = true;
828    }
829    ~SpeculativeEvaluationRAII() {
830      Info.EvalStatus = Old;
831    }
832  };
833
834  /// RAII object wrapping a full-expression or block scope, and handling
835  /// the ending of the lifetime of temporaries created within it.
836  template<bool IsFullExpression>
837  class ScopeRAII {
838    EvalInfo &Info;
839    unsigned OldStackSize;
840  public:
841    ScopeRAII(EvalInfo &Info)
842        : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
843    ~ScopeRAII() {
844      // Body moved to a static method to encourage the compiler to inline away
845      // instances of this class.
846      cleanup(Info, OldStackSize);
847    }
848  private:
849    static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
850      unsigned NewEnd = OldStackSize;
851      for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
852           I != N; ++I) {
853        if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
854          // Full-expression cleanup of a lifetime-extended temporary: nothing
855          // to do, just move this cleanup to the right place in the stack.
856          std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
857          ++NewEnd;
858        } else {
859          // End the lifetime of the object.
860          Info.CleanupStack[I].endLifetime();
861        }
862      }
863      Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
864                              Info.CleanupStack.end());
865    }
866  };
867  typedef ScopeRAII<false> BlockScopeRAII;
868  typedef ScopeRAII<true> FullExpressionRAII;
869}
870
871bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
872                                         CheckSubobjectKind CSK) {
873  if (Invalid)
874    return false;
875  if (isOnePastTheEnd()) {
876    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
877      << CSK;
878    setInvalid();
879    return false;
880  }
881  return true;
882}
883
884void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
885                                                    const Expr *E, uint64_t N) {
886  if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
887    Info.CCEDiag(E, diag::note_constexpr_array_index)
888      << static_cast<int>(N) << /*array*/ 0
889      << static_cast<unsigned>(MostDerivedArraySize);
890  else
891    Info.CCEDiag(E, diag::note_constexpr_array_index)
892      << static_cast<int>(N) << /*non-array*/ 1;
893  setInvalid();
894}
895
896CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
897                               const FunctionDecl *Callee, const LValue *This,
898                               APValue *Arguments)
899    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
900      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
901  Info.CurrentCall = this;
902  ++Info.CallStackDepth;
903}
904
905CallStackFrame::~CallStackFrame() {
906  assert(Info.CurrentCall == this && "calls retired out of order");
907  --Info.CallStackDepth;
908  Info.CurrentCall = Caller;
909}
910
911APValue &CallStackFrame::createTemporary(const void *Key,
912                                         bool IsLifetimeExtended) {
913  APValue &Result = Temporaries[Key];
914  assert(Result.isUninit() && "temporary created multiple times");
915  Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
916  return Result;
917}
918
919static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
920
921void EvalInfo::addCallStack(unsigned Limit) {
922  // Determine which calls to skip, if any.
923  unsigned ActiveCalls = CallStackDepth - 1;
924  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
925  if (Limit && Limit < ActiveCalls) {
926    SkipStart = Limit / 2 + Limit % 2;
927    SkipEnd = ActiveCalls - Limit / 2;
928  }
929
930  // Walk the call stack and add the diagnostics.
931  unsigned CallIdx = 0;
932  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
933       Frame = Frame->Caller, ++CallIdx) {
934    // Skip this call?
935    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
936      if (CallIdx == SkipStart) {
937        // Note that we're skipping calls.
938        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
939          << unsigned(ActiveCalls - Limit);
940      }
941      continue;
942    }
943
944    SmallVector<char, 128> Buffer;
945    llvm::raw_svector_ostream Out(Buffer);
946    describeCall(Frame, Out);
947    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
948  }
949}
950
951namespace {
952  struct ComplexValue {
953  private:
954    bool IsInt;
955
956  public:
957    APSInt IntReal, IntImag;
958    APFloat FloatReal, FloatImag;
959
960    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
961
962    void makeComplexFloat() { IsInt = false; }
963    bool isComplexFloat() const { return !IsInt; }
964    APFloat &getComplexFloatReal() { return FloatReal; }
965    APFloat &getComplexFloatImag() { return FloatImag; }
966
967    void makeComplexInt() { IsInt = true; }
968    bool isComplexInt() const { return IsInt; }
969    APSInt &getComplexIntReal() { return IntReal; }
970    APSInt &getComplexIntImag() { return IntImag; }
971
972    void moveInto(APValue &v) const {
973      if (isComplexFloat())
974        v = APValue(FloatReal, FloatImag);
975      else
976        v = APValue(IntReal, IntImag);
977    }
978    void setFrom(const APValue &v) {
979      assert(v.isComplexFloat() || v.isComplexInt());
980      if (v.isComplexFloat()) {
981        makeComplexFloat();
982        FloatReal = v.getComplexFloatReal();
983        FloatImag = v.getComplexFloatImag();
984      } else {
985        makeComplexInt();
986        IntReal = v.getComplexIntReal();
987        IntImag = v.getComplexIntImag();
988      }
989    }
990  };
991
992  struct LValue {
993    APValue::LValueBase Base;
994    CharUnits Offset;
995    bool InvalidBase : 1;
996    unsigned CallIndex : 31;
997    SubobjectDesignator Designator;
998
999    const APValue::LValueBase getLValueBase() const { return Base; }
1000    CharUnits &getLValueOffset() { return Offset; }
1001    const CharUnits &getLValueOffset() const { return Offset; }
1002    unsigned getLValueCallIndex() const { return CallIndex; }
1003    SubobjectDesignator &getLValueDesignator() { return Designator; }
1004    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1005
1006    void moveInto(APValue &V) const {
1007      if (Designator.Invalid)
1008        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
1009      else
1010        V = APValue(Base, Offset, Designator.Entries,
1011                    Designator.IsOnePastTheEnd, CallIndex);
1012    }
1013    void setFrom(ASTContext &Ctx, const APValue &V) {
1014      assert(V.isLValue());
1015      Base = V.getLValueBase();
1016      Offset = V.getLValueOffset();
1017      InvalidBase = false;
1018      CallIndex = V.getLValueCallIndex();
1019      Designator = SubobjectDesignator(Ctx, V);
1020    }
1021
1022    void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1023      Base = B;
1024      Offset = CharUnits::Zero();
1025      InvalidBase = BInvalid;
1026      CallIndex = I;
1027      Designator = SubobjectDesignator(getType(B));
1028    }
1029
1030    void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1031      set(B, I, true);
1032    }
1033
1034    // Check that this LValue is not based on a null pointer. If it is, produce
1035    // a diagnostic and mark the designator as invalid.
1036    bool checkNullPointer(EvalInfo &Info, const Expr *E,
1037                          CheckSubobjectKind CSK) {
1038      if (Designator.Invalid)
1039        return false;
1040      if (!Base) {
1041        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1042          << CSK;
1043        Designator.setInvalid();
1044        return false;
1045      }
1046      return true;
1047    }
1048
1049    // Check this LValue refers to an object. If not, set the designator to be
1050    // invalid and emit a diagnostic.
1051    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1052      return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1053             Designator.checkSubobject(Info, E, CSK);
1054    }
1055
1056    void addDecl(EvalInfo &Info, const Expr *E,
1057                 const Decl *D, bool Virtual = false) {
1058      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1059        Designator.addDeclUnchecked(D, Virtual);
1060    }
1061    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1062      if (checkSubobject(Info, E, CSK_ArrayToPointer))
1063        Designator.addArrayUnchecked(CAT);
1064    }
1065    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1066      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1067        Designator.addComplexUnchecked(EltTy, Imag);
1068    }
1069    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
1070      if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
1071        Designator.adjustIndex(Info, E, N);
1072    }
1073  };
1074
1075  struct MemberPtr {
1076    MemberPtr() {}
1077    explicit MemberPtr(const ValueDecl *Decl) :
1078      DeclAndIsDerivedMember(Decl, false), Path() {}
1079
1080    /// The member or (direct or indirect) field referred to by this member
1081    /// pointer, or 0 if this is a null member pointer.
1082    const ValueDecl *getDecl() const {
1083      return DeclAndIsDerivedMember.getPointer();
1084    }
1085    /// Is this actually a member of some type derived from the relevant class?
1086    bool isDerivedMember() const {
1087      return DeclAndIsDerivedMember.getInt();
1088    }
1089    /// Get the class which the declaration actually lives in.
1090    const CXXRecordDecl *getContainingRecord() const {
1091      return cast<CXXRecordDecl>(
1092          DeclAndIsDerivedMember.getPointer()->getDeclContext());
1093    }
1094
1095    void moveInto(APValue &V) const {
1096      V = APValue(getDecl(), isDerivedMember(), Path);
1097    }
1098    void setFrom(const APValue &V) {
1099      assert(V.isMemberPointer());
1100      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1101      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1102      Path.clear();
1103      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1104      Path.insert(Path.end(), P.begin(), P.end());
1105    }
1106
1107    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1108    /// whether the member is a member of some class derived from the class type
1109    /// of the member pointer.
1110    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1111    /// Path - The path of base/derived classes from the member declaration's
1112    /// class (exclusive) to the class type of the member pointer (inclusive).
1113    SmallVector<const CXXRecordDecl*, 4> Path;
1114
1115    /// Perform a cast towards the class of the Decl (either up or down the
1116    /// hierarchy).
1117    bool castBack(const CXXRecordDecl *Class) {
1118      assert(!Path.empty());
1119      const CXXRecordDecl *Expected;
1120      if (Path.size() >= 2)
1121        Expected = Path[Path.size() - 2];
1122      else
1123        Expected = getContainingRecord();
1124      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1125        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1126        // if B does not contain the original member and is not a base or
1127        // derived class of the class containing the original member, the result
1128        // of the cast is undefined.
1129        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1130        // (D::*). We consider that to be a language defect.
1131        return false;
1132      }
1133      Path.pop_back();
1134      return true;
1135    }
1136    /// Perform a base-to-derived member pointer cast.
1137    bool castToDerived(const CXXRecordDecl *Derived) {
1138      if (!getDecl())
1139        return true;
1140      if (!isDerivedMember()) {
1141        Path.push_back(Derived);
1142        return true;
1143      }
1144      if (!castBack(Derived))
1145        return false;
1146      if (Path.empty())
1147        DeclAndIsDerivedMember.setInt(false);
1148      return true;
1149    }
1150    /// Perform a derived-to-base member pointer cast.
1151    bool castToBase(const CXXRecordDecl *Base) {
1152      if (!getDecl())
1153        return true;
1154      if (Path.empty())
1155        DeclAndIsDerivedMember.setInt(true);
1156      if (isDerivedMember()) {
1157        Path.push_back(Base);
1158        return true;
1159      }
1160      return castBack(Base);
1161    }
1162  };
1163
1164  /// Compare two member pointers, which are assumed to be of the same type.
1165  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1166    if (!LHS.getDecl() || !RHS.getDecl())
1167      return !LHS.getDecl() && !RHS.getDecl();
1168    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1169      return false;
1170    return LHS.Path == RHS.Path;
1171  }
1172}
1173
1174static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1175static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1176                            const LValue &This, const Expr *E,
1177                            bool AllowNonLiteralTypes = false);
1178static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1179static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1180static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1181                                  EvalInfo &Info);
1182static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1183static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1184static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1185                                    EvalInfo &Info);
1186static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1187static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1188static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1189static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1190
1191//===----------------------------------------------------------------------===//
1192// Misc utilities
1193//===----------------------------------------------------------------------===//
1194
1195/// Produce a string describing the given constexpr call.
1196static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1197  unsigned ArgIndex = 0;
1198  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1199                      !isa<CXXConstructorDecl>(Frame->Callee) &&
1200                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1201
1202  if (!IsMemberCall)
1203    Out << *Frame->Callee << '(';
1204
1205  if (Frame->This && IsMemberCall) {
1206    APValue Val;
1207    Frame->This->moveInto(Val);
1208    Val.printPretty(Out, Frame->Info.Ctx,
1209                    Frame->This->Designator.MostDerivedType);
1210    // FIXME: Add parens around Val if needed.
1211    Out << "->" << *Frame->Callee << '(';
1212    IsMemberCall = false;
1213  }
1214
1215  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1216       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1217    if (ArgIndex > (unsigned)IsMemberCall)
1218      Out << ", ";
1219
1220    const ParmVarDecl *Param = *I;
1221    const APValue &Arg = Frame->Arguments[ArgIndex];
1222    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1223
1224    if (ArgIndex == 0 && IsMemberCall)
1225      Out << "->" << *Frame->Callee << '(';
1226  }
1227
1228  Out << ')';
1229}
1230
1231/// Evaluate an expression to see if it had side-effects, and discard its
1232/// result.
1233/// \return \c true if the caller should keep evaluating.
1234static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1235  APValue Scratch;
1236  if (!Evaluate(Scratch, Info, E))
1237    // We don't need the value, but we might have skipped a side effect here.
1238    return Info.noteSideEffect();
1239  return true;
1240}
1241
1242/// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1243/// return its existing value.
1244static int64_t getExtValue(const APSInt &Value) {
1245  return Value.isSigned() ? Value.getSExtValue()
1246                          : static_cast<int64_t>(Value.getZExtValue());
1247}
1248
1249/// Should this call expression be treated as a string literal?
1250static bool IsStringLiteralCall(const CallExpr *E) {
1251  unsigned Builtin = E->getBuiltinCallee();
1252  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1253          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1254}
1255
1256static bool IsGlobalLValue(APValue::LValueBase B) {
1257  // C++11 [expr.const]p3 An address constant expression is a prvalue core
1258  // constant expression of pointer type that evaluates to...
1259
1260  // ... a null pointer value, or a prvalue core constant expression of type
1261  // std::nullptr_t.
1262  if (!B) return true;
1263
1264  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1265    // ... the address of an object with static storage duration,
1266    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1267      return VD->hasGlobalStorage();
1268    // ... the address of a function,
1269    return isa<FunctionDecl>(D);
1270  }
1271
1272  const Expr *E = B.get<const Expr*>();
1273  switch (E->getStmtClass()) {
1274  default:
1275    return false;
1276  case Expr::CompoundLiteralExprClass: {
1277    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1278    return CLE->isFileScope() && CLE->isLValue();
1279  }
1280  case Expr::MaterializeTemporaryExprClass:
1281    // A materialized temporary might have been lifetime-extended to static
1282    // storage duration.
1283    return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1284  // A string literal has static storage duration.
1285  case Expr::StringLiteralClass:
1286  case Expr::PredefinedExprClass:
1287  case Expr::ObjCStringLiteralClass:
1288  case Expr::ObjCEncodeExprClass:
1289  case Expr::CXXTypeidExprClass:
1290  case Expr::CXXUuidofExprClass:
1291    return true;
1292  case Expr::CallExprClass:
1293    return IsStringLiteralCall(cast<CallExpr>(E));
1294  // For GCC compatibility, &&label has static storage duration.
1295  case Expr::AddrLabelExprClass:
1296    return true;
1297  // A Block literal expression may be used as the initialization value for
1298  // Block variables at global or local static scope.
1299  case Expr::BlockExprClass:
1300    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1301  case Expr::ImplicitValueInitExprClass:
1302    // FIXME:
1303    // We can never form an lvalue with an implicit value initialization as its
1304    // base through expression evaluation, so these only appear in one case: the
1305    // implicit variable declaration we invent when checking whether a constexpr
1306    // constructor can produce a constant expression. We must assume that such
1307    // an expression might be a global lvalue.
1308    return true;
1309  }
1310}
1311
1312static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1313  assert(Base && "no location for a null lvalue");
1314  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1315  if (VD)
1316    Info.Note(VD->getLocation(), diag::note_declared_at);
1317  else
1318    Info.Note(Base.get<const Expr*>()->getExprLoc(),
1319              diag::note_constexpr_temporary_here);
1320}
1321
1322/// Check that this reference or pointer core constant expression is a valid
1323/// value for an address or reference constant expression. Return true if we
1324/// can fold this expression, whether or not it's a constant expression.
1325static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1326                                          QualType Type, const LValue &LVal) {
1327  bool IsReferenceType = Type->isReferenceType();
1328
1329  APValue::LValueBase Base = LVal.getLValueBase();
1330  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1331
1332  // Check that the object is a global. Note that the fake 'this' object we
1333  // manufacture when checking potential constant expressions is conservatively
1334  // assumed to be global here.
1335  if (!IsGlobalLValue(Base)) {
1336    if (Info.getLangOpts().CPlusPlus11) {
1337      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1338      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1339        << IsReferenceType << !Designator.Entries.empty()
1340        << !!VD << VD;
1341      NoteLValueLocation(Info, Base);
1342    } else {
1343      Info.Diag(Loc);
1344    }
1345    // Don't allow references to temporaries to escape.
1346    return false;
1347  }
1348  assert((Info.checkingPotentialConstantExpression() ||
1349          LVal.getLValueCallIndex() == 0) &&
1350         "have call index for global lvalue");
1351
1352  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1353    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1354      // Check if this is a thread-local variable.
1355      if (Var->getTLSKind())
1356        return false;
1357
1358      // A dllimport variable never acts like a constant.
1359      if (Var->hasAttr<DLLImportAttr>())
1360        return false;
1361    }
1362    if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1363      // __declspec(dllimport) must be handled very carefully:
1364      // We must never initialize an expression with the thunk in C++.
1365      // Doing otherwise would allow the same id-expression to yield
1366      // different addresses for the same function in different translation
1367      // units.  However, this means that we must dynamically initialize the
1368      // expression with the contents of the import address table at runtime.
1369      //
1370      // The C language has no notion of ODR; furthermore, it has no notion of
1371      // dynamic initialization.  This means that we are permitted to
1372      // perform initialization with the address of the thunk.
1373      if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1374        return false;
1375    }
1376  }
1377
1378  // Allow address constant expressions to be past-the-end pointers. This is
1379  // an extension: the standard requires them to point to an object.
1380  if (!IsReferenceType)
1381    return true;
1382
1383  // A reference constant expression must refer to an object.
1384  if (!Base) {
1385    // FIXME: diagnostic
1386    Info.CCEDiag(Loc);
1387    return true;
1388  }
1389
1390  // Does this refer one past the end of some object?
1391  if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1392    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1393    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1394      << !Designator.Entries.empty() << !!VD << VD;
1395    NoteLValueLocation(Info, Base);
1396  }
1397
1398  return true;
1399}
1400
1401/// Check that this core constant expression is of literal type, and if not,
1402/// produce an appropriate diagnostic.
1403static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1404                             const LValue *This = nullptr) {
1405  if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1406    return true;
1407
1408  // C++1y: A constant initializer for an object o [...] may also invoke
1409  // constexpr constructors for o and its subobjects even if those objects
1410  // are of non-literal class types.
1411  if (Info.getLangOpts().CPlusPlus14 && This &&
1412      Info.EvaluatingDecl == This->getLValueBase())
1413    return true;
1414
1415  // Prvalue constant expressions must be of literal types.
1416  if (Info.getLangOpts().CPlusPlus11)
1417    Info.Diag(E, diag::note_constexpr_nonliteral)
1418      << E->getType();
1419  else
1420    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1421  return false;
1422}
1423
1424/// Check that this core constant expression value is a valid value for a
1425/// constant expression. If not, report an appropriate diagnostic. Does not
1426/// check that the expression is of literal type.
1427static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1428                                    QualType Type, const APValue &Value) {
1429  if (Value.isUninit()) {
1430    Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1431      << true << Type;
1432    return false;
1433  }
1434
1435  // We allow _Atomic(T) to be initialized from anything that T can be
1436  // initialized from.
1437  if (const AtomicType *AT = Type->getAs<AtomicType>())
1438    Type = AT->getValueType();
1439
1440  // Core issue 1454: For a literal constant expression of array or class type,
1441  // each subobject of its value shall have been initialized by a constant
1442  // expression.
1443  if (Value.isArray()) {
1444    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1445    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1446      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1447                                   Value.getArrayInitializedElt(I)))
1448        return false;
1449    }
1450    if (!Value.hasArrayFiller())
1451      return true;
1452    return CheckConstantExpression(Info, DiagLoc, EltTy,
1453                                   Value.getArrayFiller());
1454  }
1455  if (Value.isUnion() && Value.getUnionField()) {
1456    return CheckConstantExpression(Info, DiagLoc,
1457                                   Value.getUnionField()->getType(),
1458                                   Value.getUnionValue());
1459  }
1460  if (Value.isStruct()) {
1461    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1462    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1463      unsigned BaseIndex = 0;
1464      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1465             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1466        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1467                                     Value.getStructBase(BaseIndex)))
1468          return false;
1469      }
1470    }
1471    for (const auto *I : RD->fields()) {
1472      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1473                                   Value.getStructField(I->getFieldIndex())))
1474        return false;
1475    }
1476  }
1477
1478  if (Value.isLValue()) {
1479    LValue LVal;
1480    LVal.setFrom(Info.Ctx, Value);
1481    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1482  }
1483
1484  // Everything else is fine.
1485  return true;
1486}
1487
1488static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1489  return LVal.Base.dyn_cast<const ValueDecl*>();
1490}
1491
1492static bool IsLiteralLValue(const LValue &Value) {
1493  if (Value.CallIndex)
1494    return false;
1495  const Expr *E = Value.Base.dyn_cast<const Expr*>();
1496  return E && !isa<MaterializeTemporaryExpr>(E);
1497}
1498
1499static bool IsWeakLValue(const LValue &Value) {
1500  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1501  return Decl && Decl->isWeak();
1502}
1503
1504static bool isZeroSized(const LValue &Value) {
1505  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1506  if (Decl && isa<VarDecl>(Decl)) {
1507    QualType Ty = Decl->getType();
1508    if (Ty->isArrayType())
1509      return Ty->isIncompleteType() ||
1510             Decl->getASTContext().getTypeSize(Ty) == 0;
1511  }
1512  return false;
1513}
1514
1515static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1516  // A null base expression indicates a null pointer.  These are always
1517  // evaluatable, and they are false unless the offset is zero.
1518  if (!Value.getLValueBase()) {
1519    Result = !Value.getLValueOffset().isZero();
1520    return true;
1521  }
1522
1523  // We have a non-null base.  These are generally known to be true, but if it's
1524  // a weak declaration it can be null at runtime.
1525  Result = true;
1526  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1527  return !Decl || !Decl->isWeak();
1528}
1529
1530static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1531  switch (Val.getKind()) {
1532  case APValue::Uninitialized:
1533    return false;
1534  case APValue::Int:
1535    Result = Val.getInt().getBoolValue();
1536    return true;
1537  case APValue::Float:
1538    Result = !Val.getFloat().isZero();
1539    return true;
1540  case APValue::ComplexInt:
1541    Result = Val.getComplexIntReal().getBoolValue() ||
1542             Val.getComplexIntImag().getBoolValue();
1543    return true;
1544  case APValue::ComplexFloat:
1545    Result = !Val.getComplexFloatReal().isZero() ||
1546             !Val.getComplexFloatImag().isZero();
1547    return true;
1548  case APValue::LValue:
1549    return EvalPointerValueAsBool(Val, Result);
1550  case APValue::MemberPointer:
1551    Result = Val.getMemberPointerDecl();
1552    return true;
1553  case APValue::Vector:
1554  case APValue::Array:
1555  case APValue::Struct:
1556  case APValue::Union:
1557  case APValue::AddrLabelDiff:
1558    return false;
1559  }
1560
1561  llvm_unreachable("unknown APValue kind");
1562}
1563
1564static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1565                                       EvalInfo &Info) {
1566  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1567  APValue Val;
1568  if (!Evaluate(Val, Info, E))
1569    return false;
1570  return HandleConversionToBool(Val, Result);
1571}
1572
1573template<typename T>
1574static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1575                           const T &SrcValue, QualType DestType) {
1576  Info.CCEDiag(E, diag::note_constexpr_overflow)
1577    << SrcValue << DestType;
1578  return Info.noteUndefinedBehavior();
1579}
1580
1581static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1582                                 QualType SrcType, const APFloat &Value,
1583                                 QualType DestType, APSInt &Result) {
1584  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1585  // Determine whether we are converting to unsigned or signed.
1586  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1587
1588  Result = APSInt(DestWidth, !DestSigned);
1589  bool ignored;
1590  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1591      & APFloat::opInvalidOp)
1592    return HandleOverflow(Info, E, Value, DestType);
1593  return true;
1594}
1595
1596static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1597                                   QualType SrcType, QualType DestType,
1598                                   APFloat &Result) {
1599  APFloat Value = Result;
1600  bool ignored;
1601  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1602                     APFloat::rmNearestTiesToEven, &ignored)
1603      & APFloat::opOverflow)
1604    return HandleOverflow(Info, E, Value, DestType);
1605  return true;
1606}
1607
1608static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1609                                 QualType DestType, QualType SrcType,
1610                                 const APSInt &Value) {
1611  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1612  APSInt Result = Value;
1613  // Figure out if this is a truncate, extend or noop cast.
1614  // If the input is signed, do a sign extend, noop, or truncate.
1615  Result = Result.extOrTrunc(DestWidth);
1616  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1617  return Result;
1618}
1619
1620static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1621                                 QualType SrcType, const APSInt &Value,
1622                                 QualType DestType, APFloat &Result) {
1623  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1624  if (Result.convertFromAPInt(Value, Value.isSigned(),
1625                              APFloat::rmNearestTiesToEven)
1626      & APFloat::opOverflow)
1627    return HandleOverflow(Info, E, Value, DestType);
1628  return true;
1629}
1630
1631static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1632                                  APValue &Value, const FieldDecl *FD) {
1633  assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1634
1635  if (!Value.isInt()) {
1636    // Trying to store a pointer-cast-to-integer into a bitfield.
1637    // FIXME: In this case, we should provide the diagnostic for casting
1638    // a pointer to an integer.
1639    assert(Value.isLValue() && "integral value neither int nor lvalue?");
1640    Info.Diag(E);
1641    return false;
1642  }
1643
1644  APSInt &Int = Value.getInt();
1645  unsigned OldBitWidth = Int.getBitWidth();
1646  unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1647  if (NewBitWidth < OldBitWidth)
1648    Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1649  return true;
1650}
1651
1652static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1653                                  llvm::APInt &Res) {
1654  APValue SVal;
1655  if (!Evaluate(SVal, Info, E))
1656    return false;
1657  if (SVal.isInt()) {
1658    Res = SVal.getInt();
1659    return true;
1660  }
1661  if (SVal.isFloat()) {
1662    Res = SVal.getFloat().bitcastToAPInt();
1663    return true;
1664  }
1665  if (SVal.isVector()) {
1666    QualType VecTy = E->getType();
1667    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1668    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1669    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1670    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1671    Res = llvm::APInt::getNullValue(VecSize);
1672    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1673      APValue &Elt = SVal.getVectorElt(i);
1674      llvm::APInt EltAsInt;
1675      if (Elt.isInt()) {
1676        EltAsInt = Elt.getInt();
1677      } else if (Elt.isFloat()) {
1678        EltAsInt = Elt.getFloat().bitcastToAPInt();
1679      } else {
1680        // Don't try to handle vectors of anything other than int or float
1681        // (not sure if it's possible to hit this case).
1682        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1683        return false;
1684      }
1685      unsigned BaseEltSize = EltAsInt.getBitWidth();
1686      if (BigEndian)
1687        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1688      else
1689        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1690    }
1691    return true;
1692  }
1693  // Give up if the input isn't an int, float, or vector.  For example, we
1694  // reject "(v4i16)(intptr_t)&a".
1695  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1696  return false;
1697}
1698
1699/// Perform the given integer operation, which is known to need at most BitWidth
1700/// bits, and check for overflow in the original type (if that type was not an
1701/// unsigned type).
1702template<typename Operation>
1703static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1704                                 const APSInt &LHS, const APSInt &RHS,
1705                                 unsigned BitWidth, Operation Op,
1706                                 APSInt &Result) {
1707  if (LHS.isUnsigned()) {
1708    Result = Op(LHS, RHS);
1709    return true;
1710  }
1711
1712  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1713  Result = Value.trunc(LHS.getBitWidth());
1714  if (Result.extend(BitWidth) != Value) {
1715    if (Info.checkingForOverflow())
1716      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1717                                       diag::warn_integer_constant_overflow)
1718          << Result.toString(10) << E->getType();
1719    else
1720      return HandleOverflow(Info, E, Value, E->getType());
1721  }
1722  return true;
1723}
1724
1725/// Perform the given binary integer operation.
1726static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1727                              BinaryOperatorKind Opcode, APSInt RHS,
1728                              APSInt &Result) {
1729  switch (Opcode) {
1730  default:
1731    Info.Diag(E);
1732    return false;
1733  case BO_Mul:
1734    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1735                                std::multiplies<APSInt>(), Result);
1736  case BO_Add:
1737    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1738                                std::plus<APSInt>(), Result);
1739  case BO_Sub:
1740    return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1741                                std::minus<APSInt>(), Result);
1742  case BO_And: Result = LHS & RHS; return true;
1743  case BO_Xor: Result = LHS ^ RHS; return true;
1744  case BO_Or:  Result = LHS | RHS; return true;
1745  case BO_Div:
1746  case BO_Rem:
1747    if (RHS == 0) {
1748      Info.Diag(E, diag::note_expr_divide_by_zero);
1749      return false;
1750    }
1751    Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1752    // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
1753    // this operation and gives the two's complement result.
1754    if (RHS.isNegative() && RHS.isAllOnesValue() &&
1755        LHS.isSigned() && LHS.isMinSignedValue())
1756      return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
1757                            E->getType());
1758    return true;
1759  case BO_Shl: {
1760    if (Info.getLangOpts().OpenCL)
1761      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1762      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1763                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1764                    RHS.isUnsigned());
1765    else if (RHS.isSigned() && RHS.isNegative()) {
1766      // During constant-folding, a negative shift is an opposite shift. Such
1767      // a shift is not a constant expression.
1768      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1769      RHS = -RHS;
1770      goto shift_right;
1771    }
1772  shift_left:
1773    // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1774    // the shifted type.
1775    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1776    if (SA != RHS) {
1777      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1778        << RHS << E->getType() << LHS.getBitWidth();
1779    } else if (LHS.isSigned()) {
1780      // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1781      // operand, and must not overflow the corresponding unsigned type.
1782      if (LHS.isNegative())
1783        Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1784      else if (LHS.countLeadingZeros() < SA)
1785        Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1786    }
1787    Result = LHS << SA;
1788    return true;
1789  }
1790  case BO_Shr: {
1791    if (Info.getLangOpts().OpenCL)
1792      // OpenCL 6.3j: shift values are effectively % word size of LHS.
1793      RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1794                    static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1795                    RHS.isUnsigned());
1796    else if (RHS.isSigned() && RHS.isNegative()) {
1797      // During constant-folding, a negative shift is an opposite shift. Such a
1798      // shift is not a constant expression.
1799      Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1800      RHS = -RHS;
1801      goto shift_left;
1802    }
1803  shift_right:
1804    // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1805    // shifted type.
1806    unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1807    if (SA != RHS)
1808      Info.CCEDiag(E, diag::note_constexpr_large_shift)
1809        << RHS << E->getType() << LHS.getBitWidth();
1810    Result = LHS >> SA;
1811    return true;
1812  }
1813
1814  case BO_LT: Result = LHS < RHS; return true;
1815  case BO_GT: Result = LHS > RHS; return true;
1816  case BO_LE: Result = LHS <= RHS; return true;
1817  case BO_GE: Result = LHS >= RHS; return true;
1818  case BO_EQ: Result = LHS == RHS; return true;
1819  case BO_NE: Result = LHS != RHS; return true;
1820  }
1821}
1822
1823/// Perform the given binary floating-point operation, in-place, on LHS.
1824static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1825                                  APFloat &LHS, BinaryOperatorKind Opcode,
1826                                  const APFloat &RHS) {
1827  switch (Opcode) {
1828  default:
1829    Info.Diag(E);
1830    return false;
1831  case BO_Mul:
1832    LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1833    break;
1834  case BO_Add:
1835    LHS.add(RHS, APFloat::rmNearestTiesToEven);
1836    break;
1837  case BO_Sub:
1838    LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1839    break;
1840  case BO_Div:
1841    LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1842    break;
1843  }
1844
1845  if (LHS.isInfinity() || LHS.isNaN()) {
1846    Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1847    return Info.noteUndefinedBehavior();
1848  }
1849  return true;
1850}
1851
1852/// Cast an lvalue referring to a base subobject to a derived class, by
1853/// truncating the lvalue's path to the given length.
1854static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1855                               const RecordDecl *TruncatedType,
1856                               unsigned TruncatedElements) {
1857  SubobjectDesignator &D = Result.Designator;
1858
1859  // Check we actually point to a derived class object.
1860  if (TruncatedElements == D.Entries.size())
1861    return true;
1862  assert(TruncatedElements >= D.MostDerivedPathLength &&
1863         "not casting to a derived class");
1864  if (!Result.checkSubobject(Info, E, CSK_Derived))
1865    return false;
1866
1867  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1868  const RecordDecl *RD = TruncatedType;
1869  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1870    if (RD->isInvalidDecl()) return false;
1871    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1872    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1873    if (isVirtualBaseClass(D.Entries[I]))
1874      Result.Offset -= Layout.getVBaseClassOffset(Base);
1875    else
1876      Result.Offset -= Layout.getBaseClassOffset(Base);
1877    RD = Base;
1878  }
1879  D.Entries.resize(TruncatedElements);
1880  return true;
1881}
1882
1883static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1884                                   const CXXRecordDecl *Derived,
1885                                   const CXXRecordDecl *Base,
1886                                   const ASTRecordLayout *RL = nullptr) {
1887  if (!RL) {
1888    if (Derived->isInvalidDecl()) return false;
1889    RL = &Info.Ctx.getASTRecordLayout(Derived);
1890  }
1891
1892  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1893  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1894  return true;
1895}
1896
1897static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1898                             const CXXRecordDecl *DerivedDecl,
1899                             const CXXBaseSpecifier *Base) {
1900  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1901
1902  if (!Base->isVirtual())
1903    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1904
1905  SubobjectDesignator &D = Obj.Designator;
1906  if (D.Invalid)
1907    return false;
1908
1909  // Extract most-derived object and corresponding type.
1910  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1911  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1912    return false;
1913
1914  // Find the virtual base class.
1915  if (DerivedDecl->isInvalidDecl()) return false;
1916  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1917  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1918  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1919  return true;
1920}
1921
1922static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1923                                 QualType Type, LValue &Result) {
1924  for (CastExpr::path_const_iterator PathI = E->path_begin(),
1925                                     PathE = E->path_end();
1926       PathI != PathE; ++PathI) {
1927    if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1928                          *PathI))
1929      return false;
1930    Type = (*PathI)->getType();
1931  }
1932  return true;
1933}
1934
1935/// Update LVal to refer to the given field, which must be a member of the type
1936/// currently described by LVal.
1937static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1938                               const FieldDecl *FD,
1939                               const ASTRecordLayout *RL = nullptr) {
1940  if (!RL) {
1941    if (FD->getParent()->isInvalidDecl()) return false;
1942    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1943  }
1944
1945  unsigned I = FD->getFieldIndex();
1946  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1947  LVal.addDecl(Info, E, FD);
1948  return true;
1949}
1950
1951/// Update LVal to refer to the given indirect field.
1952static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1953                                       LValue &LVal,
1954                                       const IndirectFieldDecl *IFD) {
1955  for (const auto *C : IFD->chain())
1956    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1957      return false;
1958  return true;
1959}
1960
1961/// Get the size of the given type in char units.
1962static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1963                         QualType Type, CharUnits &Size) {
1964  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1965  // extension.
1966  if (Type->isVoidType() || Type->isFunctionType()) {
1967    Size = CharUnits::One();
1968    return true;
1969  }
1970
1971  if (!Type->isConstantSizeType()) {
1972    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1973    // FIXME: Better diagnostic.
1974    Info.Diag(Loc);
1975    return false;
1976  }
1977
1978  Size = Info.Ctx.getTypeSizeInChars(Type);
1979  return true;
1980}
1981
1982/// Update a pointer value to model pointer arithmetic.
1983/// \param Info - Information about the ongoing evaluation.
1984/// \param E - The expression being evaluated, for diagnostic purposes.
1985/// \param LVal - The pointer value to be updated.
1986/// \param EltTy - The pointee type represented by LVal.
1987/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1988static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1989                                        LValue &LVal, QualType EltTy,
1990                                        int64_t Adjustment) {
1991  CharUnits SizeOfPointee;
1992  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1993    return false;
1994
1995  // Compute the new offset in the appropriate width.
1996  LVal.Offset += Adjustment * SizeOfPointee;
1997  LVal.adjustIndex(Info, E, Adjustment);
1998  return true;
1999}
2000
2001/// Update an lvalue to refer to a component of a complex number.
2002/// \param Info - Information about the ongoing evaluation.
2003/// \param LVal - The lvalue to be updated.
2004/// \param EltTy - The complex number's component type.
2005/// \param Imag - False for the real component, true for the imaginary.
2006static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2007                                       LValue &LVal, QualType EltTy,
2008                                       bool Imag) {
2009  if (Imag) {
2010    CharUnits SizeOfComponent;
2011    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2012      return false;
2013    LVal.Offset += SizeOfComponent;
2014  }
2015  LVal.addComplex(Info, E, EltTy, Imag);
2016  return true;
2017}
2018
2019/// Try to evaluate the initializer for a variable declaration.
2020///
2021/// \param Info   Information about the ongoing evaluation.
2022/// \param E      An expression to be used when printing diagnostics.
2023/// \param VD     The variable whose initializer should be obtained.
2024/// \param Frame  The frame in which the variable was created. Must be null
2025///               if this variable is not local to the evaluation.
2026/// \param Result Filled in with a pointer to the value of the variable.
2027static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2028                                const VarDecl *VD, CallStackFrame *Frame,
2029                                APValue *&Result) {
2030  // If this is a parameter to an active constexpr function call, perform
2031  // argument substitution.
2032  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2033    // Assume arguments of a potential constant expression are unknown
2034    // constant expressions.
2035    if (Info.checkingPotentialConstantExpression())
2036      return false;
2037    if (!Frame || !Frame->Arguments) {
2038      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2039      return false;
2040    }
2041    Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2042    return true;
2043  }
2044
2045  // If this is a local variable, dig out its value.
2046  if (Frame) {
2047    Result = Frame->getTemporary(VD);
2048    assert(Result && "missing value for local variable");
2049    return true;
2050  }
2051
2052  // Dig out the initializer, and use the declaration which it's attached to.
2053  const Expr *Init = VD->getAnyInitializer(VD);
2054  if (!Init || Init->isValueDependent()) {
2055    // If we're checking a potential constant expression, the variable could be
2056    // initialized later.
2057    if (!Info.checkingPotentialConstantExpression())
2058      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2059    return false;
2060  }
2061
2062  // If we're currently evaluating the initializer of this declaration, use that
2063  // in-flight value.
2064  if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2065    Result = Info.EvaluatingDeclValue;
2066    return true;
2067  }
2068
2069  // Never evaluate the initializer of a weak variable. We can't be sure that
2070  // this is the definition which will be used.
2071  if (VD->isWeak()) {
2072    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2073    return false;
2074  }
2075
2076  // Check that we can fold the initializer. In C++, we will have already done
2077  // this in the cases where it matters for conformance.
2078  SmallVector<PartialDiagnosticAt, 8> Notes;
2079  if (!VD->evaluateValue(Notes)) {
2080    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
2081              Notes.size() + 1) << VD;
2082    Info.Note(VD->getLocation(), diag::note_declared_at);
2083    Info.addNotes(Notes);
2084    return false;
2085  } else if (!VD->checkInitIsICE()) {
2086    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2087                 Notes.size() + 1) << VD;
2088    Info.Note(VD->getLocation(), diag::note_declared_at);
2089    Info.addNotes(Notes);
2090  }
2091
2092  Result = VD->getEvaluatedValue();
2093  return true;
2094}
2095
2096static bool IsConstNonVolatile(QualType T) {
2097  Qualifiers Quals = T.getQualifiers();
2098  return Quals.hasConst() && !Quals.hasVolatile();
2099}
2100
2101/// Get the base index of the given base class within an APValue representing
2102/// the given derived class.
2103static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2104                             const CXXRecordDecl *Base) {
2105  Base = Base->getCanonicalDecl();
2106  unsigned Index = 0;
2107  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2108         E = Derived->bases_end(); I != E; ++I, ++Index) {
2109    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2110      return Index;
2111  }
2112
2113  llvm_unreachable("base class missing from derived class's bases list");
2114}
2115
2116/// Extract the value of a character from a string literal.
2117static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2118                                            uint64_t Index) {
2119  // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2120  if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2121    Lit = PE->getFunctionName();
2122  const StringLiteral *S = cast<StringLiteral>(Lit);
2123  const ConstantArrayType *CAT =
2124      Info.Ctx.getAsConstantArrayType(S->getType());
2125  assert(CAT && "string literal isn't an array");
2126  QualType CharType = CAT->getElementType();
2127  assert(CharType->isIntegerType() && "unexpected character type");
2128
2129  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2130               CharType->isUnsignedIntegerType());
2131  if (Index < S->getLength())
2132    Value = S->getCodeUnit(Index);
2133  return Value;
2134}
2135
2136// Expand a string literal into an array of characters.
2137static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2138                                APValue &Result) {
2139  const StringLiteral *S = cast<StringLiteral>(Lit);
2140  const ConstantArrayType *CAT =
2141      Info.Ctx.getAsConstantArrayType(S->getType());
2142  assert(CAT && "string literal isn't an array");
2143  QualType CharType = CAT->getElementType();
2144  assert(CharType->isIntegerType() && "unexpected character type");
2145
2146  unsigned Elts = CAT->getSize().getZExtValue();
2147  Result = APValue(APValue::UninitArray(),
2148                   std::min(S->getLength(), Elts), Elts);
2149  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2150               CharType->isUnsignedIntegerType());
2151  if (Result.hasArrayFiller())
2152    Result.getArrayFiller() = APValue(Value);
2153  for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2154    Value = S->getCodeUnit(I);
2155    Result.getArrayInitializedElt(I) = APValue(Value);
2156  }
2157}
2158
2159// Expand an array so that it has more than Index filled elements.
2160static void expandArray(APValue &Array, unsigned Index) {
2161  unsigned Size = Array.getArraySize();
2162  assert(Index < Size);
2163
2164  // Always at least double the number of elements for which we store a value.
2165  unsigned OldElts = Array.getArrayInitializedElts();
2166  unsigned NewElts = std::max(Index+1, OldElts * 2);
2167  NewElts = std::min(Size, std::max(NewElts, 8u));
2168
2169  // Copy the data across.
2170  APValue NewValue(APValue::UninitArray(), NewElts, Size);
2171  for (unsigned I = 0; I != OldElts; ++I)
2172    NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2173  for (unsigned I = OldElts; I != NewElts; ++I)
2174    NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2175  if (NewValue.hasArrayFiller())
2176    NewValue.getArrayFiller() = Array.getArrayFiller();
2177  Array.swap(NewValue);
2178}
2179
2180/// Determine whether a type would actually be read by an lvalue-to-rvalue
2181/// conversion. If it's of class type, we may assume that the copy operation
2182/// is trivial. Note that this is never true for a union type with fields
2183/// (because the copy always "reads" the active member) and always true for
2184/// a non-class type.
2185static bool isReadByLvalueToRvalueConversion(QualType T) {
2186  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2187  if (!RD || (RD->isUnion() && !RD->field_empty()))
2188    return true;
2189  if (RD->isEmpty())
2190    return false;
2191
2192  for (auto *Field : RD->fields())
2193    if (isReadByLvalueToRvalueConversion(Field->getType()))
2194      return true;
2195
2196  for (auto &BaseSpec : RD->bases())
2197    if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2198      return true;
2199
2200  return false;
2201}
2202
2203/// Diagnose an attempt to read from any unreadable field within the specified
2204/// type, which might be a class type.
2205static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2206                                     QualType T) {
2207  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2208  if (!RD)
2209    return false;
2210
2211  if (!RD->hasMutableFields())
2212    return false;
2213
2214  for (auto *Field : RD->fields()) {
2215    // If we're actually going to read this field in some way, then it can't
2216    // be mutable. If we're in a union, then assigning to a mutable field
2217    // (even an empty one) can change the active member, so that's not OK.
2218    // FIXME: Add core issue number for the union case.
2219    if (Field->isMutable() &&
2220        (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2221      Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2222      Info.Note(Field->getLocation(), diag::note_declared_at);
2223      return true;
2224    }
2225
2226    if (diagnoseUnreadableFields(Info, E, Field->getType()))
2227      return true;
2228  }
2229
2230  for (auto &BaseSpec : RD->bases())
2231    if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2232      return true;
2233
2234  // All mutable fields were empty, and thus not actually read.
2235  return false;
2236}
2237
2238/// Kinds of access we can perform on an object, for diagnostics.
2239enum AccessKinds {
2240  AK_Read,
2241  AK_Assign,
2242  AK_Increment,
2243  AK_Decrement
2244};
2245
2246namespace {
2247/// A handle to a complete object (an object that is not a subobject of
2248/// another object).
2249struct CompleteObject {
2250  /// The value of the complete object.
2251  APValue *Value;
2252  /// The type of the complete object.
2253  QualType Type;
2254
2255  CompleteObject() : Value(nullptr) {}
2256  CompleteObject(APValue *Value, QualType Type)
2257      : Value(Value), Type(Type) {
2258    assert(Value && "missing value for complete object");
2259  }
2260
2261  explicit operator bool() const { return Value; }
2262};
2263} // end anonymous namespace
2264
2265/// Find the designated sub-object of an rvalue.
2266template<typename SubobjectHandler>
2267typename SubobjectHandler::result_type
2268findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2269              const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2270  if (Sub.Invalid)
2271    // A diagnostic will have already been produced.
2272    return handler.failed();
2273  if (Sub.isOnePastTheEnd()) {
2274    if (Info.getLangOpts().CPlusPlus11)
2275      Info.Diag(E, diag::note_constexpr_access_past_end)
2276        << handler.AccessKind;
2277    else
2278      Info.Diag(E);
2279    return handler.failed();
2280  }
2281
2282  APValue *O = Obj.Value;
2283  QualType ObjType = Obj.Type;
2284  const FieldDecl *LastField = nullptr;
2285
2286  // Walk the designator's path to find the subobject.
2287  for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2288    if (O->isUninit()) {
2289      if (!Info.checkingPotentialConstantExpression())
2290        Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2291      return handler.failed();
2292    }
2293
2294    if (I == N) {
2295      // If we are reading an object of class type, there may still be more
2296      // things we need to check: if there are any mutable subobjects, we
2297      // cannot perform this read. (This only happens when performing a trivial
2298      // copy or assignment.)
2299      if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2300          diagnoseUnreadableFields(Info, E, ObjType))
2301        return handler.failed();
2302
2303      if (!handler.found(*O, ObjType))
2304        return false;
2305
2306      // If we modified a bit-field, truncate it to the right width.
2307      if (handler.AccessKind != AK_Read &&
2308          LastField && LastField->isBitField() &&
2309          !truncateBitfieldValue(Info, E, *O, LastField))
2310        return false;
2311
2312      return true;
2313    }
2314
2315    LastField = nullptr;
2316    if (ObjType->isArrayType()) {
2317      // Next subobject is an array element.
2318      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2319      assert(CAT && "vla in literal type?");
2320      uint64_t Index = Sub.Entries[I].ArrayIndex;
2321      if (CAT->getSize().ule(Index)) {
2322        // Note, it should not be possible to form a pointer with a valid
2323        // designator which points more than one past the end of the array.
2324        if (Info.getLangOpts().CPlusPlus11)
2325          Info.Diag(E, diag::note_constexpr_access_past_end)
2326            << handler.AccessKind;
2327        else
2328          Info.Diag(E);
2329        return handler.failed();
2330      }
2331
2332      ObjType = CAT->getElementType();
2333
2334      // An array object is represented as either an Array APValue or as an
2335      // LValue which refers to a string literal.
2336      if (O->isLValue()) {
2337        assert(I == N - 1 && "extracting subobject of character?");
2338        assert(!O->hasLValuePath() || O->getLValuePath().empty());
2339        if (handler.AccessKind != AK_Read)
2340          expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2341                              *O);
2342        else
2343          return handler.foundString(*O, ObjType, Index);
2344      }
2345
2346      if (O->getArrayInitializedElts() > Index)
2347        O = &O->getArrayInitializedElt(Index);
2348      else if (handler.AccessKind != AK_Read) {
2349        expandArray(*O, Index);
2350        O = &O->getArrayInitializedElt(Index);
2351      } else
2352        O = &O->getArrayFiller();
2353    } else if (ObjType->isAnyComplexType()) {
2354      // Next subobject is a complex number.
2355      uint64_t Index = Sub.Entries[I].ArrayIndex;
2356      if (Index > 1) {
2357        if (Info.getLangOpts().CPlusPlus11)
2358          Info.Diag(E, diag::note_constexpr_access_past_end)
2359            << handler.AccessKind;
2360        else
2361          Info.Diag(E);
2362        return handler.failed();
2363      }
2364
2365      bool WasConstQualified = ObjType.isConstQualified();
2366      ObjType = ObjType->castAs<ComplexType>()->getElementType();
2367      if (WasConstQualified)
2368        ObjType.addConst();
2369
2370      assert(I == N - 1 && "extracting subobject of scalar?");
2371      if (O->isComplexInt()) {
2372        return handler.found(Index ? O->getComplexIntImag()
2373                                   : O->getComplexIntReal(), ObjType);
2374      } else {
2375        assert(O->isComplexFloat());
2376        return handler.found(Index ? O->getComplexFloatImag()
2377                                   : O->getComplexFloatReal(), ObjType);
2378      }
2379    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2380      if (Field->isMutable() && handler.AccessKind == AK_Read) {
2381        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2382          << Field;
2383        Info.Note(Field->getLocation(), diag::note_declared_at);
2384        return handler.failed();
2385      }
2386
2387      // Next subobject is a class, struct or union field.
2388      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2389      if (RD->isUnion()) {
2390        const FieldDecl *UnionField = O->getUnionField();
2391        if (!UnionField ||
2392            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2393          Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2394            << handler.AccessKind << Field << !UnionField << UnionField;
2395          return handler.failed();
2396        }
2397        O = &O->getUnionValue();
2398      } else
2399        O = &O->getStructField(Field->getFieldIndex());
2400
2401      bool WasConstQualified = ObjType.isConstQualified();
2402      ObjType = Field->getType();
2403      if (WasConstQualified && !Field->isMutable())
2404        ObjType.addConst();
2405
2406      if (ObjType.isVolatileQualified()) {
2407        if (Info.getLangOpts().CPlusPlus) {
2408          // FIXME: Include a description of the path to the volatile subobject.
2409          Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2410            << handler.AccessKind << 2 << Field;
2411          Info.Note(Field->getLocation(), diag::note_declared_at);
2412        } else {
2413          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2414        }
2415        return handler.failed();
2416      }
2417
2418      LastField = Field;
2419    } else {
2420      // Next subobject is a base class.
2421      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2422      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2423      O = &O->getStructBase(getBaseIndex(Derived, Base));
2424
2425      bool WasConstQualified = ObjType.isConstQualified();
2426      ObjType = Info.Ctx.getRecordType(Base);
2427      if (WasConstQualified)
2428        ObjType.addConst();
2429    }
2430  }
2431}
2432
2433namespace {
2434struct ExtractSubobjectHandler {
2435  EvalInfo &Info;
2436  APValue &Result;
2437
2438  static const AccessKinds AccessKind = AK_Read;
2439
2440  typedef bool result_type;
2441  bool failed() { return false; }
2442  bool found(APValue &Subobj, QualType SubobjType) {
2443    Result = Subobj;
2444    return true;
2445  }
2446  bool found(APSInt &Value, QualType SubobjType) {
2447    Result = APValue(Value);
2448    return true;
2449  }
2450  bool found(APFloat &Value, QualType SubobjType) {
2451    Result = APValue(Value);
2452    return true;
2453  }
2454  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2455    Result = APValue(extractStringLiteralCharacter(
2456        Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2457    return true;
2458  }
2459};
2460} // end anonymous namespace
2461
2462const AccessKinds ExtractSubobjectHandler::AccessKind;
2463
2464/// Extract the designated sub-object of an rvalue.
2465static bool extractSubobject(EvalInfo &Info, const Expr *E,
2466                             const CompleteObject &Obj,
2467                             const SubobjectDesignator &Sub,
2468                             APValue &Result) {
2469  ExtractSubobjectHandler Handler = { Info, Result };
2470  return findSubobject(Info, E, Obj, Sub, Handler);
2471}
2472
2473namespace {
2474struct ModifySubobjectHandler {
2475  EvalInfo &Info;
2476  APValue &NewVal;
2477  const Expr *E;
2478
2479  typedef bool result_type;
2480  static const AccessKinds AccessKind = AK_Assign;
2481
2482  bool checkConst(QualType QT) {
2483    // Assigning to a const object has undefined behavior.
2484    if (QT.isConstQualified()) {
2485      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2486      return false;
2487    }
2488    return true;
2489  }
2490
2491  bool failed() { return false; }
2492  bool found(APValue &Subobj, QualType SubobjType) {
2493    if (!checkConst(SubobjType))
2494      return false;
2495    // We've been given ownership of NewVal, so just swap it in.
2496    Subobj.swap(NewVal);
2497    return true;
2498  }
2499  bool found(APSInt &Value, QualType SubobjType) {
2500    if (!checkConst(SubobjType))
2501      return false;
2502    if (!NewVal.isInt()) {
2503      // Maybe trying to write a cast pointer value into a complex?
2504      Info.Diag(E);
2505      return false;
2506    }
2507    Value = NewVal.getInt();
2508    return true;
2509  }
2510  bool found(APFloat &Value, QualType SubobjType) {
2511    if (!checkConst(SubobjType))
2512      return false;
2513    Value = NewVal.getFloat();
2514    return true;
2515  }
2516  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2517    llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2518  }
2519};
2520} // end anonymous namespace
2521
2522const AccessKinds ModifySubobjectHandler::AccessKind;
2523
2524/// Update the designated sub-object of an rvalue to the given value.
2525static bool modifySubobject(EvalInfo &Info, const Expr *E,
2526                            const CompleteObject &Obj,
2527                            const SubobjectDesignator &Sub,
2528                            APValue &NewVal) {
2529  ModifySubobjectHandler Handler = { Info, NewVal, E };
2530  return findSubobject(Info, E, Obj, Sub, Handler);
2531}
2532
2533/// Find the position where two subobject designators diverge, or equivalently
2534/// the length of the common initial subsequence.
2535static unsigned FindDesignatorMismatch(QualType ObjType,
2536                                       const SubobjectDesignator &A,
2537                                       const SubobjectDesignator &B,
2538                                       bool &WasArrayIndex) {
2539  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2540  for (/**/; I != N; ++I) {
2541    if (!ObjType.isNull() &&
2542        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2543      // Next subobject is an array element.
2544      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2545        WasArrayIndex = true;
2546        return I;
2547      }
2548      if (ObjType->isAnyComplexType())
2549        ObjType = ObjType->castAs<ComplexType>()->getElementType();
2550      else
2551        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2552    } else {
2553      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2554        WasArrayIndex = false;
2555        return I;
2556      }
2557      if (const FieldDecl *FD = getAsField(A.Entries[I]))
2558        // Next subobject is a field.
2559        ObjType = FD->getType();
2560      else
2561        // Next subobject is a base class.
2562        ObjType = QualType();
2563    }
2564  }
2565  WasArrayIndex = false;
2566  return I;
2567}
2568
2569/// Determine whether the given subobject designators refer to elements of the
2570/// same array object.
2571static bool AreElementsOfSameArray(QualType ObjType,
2572                                   const SubobjectDesignator &A,
2573                                   const SubobjectDesignator &B) {
2574  if (A.Entries.size() != B.Entries.size())
2575    return false;
2576
2577  bool IsArray = A.MostDerivedIsArrayElement;
2578  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2579    // A is a subobject of the array element.
2580    return false;
2581
2582  // If A (and B) designates an array element, the last entry will be the array
2583  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2584  // of length 1' case, and the entire path must match.
2585  bool WasArrayIndex;
2586  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2587  return CommonLength >= A.Entries.size() - IsArray;
2588}
2589
2590/// Find the complete object to which an LValue refers.
2591static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2592                                         AccessKinds AK, const LValue &LVal,
2593                                         QualType LValType) {
2594  if (!LVal.Base) {
2595    Info.Diag(E, diag::note_constexpr_access_null) << AK;
2596    return CompleteObject();
2597  }
2598
2599  CallStackFrame *Frame = nullptr;
2600  if (LVal.CallIndex) {
2601    Frame = Info.getCallFrame(LVal.CallIndex);
2602    if (!Frame) {
2603      Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2604        << AK << LVal.Base.is<const ValueDecl*>();
2605      NoteLValueLocation(Info, LVal.Base);
2606      return CompleteObject();
2607    }
2608  }
2609
2610  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2611  // is not a constant expression (even if the object is non-volatile). We also
2612  // apply this rule to C++98, in order to conform to the expected 'volatile'
2613  // semantics.
2614  if (LValType.isVolatileQualified()) {
2615    if (Info.getLangOpts().CPlusPlus)
2616      Info.Diag(E, diag::note_constexpr_access_volatile_type)
2617        << AK << LValType;
2618    else
2619      Info.Diag(E);
2620    return CompleteObject();
2621  }
2622
2623  // Compute value storage location and type of base object.
2624  APValue *BaseVal = nullptr;
2625  QualType BaseType = getType(LVal.Base);
2626
2627  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2628    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2629    // In C++11, constexpr, non-volatile variables initialized with constant
2630    // expressions are constant expressions too. Inside constexpr functions,
2631    // parameters are constant expressions even if they're non-const.
2632    // In C++1y, objects local to a constant expression (those with a Frame) are
2633    // both readable and writable inside constant expressions.
2634    // In C, such things can also be folded, although they are not ICEs.
2635    const VarDecl *VD = dyn_cast<VarDecl>(D);
2636    if (VD) {
2637      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2638        VD = VDef;
2639    }
2640    if (!VD || VD->isInvalidDecl()) {
2641      Info.Diag(E);
2642      return CompleteObject();
2643    }
2644
2645    // Accesses of volatile-qualified objects are not allowed.
2646    if (BaseType.isVolatileQualified()) {
2647      if (Info.getLangOpts().CPlusPlus) {
2648        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2649          << AK << 1 << VD;
2650        Info.Note(VD->getLocation(), diag::note_declared_at);
2651      } else {
2652        Info.Diag(E);
2653      }
2654      return CompleteObject();
2655    }
2656
2657    // Unless we're looking at a local variable or argument in a constexpr call,
2658    // the variable we're reading must be const.
2659    if (!Frame) {
2660      if (Info.getLangOpts().CPlusPlus14 &&
2661          VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2662        // OK, we can read and modify an object if we're in the process of
2663        // evaluating its initializer, because its lifetime began in this
2664        // evaluation.
2665      } else if (AK != AK_Read) {
2666        // All the remaining cases only permit reading.
2667        Info.Diag(E, diag::note_constexpr_modify_global);
2668        return CompleteObject();
2669      } else if (VD->isConstexpr()) {
2670        // OK, we can read this variable.
2671      } else if (BaseType->isIntegralOrEnumerationType()) {
2672        if (!BaseType.isConstQualified()) {
2673          if (Info.getLangOpts().CPlusPlus) {
2674            Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2675            Info.Note(VD->getLocation(), diag::note_declared_at);
2676          } else {
2677            Info.Diag(E);
2678          }
2679          return CompleteObject();
2680        }
2681      } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2682        // We support folding of const floating-point types, in order to make
2683        // static const data members of such types (supported as an extension)
2684        // more useful.
2685        if (Info.getLangOpts().CPlusPlus11) {
2686          Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2687          Info.Note(VD->getLocation(), diag::note_declared_at);
2688        } else {
2689          Info.CCEDiag(E);
2690        }
2691      } else {
2692        // FIXME: Allow folding of values of any literal type in all languages.
2693        if (Info.getLangOpts().CPlusPlus11) {
2694          Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2695          Info.Note(VD->getLocation(), diag::note_declared_at);
2696        } else {
2697          Info.Diag(E);
2698        }
2699        return CompleteObject();
2700      }
2701    }
2702
2703    if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2704      return CompleteObject();
2705  } else {
2706    const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2707
2708    if (!Frame) {
2709      if (const MaterializeTemporaryExpr *MTE =
2710              dyn_cast<MaterializeTemporaryExpr>(Base)) {
2711        assert(MTE->getStorageDuration() == SD_Static &&
2712               "should have a frame for a non-global materialized temporary");
2713
2714        // Per C++1y [expr.const]p2:
2715        //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2716        //   - a [...] glvalue of integral or enumeration type that refers to
2717        //     a non-volatile const object [...]
2718        //   [...]
2719        //   - a [...] glvalue of literal type that refers to a non-volatile
2720        //     object whose lifetime began within the evaluation of e.
2721        //
2722        // C++11 misses the 'began within the evaluation of e' check and
2723        // instead allows all temporaries, including things like:
2724        //   int &&r = 1;
2725        //   int x = ++r;
2726        //   constexpr int k = r;
2727        // Therefore we use the C++1y rules in C++11 too.
2728        const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2729        const ValueDecl *ED = MTE->getExtendingDecl();
2730        if (!(BaseType.isConstQualified() &&
2731              BaseType->isIntegralOrEnumerationType()) &&
2732            !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2733          Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2734          Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2735          return CompleteObject();
2736        }
2737
2738        BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2739        assert(BaseVal && "got reference to unevaluated temporary");
2740      } else {
2741        Info.Diag(E);
2742        return CompleteObject();
2743      }
2744    } else {
2745      BaseVal = Frame->getTemporary(Base);
2746      assert(BaseVal && "missing value for temporary");
2747    }
2748
2749    // Volatile temporary objects cannot be accessed in constant expressions.
2750    if (BaseType.isVolatileQualified()) {
2751      if (Info.getLangOpts().CPlusPlus) {
2752        Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2753          << AK << 0;
2754        Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2755      } else {
2756        Info.Diag(E);
2757      }
2758      return CompleteObject();
2759    }
2760  }
2761
2762  // During the construction of an object, it is not yet 'const'.
2763  // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2764  // and this doesn't do quite the right thing for const subobjects of the
2765  // object under construction.
2766  if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2767    BaseType = Info.Ctx.getCanonicalType(BaseType);
2768    BaseType.removeLocalConst();
2769  }
2770
2771  // In C++1y, we can't safely access any mutable state when we might be
2772  // evaluating after an unmodeled side effect or an evaluation failure.
2773  //
2774  // FIXME: Not all local state is mutable. Allow local constant subobjects
2775  // to be read here (but take care with 'mutable' fields).
2776  if (Frame && Info.getLangOpts().CPlusPlus14 &&
2777      (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2778    return CompleteObject();
2779
2780  return CompleteObject(BaseVal, BaseType);
2781}
2782
2783/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2784/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2785/// glvalue referred to by an entity of reference type.
2786///
2787/// \param Info - Information about the ongoing evaluation.
2788/// \param Conv - The expression for which we are performing the conversion.
2789///               Used for diagnostics.
2790/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2791///               case of a non-class type).
2792/// \param LVal - The glvalue on which we are attempting to perform this action.
2793/// \param RVal - The produced value will be placed here.
2794static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2795                                           QualType Type,
2796                                           const LValue &LVal, APValue &RVal) {
2797  if (LVal.Designator.Invalid)
2798    return false;
2799
2800  // Check for special cases where there is no existing APValue to look at.
2801  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2802  if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
2803    if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2804      // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2805      // initializer until now for such expressions. Such an expression can't be
2806      // an ICE in C, so this only matters for fold.
2807      assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2808      if (Type.isVolatileQualified()) {
2809        Info.Diag(Conv);
2810        return false;
2811      }
2812      APValue Lit;
2813      if (!Evaluate(Lit, Info, CLE->getInitializer()))
2814        return false;
2815      CompleteObject LitObj(&Lit, Base->getType());
2816      return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2817    } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2818      // We represent a string literal array as an lvalue pointing at the
2819      // corresponding expression, rather than building an array of chars.
2820      // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2821      APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2822      CompleteObject StrObj(&Str, Base->getType());
2823      return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2824    }
2825  }
2826
2827  CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2828  return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2829}
2830
2831/// Perform an assignment of Val to LVal. Takes ownership of Val.
2832static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2833                             QualType LValType, APValue &Val) {
2834  if (LVal.Designator.Invalid)
2835    return false;
2836
2837  if (!Info.getLangOpts().CPlusPlus14) {
2838    Info.Diag(E);
2839    return false;
2840  }
2841
2842  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2843  return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2844}
2845
2846static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2847  return T->isSignedIntegerType() &&
2848         Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2849}
2850
2851namespace {
2852struct CompoundAssignSubobjectHandler {
2853  EvalInfo &Info;
2854  const Expr *E;
2855  QualType PromotedLHSType;
2856  BinaryOperatorKind Opcode;
2857  const APValue &RHS;
2858
2859  static const AccessKinds AccessKind = AK_Assign;
2860
2861  typedef bool result_type;
2862
2863  bool checkConst(QualType QT) {
2864    // Assigning to a const object has undefined behavior.
2865    if (QT.isConstQualified()) {
2866      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2867      return false;
2868    }
2869    return true;
2870  }
2871
2872  bool failed() { return false; }
2873  bool found(APValue &Subobj, QualType SubobjType) {
2874    switch (Subobj.getKind()) {
2875    case APValue::Int:
2876      return found(Subobj.getInt(), SubobjType);
2877    case APValue::Float:
2878      return found(Subobj.getFloat(), SubobjType);
2879    case APValue::ComplexInt:
2880    case APValue::ComplexFloat:
2881      // FIXME: Implement complex compound assignment.
2882      Info.Diag(E);
2883      return false;
2884    case APValue::LValue:
2885      return foundPointer(Subobj, SubobjType);
2886    default:
2887      // FIXME: can this happen?
2888      Info.Diag(E);
2889      return false;
2890    }
2891  }
2892  bool found(APSInt &Value, QualType SubobjType) {
2893    if (!checkConst(SubobjType))
2894      return false;
2895
2896    if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2897      // We don't support compound assignment on integer-cast-to-pointer
2898      // values.
2899      Info.Diag(E);
2900      return false;
2901    }
2902
2903    APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2904                                    SubobjType, Value);
2905    if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2906      return false;
2907    Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2908    return true;
2909  }
2910  bool found(APFloat &Value, QualType SubobjType) {
2911    return checkConst(SubobjType) &&
2912           HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2913                                  Value) &&
2914           handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2915           HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2916  }
2917  bool foundPointer(APValue &Subobj, QualType SubobjType) {
2918    if (!checkConst(SubobjType))
2919      return false;
2920
2921    QualType PointeeType;
2922    if (const PointerType *PT = SubobjType->getAs<PointerType>())
2923      PointeeType = PT->getPointeeType();
2924
2925    if (PointeeType.isNull() || !RHS.isInt() ||
2926        (Opcode != BO_Add && Opcode != BO_Sub)) {
2927      Info.Diag(E);
2928      return false;
2929    }
2930
2931    int64_t Offset = getExtValue(RHS.getInt());
2932    if (Opcode == BO_Sub)
2933      Offset = -Offset;
2934
2935    LValue LVal;
2936    LVal.setFrom(Info.Ctx, Subobj);
2937    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2938      return false;
2939    LVal.moveInto(Subobj);
2940    return true;
2941  }
2942  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2943    llvm_unreachable("shouldn't encounter string elements here");
2944  }
2945};
2946} // end anonymous namespace
2947
2948const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2949
2950/// Perform a compound assignment of LVal <op>= RVal.
2951static bool handleCompoundAssignment(
2952    EvalInfo &Info, const Expr *E,
2953    const LValue &LVal, QualType LValType, QualType PromotedLValType,
2954    BinaryOperatorKind Opcode, const APValue &RVal) {
2955  if (LVal.Designator.Invalid)
2956    return false;
2957
2958  if (!Info.getLangOpts().CPlusPlus14) {
2959    Info.Diag(E);
2960    return false;
2961  }
2962
2963  CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2964  CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2965                                             RVal };
2966  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2967}
2968
2969namespace {
2970struct IncDecSubobjectHandler {
2971  EvalInfo &Info;
2972  const Expr *E;
2973  AccessKinds AccessKind;
2974  APValue *Old;
2975
2976  typedef bool result_type;
2977
2978  bool checkConst(QualType QT) {
2979    // Assigning to a const object has undefined behavior.
2980    if (QT.isConstQualified()) {
2981      Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2982      return false;
2983    }
2984    return true;
2985  }
2986
2987  bool failed() { return false; }
2988  bool found(APValue &Subobj, QualType SubobjType) {
2989    // Stash the old value. Also clear Old, so we don't clobber it later
2990    // if we're post-incrementing a complex.
2991    if (Old) {
2992      *Old = Subobj;
2993      Old = nullptr;
2994    }
2995
2996    switch (Subobj.getKind()) {
2997    case APValue::Int:
2998      return found(Subobj.getInt(), SubobjType);
2999    case APValue::Float:
3000      return found(Subobj.getFloat(), SubobjType);
3001    case APValue::ComplexInt:
3002      return found(Subobj.getComplexIntReal(),
3003                   SubobjType->castAs<ComplexType>()->getElementType()
3004                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3005    case APValue::ComplexFloat:
3006      return found(Subobj.getComplexFloatReal(),
3007                   SubobjType->castAs<ComplexType>()->getElementType()
3008                     .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3009    case APValue::LValue:
3010      return foundPointer(Subobj, SubobjType);
3011    default:
3012      // FIXME: can this happen?
3013      Info.Diag(E);
3014      return false;
3015    }
3016  }
3017  bool found(APSInt &Value, QualType SubobjType) {
3018    if (!checkConst(SubobjType))
3019      return false;
3020
3021    if (!SubobjType->isIntegerType()) {
3022      // We don't support increment / decrement on integer-cast-to-pointer
3023      // values.
3024      Info.Diag(E);
3025      return false;
3026    }
3027
3028    if (Old) *Old = APValue(Value);
3029
3030    // bool arithmetic promotes to int, and the conversion back to bool
3031    // doesn't reduce mod 2^n, so special-case it.
3032    if (SubobjType->isBooleanType()) {
3033      if (AccessKind == AK_Increment)
3034        Value = 1;
3035      else
3036        Value = !Value;
3037      return true;
3038    }
3039
3040    bool WasNegative = Value.isNegative();
3041    if (AccessKind == AK_Increment) {
3042      ++Value;
3043
3044      if (!WasNegative && Value.isNegative() &&
3045          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3046        APSInt ActualValue(Value, /*IsUnsigned*/true);
3047        return HandleOverflow(Info, E, ActualValue, SubobjType);
3048      }
3049    } else {
3050      --Value;
3051
3052      if (WasNegative && !Value.isNegative() &&
3053          isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3054        unsigned BitWidth = Value.getBitWidth();
3055        APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3056        ActualValue.setBit(BitWidth);
3057        return HandleOverflow(Info, E, ActualValue, SubobjType);
3058      }
3059    }
3060    return true;
3061  }
3062  bool found(APFloat &Value, QualType SubobjType) {
3063    if (!checkConst(SubobjType))
3064      return false;
3065
3066    if (Old) *Old = APValue(Value);
3067
3068    APFloat One(Value.getSemantics(), 1);
3069    if (AccessKind == AK_Increment)
3070      Value.add(One, APFloat::rmNearestTiesToEven);
3071    else
3072      Value.subtract(One, APFloat::rmNearestTiesToEven);
3073    return true;
3074  }
3075  bool foundPointer(APValue &Subobj, QualType SubobjType) {
3076    if (!checkConst(SubobjType))
3077      return false;
3078
3079    QualType PointeeType;
3080    if (const PointerType *PT = SubobjType->getAs<PointerType>())
3081      PointeeType = PT->getPointeeType();
3082    else {
3083      Info.Diag(E);
3084      return false;
3085    }
3086
3087    LValue LVal;
3088    LVal.setFrom(Info.Ctx, Subobj);
3089    if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3090                                     AccessKind == AK_Increment ? 1 : -1))
3091      return false;
3092    LVal.moveInto(Subobj);
3093    return true;
3094  }
3095  bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3096    llvm_unreachable("shouldn't encounter string elements here");
3097  }
3098};
3099} // end anonymous namespace
3100
3101/// Perform an increment or decrement on LVal.
3102static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3103                         QualType LValType, bool IsIncrement, APValue *Old) {
3104  if (LVal.Designator.Invalid)
3105    return false;
3106
3107  if (!Info.getLangOpts().CPlusPlus14) {
3108    Info.Diag(E);
3109    return false;
3110  }
3111
3112  AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3113  CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3114  IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3115  return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3116}
3117
3118/// Build an lvalue for the object argument of a member function call.
3119static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3120                                   LValue &This) {
3121  if (Object->getType()->isPointerType())
3122    return EvaluatePointer(Object, This, Info);
3123
3124  if (Object->isGLValue())
3125    return EvaluateLValue(Object, This, Info);
3126
3127  if (Object->getType()->isLiteralType(Info.Ctx))
3128    return EvaluateTemporary(Object, This, Info);
3129
3130  Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3131  return false;
3132}
3133
3134/// HandleMemberPointerAccess - Evaluate a member access operation and build an
3135/// lvalue referring to the result.
3136///
3137/// \param Info - Information about the ongoing evaluation.
3138/// \param LV - An lvalue referring to the base of the member pointer.
3139/// \param RHS - The member pointer expression.
3140/// \param IncludeMember - Specifies whether the member itself is included in
3141///        the resulting LValue subobject designator. This is not possible when
3142///        creating a bound member function.
3143/// \return The field or method declaration to which the member pointer refers,
3144///         or 0 if evaluation fails.
3145static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3146                                                  QualType LVType,
3147                                                  LValue &LV,
3148                                                  const Expr *RHS,
3149                                                  bool IncludeMember = true) {
3150  MemberPtr MemPtr;
3151  if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3152    return nullptr;
3153
3154  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3155  // member value, the behavior is undefined.
3156  if (!MemPtr.getDecl()) {
3157    // FIXME: Specific diagnostic.
3158    Info.Diag(RHS);
3159    return nullptr;
3160  }
3161
3162  if (MemPtr.isDerivedMember()) {
3163    // This is a member of some derived class. Truncate LV appropriately.
3164    // The end of the derived-to-base path for the base object must match the
3165    // derived-to-base path for the member pointer.
3166    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3167        LV.Designator.Entries.size()) {
3168      Info.Diag(RHS);
3169      return nullptr;
3170    }
3171    unsigned PathLengthToMember =
3172        LV.Designator.Entries.size() - MemPtr.Path.size();
3173    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3174      const CXXRecordDecl *LVDecl = getAsBaseClass(
3175          LV.Designator.Entries[PathLengthToMember + I]);
3176      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3177      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3178        Info.Diag(RHS);
3179        return nullptr;
3180      }
3181    }
3182
3183    // Truncate the lvalue to the appropriate derived class.
3184    if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3185                            PathLengthToMember))
3186      return nullptr;
3187  } else if (!MemPtr.Path.empty()) {
3188    // Extend the LValue path with the member pointer's path.
3189    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3190                                  MemPtr.Path.size() + IncludeMember);
3191
3192    // Walk down to the appropriate base class.
3193    if (const PointerType *PT = LVType->getAs<PointerType>())
3194      LVType = PT->getPointeeType();
3195    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3196    assert(RD && "member pointer access on non-class-type expression");
3197    // The first class in the path is that of the lvalue.
3198    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3199      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3200      if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3201        return nullptr;
3202      RD = Base;
3203    }
3204    // Finally cast to the class containing the member.
3205    if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3206                                MemPtr.getContainingRecord()))
3207      return nullptr;
3208  }
3209
3210  // Add the member. Note that we cannot build bound member functions here.
3211  if (IncludeMember) {
3212    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3213      if (!HandleLValueMember(Info, RHS, LV, FD))
3214        return nullptr;
3215    } else if (const IndirectFieldDecl *IFD =
3216                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3217      if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3218        return nullptr;
3219    } else {
3220      llvm_unreachable("can't construct reference to bound member function");
3221    }
3222  }
3223
3224  return MemPtr.getDecl();
3225}
3226
3227static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3228                                                  const BinaryOperator *BO,
3229                                                  LValue &LV,
3230                                                  bool IncludeMember = true) {
3231  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3232
3233  if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3234    if (Info.keepEvaluatingAfterFailure()) {
3235      MemberPtr MemPtr;
3236      EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3237    }
3238    return nullptr;
3239  }
3240
3241  return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3242                                   BO->getRHS(), IncludeMember);
3243}
3244
3245/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3246/// the provided lvalue, which currently refers to the base object.
3247static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3248                                    LValue &Result) {
3249  SubobjectDesignator &D = Result.Designator;
3250  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3251    return false;
3252
3253  QualType TargetQT = E->getType();
3254  if (const PointerType *PT = TargetQT->getAs<PointerType>())
3255    TargetQT = PT->getPointeeType();
3256
3257  // Check this cast lands within the final derived-to-base subobject path.
3258  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3259    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3260      << D.MostDerivedType << TargetQT;
3261    return false;
3262  }
3263
3264  // Check the type of the final cast. We don't need to check the path,
3265  // since a cast can only be formed if the path is unique.
3266  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3267  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3268  const CXXRecordDecl *FinalType;
3269  if (NewEntriesSize == D.MostDerivedPathLength)
3270    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3271  else
3272    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3273  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3274    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3275      << D.MostDerivedType << TargetQT;
3276    return false;
3277  }
3278
3279  // Truncate the lvalue to the appropriate derived class.
3280  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3281}
3282
3283namespace {
3284enum EvalStmtResult {
3285  /// Evaluation failed.
3286  ESR_Failed,
3287  /// Hit a 'return' statement.
3288  ESR_Returned,
3289  /// Evaluation succeeded.
3290  ESR_Succeeded,
3291  /// Hit a 'continue' statement.
3292  ESR_Continue,
3293  /// Hit a 'break' statement.
3294  ESR_Break,
3295  /// Still scanning for 'case' or 'default' statement.
3296  ESR_CaseNotFound
3297};
3298}
3299
3300static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3301  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3302    // We don't need to evaluate the initializer for a static local.
3303    if (!VD->hasLocalStorage())
3304      return true;
3305
3306    LValue Result;
3307    Result.set(VD, Info.CurrentCall->Index);
3308    APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3309
3310    const Expr *InitE = VD->getInit();
3311    if (!InitE) {
3312      Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3313        << false << VD->getType();
3314      Val = APValue();
3315      return false;
3316    }
3317
3318    if (InitE->isValueDependent())
3319      return false;
3320
3321    if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3322      // Wipe out any partially-computed value, to allow tracking that this
3323      // evaluation failed.
3324      Val = APValue();
3325      return false;
3326    }
3327  }
3328
3329  return true;
3330}
3331
3332/// Evaluate a condition (either a variable declaration or an expression).
3333static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3334                         const Expr *Cond, bool &Result) {
3335  FullExpressionRAII Scope(Info);
3336  if (CondDecl && !EvaluateDecl(Info, CondDecl))
3337    return false;
3338  return EvaluateAsBooleanCondition(Cond, Result, Info);
3339}
3340
3341/// \brief A location where the result (returned value) of evaluating a
3342/// statement should be stored.
3343struct StmtResult {
3344  /// The APValue that should be filled in with the returned value.
3345  APValue &Value;
3346  /// The location containing the result, if any (used to support RVO).
3347  const LValue *Slot;
3348};
3349
3350static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3351                                   const Stmt *S,
3352                                   const SwitchCase *SC = nullptr);
3353
3354/// Evaluate the body of a loop, and translate the result as appropriate.
3355static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3356                                       const Stmt *Body,
3357                                       const SwitchCase *Case = nullptr) {
3358  BlockScopeRAII Scope(Info);
3359  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3360  case ESR_Break:
3361    return ESR_Succeeded;
3362  case ESR_Succeeded:
3363  case ESR_Continue:
3364    return ESR_Continue;
3365  case ESR_Failed:
3366  case ESR_Returned:
3367  case ESR_CaseNotFound:
3368    return ESR;
3369  }
3370  llvm_unreachable("Invalid EvalStmtResult!");
3371}
3372
3373/// Evaluate a switch statement.
3374static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3375                                     const SwitchStmt *SS) {
3376  BlockScopeRAII Scope(Info);
3377
3378  // Evaluate the switch condition.
3379  APSInt Value;
3380  {
3381    FullExpressionRAII Scope(Info);
3382    if (SS->getConditionVariable() &&
3383        !EvaluateDecl(Info, SS->getConditionVariable()))
3384      return ESR_Failed;
3385    if (!EvaluateInteger(SS->getCond(), Value, Info))
3386      return ESR_Failed;
3387  }
3388
3389  // Find the switch case corresponding to the value of the condition.
3390  // FIXME: Cache this lookup.
3391  const SwitchCase *Found = nullptr;
3392  for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3393       SC = SC->getNextSwitchCase()) {
3394    if (isa<DefaultStmt>(SC)) {
3395      Found = SC;
3396      continue;
3397    }
3398
3399    const CaseStmt *CS = cast<CaseStmt>(SC);
3400    APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3401    APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3402                              : LHS;
3403    if (LHS <= Value && Value <= RHS) {
3404      Found = SC;
3405      break;
3406    }
3407  }
3408
3409  if (!Found)
3410    return ESR_Succeeded;
3411
3412  // Search the switch body for the switch case and evaluate it from there.
3413  switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3414  case ESR_Break:
3415    return ESR_Succeeded;
3416  case ESR_Succeeded:
3417  case ESR_Continue:
3418  case ESR_Failed:
3419  case ESR_Returned:
3420    return ESR;
3421  case ESR_CaseNotFound:
3422    // This can only happen if the switch case is nested within a statement
3423    // expression. We have no intention of supporting that.
3424    Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3425    return ESR_Failed;
3426  }
3427  llvm_unreachable("Invalid EvalStmtResult!");
3428}
3429
3430// Evaluate a statement.
3431static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3432                                   const Stmt *S, const SwitchCase *Case) {
3433  if (!Info.nextStep(S))
3434    return ESR_Failed;
3435
3436  // If we're hunting down a 'case' or 'default' label, recurse through
3437  // substatements until we hit the label.
3438  if (Case) {
3439    // FIXME: We don't start the lifetime of objects whose initialization we
3440    // jump over. However, such objects must be of class type with a trivial
3441    // default constructor that initialize all subobjects, so must be empty,
3442    // so this almost never matters.
3443    switch (S->getStmtClass()) {
3444    case Stmt::CompoundStmtClass:
3445      // FIXME: Precompute which substatement of a compound statement we
3446      // would jump to, and go straight there rather than performing a
3447      // linear scan each time.
3448    case Stmt::LabelStmtClass:
3449    case Stmt::AttributedStmtClass:
3450    case Stmt::DoStmtClass:
3451      break;
3452
3453    case Stmt::CaseStmtClass:
3454    case Stmt::DefaultStmtClass:
3455      if (Case == S)
3456        Case = nullptr;
3457      break;
3458
3459    case Stmt::IfStmtClass: {
3460      // FIXME: Precompute which side of an 'if' we would jump to, and go
3461      // straight there rather than scanning both sides.
3462      const IfStmt *IS = cast<IfStmt>(S);
3463
3464      // Wrap the evaluation in a block scope, in case it's a DeclStmt
3465      // preceded by our switch label.
3466      BlockScopeRAII Scope(Info);
3467
3468      EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3469      if (ESR != ESR_CaseNotFound || !IS->getElse())
3470        return ESR;
3471      return EvaluateStmt(Result, Info, IS->getElse(), Case);
3472    }
3473
3474    case Stmt::WhileStmtClass: {
3475      EvalStmtResult ESR =
3476          EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3477      if (ESR != ESR_Continue)
3478        return ESR;
3479      break;
3480    }
3481
3482    case Stmt::ForStmtClass: {
3483      const ForStmt *FS = cast<ForStmt>(S);
3484      EvalStmtResult ESR =
3485          EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3486      if (ESR != ESR_Continue)
3487        return ESR;
3488      if (FS->getInc()) {
3489        FullExpressionRAII IncScope(Info);
3490        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3491          return ESR_Failed;
3492      }
3493      break;
3494    }
3495
3496    case Stmt::DeclStmtClass:
3497      // FIXME: If the variable has initialization that can't be jumped over,
3498      // bail out of any immediately-surrounding compound-statement too.
3499    default:
3500      return ESR_CaseNotFound;
3501    }
3502  }
3503
3504  switch (S->getStmtClass()) {
3505  default:
3506    if (const Expr *E = dyn_cast<Expr>(S)) {
3507      // Don't bother evaluating beyond an expression-statement which couldn't
3508      // be evaluated.
3509      FullExpressionRAII Scope(Info);
3510      if (!EvaluateIgnoredValue(Info, E))
3511        return ESR_Failed;
3512      return ESR_Succeeded;
3513    }
3514
3515    Info.Diag(S->getLocStart());
3516    return ESR_Failed;
3517
3518  case Stmt::NullStmtClass:
3519    return ESR_Succeeded;
3520
3521  case Stmt::DeclStmtClass: {
3522    const DeclStmt *DS = cast<DeclStmt>(S);
3523    for (const auto *DclIt : DS->decls()) {
3524      // Each declaration initialization is its own full-expression.
3525      // FIXME: This isn't quite right; if we're performing aggregate
3526      // initialization, each braced subexpression is its own full-expression.
3527      FullExpressionRAII Scope(Info);
3528      if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3529        return ESR_Failed;
3530    }
3531    return ESR_Succeeded;
3532  }
3533
3534  case Stmt::ReturnStmtClass: {
3535    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3536    FullExpressionRAII Scope(Info);
3537    if (RetExpr &&
3538        !(Result.Slot
3539              ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3540              : Evaluate(Result.Value, Info, RetExpr)))
3541      return ESR_Failed;
3542    return ESR_Returned;
3543  }
3544
3545  case Stmt::CompoundStmtClass: {
3546    BlockScopeRAII Scope(Info);
3547
3548    const CompoundStmt *CS = cast<CompoundStmt>(S);
3549    for (const auto *BI : CS->body()) {
3550      EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3551      if (ESR == ESR_Succeeded)
3552        Case = nullptr;
3553      else if (ESR != ESR_CaseNotFound)
3554        return ESR;
3555    }
3556    return Case ? ESR_CaseNotFound : ESR_Succeeded;
3557  }
3558
3559  case Stmt::IfStmtClass: {
3560    const IfStmt *IS = cast<IfStmt>(S);
3561
3562    // Evaluate the condition, as either a var decl or as an expression.
3563    BlockScopeRAII Scope(Info);
3564    bool Cond;
3565    if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3566      return ESR_Failed;
3567
3568    if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3569      EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3570      if (ESR != ESR_Succeeded)
3571        return ESR;
3572    }
3573    return ESR_Succeeded;
3574  }
3575
3576  case Stmt::WhileStmtClass: {
3577    const WhileStmt *WS = cast<WhileStmt>(S);
3578    while (true) {
3579      BlockScopeRAII Scope(Info);
3580      bool Continue;
3581      if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3582                        Continue))
3583        return ESR_Failed;
3584      if (!Continue)
3585        break;
3586
3587      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3588      if (ESR != ESR_Continue)
3589        return ESR;
3590    }
3591    return ESR_Succeeded;
3592  }
3593
3594  case Stmt::DoStmtClass: {
3595    const DoStmt *DS = cast<DoStmt>(S);
3596    bool Continue;
3597    do {
3598      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3599      if (ESR != ESR_Continue)
3600        return ESR;
3601      Case = nullptr;
3602
3603      FullExpressionRAII CondScope(Info);
3604      if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3605        return ESR_Failed;
3606    } while (Continue);
3607    return ESR_Succeeded;
3608  }
3609
3610  case Stmt::ForStmtClass: {
3611    const ForStmt *FS = cast<ForStmt>(S);
3612    BlockScopeRAII Scope(Info);
3613    if (FS->getInit()) {
3614      EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3615      if (ESR != ESR_Succeeded)
3616        return ESR;
3617    }
3618    while (true) {
3619      BlockScopeRAII Scope(Info);
3620      bool Continue = true;
3621      if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3622                                         FS->getCond(), Continue))
3623        return ESR_Failed;
3624      if (!Continue)
3625        break;
3626
3627      EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3628      if (ESR != ESR_Continue)
3629        return ESR;
3630
3631      if (FS->getInc()) {
3632        FullExpressionRAII IncScope(Info);
3633        if (!EvaluateIgnoredValue(Info, FS->getInc()))
3634          return ESR_Failed;
3635      }
3636    }
3637    return ESR_Succeeded;
3638  }
3639
3640  case Stmt::CXXForRangeStmtClass: {
3641    const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3642    BlockScopeRAII Scope(Info);
3643
3644    // Initialize the __range variable.
3645    EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3646    if (ESR != ESR_Succeeded)
3647      return ESR;
3648
3649    // Create the __begin and __end iterators.
3650    ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3651    if (ESR != ESR_Succeeded)
3652      return ESR;
3653
3654    while (true) {
3655      // Condition: __begin != __end.
3656      {
3657        bool Continue = true;
3658        FullExpressionRAII CondExpr(Info);
3659        if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3660          return ESR_Failed;
3661        if (!Continue)
3662          break;
3663      }
3664
3665      // User's variable declaration, initialized by *__begin.
3666      BlockScopeRAII InnerScope(Info);
3667      ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3668      if (ESR != ESR_Succeeded)
3669        return ESR;
3670
3671      // Loop body.
3672      ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3673      if (ESR != ESR_Continue)
3674        return ESR;
3675
3676      // Increment: ++__begin
3677      if (!EvaluateIgnoredValue(Info, FS->getInc()))
3678        return ESR_Failed;
3679    }
3680
3681    return ESR_Succeeded;
3682  }
3683
3684  case Stmt::SwitchStmtClass:
3685    return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3686
3687  case Stmt::ContinueStmtClass:
3688    return ESR_Continue;
3689
3690  case Stmt::BreakStmtClass:
3691    return ESR_Break;
3692
3693  case Stmt::LabelStmtClass:
3694    return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3695
3696  case Stmt::AttributedStmtClass:
3697    // As a general principle, C++11 attributes can be ignored without
3698    // any semantic impact.
3699    return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3700                        Case);
3701
3702  case Stmt::CaseStmtClass:
3703  case Stmt::DefaultStmtClass:
3704    return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3705  }
3706}
3707
3708/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3709/// default constructor. If so, we'll fold it whether or not it's marked as
3710/// constexpr. If it is marked as constexpr, we will never implicitly define it,
3711/// so we need special handling.
3712static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3713                                           const CXXConstructorDecl *CD,
3714                                           bool IsValueInitialization) {
3715  if (!CD->isTrivial() || !CD->isDefaultConstructor())
3716    return false;
3717
3718  // Value-initialization does not call a trivial default constructor, so such a
3719  // call is a core constant expression whether or not the constructor is
3720  // constexpr.
3721  if (!CD->isConstexpr() && !IsValueInitialization) {
3722    if (Info.getLangOpts().CPlusPlus11) {
3723      // FIXME: If DiagDecl is an implicitly-declared special member function,
3724      // we should be much more explicit about why it's not constexpr.
3725      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3726        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3727      Info.Note(CD->getLocation(), diag::note_declared_at);
3728    } else {
3729      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3730    }
3731  }
3732  return true;
3733}
3734
3735/// CheckConstexprFunction - Check that a function can be called in a constant
3736/// expression.
3737static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3738                                   const FunctionDecl *Declaration,
3739                                   const FunctionDecl *Definition) {
3740  // Potential constant expressions can contain calls to declared, but not yet
3741  // defined, constexpr functions.
3742  if (Info.checkingPotentialConstantExpression() && !Definition &&
3743      Declaration->isConstexpr())
3744    return false;
3745
3746  // Bail out with no diagnostic if the function declaration itself is invalid.
3747  // We will have produced a relevant diagnostic while parsing it.
3748  if (Declaration->isInvalidDecl())
3749    return false;
3750
3751  // Can we evaluate this function call?
3752  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3753    return true;
3754
3755  if (Info.getLangOpts().CPlusPlus11) {
3756    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3757    // FIXME: If DiagDecl is an implicitly-declared special member function, we
3758    // should be much more explicit about why it's not constexpr.
3759    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3760      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3761      << DiagDecl;
3762    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3763  } else {
3764    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3765  }
3766  return false;
3767}
3768
3769/// Determine if a class has any fields that might need to be copied by a
3770/// trivial copy or move operation.
3771static bool hasFields(const CXXRecordDecl *RD) {
3772  if (!RD || RD->isEmpty())
3773    return false;
3774  for (auto *FD : RD->fields()) {
3775    if (FD->isUnnamedBitfield())
3776      continue;
3777    return true;
3778  }
3779  for (auto &Base : RD->bases())
3780    if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3781      return true;
3782  return false;
3783}
3784
3785namespace {
3786typedef SmallVector<APValue, 8> ArgVector;
3787}
3788
3789/// EvaluateArgs - Evaluate the arguments to a function call.
3790static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3791                         EvalInfo &Info) {
3792  bool Success = true;
3793  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3794       I != E; ++I) {
3795    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3796      // If we're checking for a potential constant expression, evaluate all
3797      // initializers even if some of them fail.
3798      if (!Info.keepEvaluatingAfterFailure())
3799        return false;
3800      Success = false;
3801    }
3802  }
3803  return Success;
3804}
3805
3806/// Evaluate a function call.
3807static bool HandleFunctionCall(SourceLocation CallLoc,
3808                               const FunctionDecl *Callee, const LValue *This,
3809                               ArrayRef<const Expr*> Args, const Stmt *Body,
3810                               EvalInfo &Info, APValue &Result,
3811                               const LValue *ResultSlot) {
3812  ArgVector ArgValues(Args.size());
3813  if (!EvaluateArgs(Args, ArgValues, Info))
3814    return false;
3815
3816  if (!Info.CheckCallLimit(CallLoc))
3817    return false;
3818
3819  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3820
3821  // For a trivial copy or move assignment, perform an APValue copy. This is
3822  // essential for unions, where the operations performed by the assignment
3823  // operator cannot be represented as statements.
3824  //
3825  // Skip this for non-union classes with no fields; in that case, the defaulted
3826  // copy/move does not actually read the object.
3827  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3828  if (MD && MD->isDefaulted() &&
3829      (MD->getParent()->isUnion() ||
3830       (MD->isTrivial() && hasFields(MD->getParent())))) {
3831    assert(This &&
3832           (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3833    LValue RHS;
3834    RHS.setFrom(Info.Ctx, ArgValues[0]);
3835    APValue RHSValue;
3836    if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3837                                        RHS, RHSValue))
3838      return false;
3839    if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3840                          RHSValue))
3841      return false;
3842    This->moveInto(Result);
3843    return true;
3844  }
3845
3846  StmtResult Ret = {Result, ResultSlot};
3847  EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
3848  if (ESR == ESR_Succeeded) {
3849    if (Callee->getReturnType()->isVoidType())
3850      return true;
3851    Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3852  }
3853  return ESR == ESR_Returned;
3854}
3855
3856/// Evaluate a constructor call.
3857static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3858                                  ArrayRef<const Expr*> Args,
3859                                  const CXXConstructorDecl *Definition,
3860                                  EvalInfo &Info, APValue &Result) {
3861  ArgVector ArgValues(Args.size());
3862  if (!EvaluateArgs(Args, ArgValues, Info))
3863    return false;
3864
3865  if (!Info.CheckCallLimit(CallLoc))
3866    return false;
3867
3868  const CXXRecordDecl *RD = Definition->getParent();
3869  if (RD->getNumVBases()) {
3870    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3871    return false;
3872  }
3873
3874  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3875
3876  // FIXME: Creating an APValue just to hold a nonexistent return value is
3877  // wasteful.
3878  APValue RetVal;
3879  StmtResult Ret = {RetVal, nullptr};
3880
3881  // If it's a delegating constructor, just delegate.
3882  if (Definition->isDelegatingConstructor()) {
3883    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3884    {
3885      FullExpressionRAII InitScope(Info);
3886      if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3887        return false;
3888    }
3889    return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
3890  }
3891
3892  // For a trivial copy or move constructor, perform an APValue copy. This is
3893  // essential for unions (or classes with anonymous union members), where the
3894  // operations performed by the constructor cannot be represented by
3895  // ctor-initializers.
3896  //
3897  // Skip this for empty non-union classes; we should not perform an
3898  // lvalue-to-rvalue conversion on them because their copy constructor does not
3899  // actually read them.
3900  if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
3901      (Definition->getParent()->isUnion() ||
3902       (Definition->isTrivial() && hasFields(Definition->getParent())))) {
3903    LValue RHS;
3904    RHS.setFrom(Info.Ctx, ArgValues[0]);
3905    return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3906                                          RHS, Result);
3907  }
3908
3909  // Reserve space for the struct members.
3910  if (!RD->isUnion() && Result.isUninit())
3911    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3912                     std::distance(RD->field_begin(), RD->field_end()));
3913
3914  if (RD->isInvalidDecl()) return false;
3915  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3916
3917  // A scope for temporaries lifetime-extended by reference members.
3918  BlockScopeRAII LifetimeExtendedScope(Info);
3919
3920  bool Success = true;
3921  unsigned BasesSeen = 0;
3922#ifndef NDEBUG
3923  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3924#endif
3925  for (const auto *I : Definition->inits()) {
3926    LValue Subobject = This;
3927    APValue *Value = &Result;
3928
3929    // Determine the subobject to initialize.
3930    FieldDecl *FD = nullptr;
3931    if (I->isBaseInitializer()) {
3932      QualType BaseType(I->getBaseClass(), 0);
3933#ifndef NDEBUG
3934      // Non-virtual base classes are initialized in the order in the class
3935      // definition. We have already checked for virtual base classes.
3936      assert(!BaseIt->isVirtual() && "virtual base for literal type");
3937      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3938             "base class initializers not in expected order");
3939      ++BaseIt;
3940#endif
3941      if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3942                                  BaseType->getAsCXXRecordDecl(), &Layout))
3943        return false;
3944      Value = &Result.getStructBase(BasesSeen++);
3945    } else if ((FD = I->getMember())) {
3946      if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3947        return false;
3948      if (RD->isUnion()) {
3949        Result = APValue(FD);
3950        Value = &Result.getUnionValue();
3951      } else {
3952        Value = &Result.getStructField(FD->getFieldIndex());
3953      }
3954    } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3955      // Walk the indirect field decl's chain to find the object to initialize,
3956      // and make sure we've initialized every step along it.
3957      for (auto *C : IFD->chain()) {
3958        FD = cast<FieldDecl>(C);
3959        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3960        // Switch the union field if it differs. This happens if we had
3961        // preceding zero-initialization, and we're now initializing a union
3962        // subobject other than the first.
3963        // FIXME: In this case, the values of the other subobjects are
3964        // specified, since zero-initialization sets all padding bits to zero.
3965        if (Value->isUninit() ||
3966            (Value->isUnion() && Value->getUnionField() != FD)) {
3967          if (CD->isUnion())
3968            *Value = APValue(FD);
3969          else
3970            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3971                             std::distance(CD->field_begin(), CD->field_end()));
3972        }
3973        if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3974          return false;
3975        if (CD->isUnion())
3976          Value = &Value->getUnionValue();
3977        else
3978          Value = &Value->getStructField(FD->getFieldIndex());
3979      }
3980    } else {
3981      llvm_unreachable("unknown base initializer kind");
3982    }
3983
3984    FullExpressionRAII InitScope(Info);
3985    if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3986        (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3987                                                          *Value, FD))) {
3988      // If we're checking for a potential constant expression, evaluate all
3989      // initializers even if some of them fail.
3990      if (!Info.keepEvaluatingAfterFailure())
3991        return false;
3992      Success = false;
3993    }
3994  }
3995
3996  return Success &&
3997         EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
3998}
3999
4000//===----------------------------------------------------------------------===//
4001// Generic Evaluation
4002//===----------------------------------------------------------------------===//
4003namespace {
4004
4005template <class Derived>
4006class ExprEvaluatorBase
4007  : public ConstStmtVisitor<Derived, bool> {
4008private:
4009  Derived &getDerived() { return static_cast<Derived&>(*this); }
4010  bool DerivedSuccess(const APValue &V, const Expr *E) {
4011    return getDerived().Success(V, E);
4012  }
4013  bool DerivedZeroInitialization(const Expr *E) {
4014    return getDerived().ZeroInitialization(E);
4015  }
4016
4017  // Check whether a conditional operator with a non-constant condition is a
4018  // potential constant expression. If neither arm is a potential constant
4019  // expression, then the conditional operator is not either.
4020  template<typename ConditionalOperator>
4021  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4022    assert(Info.checkingPotentialConstantExpression());
4023
4024    // Speculatively evaluate both arms.
4025    {
4026      SmallVector<PartialDiagnosticAt, 8> Diag;
4027      SpeculativeEvaluationRAII Speculate(Info, &Diag);
4028
4029      StmtVisitorTy::Visit(E->getFalseExpr());
4030      if (Diag.empty())
4031        return;
4032
4033      Diag.clear();
4034      StmtVisitorTy::Visit(E->getTrueExpr());
4035      if (Diag.empty())
4036        return;
4037    }
4038
4039    Error(E, diag::note_constexpr_conditional_never_const);
4040  }
4041
4042
4043  template<typename ConditionalOperator>
4044  bool HandleConditionalOperator(const ConditionalOperator *E) {
4045    bool BoolResult;
4046    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4047      if (Info.checkingPotentialConstantExpression())
4048        CheckPotentialConstantConditional(E);
4049      return false;
4050    }
4051
4052    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4053    return StmtVisitorTy::Visit(EvalExpr);
4054  }
4055
4056protected:
4057  EvalInfo &Info;
4058  typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4059  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4060
4061  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4062    return Info.CCEDiag(E, D);
4063  }
4064
4065  bool ZeroInitialization(const Expr *E) { return Error(E); }
4066
4067public:
4068  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4069
4070  EvalInfo &getEvalInfo() { return Info; }
4071
4072  /// Report an evaluation error. This should only be called when an error is
4073  /// first discovered. When propagating an error, just return false.
4074  bool Error(const Expr *E, diag::kind D) {
4075    Info.Diag(E, D);
4076    return false;
4077  }
4078  bool Error(const Expr *E) {
4079    return Error(E, diag::note_invalid_subexpr_in_const_expr);
4080  }
4081
4082  bool VisitStmt(const Stmt *) {
4083    llvm_unreachable("Expression evaluator should not be called on stmts");
4084  }
4085  bool VisitExpr(const Expr *E) {
4086    return Error(E);
4087  }
4088
4089  bool VisitParenExpr(const ParenExpr *E)
4090    { return StmtVisitorTy::Visit(E->getSubExpr()); }
4091  bool VisitUnaryExtension(const UnaryOperator *E)
4092    { return StmtVisitorTy::Visit(E->getSubExpr()); }
4093  bool VisitUnaryPlus(const UnaryOperator *E)
4094    { return StmtVisitorTy::Visit(E->getSubExpr()); }
4095  bool VisitChooseExpr(const ChooseExpr *E)
4096    { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
4097  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4098    { return StmtVisitorTy::Visit(E->getResultExpr()); }
4099  bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4100    { return StmtVisitorTy::Visit(E->getReplacement()); }
4101  bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4102    { return StmtVisitorTy::Visit(E->getExpr()); }
4103  bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4104    // The initializer may not have been parsed yet, or might be erroneous.
4105    if (!E->getExpr())
4106      return Error(E);
4107    return StmtVisitorTy::Visit(E->getExpr());
4108  }
4109  // We cannot create any objects for which cleanups are required, so there is
4110  // nothing to do here; all cleanups must come from unevaluated subexpressions.
4111  bool VisitExprWithCleanups(const ExprWithCleanups *E)
4112    { return StmtVisitorTy::Visit(E->getSubExpr()); }
4113
4114  bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4115    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4116    return static_cast<Derived*>(this)->VisitCastExpr(E);
4117  }
4118  bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4119    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4120    return static_cast<Derived*>(this)->VisitCastExpr(E);
4121  }
4122
4123  bool VisitBinaryOperator(const BinaryOperator *E) {
4124    switch (E->getOpcode()) {
4125    default:
4126      return Error(E);
4127
4128    case BO_Comma:
4129      VisitIgnoredValue(E->getLHS());
4130      return StmtVisitorTy::Visit(E->getRHS());
4131
4132    case BO_PtrMemD:
4133    case BO_PtrMemI: {
4134      LValue Obj;
4135      if (!HandleMemberPointerAccess(Info, E, Obj))
4136        return false;
4137      APValue Result;
4138      if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4139        return false;
4140      return DerivedSuccess(Result, E);
4141    }
4142    }
4143  }
4144
4145  bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4146    // Evaluate and cache the common expression. We treat it as a temporary,
4147    // even though it's not quite the same thing.
4148    if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4149                  Info, E->getCommon()))
4150      return false;
4151
4152    return HandleConditionalOperator(E);
4153  }
4154
4155  bool VisitConditionalOperator(const ConditionalOperator *E) {
4156    bool IsBcpCall = false;
4157    // If the condition (ignoring parens) is a __builtin_constant_p call,
4158    // the result is a constant expression if it can be folded without
4159    // side-effects. This is an important GNU extension. See GCC PR38377
4160    // for discussion.
4161    if (const CallExpr *CallCE =
4162          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4163      if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4164        IsBcpCall = true;
4165
4166    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4167    // constant expression; we can't check whether it's potentially foldable.
4168    if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4169      return false;
4170
4171    FoldConstant Fold(Info, IsBcpCall);
4172    if (!HandleConditionalOperator(E)) {
4173      Fold.keepDiagnostics();
4174      return false;
4175    }
4176
4177    return true;
4178  }
4179
4180  bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4181    if (APValue *Value = Info.CurrentCall->getTemporary(E))
4182      return DerivedSuccess(*Value, E);
4183
4184    const Expr *Source = E->getSourceExpr();
4185    if (!Source)
4186      return Error(E);
4187    if (Source == E) { // sanity checking.
4188      assert(0 && "OpaqueValueExpr recursively refers to itself");
4189      return Error(E);
4190    }
4191    return StmtVisitorTy::Visit(Source);
4192  }
4193
4194  bool VisitCallExpr(const CallExpr *E) {
4195    APValue Result;
4196    if (!handleCallExpr(E, Result, nullptr))
4197      return false;
4198    return DerivedSuccess(Result, E);
4199  }
4200
4201  bool handleCallExpr(const CallExpr *E, APValue &Result,
4202                     const LValue *ResultSlot) {
4203    const Expr *Callee = E->getCallee()->IgnoreParens();
4204    QualType CalleeType = Callee->getType();
4205
4206    const FunctionDecl *FD = nullptr;
4207    LValue *This = nullptr, ThisVal;
4208    auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4209    bool HasQualifier = false;
4210
4211    // Extract function decl and 'this' pointer from the callee.
4212    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4213      const ValueDecl *Member = nullptr;
4214      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4215        // Explicit bound member calls, such as x.f() or p->g();
4216        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4217          return false;
4218        Member = ME->getMemberDecl();
4219        This = &ThisVal;
4220        HasQualifier = ME->hasQualifier();
4221      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4222        // Indirect bound member calls ('.*' or '->*').
4223        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4224        if (!Member) return false;
4225        This = &ThisVal;
4226      } else
4227        return Error(Callee);
4228
4229      FD = dyn_cast<FunctionDecl>(Member);
4230      if (!FD)
4231        return Error(Callee);
4232    } else if (CalleeType->isFunctionPointerType()) {
4233      LValue Call;
4234      if (!EvaluatePointer(Callee, Call, Info))
4235        return false;
4236
4237      if (!Call.getLValueOffset().isZero())
4238        return Error(Callee);
4239      FD = dyn_cast_or_null<FunctionDecl>(
4240                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
4241      if (!FD)
4242        return Error(Callee);
4243
4244      // Overloaded operator calls to member functions are represented as normal
4245      // calls with '*this' as the first argument.
4246      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4247      if (MD && !MD->isStatic()) {
4248        // FIXME: When selecting an implicit conversion for an overloaded
4249        // operator delete, we sometimes try to evaluate calls to conversion
4250        // operators without a 'this' parameter!
4251        if (Args.empty())
4252          return Error(E);
4253
4254        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4255          return false;
4256        This = &ThisVal;
4257        Args = Args.slice(1);
4258      }
4259
4260      // Don't call function pointers which have been cast to some other type.
4261      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4262        return Error(E);
4263    } else
4264      return Error(E);
4265
4266    if (This && !This->checkSubobject(Info, E, CSK_This))
4267      return false;
4268
4269    // DR1358 allows virtual constexpr functions in some cases. Don't allow
4270    // calls to such functions in constant expressions.
4271    if (This && !HasQualifier &&
4272        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4273      return Error(E, diag::note_constexpr_virtual_call);
4274
4275    const FunctionDecl *Definition = nullptr;
4276    Stmt *Body = FD->getBody(Definition);
4277
4278    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4279        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4280                            Result, ResultSlot))
4281      return false;
4282
4283    return true;
4284  }
4285
4286  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4287    return StmtVisitorTy::Visit(E->getInitializer());
4288  }
4289  bool VisitInitListExpr(const InitListExpr *E) {
4290    if (E->getNumInits() == 0)
4291      return DerivedZeroInitialization(E);
4292    if (E->getNumInits() == 1)
4293      return StmtVisitorTy::Visit(E->getInit(0));
4294    return Error(E);
4295  }
4296  bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4297    return DerivedZeroInitialization(E);
4298  }
4299  bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4300    return DerivedZeroInitialization(E);
4301  }
4302  bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4303    return DerivedZeroInitialization(E);
4304  }
4305
4306  /// A member expression where the object is a prvalue is itself a prvalue.
4307  bool VisitMemberExpr(const MemberExpr *E) {
4308    assert(!E->isArrow() && "missing call to bound member function?");
4309
4310    APValue Val;
4311    if (!Evaluate(Val, Info, E->getBase()))
4312      return false;
4313
4314    QualType BaseTy = E->getBase()->getType();
4315
4316    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4317    if (!FD) return Error(E);
4318    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4319    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4320           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4321
4322    CompleteObject Obj(&Val, BaseTy);
4323    SubobjectDesignator Designator(BaseTy);
4324    Designator.addDeclUnchecked(FD);
4325
4326    APValue Result;
4327    return extractSubobject(Info, E, Obj, Designator, Result) &&
4328           DerivedSuccess(Result, E);
4329  }
4330
4331  bool VisitCastExpr(const CastExpr *E) {
4332    switch (E->getCastKind()) {
4333    default:
4334      break;
4335
4336    case CK_AtomicToNonAtomic: {
4337      APValue AtomicVal;
4338      if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4339        return false;
4340      return DerivedSuccess(AtomicVal, E);
4341    }
4342
4343    case CK_NoOp:
4344    case CK_UserDefinedConversion:
4345      return StmtVisitorTy::Visit(E->getSubExpr());
4346
4347    case CK_LValueToRValue: {
4348      LValue LVal;
4349      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4350        return false;
4351      APValue RVal;
4352      // Note, we use the subexpression's type in order to retain cv-qualifiers.
4353      if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4354                                          LVal, RVal))
4355        return false;
4356      return DerivedSuccess(RVal, E);
4357    }
4358    }
4359
4360    return Error(E);
4361  }
4362
4363  bool VisitUnaryPostInc(const UnaryOperator *UO) {
4364    return VisitUnaryPostIncDec(UO);
4365  }
4366  bool VisitUnaryPostDec(const UnaryOperator *UO) {
4367    return VisitUnaryPostIncDec(UO);
4368  }
4369  bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4370    if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4371      return Error(UO);
4372
4373    LValue LVal;
4374    if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4375      return false;
4376    APValue RVal;
4377    if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4378                      UO->isIncrementOp(), &RVal))
4379      return false;
4380    return DerivedSuccess(RVal, UO);
4381  }
4382
4383  bool VisitStmtExpr(const StmtExpr *E) {
4384    // We will have checked the full-expressions inside the statement expression
4385    // when they were completed, and don't need to check them again now.
4386    if (Info.checkingForOverflow())
4387      return Error(E);
4388
4389    BlockScopeRAII Scope(Info);
4390    const CompoundStmt *CS = E->getSubStmt();
4391    if (CS->body_empty())
4392      return true;
4393
4394    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4395                                           BE = CS->body_end();
4396         /**/; ++BI) {
4397      if (BI + 1 == BE) {
4398        const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4399        if (!FinalExpr) {
4400          Info.Diag((*BI)->getLocStart(),
4401                    diag::note_constexpr_stmt_expr_unsupported);
4402          return false;
4403        }
4404        return this->Visit(FinalExpr);
4405      }
4406
4407      APValue ReturnValue;
4408      StmtResult Result = { ReturnValue, nullptr };
4409      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4410      if (ESR != ESR_Succeeded) {
4411        // FIXME: If the statement-expression terminated due to 'return',
4412        // 'break', or 'continue', it would be nice to propagate that to
4413        // the outer statement evaluation rather than bailing out.
4414        if (ESR != ESR_Failed)
4415          Info.Diag((*BI)->getLocStart(),
4416                    diag::note_constexpr_stmt_expr_unsupported);
4417        return false;
4418      }
4419    }
4420
4421    llvm_unreachable("Return from function from the loop above.");
4422  }
4423
4424  /// Visit a value which is evaluated, but whose value is ignored.
4425  void VisitIgnoredValue(const Expr *E) {
4426    EvaluateIgnoredValue(Info, E);
4427  }
4428};
4429
4430}
4431
4432//===----------------------------------------------------------------------===//
4433// Common base class for lvalue and temporary evaluation.
4434//===----------------------------------------------------------------------===//
4435namespace {
4436template<class Derived>
4437class LValueExprEvaluatorBase
4438  : public ExprEvaluatorBase<Derived> {
4439protected:
4440  LValue &Result;
4441  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4442  typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4443
4444  bool Success(APValue::LValueBase B) {
4445    Result.set(B);
4446    return true;
4447  }
4448
4449public:
4450  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4451    ExprEvaluatorBaseTy(Info), Result(Result) {}
4452
4453  bool Success(const APValue &V, const Expr *E) {
4454    Result.setFrom(this->Info.Ctx, V);
4455    return true;
4456  }
4457
4458  bool VisitMemberExpr(const MemberExpr *E) {
4459    // Handle non-static data members.
4460    QualType BaseTy;
4461    bool EvalOK;
4462    if (E->isArrow()) {
4463      EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
4464      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4465    } else if (E->getBase()->isRValue()) {
4466      assert(E->getBase()->getType()->isRecordType());
4467      EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
4468      BaseTy = E->getBase()->getType();
4469    } else {
4470      EvalOK = this->Visit(E->getBase());
4471      BaseTy = E->getBase()->getType();
4472    }
4473    if (!EvalOK) {
4474      if (!this->Info.allowInvalidBaseExpr())
4475        return false;
4476      Result.setInvalid(E);
4477      return true;
4478    }
4479
4480    const ValueDecl *MD = E->getMemberDecl();
4481    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4482      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4483             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4484      (void)BaseTy;
4485      if (!HandleLValueMember(this->Info, E, Result, FD))
4486        return false;
4487    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4488      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4489        return false;
4490    } else
4491      return this->Error(E);
4492
4493    if (MD->getType()->isReferenceType()) {
4494      APValue RefValue;
4495      if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4496                                          RefValue))
4497        return false;
4498      return Success(RefValue, E);
4499    }
4500    return true;
4501  }
4502
4503  bool VisitBinaryOperator(const BinaryOperator *E) {
4504    switch (E->getOpcode()) {
4505    default:
4506      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4507
4508    case BO_PtrMemD:
4509    case BO_PtrMemI:
4510      return HandleMemberPointerAccess(this->Info, E, Result);
4511    }
4512  }
4513
4514  bool VisitCastExpr(const CastExpr *E) {
4515    switch (E->getCastKind()) {
4516    default:
4517      return ExprEvaluatorBaseTy::VisitCastExpr(E);
4518
4519    case CK_DerivedToBase:
4520    case CK_UncheckedDerivedToBase:
4521      if (!this->Visit(E->getSubExpr()))
4522        return false;
4523
4524      // Now figure out the necessary offset to add to the base LV to get from
4525      // the derived class to the base class.
4526      return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4527                                  Result);
4528    }
4529  }
4530};
4531}
4532
4533//===----------------------------------------------------------------------===//
4534// LValue Evaluation
4535//
4536// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4537// function designators (in C), decl references to void objects (in C), and
4538// temporaries (if building with -Wno-address-of-temporary).
4539//
4540// LValue evaluation produces values comprising a base expression of one of the
4541// following types:
4542// - Declarations
4543//  * VarDecl
4544//  * FunctionDecl
4545// - Literals
4546//  * CompoundLiteralExpr in C
4547//  * StringLiteral
4548//  * CXXTypeidExpr
4549//  * PredefinedExpr
4550//  * ObjCStringLiteralExpr
4551//  * ObjCEncodeExpr
4552//  * AddrLabelExpr
4553//  * BlockExpr
4554//  * CallExpr for a MakeStringConstant builtin
4555// - Locals and temporaries
4556//  * MaterializeTemporaryExpr
4557//  * Any Expr, with a CallIndex indicating the function in which the temporary
4558//    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4559//    from the AST (FIXME).
4560//  * A MaterializeTemporaryExpr that has static storage duration, with no
4561//    CallIndex, for a lifetime-extended temporary.
4562// plus an offset in bytes.
4563//===----------------------------------------------------------------------===//
4564namespace {
4565class LValueExprEvaluator
4566  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4567public:
4568  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4569    LValueExprEvaluatorBaseTy(Info, Result) {}
4570
4571  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4572  bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4573
4574  bool VisitDeclRefExpr(const DeclRefExpr *E);
4575  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4576  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4577  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4578  bool VisitMemberExpr(const MemberExpr *E);
4579  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
4580  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4581  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4582  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4583  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4584  bool VisitUnaryDeref(const UnaryOperator *E);
4585  bool VisitUnaryReal(const UnaryOperator *E);
4586  bool VisitUnaryImag(const UnaryOperator *E);
4587  bool VisitUnaryPreInc(const UnaryOperator *UO) {
4588    return VisitUnaryPreIncDec(UO);
4589  }
4590  bool VisitUnaryPreDec(const UnaryOperator *UO) {
4591    return VisitUnaryPreIncDec(UO);
4592  }
4593  bool VisitBinAssign(const BinaryOperator *BO);
4594  bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4595
4596  bool VisitCastExpr(const CastExpr *E) {
4597    switch (E->getCastKind()) {
4598    default:
4599      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4600
4601    case CK_LValueBitCast:
4602      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4603      if (!Visit(E->getSubExpr()))
4604        return false;
4605      Result.Designator.setInvalid();
4606      return true;
4607
4608    case CK_BaseToDerived:
4609      if (!Visit(E->getSubExpr()))
4610        return false;
4611      return HandleBaseToDerivedCast(Info, E, Result);
4612    }
4613  }
4614};
4615} // end anonymous namespace
4616
4617/// Evaluate an expression as an lvalue. This can be legitimately called on
4618/// expressions which are not glvalues, in three cases:
4619///  * function designators in C, and
4620///  * "extern void" objects
4621///  * @selector() expressions in Objective-C
4622static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4623  assert(E->isGLValue() || E->getType()->isFunctionType() ||
4624         E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
4625  return LValueExprEvaluator(Info, Result).Visit(E);
4626}
4627
4628bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4629  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4630    return Success(FD);
4631  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4632    return VisitVarDecl(E, VD);
4633  return Error(E);
4634}
4635
4636bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4637  CallStackFrame *Frame = nullptr;
4638  if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4639    Frame = Info.CurrentCall;
4640
4641  if (!VD->getType()->isReferenceType()) {
4642    if (Frame) {
4643      Result.set(VD, Frame->Index);
4644      return true;
4645    }
4646    return Success(VD);
4647  }
4648
4649  APValue *V;
4650  if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4651    return false;
4652  if (V->isUninit()) {
4653    if (!Info.checkingPotentialConstantExpression())
4654      Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4655    return false;
4656  }
4657  return Success(*V, E);
4658}
4659
4660bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4661    const MaterializeTemporaryExpr *E) {
4662  // Walk through the expression to find the materialized temporary itself.
4663  SmallVector<const Expr *, 2> CommaLHSs;
4664  SmallVector<SubobjectAdjustment, 2> Adjustments;
4665  const Expr *Inner = E->GetTemporaryExpr()->
4666      skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4667
4668  // If we passed any comma operators, evaluate their LHSs.
4669  for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4670    if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4671      return false;
4672
4673  // A materialized temporary with static storage duration can appear within the
4674  // result of a constant expression evaluation, so we need to preserve its
4675  // value for use outside this evaluation.
4676  APValue *Value;
4677  if (E->getStorageDuration() == SD_Static) {
4678    Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4679    *Value = APValue();
4680    Result.set(E);
4681  } else {
4682    Value = &Info.CurrentCall->
4683        createTemporary(E, E->getStorageDuration() == SD_Automatic);
4684    Result.set(E, Info.CurrentCall->Index);
4685  }
4686
4687  QualType Type = Inner->getType();
4688
4689  // Materialize the temporary itself.
4690  if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4691      (E->getStorageDuration() == SD_Static &&
4692       !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4693    *Value = APValue();
4694    return false;
4695  }
4696
4697  // Adjust our lvalue to refer to the desired subobject.
4698  for (unsigned I = Adjustments.size(); I != 0; /**/) {
4699    --I;
4700    switch (Adjustments[I].Kind) {
4701    case SubobjectAdjustment::DerivedToBaseAdjustment:
4702      if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4703                                Type, Result))
4704        return false;
4705      Type = Adjustments[I].DerivedToBase.BasePath->getType();
4706      break;
4707
4708    case SubobjectAdjustment::FieldAdjustment:
4709      if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4710        return false;
4711      Type = Adjustments[I].Field->getType();
4712      break;
4713
4714    case SubobjectAdjustment::MemberPointerAdjustment:
4715      if (!HandleMemberPointerAccess(this->Info, Type, Result,
4716                                     Adjustments[I].Ptr.RHS))
4717        return false;
4718      Type = Adjustments[I].Ptr.MPT->getPointeeType();
4719      break;
4720    }
4721  }
4722
4723  return true;
4724}
4725
4726bool
4727LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4728  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4729  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4730  // only see this when folding in C, so there's no standard to follow here.
4731  return Success(E);
4732}
4733
4734bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4735  if (!E->isPotentiallyEvaluated())
4736    return Success(E);
4737
4738  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4739    << E->getExprOperand()->getType()
4740    << E->getExprOperand()->getSourceRange();
4741  return false;
4742}
4743
4744bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4745  return Success(E);
4746}
4747
4748bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4749  // Handle static data members.
4750  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4751    VisitIgnoredValue(E->getBase());
4752    return VisitVarDecl(E, VD);
4753  }
4754
4755  // Handle static member functions.
4756  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4757    if (MD->isStatic()) {
4758      VisitIgnoredValue(E->getBase());
4759      return Success(MD);
4760    }
4761  }
4762
4763  // Handle non-static data members.
4764  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4765}
4766
4767bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4768  // FIXME: Deal with vectors as array subscript bases.
4769  if (E->getBase()->getType()->isVectorType())
4770    return Error(E);
4771
4772  if (!EvaluatePointer(E->getBase(), Result, Info))
4773    return false;
4774
4775  APSInt Index;
4776  if (!EvaluateInteger(E->getIdx(), Index, Info))
4777    return false;
4778
4779  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4780                                     getExtValue(Index));
4781}
4782
4783bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4784  return EvaluatePointer(E->getSubExpr(), Result, Info);
4785}
4786
4787bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4788  if (!Visit(E->getSubExpr()))
4789    return false;
4790  // __real is a no-op on scalar lvalues.
4791  if (E->getSubExpr()->getType()->isAnyComplexType())
4792    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4793  return true;
4794}
4795
4796bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4797  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4798         "lvalue __imag__ on scalar?");
4799  if (!Visit(E->getSubExpr()))
4800    return false;
4801  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4802  return true;
4803}
4804
4805bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4806  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4807    return Error(UO);
4808
4809  if (!this->Visit(UO->getSubExpr()))
4810    return false;
4811
4812  return handleIncDec(
4813      this->Info, UO, Result, UO->getSubExpr()->getType(),
4814      UO->isIncrementOp(), nullptr);
4815}
4816
4817bool LValueExprEvaluator::VisitCompoundAssignOperator(
4818    const CompoundAssignOperator *CAO) {
4819  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4820    return Error(CAO);
4821
4822  APValue RHS;
4823
4824  // The overall lvalue result is the result of evaluating the LHS.
4825  if (!this->Visit(CAO->getLHS())) {
4826    if (Info.keepEvaluatingAfterFailure())
4827      Evaluate(RHS, this->Info, CAO->getRHS());
4828    return false;
4829  }
4830
4831  if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4832    return false;
4833
4834  return handleCompoundAssignment(
4835      this->Info, CAO,
4836      Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4837      CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4838}
4839
4840bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4841  if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4842    return Error(E);
4843
4844  APValue NewVal;
4845
4846  if (!this->Visit(E->getLHS())) {
4847    if (Info.keepEvaluatingAfterFailure())
4848      Evaluate(NewVal, this->Info, E->getRHS());
4849    return false;
4850  }
4851
4852  if (!Evaluate(NewVal, this->Info, E->getRHS()))
4853    return false;
4854
4855  return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4856                          NewVal);
4857}
4858
4859//===----------------------------------------------------------------------===//
4860// Pointer Evaluation
4861//===----------------------------------------------------------------------===//
4862
4863namespace {
4864class PointerExprEvaluator
4865  : public ExprEvaluatorBase<PointerExprEvaluator> {
4866  LValue &Result;
4867
4868  bool Success(const Expr *E) {
4869    Result.set(E);
4870    return true;
4871  }
4872public:
4873
4874  PointerExprEvaluator(EvalInfo &info, LValue &Result)
4875    : ExprEvaluatorBaseTy(info), Result(Result) {}
4876
4877  bool Success(const APValue &V, const Expr *E) {
4878    Result.setFrom(Info.Ctx, V);
4879    return true;
4880  }
4881  bool ZeroInitialization(const Expr *E) {
4882    return Success((Expr*)nullptr);
4883  }
4884
4885  bool VisitBinaryOperator(const BinaryOperator *E);
4886  bool VisitCastExpr(const CastExpr* E);
4887  bool VisitUnaryAddrOf(const UnaryOperator *E);
4888  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4889      { return Success(E); }
4890  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4891      { return Success(E); }
4892  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4893      { return Success(E); }
4894  bool VisitCallExpr(const CallExpr *E);
4895  bool VisitBlockExpr(const BlockExpr *E) {
4896    if (!E->getBlockDecl()->hasCaptures())
4897      return Success(E);
4898    return Error(E);
4899  }
4900  bool VisitCXXThisExpr(const CXXThisExpr *E) {
4901    // Can't look at 'this' when checking a potential constant expression.
4902    if (Info.checkingPotentialConstantExpression())
4903      return false;
4904    if (!Info.CurrentCall->This) {
4905      if (Info.getLangOpts().CPlusPlus11)
4906        Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4907      else
4908        Info.Diag(E);
4909      return false;
4910    }
4911    Result = *Info.CurrentCall->This;
4912    return true;
4913  }
4914
4915  // FIXME: Missing: @protocol, @selector
4916};
4917} // end anonymous namespace
4918
4919static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4920  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4921  return PointerExprEvaluator(Info, Result).Visit(E);
4922}
4923
4924bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4925  if (E->getOpcode() != BO_Add &&
4926      E->getOpcode() != BO_Sub)
4927    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4928
4929  const Expr *PExp = E->getLHS();
4930  const Expr *IExp = E->getRHS();
4931  if (IExp->getType()->isPointerType())
4932    std::swap(PExp, IExp);
4933
4934  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4935  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4936    return false;
4937
4938  llvm::APSInt Offset;
4939  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4940    return false;
4941
4942  int64_t AdditionalOffset = getExtValue(Offset);
4943  if (E->getOpcode() == BO_Sub)
4944    AdditionalOffset = -AdditionalOffset;
4945
4946  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4947  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4948                                     AdditionalOffset);
4949}
4950
4951bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4952  return EvaluateLValue(E->getSubExpr(), Result, Info);
4953}
4954
4955bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4956  const Expr* SubExpr = E->getSubExpr();
4957
4958  switch (E->getCastKind()) {
4959  default:
4960    break;
4961
4962  case CK_BitCast:
4963  case CK_CPointerToObjCPointerCast:
4964  case CK_BlockPointerToObjCPointerCast:
4965  case CK_AnyPointerToBlockPointerCast:
4966  case CK_AddressSpaceConversion:
4967    if (!Visit(SubExpr))
4968      return false;
4969    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4970    // permitted in constant expressions in C++11. Bitcasts from cv void* are
4971    // also static_casts, but we disallow them as a resolution to DR1312.
4972    if (!E->getType()->isVoidPointerType()) {
4973      Result.Designator.setInvalid();
4974      if (SubExpr->getType()->isVoidPointerType())
4975        CCEDiag(E, diag::note_constexpr_invalid_cast)
4976          << 3 << SubExpr->getType();
4977      else
4978        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4979    }
4980    return true;
4981
4982  case CK_DerivedToBase:
4983  case CK_UncheckedDerivedToBase:
4984    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4985      return false;
4986    if (!Result.Base && Result.Offset.isZero())
4987      return true;
4988
4989    // Now figure out the necessary offset to add to the base LV to get from
4990    // the derived class to the base class.
4991    return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4992                                  castAs<PointerType>()->getPointeeType(),
4993                                Result);
4994
4995  case CK_BaseToDerived:
4996    if (!Visit(E->getSubExpr()))
4997      return false;
4998    if (!Result.Base && Result.Offset.isZero())
4999      return true;
5000    return HandleBaseToDerivedCast(Info, E, Result);
5001
5002  case CK_NullToPointer:
5003    VisitIgnoredValue(E->getSubExpr());
5004    return ZeroInitialization(E);
5005
5006  case CK_IntegralToPointer: {
5007    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5008
5009    APValue Value;
5010    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5011      break;
5012
5013    if (Value.isInt()) {
5014      unsigned Size = Info.Ctx.getTypeSize(E->getType());
5015      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5016      Result.Base = (Expr*)nullptr;
5017      Result.InvalidBase = false;
5018      Result.Offset = CharUnits::fromQuantity(N);
5019      Result.CallIndex = 0;
5020      Result.Designator.setInvalid();
5021      return true;
5022    } else {
5023      // Cast is of an lvalue, no need to change value.
5024      Result.setFrom(Info.Ctx, Value);
5025      return true;
5026    }
5027  }
5028  case CK_ArrayToPointerDecay:
5029    if (SubExpr->isGLValue()) {
5030      if (!EvaluateLValue(SubExpr, Result, Info))
5031        return false;
5032    } else {
5033      Result.set(SubExpr, Info.CurrentCall->Index);
5034      if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5035                           Info, Result, SubExpr))
5036        return false;
5037    }
5038    // The result is a pointer to the first element of the array.
5039    if (const ConstantArrayType *CAT
5040          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
5041      Result.addArray(Info, E, CAT);
5042    else
5043      Result.Designator.setInvalid();
5044    return true;
5045
5046  case CK_FunctionToPointerDecay:
5047    return EvaluateLValue(SubExpr, Result, Info);
5048  }
5049
5050  return ExprEvaluatorBaseTy::VisitCastExpr(E);
5051}
5052
5053static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5054  // C++ [expr.alignof]p3:
5055  //     When alignof is applied to a reference type, the result is the
5056  //     alignment of the referenced type.
5057  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5058    T = Ref->getPointeeType();
5059
5060  // __alignof is defined to return the preferred alignment.
5061  return Info.Ctx.toCharUnitsFromBits(
5062    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5063}
5064
5065static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5066  E = E->IgnoreParens();
5067
5068  // The kinds of expressions that we have special-case logic here for
5069  // should be kept up to date with the special checks for those
5070  // expressions in Sema.
5071
5072  // alignof decl is always accepted, even if it doesn't make sense: we default
5073  // to 1 in those cases.
5074  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5075    return Info.Ctx.getDeclAlign(DRE->getDecl(),
5076                                 /*RefAsPointee*/true);
5077
5078  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5079    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5080                                 /*RefAsPointee*/true);
5081
5082  return GetAlignOfType(Info, E->getType());
5083}
5084
5085bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5086  if (IsStringLiteralCall(E))
5087    return Success(E);
5088
5089  switch (E->getBuiltinCallee()) {
5090  case Builtin::BI__builtin_addressof:
5091    return EvaluateLValue(E->getArg(0), Result, Info);
5092  case Builtin::BI__builtin_assume_aligned: {
5093    // We need to be very careful here because: if the pointer does not have the
5094    // asserted alignment, then the behavior is undefined, and undefined
5095    // behavior is non-constant.
5096    if (!EvaluatePointer(E->getArg(0), Result, Info))
5097      return false;
5098
5099    LValue OffsetResult(Result);
5100    APSInt Alignment;
5101    if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5102      return false;
5103    CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
5104
5105    if (E->getNumArgs() > 2) {
5106      APSInt Offset;
5107      if (!EvaluateInteger(E->getArg(2), Offset, Info))
5108        return false;
5109
5110      int64_t AdditionalOffset = -getExtValue(Offset);
5111      OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5112    }
5113
5114    // If there is a base object, then it must have the correct alignment.
5115    if (OffsetResult.Base) {
5116      CharUnits BaseAlignment;
5117      if (const ValueDecl *VD =
5118          OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5119        BaseAlignment = Info.Ctx.getDeclAlign(VD);
5120      } else {
5121        BaseAlignment =
5122          GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5123      }
5124
5125      if (BaseAlignment < Align) {
5126        Result.Designator.setInvalid();
5127	// FIXME: Quantities here cast to integers because the plural modifier
5128	// does not work on APSInts yet.
5129        CCEDiag(E->getArg(0),
5130                diag::note_constexpr_baa_insufficient_alignment) << 0
5131          << (int) BaseAlignment.getQuantity()
5132          << (unsigned) getExtValue(Alignment);
5133        return false;
5134      }
5135    }
5136
5137    // The offset must also have the correct alignment.
5138    if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
5139      Result.Designator.setInvalid();
5140      APSInt Offset(64, false);
5141      Offset = OffsetResult.Offset.getQuantity();
5142
5143      if (OffsetResult.Base)
5144        CCEDiag(E->getArg(0),
5145                diag::note_constexpr_baa_insufficient_alignment) << 1
5146          << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5147      else
5148        CCEDiag(E->getArg(0),
5149                diag::note_constexpr_baa_value_insufficient_alignment)
5150          << Offset << (unsigned) getExtValue(Alignment);
5151
5152      return false;
5153    }
5154
5155    return true;
5156  }
5157  default:
5158    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5159  }
5160}
5161
5162//===----------------------------------------------------------------------===//
5163// Member Pointer Evaluation
5164//===----------------------------------------------------------------------===//
5165
5166namespace {
5167class MemberPointerExprEvaluator
5168  : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5169  MemberPtr &Result;
5170
5171  bool Success(const ValueDecl *D) {
5172    Result = MemberPtr(D);
5173    return true;
5174  }
5175public:
5176
5177  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5178    : ExprEvaluatorBaseTy(Info), Result(Result) {}
5179
5180  bool Success(const APValue &V, const Expr *E) {
5181    Result.setFrom(V);
5182    return true;
5183  }
5184  bool ZeroInitialization(const Expr *E) {
5185    return Success((const ValueDecl*)nullptr);
5186  }
5187
5188  bool VisitCastExpr(const CastExpr *E);
5189  bool VisitUnaryAddrOf(const UnaryOperator *E);
5190};
5191} // end anonymous namespace
5192
5193static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5194                                  EvalInfo &Info) {
5195  assert(E->isRValue() && E->getType()->isMemberPointerType());
5196  return MemberPointerExprEvaluator(Info, Result).Visit(E);
5197}
5198
5199bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5200  switch (E->getCastKind()) {
5201  default:
5202    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5203
5204  case CK_NullToMemberPointer:
5205    VisitIgnoredValue(E->getSubExpr());
5206    return ZeroInitialization(E);
5207
5208  case CK_BaseToDerivedMemberPointer: {
5209    if (!Visit(E->getSubExpr()))
5210      return false;
5211    if (E->path_empty())
5212      return true;
5213    // Base-to-derived member pointer casts store the path in derived-to-base
5214    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5215    // the wrong end of the derived->base arc, so stagger the path by one class.
5216    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5217    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5218         PathI != PathE; ++PathI) {
5219      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5220      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5221      if (!Result.castToDerived(Derived))
5222        return Error(E);
5223    }
5224    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5225    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5226      return Error(E);
5227    return true;
5228  }
5229
5230  case CK_DerivedToBaseMemberPointer:
5231    if (!Visit(E->getSubExpr()))
5232      return false;
5233    for (CastExpr::path_const_iterator PathI = E->path_begin(),
5234         PathE = E->path_end(); PathI != PathE; ++PathI) {
5235      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5236      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5237      if (!Result.castToBase(Base))
5238        return Error(E);
5239    }
5240    return true;
5241  }
5242}
5243
5244bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5245  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5246  // member can be formed.
5247  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5248}
5249
5250//===----------------------------------------------------------------------===//
5251// Record Evaluation
5252//===----------------------------------------------------------------------===//
5253
5254namespace {
5255  class RecordExprEvaluator
5256  : public ExprEvaluatorBase<RecordExprEvaluator> {
5257    const LValue &This;
5258    APValue &Result;
5259  public:
5260
5261    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5262      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5263
5264    bool Success(const APValue &V, const Expr *E) {
5265      Result = V;
5266      return true;
5267    }
5268    bool ZeroInitialization(const Expr *E);
5269
5270    bool VisitCallExpr(const CallExpr *E) {
5271      return handleCallExpr(E, Result, &This);
5272    }
5273    bool VisitCastExpr(const CastExpr *E);
5274    bool VisitInitListExpr(const InitListExpr *E);
5275    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5276    bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5277  };
5278}
5279
5280/// Perform zero-initialization on an object of non-union class type.
5281/// C++11 [dcl.init]p5:
5282///  To zero-initialize an object or reference of type T means:
5283///    [...]
5284///    -- if T is a (possibly cv-qualified) non-union class type,
5285///       each non-static data member and each base-class subobject is
5286///       zero-initialized
5287static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5288                                          const RecordDecl *RD,
5289                                          const LValue &This, APValue &Result) {
5290  assert(!RD->isUnion() && "Expected non-union class type");
5291  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5292  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5293                   std::distance(RD->field_begin(), RD->field_end()));
5294
5295  if (RD->isInvalidDecl()) return false;
5296  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5297
5298  if (CD) {
5299    unsigned Index = 0;
5300    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5301           End = CD->bases_end(); I != End; ++I, ++Index) {
5302      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5303      LValue Subobject = This;
5304      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5305        return false;
5306      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5307                                         Result.getStructBase(Index)))
5308        return false;
5309    }
5310  }
5311
5312  for (const auto *I : RD->fields()) {
5313    // -- if T is a reference type, no initialization is performed.
5314    if (I->getType()->isReferenceType())
5315      continue;
5316
5317    LValue Subobject = This;
5318    if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5319      return false;
5320
5321    ImplicitValueInitExpr VIE(I->getType());
5322    if (!EvaluateInPlace(
5323          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5324      return false;
5325  }
5326
5327  return true;
5328}
5329
5330bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
5331  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5332  if (RD->isInvalidDecl()) return false;
5333  if (RD->isUnion()) {
5334    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5335    // object's first non-static named data member is zero-initialized
5336    RecordDecl::field_iterator I = RD->field_begin();
5337    if (I == RD->field_end()) {
5338      Result = APValue((const FieldDecl*)nullptr);
5339      return true;
5340    }
5341
5342    LValue Subobject = This;
5343    if (!HandleLValueMember(Info, E, Subobject, *I))
5344      return false;
5345    Result = APValue(*I);
5346    ImplicitValueInitExpr VIE(I->getType());
5347    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5348  }
5349
5350  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5351    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5352    return false;
5353  }
5354
5355  return HandleClassZeroInitialization(Info, E, RD, This, Result);
5356}
5357
5358bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5359  switch (E->getCastKind()) {
5360  default:
5361    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5362
5363  case CK_ConstructorConversion:
5364    return Visit(E->getSubExpr());
5365
5366  case CK_DerivedToBase:
5367  case CK_UncheckedDerivedToBase: {
5368    APValue DerivedObject;
5369    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5370      return false;
5371    if (!DerivedObject.isStruct())
5372      return Error(E->getSubExpr());
5373
5374    // Derived-to-base rvalue conversion: just slice off the derived part.
5375    APValue *Value = &DerivedObject;
5376    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5377    for (CastExpr::path_const_iterator PathI = E->path_begin(),
5378         PathE = E->path_end(); PathI != PathE; ++PathI) {
5379      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5380      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5381      Value = &Value->getStructBase(getBaseIndex(RD, Base));
5382      RD = Base;
5383    }
5384    Result = *Value;
5385    return true;
5386  }
5387  }
5388}
5389
5390bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5391  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5392  if (RD->isInvalidDecl()) return false;
5393  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5394
5395  if (RD->isUnion()) {
5396    const FieldDecl *Field = E->getInitializedFieldInUnion();
5397    Result = APValue(Field);
5398    if (!Field)
5399      return true;
5400
5401    // If the initializer list for a union does not contain any elements, the
5402    // first element of the union is value-initialized.
5403    // FIXME: The element should be initialized from an initializer list.
5404    //        Is this difference ever observable for initializer lists which
5405    //        we don't build?
5406    ImplicitValueInitExpr VIE(Field->getType());
5407    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5408
5409    LValue Subobject = This;
5410    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5411      return false;
5412
5413    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5414    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5415                                  isa<CXXDefaultInitExpr>(InitExpr));
5416
5417    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5418  }
5419
5420  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5421         "initializer list for class with base classes");
5422  Result = APValue(APValue::UninitStruct(), 0,
5423                   std::distance(RD->field_begin(), RD->field_end()));
5424  unsigned ElementNo = 0;
5425  bool Success = true;
5426  for (const auto *Field : RD->fields()) {
5427    // Anonymous bit-fields are not considered members of the class for
5428    // purposes of aggregate initialization.
5429    if (Field->isUnnamedBitfield())
5430      continue;
5431
5432    LValue Subobject = This;
5433
5434    bool HaveInit = ElementNo < E->getNumInits();
5435
5436    // FIXME: Diagnostics here should point to the end of the initializer
5437    // list, not the start.
5438    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5439                            Subobject, Field, &Layout))
5440      return false;
5441
5442    // Perform an implicit value-initialization for members beyond the end of
5443    // the initializer list.
5444    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5445    const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5446
5447    // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5448    ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5449                                  isa<CXXDefaultInitExpr>(Init));
5450
5451    APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5452    if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5453        (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5454                                                       FieldVal, Field))) {
5455      if (!Info.keepEvaluatingAfterFailure())
5456        return false;
5457      Success = false;
5458    }
5459  }
5460
5461  return Success;
5462}
5463
5464bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5465  const CXXConstructorDecl *FD = E->getConstructor();
5466  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5467
5468  bool ZeroInit = E->requiresZeroInitialization();
5469  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5470    // If we've already performed zero-initialization, we're already done.
5471    if (!Result.isUninit())
5472      return true;
5473
5474    // We can get here in two different ways:
5475    //  1) We're performing value-initialization, and should zero-initialize
5476    //     the object, or
5477    //  2) We're performing default-initialization of an object with a trivial
5478    //     constexpr default constructor, in which case we should start the
5479    //     lifetimes of all the base subobjects (there can be no data member
5480    //     subobjects in this case) per [basic.life]p1.
5481    // Either way, ZeroInitialization is appropriate.
5482    return ZeroInitialization(E);
5483  }
5484
5485  const FunctionDecl *Definition = nullptr;
5486  FD->getBody(Definition);
5487
5488  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5489    return false;
5490
5491  // Avoid materializing a temporary for an elidable copy/move constructor.
5492  if (E->isElidable() && !ZeroInit)
5493    if (const MaterializeTemporaryExpr *ME
5494          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5495      return Visit(ME->GetTemporaryExpr());
5496
5497  if (ZeroInit && !ZeroInitialization(E))
5498    return false;
5499
5500  auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5501  return HandleConstructorCall(E->getExprLoc(), This, Args,
5502                               cast<CXXConstructorDecl>(Definition), Info,
5503                               Result);
5504}
5505
5506bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5507    const CXXStdInitializerListExpr *E) {
5508  const ConstantArrayType *ArrayType =
5509      Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5510
5511  LValue Array;
5512  if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5513    return false;
5514
5515  // Get a pointer to the first element of the array.
5516  Array.addArray(Info, E, ArrayType);
5517
5518  // FIXME: Perform the checks on the field types in SemaInit.
5519  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5520  RecordDecl::field_iterator Field = Record->field_begin();
5521  if (Field == Record->field_end())
5522    return Error(E);
5523
5524  // Start pointer.
5525  if (!Field->getType()->isPointerType() ||
5526      !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5527                            ArrayType->getElementType()))
5528    return Error(E);
5529
5530  // FIXME: What if the initializer_list type has base classes, etc?
5531  Result = APValue(APValue::UninitStruct(), 0, 2);
5532  Array.moveInto(Result.getStructField(0));
5533
5534  if (++Field == Record->field_end())
5535    return Error(E);
5536
5537  if (Field->getType()->isPointerType() &&
5538      Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5539                           ArrayType->getElementType())) {
5540    // End pointer.
5541    if (!HandleLValueArrayAdjustment(Info, E, Array,
5542                                     ArrayType->getElementType(),
5543                                     ArrayType->getSize().getZExtValue()))
5544      return false;
5545    Array.moveInto(Result.getStructField(1));
5546  } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5547    // Length.
5548    Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5549  else
5550    return Error(E);
5551
5552  if (++Field != Record->field_end())
5553    return Error(E);
5554
5555  return true;
5556}
5557
5558static bool EvaluateRecord(const Expr *E, const LValue &This,
5559                           APValue &Result, EvalInfo &Info) {
5560  assert(E->isRValue() && E->getType()->isRecordType() &&
5561         "can't evaluate expression as a record rvalue");
5562  return RecordExprEvaluator(Info, This, Result).Visit(E);
5563}
5564
5565//===----------------------------------------------------------------------===//
5566// Temporary Evaluation
5567//
5568// Temporaries are represented in the AST as rvalues, but generally behave like
5569// lvalues. The full-object of which the temporary is a subobject is implicitly
5570// materialized so that a reference can bind to it.
5571//===----------------------------------------------------------------------===//
5572namespace {
5573class TemporaryExprEvaluator
5574  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5575public:
5576  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5577    LValueExprEvaluatorBaseTy(Info, Result) {}
5578
5579  /// Visit an expression which constructs the value of this temporary.
5580  bool VisitConstructExpr(const Expr *E) {
5581    Result.set(E, Info.CurrentCall->Index);
5582    return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5583                           Info, Result, E);
5584  }
5585
5586  bool VisitCastExpr(const CastExpr *E) {
5587    switch (E->getCastKind()) {
5588    default:
5589      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5590
5591    case CK_ConstructorConversion:
5592      return VisitConstructExpr(E->getSubExpr());
5593    }
5594  }
5595  bool VisitInitListExpr(const InitListExpr *E) {
5596    return VisitConstructExpr(E);
5597  }
5598  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5599    return VisitConstructExpr(E);
5600  }
5601  bool VisitCallExpr(const CallExpr *E) {
5602    return VisitConstructExpr(E);
5603  }
5604  bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5605    return VisitConstructExpr(E);
5606  }
5607};
5608} // end anonymous namespace
5609
5610/// Evaluate an expression of record type as a temporary.
5611static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5612  assert(E->isRValue() && E->getType()->isRecordType());
5613  return TemporaryExprEvaluator(Info, Result).Visit(E);
5614}
5615
5616//===----------------------------------------------------------------------===//
5617// Vector Evaluation
5618//===----------------------------------------------------------------------===//
5619
5620namespace {
5621  class VectorExprEvaluator
5622  : public ExprEvaluatorBase<VectorExprEvaluator> {
5623    APValue &Result;
5624  public:
5625
5626    VectorExprEvaluator(EvalInfo &info, APValue &Result)
5627      : ExprEvaluatorBaseTy(info), Result(Result) {}
5628
5629    bool Success(ArrayRef<APValue> V, const Expr *E) {
5630      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5631      // FIXME: remove this APValue copy.
5632      Result = APValue(V.data(), V.size());
5633      return true;
5634    }
5635    bool Success(const APValue &V, const Expr *E) {
5636      assert(V.isVector());
5637      Result = V;
5638      return true;
5639    }
5640    bool ZeroInitialization(const Expr *E);
5641
5642    bool VisitUnaryReal(const UnaryOperator *E)
5643      { return Visit(E->getSubExpr()); }
5644    bool VisitCastExpr(const CastExpr* E);
5645    bool VisitInitListExpr(const InitListExpr *E);
5646    bool VisitUnaryImag(const UnaryOperator *E);
5647    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5648    //                 binary comparisons, binary and/or/xor,
5649    //                 shufflevector, ExtVectorElementExpr
5650  };
5651} // end anonymous namespace
5652
5653static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5654  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5655  return VectorExprEvaluator(Info, Result).Visit(E);
5656}
5657
5658bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
5659  const VectorType *VTy = E->getType()->castAs<VectorType>();
5660  unsigned NElts = VTy->getNumElements();
5661
5662  const Expr *SE = E->getSubExpr();
5663  QualType SETy = SE->getType();
5664
5665  switch (E->getCastKind()) {
5666  case CK_VectorSplat: {
5667    APValue Val = APValue();
5668    if (SETy->isIntegerType()) {
5669      APSInt IntResult;
5670      if (!EvaluateInteger(SE, IntResult, Info))
5671        return false;
5672      Val = APValue(std::move(IntResult));
5673    } else if (SETy->isRealFloatingType()) {
5674      APFloat FloatResult(0.0);
5675      if (!EvaluateFloat(SE, FloatResult, Info))
5676        return false;
5677      Val = APValue(std::move(FloatResult));
5678    } else {
5679      return Error(E);
5680    }
5681
5682    // Splat and create vector APValue.
5683    SmallVector<APValue, 4> Elts(NElts, Val);
5684    return Success(Elts, E);
5685  }
5686  case CK_BitCast: {
5687    // Evaluate the operand into an APInt we can extract from.
5688    llvm::APInt SValInt;
5689    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5690      return false;
5691    // Extract the elements
5692    QualType EltTy = VTy->getElementType();
5693    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5694    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5695    SmallVector<APValue, 4> Elts;
5696    if (EltTy->isRealFloatingType()) {
5697      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5698      unsigned FloatEltSize = EltSize;
5699      if (&Sem == &APFloat::x87DoubleExtended)
5700        FloatEltSize = 80;
5701      for (unsigned i = 0; i < NElts; i++) {
5702        llvm::APInt Elt;
5703        if (BigEndian)
5704          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5705        else
5706          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5707        Elts.push_back(APValue(APFloat(Sem, Elt)));
5708      }
5709    } else if (EltTy->isIntegerType()) {
5710      for (unsigned i = 0; i < NElts; i++) {
5711        llvm::APInt Elt;
5712        if (BigEndian)
5713          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5714        else
5715          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5716        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5717      }
5718    } else {
5719      return Error(E);
5720    }
5721    return Success(Elts, E);
5722  }
5723  default:
5724    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5725  }
5726}
5727
5728bool
5729VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5730  const VectorType *VT = E->getType()->castAs<VectorType>();
5731  unsigned NumInits = E->getNumInits();
5732  unsigned NumElements = VT->getNumElements();
5733
5734  QualType EltTy = VT->getElementType();
5735  SmallVector<APValue, 4> Elements;
5736
5737  // The number of initializers can be less than the number of
5738  // vector elements. For OpenCL, this can be due to nested vector
5739  // initialization. For GCC compatibility, missing trailing elements
5740  // should be initialized with zeroes.
5741  unsigned CountInits = 0, CountElts = 0;
5742  while (CountElts < NumElements) {
5743    // Handle nested vector initialization.
5744    if (CountInits < NumInits
5745        && E->getInit(CountInits)->getType()->isVectorType()) {
5746      APValue v;
5747      if (!EvaluateVector(E->getInit(CountInits), v, Info))
5748        return Error(E);
5749      unsigned vlen = v.getVectorLength();
5750      for (unsigned j = 0; j < vlen; j++)
5751        Elements.push_back(v.getVectorElt(j));
5752      CountElts += vlen;
5753    } else if (EltTy->isIntegerType()) {
5754      llvm::APSInt sInt(32);
5755      if (CountInits < NumInits) {
5756        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5757          return false;
5758      } else // trailing integer zero.
5759        sInt = Info.Ctx.MakeIntValue(0, EltTy);
5760      Elements.push_back(APValue(sInt));
5761      CountElts++;
5762    } else {
5763      llvm::APFloat f(0.0);
5764      if (CountInits < NumInits) {
5765        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5766          return false;
5767      } else // trailing float zero.
5768        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5769      Elements.push_back(APValue(f));
5770      CountElts++;
5771    }
5772    CountInits++;
5773  }
5774  return Success(Elements, E);
5775}
5776
5777bool
5778VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5779  const VectorType *VT = E->getType()->getAs<VectorType>();
5780  QualType EltTy = VT->getElementType();
5781  APValue ZeroElement;
5782  if (EltTy->isIntegerType())
5783    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5784  else
5785    ZeroElement =
5786        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5787
5788  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5789  return Success(Elements, E);
5790}
5791
5792bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5793  VisitIgnoredValue(E->getSubExpr());
5794  return ZeroInitialization(E);
5795}
5796
5797//===----------------------------------------------------------------------===//
5798// Array Evaluation
5799//===----------------------------------------------------------------------===//
5800
5801namespace {
5802  class ArrayExprEvaluator
5803  : public ExprEvaluatorBase<ArrayExprEvaluator> {
5804    const LValue &This;
5805    APValue &Result;
5806  public:
5807
5808    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5809      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5810
5811    bool Success(const APValue &V, const Expr *E) {
5812      assert((V.isArray() || V.isLValue()) &&
5813             "expected array or string literal");
5814      Result = V;
5815      return true;
5816    }
5817
5818    bool ZeroInitialization(const Expr *E) {
5819      const ConstantArrayType *CAT =
5820          Info.Ctx.getAsConstantArrayType(E->getType());
5821      if (!CAT)
5822        return Error(E);
5823
5824      Result = APValue(APValue::UninitArray(), 0,
5825                       CAT->getSize().getZExtValue());
5826      if (!Result.hasArrayFiller()) return true;
5827
5828      // Zero-initialize all elements.
5829      LValue Subobject = This;
5830      Subobject.addArray(Info, E, CAT);
5831      ImplicitValueInitExpr VIE(CAT->getElementType());
5832      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5833    }
5834
5835    bool VisitCallExpr(const CallExpr *E) {
5836      return handleCallExpr(E, Result, &This);
5837    }
5838    bool VisitInitListExpr(const InitListExpr *E);
5839    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5840    bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5841                               const LValue &Subobject,
5842                               APValue *Value, QualType Type);
5843  };
5844} // end anonymous namespace
5845
5846static bool EvaluateArray(const Expr *E, const LValue &This,
5847                          APValue &Result, EvalInfo &Info) {
5848  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5849  return ArrayExprEvaluator(Info, This, Result).Visit(E);
5850}
5851
5852bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5853  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5854  if (!CAT)
5855    return Error(E);
5856
5857  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5858  // an appropriately-typed string literal enclosed in braces.
5859  if (E->isStringLiteralInit()) {
5860    LValue LV;
5861    if (!EvaluateLValue(E->getInit(0), LV, Info))
5862      return false;
5863    APValue Val;
5864    LV.moveInto(Val);
5865    return Success(Val, E);
5866  }
5867
5868  bool Success = true;
5869
5870  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5871         "zero-initialized array shouldn't have any initialized elts");
5872  APValue Filler;
5873  if (Result.isArray() && Result.hasArrayFiller())
5874    Filler = Result.getArrayFiller();
5875
5876  unsigned NumEltsToInit = E->getNumInits();
5877  unsigned NumElts = CAT->getSize().getZExtValue();
5878  const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5879
5880  // If the initializer might depend on the array index, run it for each
5881  // array element. For now, just whitelist non-class value-initialization.
5882  if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5883    NumEltsToInit = NumElts;
5884
5885  Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5886
5887  // If the array was previously zero-initialized, preserve the
5888  // zero-initialized values.
5889  if (!Filler.isUninit()) {
5890    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5891      Result.getArrayInitializedElt(I) = Filler;
5892    if (Result.hasArrayFiller())
5893      Result.getArrayFiller() = Filler;
5894  }
5895
5896  LValue Subobject = This;
5897  Subobject.addArray(Info, E, CAT);
5898  for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5899    const Expr *Init =
5900        Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5901    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5902                         Info, Subobject, Init) ||
5903        !HandleLValueArrayAdjustment(Info, Init, Subobject,
5904                                     CAT->getElementType(), 1)) {
5905      if (!Info.keepEvaluatingAfterFailure())
5906        return false;
5907      Success = false;
5908    }
5909  }
5910
5911  if (!Result.hasArrayFiller())
5912    return Success;
5913
5914  // If we get here, we have a trivial filler, which we can just evaluate
5915  // once and splat over the rest of the array elements.
5916  assert(FillerExpr && "no array filler for incomplete init list");
5917  return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5918                         FillerExpr) && Success;
5919}
5920
5921bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5922  return VisitCXXConstructExpr(E, This, &Result, E->getType());
5923}
5924
5925bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5926                                               const LValue &Subobject,
5927                                               APValue *Value,
5928                                               QualType Type) {
5929  bool HadZeroInit = !Value->isUninit();
5930
5931  if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5932    unsigned N = CAT->getSize().getZExtValue();
5933
5934    // Preserve the array filler if we had prior zero-initialization.
5935    APValue Filler =
5936      HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5937                                             : APValue();
5938
5939    *Value = APValue(APValue::UninitArray(), N, N);
5940
5941    if (HadZeroInit)
5942      for (unsigned I = 0; I != N; ++I)
5943        Value->getArrayInitializedElt(I) = Filler;
5944
5945    // Initialize the elements.
5946    LValue ArrayElt = Subobject;
5947    ArrayElt.addArray(Info, E, CAT);
5948    for (unsigned I = 0; I != N; ++I)
5949      if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5950                                 CAT->getElementType()) ||
5951          !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5952                                       CAT->getElementType(), 1))
5953        return false;
5954
5955    return true;
5956  }
5957
5958  if (!Type->isRecordType())
5959    return Error(E);
5960
5961  const CXXConstructorDecl *FD = E->getConstructor();
5962
5963  bool ZeroInit = E->requiresZeroInitialization();
5964  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5965    if (HadZeroInit)
5966      return true;
5967
5968    // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5969    ImplicitValueInitExpr VIE(Type);
5970    return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5971  }
5972
5973  const FunctionDecl *Definition = nullptr;
5974  FD->getBody(Definition);
5975
5976  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5977    return false;
5978
5979  if (ZeroInit && !HadZeroInit) {
5980    ImplicitValueInitExpr VIE(Type);
5981    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5982      return false;
5983  }
5984
5985  auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5986  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5987                               cast<CXXConstructorDecl>(Definition),
5988                               Info, *Value);
5989}
5990
5991//===----------------------------------------------------------------------===//
5992// Integer Evaluation
5993//
5994// As a GNU extension, we support casting pointers to sufficiently-wide integer
5995// types and back in constant folding. Integer values are thus represented
5996// either as an integer-valued APValue, or as an lvalue-valued APValue.
5997//===----------------------------------------------------------------------===//
5998
5999namespace {
6000class IntExprEvaluator
6001  : public ExprEvaluatorBase<IntExprEvaluator> {
6002  APValue &Result;
6003public:
6004  IntExprEvaluator(EvalInfo &info, APValue &result)
6005    : ExprEvaluatorBaseTy(info), Result(result) {}
6006
6007  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6008    assert(E->getType()->isIntegralOrEnumerationType() &&
6009           "Invalid evaluation result.");
6010    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
6011           "Invalid evaluation result.");
6012    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6013           "Invalid evaluation result.");
6014    Result = APValue(SI);
6015    return true;
6016  }
6017  bool Success(const llvm::APSInt &SI, const Expr *E) {
6018    return Success(SI, E, Result);
6019  }
6020
6021  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
6022    assert(E->getType()->isIntegralOrEnumerationType() &&
6023           "Invalid evaluation result.");
6024    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6025           "Invalid evaluation result.");
6026    Result = APValue(APSInt(I));
6027    Result.getInt().setIsUnsigned(
6028                            E->getType()->isUnsignedIntegerOrEnumerationType());
6029    return true;
6030  }
6031  bool Success(const llvm::APInt &I, const Expr *E) {
6032    return Success(I, E, Result);
6033  }
6034
6035  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6036    assert(E->getType()->isIntegralOrEnumerationType() &&
6037           "Invalid evaluation result.");
6038    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
6039    return true;
6040  }
6041  bool Success(uint64_t Value, const Expr *E) {
6042    return Success(Value, E, Result);
6043  }
6044
6045  bool Success(CharUnits Size, const Expr *E) {
6046    return Success(Size.getQuantity(), E);
6047  }
6048
6049  bool Success(const APValue &V, const Expr *E) {
6050    if (V.isLValue() || V.isAddrLabelDiff()) {
6051      Result = V;
6052      return true;
6053    }
6054    return Success(V.getInt(), E);
6055  }
6056
6057  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
6058
6059  //===--------------------------------------------------------------------===//
6060  //                            Visitor Methods
6061  //===--------------------------------------------------------------------===//
6062
6063  bool VisitIntegerLiteral(const IntegerLiteral *E) {
6064    return Success(E->getValue(), E);
6065  }
6066  bool VisitCharacterLiteral(const CharacterLiteral *E) {
6067    return Success(E->getValue(), E);
6068  }
6069
6070  bool CheckReferencedDecl(const Expr *E, const Decl *D);
6071  bool VisitDeclRefExpr(const DeclRefExpr *E) {
6072    if (CheckReferencedDecl(E, E->getDecl()))
6073      return true;
6074
6075    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
6076  }
6077  bool VisitMemberExpr(const MemberExpr *E) {
6078    if (CheckReferencedDecl(E, E->getMemberDecl())) {
6079      VisitIgnoredValue(E->getBase());
6080      return true;
6081    }
6082
6083    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
6084  }
6085
6086  bool VisitCallExpr(const CallExpr *E);
6087  bool VisitBinaryOperator(const BinaryOperator *E);
6088  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
6089  bool VisitUnaryOperator(const UnaryOperator *E);
6090
6091  bool VisitCastExpr(const CastExpr* E);
6092  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
6093
6094  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
6095    return Success(E->getValue(), E);
6096  }
6097
6098  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
6099    return Success(E->getValue(), E);
6100  }
6101
6102  // Note, GNU defines __null as an integer, not a pointer.
6103  bool VisitGNUNullExpr(const GNUNullExpr *E) {
6104    return ZeroInitialization(E);
6105  }
6106
6107  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
6108    return Success(E->getValue(), E);
6109  }
6110
6111  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
6112    return Success(E->getValue(), E);
6113  }
6114
6115  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
6116    return Success(E->getValue(), E);
6117  }
6118
6119  bool VisitUnaryReal(const UnaryOperator *E);
6120  bool VisitUnaryImag(const UnaryOperator *E);
6121
6122  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
6123  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
6124
6125private:
6126  bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
6127  // FIXME: Missing: array subscript of vector, member of vector
6128};
6129} // end anonymous namespace
6130
6131/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6132/// produce either the integer value or a pointer.
6133///
6134/// GCC has a heinous extension which folds casts between pointer types and
6135/// pointer-sized integral types. We support this by allowing the evaluation of
6136/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6137/// Some simple arithmetic on such values is supported (they are treated much
6138/// like char*).
6139static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6140                                    EvalInfo &Info) {
6141  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6142  return IntExprEvaluator(Info, Result).Visit(E);
6143}
6144
6145static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6146  APValue Val;
6147  if (!EvaluateIntegerOrLValue(E, Val, Info))
6148    return false;
6149  if (!Val.isInt()) {
6150    // FIXME: It would be better to produce the diagnostic for casting
6151    //        a pointer to an integer.
6152    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6153    return false;
6154  }
6155  Result = Val.getInt();
6156  return true;
6157}
6158
6159/// Check whether the given declaration can be directly converted to an integral
6160/// rvalue. If not, no diagnostic is produced; there are other things we can
6161/// try.
6162bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6163  // Enums are integer constant exprs.
6164  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6165    // Check for signedness/width mismatches between E type and ECD value.
6166    bool SameSign = (ECD->getInitVal().isSigned()
6167                     == E->getType()->isSignedIntegerOrEnumerationType());
6168    bool SameWidth = (ECD->getInitVal().getBitWidth()
6169                      == Info.Ctx.getIntWidth(E->getType()));
6170    if (SameSign && SameWidth)
6171      return Success(ECD->getInitVal(), E);
6172    else {
6173      // Get rid of mismatch (otherwise Success assertions will fail)
6174      // by computing a new value matching the type of E.
6175      llvm::APSInt Val = ECD->getInitVal();
6176      if (!SameSign)
6177        Val.setIsSigned(!ECD->getInitVal().isSigned());
6178      if (!SameWidth)
6179        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6180      return Success(Val, E);
6181    }
6182  }
6183  return false;
6184}
6185
6186/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6187/// as GCC.
6188static int EvaluateBuiltinClassifyType(const CallExpr *E) {
6189  // The following enum mimics the values returned by GCC.
6190  // FIXME: Does GCC differ between lvalue and rvalue references here?
6191  enum gcc_type_class {
6192    no_type_class = -1,
6193    void_type_class, integer_type_class, char_type_class,
6194    enumeral_type_class, boolean_type_class,
6195    pointer_type_class, reference_type_class, offset_type_class,
6196    real_type_class, complex_type_class,
6197    function_type_class, method_type_class,
6198    record_type_class, union_type_class,
6199    array_type_class, string_type_class,
6200    lang_type_class
6201  };
6202
6203  // If no argument was supplied, default to "no_type_class". This isn't
6204  // ideal, however it is what gcc does.
6205  if (E->getNumArgs() == 0)
6206    return no_type_class;
6207
6208  QualType ArgTy = E->getArg(0)->getType();
6209  if (ArgTy->isVoidType())
6210    return void_type_class;
6211  else if (ArgTy->isEnumeralType())
6212    return enumeral_type_class;
6213  else if (ArgTy->isBooleanType())
6214    return boolean_type_class;
6215  else if (ArgTy->isCharType())
6216    return string_type_class; // gcc doesn't appear to use char_type_class
6217  else if (ArgTy->isIntegerType())
6218    return integer_type_class;
6219  else if (ArgTy->isPointerType())
6220    return pointer_type_class;
6221  else if (ArgTy->isReferenceType())
6222    return reference_type_class;
6223  else if (ArgTy->isRealType())
6224    return real_type_class;
6225  else if (ArgTy->isComplexType())
6226    return complex_type_class;
6227  else if (ArgTy->isFunctionType())
6228    return function_type_class;
6229  else if (ArgTy->isStructureOrClassType())
6230    return record_type_class;
6231  else if (ArgTy->isUnionType())
6232    return union_type_class;
6233  else if (ArgTy->isArrayType())
6234    return array_type_class;
6235  else if (ArgTy->isUnionType())
6236    return union_type_class;
6237  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
6238    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6239}
6240
6241/// EvaluateBuiltinConstantPForLValue - Determine the result of
6242/// __builtin_constant_p when applied to the given lvalue.
6243///
6244/// An lvalue is only "constant" if it is a pointer or reference to the first
6245/// character of a string literal.
6246template<typename LValue>
6247static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6248  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6249  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6250}
6251
6252/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6253/// GCC as we can manage.
6254static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6255  QualType ArgType = Arg->getType();
6256
6257  // __builtin_constant_p always has one operand. The rules which gcc follows
6258  // are not precisely documented, but are as follows:
6259  //
6260  //  - If the operand is of integral, floating, complex or enumeration type,
6261  //    and can be folded to a known value of that type, it returns 1.
6262  //  - If the operand and can be folded to a pointer to the first character
6263  //    of a string literal (or such a pointer cast to an integral type), it
6264  //    returns 1.
6265  //
6266  // Otherwise, it returns 0.
6267  //
6268  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6269  // its support for this does not currently work.
6270  if (ArgType->isIntegralOrEnumerationType()) {
6271    Expr::EvalResult Result;
6272    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6273      return false;
6274
6275    APValue &V = Result.Val;
6276    if (V.getKind() == APValue::Int)
6277      return true;
6278    if (V.getKind() == APValue::LValue)
6279      return EvaluateBuiltinConstantPForLValue(V);
6280  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6281    return Arg->isEvaluatable(Ctx);
6282  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6283    LValue LV;
6284    Expr::EvalStatus Status;
6285    EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6286    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6287                          : EvaluatePointer(Arg, LV, Info)) &&
6288        !Status.HasSideEffects)
6289      return EvaluateBuiltinConstantPForLValue(LV);
6290  }
6291
6292  // Anything else isn't considered to be sufficiently constant.
6293  return false;
6294}
6295
6296/// Retrieves the "underlying object type" of the given expression,
6297/// as used by __builtin_object_size.
6298static QualType getObjectType(APValue::LValueBase B) {
6299  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6300    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6301      return VD->getType();
6302  } else if (const Expr *E = B.get<const Expr*>()) {
6303    if (isa<CompoundLiteralExpr>(E))
6304      return E->getType();
6305  }
6306
6307  return QualType();
6308}
6309
6310/// A more selective version of E->IgnoreParenCasts for
6311/// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
6312/// to change the type of E.
6313/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
6314///
6315/// Always returns an RValue with a pointer representation.
6316static const Expr *ignorePointerCastsAndParens(const Expr *E) {
6317  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
6318
6319  auto *NoParens = E->IgnoreParens();
6320  auto *Cast = dyn_cast<CastExpr>(NoParens);
6321  if (Cast == nullptr)
6322    return NoParens;
6323
6324  // We only conservatively allow a few kinds of casts, because this code is
6325  // inherently a simple solution that seeks to support the common case.
6326  auto CastKind = Cast->getCastKind();
6327  if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
6328      CastKind != CK_AddressSpaceConversion)
6329    return NoParens;
6330
6331  auto *SubExpr = Cast->getSubExpr();
6332  if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
6333    return NoParens;
6334  return ignorePointerCastsAndParens(SubExpr);
6335}
6336
6337/// Checks to see if the given LValue's Designator is at the end of the LValue's
6338/// record layout. e.g.
6339///   struct { struct { int a, b; } fst, snd; } obj;
6340///   obj.fst   // no
6341///   obj.snd   // yes
6342///   obj.fst.a // no
6343///   obj.fst.b // no
6344///   obj.snd.a // no
6345///   obj.snd.b // yes
6346///
6347/// Please note: this function is specialized for how __builtin_object_size
6348/// views "objects".
6349static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
6350  assert(!LVal.Designator.Invalid);
6351
6352  auto IsLastFieldDecl = [&Ctx](const FieldDecl *FD) {
6353    if (FD->getParent()->isUnion())
6354      return true;
6355    const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
6356    return FD->getFieldIndex() + 1 == Layout.getFieldCount();
6357  };
6358
6359  auto &Base = LVal.getLValueBase();
6360  if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
6361    if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
6362      if (!IsLastFieldDecl(FD))
6363        return false;
6364    } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
6365      for (auto *FD : IFD->chain())
6366        if (!IsLastFieldDecl(cast<FieldDecl>(FD)))
6367          return false;
6368    }
6369  }
6370
6371  QualType BaseType = getType(Base);
6372  for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
6373    if (BaseType->isArrayType()) {
6374      // Because __builtin_object_size treats arrays as objects, we can ignore
6375      // the index iff this is the last array in the Designator.
6376      if (I + 1 == E)
6377        return true;
6378      auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
6379      uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6380      if (Index + 1 != CAT->getSize())
6381        return false;
6382      BaseType = CAT->getElementType();
6383    } else if (BaseType->isAnyComplexType()) {
6384      auto *CT = BaseType->castAs<ComplexType>();
6385      uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6386      if (Index != 1)
6387        return false;
6388      BaseType = CT->getElementType();
6389    } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
6390      if (!IsLastFieldDecl(FD))
6391        return false;
6392      BaseType = FD->getType();
6393    } else {
6394      assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
6395             "Expecting cast to a base class");
6396      return false;
6397    }
6398  }
6399  return true;
6400}
6401
6402/// Tests to see if the LValue has a designator (that isn't necessarily valid).
6403static bool refersToCompleteObject(const LValue &LVal) {
6404  if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
6405    return false;
6406
6407  if (!LVal.InvalidBase)
6408    return true;
6409
6410  auto *E = LVal.Base.dyn_cast<const Expr *>();
6411  (void)E;
6412  assert(E != nullptr && isa<MemberExpr>(E));
6413  return false;
6414}
6415
6416/// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
6417/// true and stores the result in @p Size.
6418///
6419/// If @p WasError is non-null, this will report whether the failure to evaluate
6420/// is to be treated as an Error in IntExprEvaluator.
6421static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
6422                                         EvalInfo &Info, uint64_t &Size,
6423                                         bool *WasError = nullptr) {
6424  if (WasError != nullptr)
6425    *WasError = false;
6426
6427  auto Error = [&](const Expr *E) {
6428    if (WasError != nullptr)
6429      *WasError = true;
6430    return false;
6431  };
6432
6433  auto Success = [&](uint64_t S, const Expr *E) {
6434    Size = S;
6435    return true;
6436  };
6437
6438  // Determine the denoted object.
6439  LValue Base;
6440  {
6441    // The operand of __builtin_object_size is never evaluated for side-effects.
6442    // If there are any, but we can determine the pointed-to object anyway, then
6443    // ignore the side-effects.
6444    SpeculativeEvaluationRAII SpeculativeEval(Info);
6445    FoldOffsetRAII Fold(Info, Type & 1);
6446
6447    if (E->isGLValue()) {
6448      // It's possible for us to be given GLValues if we're called via
6449      // Expr::tryEvaluateObjectSize.
6450      APValue RVal;
6451      if (!EvaluateAsRValue(Info, E, RVal))
6452        return false;
6453      Base.setFrom(Info.Ctx, RVal);
6454    } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
6455      return false;
6456  }
6457
6458  CharUnits BaseOffset = Base.getLValueOffset();
6459  // If we point to before the start of the object, there are no accessible
6460  // bytes.
6461  if (BaseOffset.isNegative())
6462    return Success(0, E);
6463
6464  // In the case where we're not dealing with a subobject, we discard the
6465  // subobject bit.
6466  bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
6467
6468  // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
6469  // exist. If we can't verify the base, then we can't do that.
6470  //
6471  // As a special case, we produce a valid object size for an unknown object
6472  // with a known designator if Type & 1 is 1. For instance:
6473  //
6474  //   extern struct X { char buff[32]; int a, b, c; } *p;
6475  //   int a = __builtin_object_size(p->buff + 4, 3); // returns 28
6476  //   int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
6477  //
6478  // This matches GCC's behavior.
6479  if (Base.InvalidBase && !SubobjectOnly)
6480    return Error(E);
6481
6482  // If we're not examining only the subobject, then we reset to a complete
6483  // object designator
6484  //
6485  // If Type is 1 and we've lost track of the subobject, just find the complete
6486  // object instead. (If Type is 3, that's not correct behavior and we should
6487  // return 0 instead.)
6488  LValue End = Base;
6489  if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
6490    QualType T = getObjectType(End.getLValueBase());
6491    if (T.isNull())
6492      End.Designator.setInvalid();
6493    else {
6494      End.Designator = SubobjectDesignator(T);
6495      End.Offset = CharUnits::Zero();
6496    }
6497  }
6498
6499  // If it is not possible to determine which objects ptr points to at compile
6500  // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
6501  // and (size_t) 0 for type 2 or 3.
6502  if (End.Designator.Invalid)
6503    return false;
6504
6505  // According to the GCC documentation, we want the size of the subobject
6506  // denoted by the pointer. But that's not quite right -- what we actually
6507  // want is the size of the immediately-enclosing array, if there is one.
6508  int64_t AmountToAdd = 1;
6509  if (End.Designator.MostDerivedIsArrayElement &&
6510      End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
6511    // We got a pointer to an array. Step to its end.
6512    AmountToAdd = End.Designator.MostDerivedArraySize -
6513                  End.Designator.Entries.back().ArrayIndex;
6514  } else if (End.Designator.isOnePastTheEnd()) {
6515    // We're already pointing at the end of the object.
6516    AmountToAdd = 0;
6517  }
6518
6519  QualType PointeeType = End.Designator.MostDerivedType;
6520  assert(!PointeeType.isNull());
6521  if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
6522    return Error(E);
6523
6524  if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
6525                                   AmountToAdd))
6526    return false;
6527
6528  auto EndOffset = End.getLValueOffset();
6529
6530  // The following is a moderately common idiom in C:
6531  //
6532  // struct Foo { int a; char c[1]; };
6533  // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
6534  // strcpy(&F->c[0], Bar);
6535  //
6536  // So, if we see that we're examining a 1-length (or 0-length) array at the
6537  // end of a struct with an unknown base, we give up instead of breaking code
6538  // that behaves this way. Note that we only do this when Type=1, because
6539  // Type=3 is a lower bound, so answering conservatively is fine.
6540  if (End.InvalidBase && SubobjectOnly && Type == 1 &&
6541      End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
6542      End.Designator.MostDerivedIsArrayElement &&
6543      End.Designator.MostDerivedArraySize < 2 &&
6544      isDesignatorAtObjectEnd(Info.Ctx, End))
6545    return false;
6546
6547  if (BaseOffset > EndOffset)
6548    return Success(0, E);
6549
6550  return Success((EndOffset - BaseOffset).getQuantity(), E);
6551}
6552
6553bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
6554                                                    unsigned Type) {
6555  uint64_t Size;
6556  bool WasError;
6557  if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
6558    return Success(Size, E);
6559  if (WasError)
6560    return Error(E);
6561  return false;
6562}
6563
6564bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6565  switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6566  default:
6567    return ExprEvaluatorBaseTy::VisitCallExpr(E);
6568
6569  case Builtin::BI__builtin_object_size: {
6570    // The type was checked when we built the expression.
6571    unsigned Type =
6572        E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6573    assert(Type <= 3 && "unexpected type");
6574
6575    if (TryEvaluateBuiltinObjectSize(E, Type))
6576      return true;
6577
6578    if (E->getArg(0)->HasSideEffects(Info.Ctx))
6579      return Success((Type & 2) ? 0 : -1, E);
6580
6581    // Expression had no side effects, but we couldn't statically determine the
6582    // size of the referenced object.
6583    switch (Info.EvalMode) {
6584    case EvalInfo::EM_ConstantExpression:
6585    case EvalInfo::EM_PotentialConstantExpression:
6586    case EvalInfo::EM_ConstantFold:
6587    case EvalInfo::EM_EvaluateForOverflow:
6588    case EvalInfo::EM_IgnoreSideEffects:
6589    case EvalInfo::EM_DesignatorFold:
6590      // Leave it to IR generation.
6591      return Error(E);
6592    case EvalInfo::EM_ConstantExpressionUnevaluated:
6593    case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6594      // Reduce it to a constant now.
6595      return Success((Type & 2) ? 0 : -1, E);
6596    }
6597  }
6598
6599  case Builtin::BI__builtin_bswap16:
6600  case Builtin::BI__builtin_bswap32:
6601  case Builtin::BI__builtin_bswap64: {
6602    APSInt Val;
6603    if (!EvaluateInteger(E->getArg(0), Val, Info))
6604      return false;
6605
6606    return Success(Val.byteSwap(), E);
6607  }
6608
6609  case Builtin::BI__builtin_classify_type:
6610    return Success(EvaluateBuiltinClassifyType(E), E);
6611
6612  // FIXME: BI__builtin_clrsb
6613  // FIXME: BI__builtin_clrsbl
6614  // FIXME: BI__builtin_clrsbll
6615
6616  case Builtin::BI__builtin_clz:
6617  case Builtin::BI__builtin_clzl:
6618  case Builtin::BI__builtin_clzll:
6619  case Builtin::BI__builtin_clzs: {
6620    APSInt Val;
6621    if (!EvaluateInteger(E->getArg(0), Val, Info))
6622      return false;
6623    if (!Val)
6624      return Error(E);
6625
6626    return Success(Val.countLeadingZeros(), E);
6627  }
6628
6629  case Builtin::BI__builtin_constant_p:
6630    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6631
6632  case Builtin::BI__builtin_ctz:
6633  case Builtin::BI__builtin_ctzl:
6634  case Builtin::BI__builtin_ctzll:
6635  case Builtin::BI__builtin_ctzs: {
6636    APSInt Val;
6637    if (!EvaluateInteger(E->getArg(0), Val, Info))
6638      return false;
6639    if (!Val)
6640      return Error(E);
6641
6642    return Success(Val.countTrailingZeros(), E);
6643  }
6644
6645  case Builtin::BI__builtin_eh_return_data_regno: {
6646    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6647    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6648    return Success(Operand, E);
6649  }
6650
6651  case Builtin::BI__builtin_expect:
6652    return Visit(E->getArg(0));
6653
6654  case Builtin::BI__builtin_ffs:
6655  case Builtin::BI__builtin_ffsl:
6656  case Builtin::BI__builtin_ffsll: {
6657    APSInt Val;
6658    if (!EvaluateInteger(E->getArg(0), Val, Info))
6659      return false;
6660
6661    unsigned N = Val.countTrailingZeros();
6662    return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6663  }
6664
6665  case Builtin::BI__builtin_fpclassify: {
6666    APFloat Val(0.0);
6667    if (!EvaluateFloat(E->getArg(5), Val, Info))
6668      return false;
6669    unsigned Arg;
6670    switch (Val.getCategory()) {
6671    case APFloat::fcNaN: Arg = 0; break;
6672    case APFloat::fcInfinity: Arg = 1; break;
6673    case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6674    case APFloat::fcZero: Arg = 4; break;
6675    }
6676    return Visit(E->getArg(Arg));
6677  }
6678
6679  case Builtin::BI__builtin_isinf_sign: {
6680    APFloat Val(0.0);
6681    return EvaluateFloat(E->getArg(0), Val, Info) &&
6682           Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6683  }
6684
6685  case Builtin::BI__builtin_isinf: {
6686    APFloat Val(0.0);
6687    return EvaluateFloat(E->getArg(0), Val, Info) &&
6688           Success(Val.isInfinity() ? 1 : 0, E);
6689  }
6690
6691  case Builtin::BI__builtin_isfinite: {
6692    APFloat Val(0.0);
6693    return EvaluateFloat(E->getArg(0), Val, Info) &&
6694           Success(Val.isFinite() ? 1 : 0, E);
6695  }
6696
6697  case Builtin::BI__builtin_isnan: {
6698    APFloat Val(0.0);
6699    return EvaluateFloat(E->getArg(0), Val, Info) &&
6700           Success(Val.isNaN() ? 1 : 0, E);
6701  }
6702
6703  case Builtin::BI__builtin_isnormal: {
6704    APFloat Val(0.0);
6705    return EvaluateFloat(E->getArg(0), Val, Info) &&
6706           Success(Val.isNormal() ? 1 : 0, E);
6707  }
6708
6709  case Builtin::BI__builtin_parity:
6710  case Builtin::BI__builtin_parityl:
6711  case Builtin::BI__builtin_parityll: {
6712    APSInt Val;
6713    if (!EvaluateInteger(E->getArg(0), Val, Info))
6714      return false;
6715
6716    return Success(Val.countPopulation() % 2, E);
6717  }
6718
6719  case Builtin::BI__builtin_popcount:
6720  case Builtin::BI__builtin_popcountl:
6721  case Builtin::BI__builtin_popcountll: {
6722    APSInt Val;
6723    if (!EvaluateInteger(E->getArg(0), Val, Info))
6724      return false;
6725
6726    return Success(Val.countPopulation(), E);
6727  }
6728
6729  case Builtin::BIstrlen:
6730    // A call to strlen is not a constant expression.
6731    if (Info.getLangOpts().CPlusPlus11)
6732      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6733        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6734    else
6735      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6736    // Fall through.
6737  case Builtin::BI__builtin_strlen: {
6738    // As an extension, we support __builtin_strlen() as a constant expression,
6739    // and support folding strlen() to a constant.
6740    LValue String;
6741    if (!EvaluatePointer(E->getArg(0), String, Info))
6742      return false;
6743
6744    // Fast path: if it's a string literal, search the string value.
6745    if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6746            String.getLValueBase().dyn_cast<const Expr *>())) {
6747      // The string literal may have embedded null characters. Find the first
6748      // one and truncate there.
6749      StringRef Str = S->getBytes();
6750      int64_t Off = String.Offset.getQuantity();
6751      if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6752          S->getCharByteWidth() == 1) {
6753        Str = Str.substr(Off);
6754
6755        StringRef::size_type Pos = Str.find(0);
6756        if (Pos != StringRef::npos)
6757          Str = Str.substr(0, Pos);
6758
6759        return Success(Str.size(), E);
6760      }
6761
6762      // Fall through to slow path to issue appropriate diagnostic.
6763    }
6764
6765    // Slow path: scan the bytes of the string looking for the terminating 0.
6766    QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6767    for (uint64_t Strlen = 0; /**/; ++Strlen) {
6768      APValue Char;
6769      if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6770          !Char.isInt())
6771        return false;
6772      if (!Char.getInt())
6773        return Success(Strlen, E);
6774      if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6775        return false;
6776    }
6777  }
6778
6779  case Builtin::BI__atomic_always_lock_free:
6780  case Builtin::BI__atomic_is_lock_free:
6781  case Builtin::BI__c11_atomic_is_lock_free: {
6782    APSInt SizeVal;
6783    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6784      return false;
6785
6786    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6787    // of two less than the maximum inline atomic width, we know it is
6788    // lock-free.  If the size isn't a power of two, or greater than the
6789    // maximum alignment where we promote atomics, we know it is not lock-free
6790    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6791    // the answer can only be determined at runtime; for example, 16-byte
6792    // atomics have lock-free implementations on some, but not all,
6793    // x86-64 processors.
6794
6795    // Check power-of-two.
6796    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6797    if (Size.isPowerOfTwo()) {
6798      // Check against inlining width.
6799      unsigned InlineWidthBits =
6800          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6801      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6802        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6803            Size == CharUnits::One() ||
6804            E->getArg(1)->isNullPointerConstant(Info.Ctx,
6805                                                Expr::NPC_NeverValueDependent))
6806          // OK, we will inline appropriately-aligned operations of this size,
6807          // and _Atomic(T) is appropriately-aligned.
6808          return Success(1, E);
6809
6810        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6811          castAs<PointerType>()->getPointeeType();
6812        if (!PointeeType->isIncompleteType() &&
6813            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6814          // OK, we will inline operations on this object.
6815          return Success(1, E);
6816        }
6817      }
6818    }
6819
6820    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6821        Success(0, E) : Error(E);
6822  }
6823  }
6824}
6825
6826static bool HasSameBase(const LValue &A, const LValue &B) {
6827  if (!A.getLValueBase())
6828    return !B.getLValueBase();
6829  if (!B.getLValueBase())
6830    return false;
6831
6832  if (A.getLValueBase().getOpaqueValue() !=
6833      B.getLValueBase().getOpaqueValue()) {
6834    const Decl *ADecl = GetLValueBaseDecl(A);
6835    if (!ADecl)
6836      return false;
6837    const Decl *BDecl = GetLValueBaseDecl(B);
6838    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6839      return false;
6840  }
6841
6842  return IsGlobalLValue(A.getLValueBase()) ||
6843         A.getLValueCallIndex() == B.getLValueCallIndex();
6844}
6845
6846/// \brief Determine whether this is a pointer past the end of the complete
6847/// object referred to by the lvalue.
6848static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
6849                                            const LValue &LV) {
6850  // A null pointer can be viewed as being "past the end" but we don't
6851  // choose to look at it that way here.
6852  if (!LV.getLValueBase())
6853    return false;
6854
6855  // If the designator is valid and refers to a subobject, we're not pointing
6856  // past the end.
6857  if (!LV.getLValueDesignator().Invalid &&
6858      !LV.getLValueDesignator().isOnePastTheEnd())
6859    return false;
6860
6861  // A pointer to an incomplete type might be past-the-end if the type's size is
6862  // zero.  We cannot tell because the type is incomplete.
6863  QualType Ty = getType(LV.getLValueBase());
6864  if (Ty->isIncompleteType())
6865    return true;
6866
6867  // We're a past-the-end pointer if we point to the byte after the object,
6868  // no matter what our type or path is.
6869  auto Size = Ctx.getTypeSizeInChars(Ty);
6870  return LV.getLValueOffset() == Size;
6871}
6872
6873namespace {
6874
6875/// \brief Data recursive integer evaluator of certain binary operators.
6876///
6877/// We use a data recursive algorithm for binary operators so that we are able
6878/// to handle extreme cases of chained binary operators without causing stack
6879/// overflow.
6880class DataRecursiveIntBinOpEvaluator {
6881  struct EvalResult {
6882    APValue Val;
6883    bool Failed;
6884
6885    EvalResult() : Failed(false) { }
6886
6887    void swap(EvalResult &RHS) {
6888      Val.swap(RHS.Val);
6889      Failed = RHS.Failed;
6890      RHS.Failed = false;
6891    }
6892  };
6893
6894  struct Job {
6895    const Expr *E;
6896    EvalResult LHSResult; // meaningful only for binary operator expression.
6897    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6898
6899    Job() = default;
6900    Job(Job &&J)
6901        : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
6902          StoredInfo(J.StoredInfo), OldEvalStatus(J.OldEvalStatus) {
6903      J.StoredInfo = nullptr;
6904    }
6905
6906    void startSpeculativeEval(EvalInfo &Info) {
6907      OldEvalStatus = Info.EvalStatus;
6908      Info.EvalStatus.Diag = nullptr;
6909      StoredInfo = &Info;
6910    }
6911    ~Job() {
6912      if (StoredInfo) {
6913        StoredInfo->EvalStatus = OldEvalStatus;
6914      }
6915    }
6916  private:
6917    EvalInfo *StoredInfo = nullptr; // non-null if status changed.
6918    Expr::EvalStatus OldEvalStatus;
6919  };
6920
6921  SmallVector<Job, 16> Queue;
6922
6923  IntExprEvaluator &IntEval;
6924  EvalInfo &Info;
6925  APValue &FinalResult;
6926
6927public:
6928  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6929    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6930
6931  /// \brief True if \param E is a binary operator that we are going to handle
6932  /// data recursively.
6933  /// We handle binary operators that are comma, logical, or that have operands
6934  /// with integral or enumeration type.
6935  static bool shouldEnqueue(const BinaryOperator *E) {
6936    return E->getOpcode() == BO_Comma ||
6937           E->isLogicalOp() ||
6938           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6939            E->getRHS()->getType()->isIntegralOrEnumerationType());
6940  }
6941
6942  bool Traverse(const BinaryOperator *E) {
6943    enqueue(E);
6944    EvalResult PrevResult;
6945    while (!Queue.empty())
6946      process(PrevResult);
6947
6948    if (PrevResult.Failed) return false;
6949
6950    FinalResult.swap(PrevResult.Val);
6951    return true;
6952  }
6953
6954private:
6955  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6956    return IntEval.Success(Value, E, Result);
6957  }
6958  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6959    return IntEval.Success(Value, E, Result);
6960  }
6961  bool Error(const Expr *E) {
6962    return IntEval.Error(E);
6963  }
6964  bool Error(const Expr *E, diag::kind D) {
6965    return IntEval.Error(E, D);
6966  }
6967
6968  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6969    return Info.CCEDiag(E, D);
6970  }
6971
6972  // \brief Returns true if visiting the RHS is necessary, false otherwise.
6973  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6974                         bool &SuppressRHSDiags);
6975
6976  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6977                  const BinaryOperator *E, APValue &Result);
6978
6979  void EvaluateExpr(const Expr *E, EvalResult &Result) {
6980    Result.Failed = !Evaluate(Result.Val, Info, E);
6981    if (Result.Failed)
6982      Result.Val = APValue();
6983  }
6984
6985  void process(EvalResult &Result);
6986
6987  void enqueue(const Expr *E) {
6988    E = E->IgnoreParens();
6989    Queue.resize(Queue.size()+1);
6990    Queue.back().E = E;
6991    Queue.back().Kind = Job::AnyExprKind;
6992  }
6993};
6994
6995}
6996
6997bool DataRecursiveIntBinOpEvaluator::
6998       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6999                         bool &SuppressRHSDiags) {
7000  if (E->getOpcode() == BO_Comma) {
7001    // Ignore LHS but note if we could not evaluate it.
7002    if (LHSResult.Failed)
7003      return Info.noteSideEffect();
7004    return true;
7005  }
7006
7007  if (E->isLogicalOp()) {
7008    bool LHSAsBool;
7009    if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
7010      // We were able to evaluate the LHS, see if we can get away with not
7011      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
7012      if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
7013        Success(LHSAsBool, E, LHSResult.Val);
7014        return false; // Ignore RHS
7015      }
7016    } else {
7017      LHSResult.Failed = true;
7018
7019      // Since we weren't able to evaluate the left hand side, it
7020      // must have had side effects.
7021      if (!Info.noteSideEffect())
7022        return false;
7023
7024      // We can't evaluate the LHS; however, sometimes the result
7025      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7026      // Don't ignore RHS and suppress diagnostics from this arm.
7027      SuppressRHSDiags = true;
7028    }
7029
7030    return true;
7031  }
7032
7033  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7034         E->getRHS()->getType()->isIntegralOrEnumerationType());
7035
7036  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
7037    return false; // Ignore RHS;
7038
7039  return true;
7040}
7041
7042bool DataRecursiveIntBinOpEvaluator::
7043       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7044                  const BinaryOperator *E, APValue &Result) {
7045  if (E->getOpcode() == BO_Comma) {
7046    if (RHSResult.Failed)
7047      return false;
7048    Result = RHSResult.Val;
7049    return true;
7050  }
7051
7052  if (E->isLogicalOp()) {
7053    bool lhsResult, rhsResult;
7054    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
7055    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
7056
7057    if (LHSIsOK) {
7058      if (RHSIsOK) {
7059        if (E->getOpcode() == BO_LOr)
7060          return Success(lhsResult || rhsResult, E, Result);
7061        else
7062          return Success(lhsResult && rhsResult, E, Result);
7063      }
7064    } else {
7065      if (RHSIsOK) {
7066        // We can't evaluate the LHS; however, sometimes the result
7067        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7068        if (rhsResult == (E->getOpcode() == BO_LOr))
7069          return Success(rhsResult, E, Result);
7070      }
7071    }
7072
7073    return false;
7074  }
7075
7076  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7077         E->getRHS()->getType()->isIntegralOrEnumerationType());
7078
7079  if (LHSResult.Failed || RHSResult.Failed)
7080    return false;
7081
7082  const APValue &LHSVal = LHSResult.Val;
7083  const APValue &RHSVal = RHSResult.Val;
7084
7085  // Handle cases like (unsigned long)&a + 4.
7086  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
7087    Result = LHSVal;
7088    CharUnits AdditionalOffset =
7089        CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
7090    if (E->getOpcode() == BO_Add)
7091      Result.getLValueOffset() += AdditionalOffset;
7092    else
7093      Result.getLValueOffset() -= AdditionalOffset;
7094    return true;
7095  }
7096
7097  // Handle cases like 4 + (unsigned long)&a
7098  if (E->getOpcode() == BO_Add &&
7099      RHSVal.isLValue() && LHSVal.isInt()) {
7100    Result = RHSVal;
7101    Result.getLValueOffset() +=
7102        CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
7103    return true;
7104  }
7105
7106  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
7107    // Handle (intptr_t)&&A - (intptr_t)&&B.
7108    if (!LHSVal.getLValueOffset().isZero() ||
7109        !RHSVal.getLValueOffset().isZero())
7110      return false;
7111    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
7112    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
7113    if (!LHSExpr || !RHSExpr)
7114      return false;
7115    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7116    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7117    if (!LHSAddrExpr || !RHSAddrExpr)
7118      return false;
7119    // Make sure both labels come from the same function.
7120    if (LHSAddrExpr->getLabel()->getDeclContext() !=
7121        RHSAddrExpr->getLabel()->getDeclContext())
7122      return false;
7123    Result = APValue(LHSAddrExpr, RHSAddrExpr);
7124    return true;
7125  }
7126
7127  // All the remaining cases expect both operands to be an integer
7128  if (!LHSVal.isInt() || !RHSVal.isInt())
7129    return Error(E);
7130
7131  // Set up the width and signedness manually, in case it can't be deduced
7132  // from the operation we're performing.
7133  // FIXME: Don't do this in the cases where we can deduce it.
7134  APSInt Value(Info.Ctx.getIntWidth(E->getType()),
7135               E->getType()->isUnsignedIntegerOrEnumerationType());
7136  if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
7137                         RHSVal.getInt(), Value))
7138    return false;
7139  return Success(Value, E, Result);
7140}
7141
7142void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
7143  Job &job = Queue.back();
7144
7145  switch (job.Kind) {
7146    case Job::AnyExprKind: {
7147      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
7148        if (shouldEnqueue(Bop)) {
7149          job.Kind = Job::BinOpKind;
7150          enqueue(Bop->getLHS());
7151          return;
7152        }
7153      }
7154
7155      EvaluateExpr(job.E, Result);
7156      Queue.pop_back();
7157      return;
7158    }
7159
7160    case Job::BinOpKind: {
7161      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7162      bool SuppressRHSDiags = false;
7163      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
7164        Queue.pop_back();
7165        return;
7166      }
7167      if (SuppressRHSDiags)
7168        job.startSpeculativeEval(Info);
7169      job.LHSResult.swap(Result);
7170      job.Kind = Job::BinOpVisitedLHSKind;
7171      enqueue(Bop->getRHS());
7172      return;
7173    }
7174
7175    case Job::BinOpVisitedLHSKind: {
7176      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7177      EvalResult RHS;
7178      RHS.swap(Result);
7179      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
7180      Queue.pop_back();
7181      return;
7182    }
7183  }
7184
7185  llvm_unreachable("Invalid Job::Kind!");
7186}
7187
7188bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7189  if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
7190    return Error(E);
7191
7192  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
7193    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
7194
7195  QualType LHSTy = E->getLHS()->getType();
7196  QualType RHSTy = E->getRHS()->getType();
7197
7198  if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
7199    ComplexValue LHS, RHS;
7200    bool LHSOK;
7201    if (E->isAssignmentOp()) {
7202      LValue LV;
7203      EvaluateLValue(E->getLHS(), LV, Info);
7204      LHSOK = false;
7205    } else if (LHSTy->isRealFloatingType()) {
7206      LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
7207      if (LHSOK) {
7208        LHS.makeComplexFloat();
7209        LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
7210      }
7211    } else {
7212      LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
7213    }
7214    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7215      return false;
7216
7217    if (E->getRHS()->getType()->isRealFloatingType()) {
7218      if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
7219        return false;
7220      RHS.makeComplexFloat();
7221      RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
7222    } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7223      return false;
7224
7225    if (LHS.isComplexFloat()) {
7226      APFloat::cmpResult CR_r =
7227        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
7228      APFloat::cmpResult CR_i =
7229        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
7230
7231      if (E->getOpcode() == BO_EQ)
7232        return Success((CR_r == APFloat::cmpEqual &&
7233                        CR_i == APFloat::cmpEqual), E);
7234      else {
7235        assert(E->getOpcode() == BO_NE &&
7236               "Invalid complex comparison.");
7237        return Success(((CR_r == APFloat::cmpGreaterThan ||
7238                         CR_r == APFloat::cmpLessThan ||
7239                         CR_r == APFloat::cmpUnordered) ||
7240                        (CR_i == APFloat::cmpGreaterThan ||
7241                         CR_i == APFloat::cmpLessThan ||
7242                         CR_i == APFloat::cmpUnordered)), E);
7243      }
7244    } else {
7245      if (E->getOpcode() == BO_EQ)
7246        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
7247                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
7248      else {
7249        assert(E->getOpcode() == BO_NE &&
7250               "Invalid compex comparison.");
7251        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
7252                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
7253      }
7254    }
7255  }
7256
7257  if (LHSTy->isRealFloatingType() &&
7258      RHSTy->isRealFloatingType()) {
7259    APFloat RHS(0.0), LHS(0.0);
7260
7261    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
7262    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7263      return false;
7264
7265    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
7266      return false;
7267
7268    APFloat::cmpResult CR = LHS.compare(RHS);
7269
7270    switch (E->getOpcode()) {
7271    default:
7272      llvm_unreachable("Invalid binary operator!");
7273    case BO_LT:
7274      return Success(CR == APFloat::cmpLessThan, E);
7275    case BO_GT:
7276      return Success(CR == APFloat::cmpGreaterThan, E);
7277    case BO_LE:
7278      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
7279    case BO_GE:
7280      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
7281                     E);
7282    case BO_EQ:
7283      return Success(CR == APFloat::cmpEqual, E);
7284    case BO_NE:
7285      return Success(CR == APFloat::cmpGreaterThan
7286                     || CR == APFloat::cmpLessThan
7287                     || CR == APFloat::cmpUnordered, E);
7288    }
7289  }
7290
7291  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
7292    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
7293      LValue LHSValue, RHSValue;
7294
7295      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
7296      if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7297        return false;
7298
7299      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7300        return false;
7301
7302      // Reject differing bases from the normal codepath; we special-case
7303      // comparisons to null.
7304      if (!HasSameBase(LHSValue, RHSValue)) {
7305        if (E->getOpcode() == BO_Sub) {
7306          // Handle &&A - &&B.
7307          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
7308            return Error(E);
7309          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
7310          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
7311          if (!LHSExpr || !RHSExpr)
7312            return Error(E);
7313          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7314          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7315          if (!LHSAddrExpr || !RHSAddrExpr)
7316            return Error(E);
7317          // Make sure both labels come from the same function.
7318          if (LHSAddrExpr->getLabel()->getDeclContext() !=
7319              RHSAddrExpr->getLabel()->getDeclContext())
7320            return Error(E);
7321          return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
7322        }
7323        // Inequalities and subtractions between unrelated pointers have
7324        // unspecified or undefined behavior.
7325        if (!E->isEqualityOp())
7326          return Error(E);
7327        // A constant address may compare equal to the address of a symbol.
7328        // The one exception is that address of an object cannot compare equal
7329        // to a null pointer constant.
7330        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
7331            (!RHSValue.Base && !RHSValue.Offset.isZero()))
7332          return Error(E);
7333        // It's implementation-defined whether distinct literals will have
7334        // distinct addresses. In clang, the result of such a comparison is
7335        // unspecified, so it is not a constant expression. However, we do know
7336        // that the address of a literal will be non-null.
7337        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
7338            LHSValue.Base && RHSValue.Base)
7339          return Error(E);
7340        // We can't tell whether weak symbols will end up pointing to the same
7341        // object.
7342        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
7343          return Error(E);
7344        // We can't compare the address of the start of one object with the
7345        // past-the-end address of another object, per C++ DR1652.
7346        if ((LHSValue.Base && LHSValue.Offset.isZero() &&
7347             isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
7348            (RHSValue.Base && RHSValue.Offset.isZero() &&
7349             isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7350          return Error(E);
7351        // We can't tell whether an object is at the same address as another
7352        // zero sized object.
7353        if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7354            (LHSValue.Base && isZeroSized(RHSValue)))
7355          return Error(E);
7356        // Pointers with different bases cannot represent the same object.
7357        // (Note that clang defaults to -fmerge-all-constants, which can
7358        // lead to inconsistent results for comparisons involving the address
7359        // of a constant; this generally doesn't matter in practice.)
7360        return Success(E->getOpcode() == BO_NE, E);
7361      }
7362
7363      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7364      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7365
7366      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7367      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7368
7369      if (E->getOpcode() == BO_Sub) {
7370        // C++11 [expr.add]p6:
7371        //   Unless both pointers point to elements of the same array object, or
7372        //   one past the last element of the array object, the behavior is
7373        //   undefined.
7374        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7375            !AreElementsOfSameArray(getType(LHSValue.Base),
7376                                    LHSDesignator, RHSDesignator))
7377          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7378
7379        QualType Type = E->getLHS()->getType();
7380        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7381
7382        CharUnits ElementSize;
7383        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7384          return false;
7385
7386        // As an extension, a type may have zero size (empty struct or union in
7387        // C, array of zero length). Pointer subtraction in such cases has
7388        // undefined behavior, so is not constant.
7389        if (ElementSize.isZero()) {
7390          Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7391            << ElementType;
7392          return false;
7393        }
7394
7395        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7396        // and produce incorrect results when it overflows. Such behavior
7397        // appears to be non-conforming, but is common, so perhaps we should
7398        // assume the standard intended for such cases to be undefined behavior
7399        // and check for them.
7400
7401        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7402        // overflow in the final conversion to ptrdiff_t.
7403        APSInt LHS(
7404          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7405        APSInt RHS(
7406          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7407        APSInt ElemSize(
7408          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7409        APSInt TrueResult = (LHS - RHS) / ElemSize;
7410        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7411
7412        if (Result.extend(65) != TrueResult &&
7413            !HandleOverflow(Info, E, TrueResult, E->getType()))
7414          return false;
7415        return Success(Result, E);
7416      }
7417
7418      // C++11 [expr.rel]p3:
7419      //   Pointers to void (after pointer conversions) can be compared, with a
7420      //   result defined as follows: If both pointers represent the same
7421      //   address or are both the null pointer value, the result is true if the
7422      //   operator is <= or >= and false otherwise; otherwise the result is
7423      //   unspecified.
7424      // We interpret this as applying to pointers to *cv* void.
7425      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7426          E->isRelationalOp())
7427        CCEDiag(E, diag::note_constexpr_void_comparison);
7428
7429      // C++11 [expr.rel]p2:
7430      // - If two pointers point to non-static data members of the same object,
7431      //   or to subobjects or array elements fo such members, recursively, the
7432      //   pointer to the later declared member compares greater provided the
7433      //   two members have the same access control and provided their class is
7434      //   not a union.
7435      //   [...]
7436      // - Otherwise pointer comparisons are unspecified.
7437      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7438          E->isRelationalOp()) {
7439        bool WasArrayIndex;
7440        unsigned Mismatch =
7441          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7442                                 RHSDesignator, WasArrayIndex);
7443        // At the point where the designators diverge, the comparison has a
7444        // specified value if:
7445        //  - we are comparing array indices
7446        //  - we are comparing fields of a union, or fields with the same access
7447        // Otherwise, the result is unspecified and thus the comparison is not a
7448        // constant expression.
7449        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7450            Mismatch < RHSDesignator.Entries.size()) {
7451          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7452          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7453          if (!LF && !RF)
7454            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7455          else if (!LF)
7456            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7457              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7458              << RF->getParent() << RF;
7459          else if (!RF)
7460            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7461              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7462              << LF->getParent() << LF;
7463          else if (!LF->getParent()->isUnion() &&
7464                   LF->getAccess() != RF->getAccess())
7465            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7466              << LF << LF->getAccess() << RF << RF->getAccess()
7467              << LF->getParent();
7468        }
7469      }
7470
7471      // The comparison here must be unsigned, and performed with the same
7472      // width as the pointer.
7473      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7474      uint64_t CompareLHS = LHSOffset.getQuantity();
7475      uint64_t CompareRHS = RHSOffset.getQuantity();
7476      assert(PtrSize <= 64 && "Unexpected pointer width");
7477      uint64_t Mask = ~0ULL >> (64 - PtrSize);
7478      CompareLHS &= Mask;
7479      CompareRHS &= Mask;
7480
7481      // If there is a base and this is a relational operator, we can only
7482      // compare pointers within the object in question; otherwise, the result
7483      // depends on where the object is located in memory.
7484      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7485        QualType BaseTy = getType(LHSValue.Base);
7486        if (BaseTy->isIncompleteType())
7487          return Error(E);
7488        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7489        uint64_t OffsetLimit = Size.getQuantity();
7490        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7491          return Error(E);
7492      }
7493
7494      switch (E->getOpcode()) {
7495      default: llvm_unreachable("missing comparison operator");
7496      case BO_LT: return Success(CompareLHS < CompareRHS, E);
7497      case BO_GT: return Success(CompareLHS > CompareRHS, E);
7498      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7499      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7500      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7501      case BO_NE: return Success(CompareLHS != CompareRHS, E);
7502      }
7503    }
7504  }
7505
7506  if (LHSTy->isMemberPointerType()) {
7507    assert(E->isEqualityOp() && "unexpected member pointer operation");
7508    assert(RHSTy->isMemberPointerType() && "invalid comparison");
7509
7510    MemberPtr LHSValue, RHSValue;
7511
7512    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7513    if (!LHSOK && Info.keepEvaluatingAfterFailure())
7514      return false;
7515
7516    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7517      return false;
7518
7519    // C++11 [expr.eq]p2:
7520    //   If both operands are null, they compare equal. Otherwise if only one is
7521    //   null, they compare unequal.
7522    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7523      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7524      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7525    }
7526
7527    //   Otherwise if either is a pointer to a virtual member function, the
7528    //   result is unspecified.
7529    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7530      if (MD->isVirtual())
7531        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7532    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7533      if (MD->isVirtual())
7534        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7535
7536    //   Otherwise they compare equal if and only if they would refer to the
7537    //   same member of the same most derived object or the same subobject if
7538    //   they were dereferenced with a hypothetical object of the associated
7539    //   class type.
7540    bool Equal = LHSValue == RHSValue;
7541    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7542  }
7543
7544  if (LHSTy->isNullPtrType()) {
7545    assert(E->isComparisonOp() && "unexpected nullptr operation");
7546    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7547    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7548    // are compared, the result is true of the operator is <=, >= or ==, and
7549    // false otherwise.
7550    BinaryOperator::Opcode Opcode = E->getOpcode();
7551    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7552  }
7553
7554  assert((!LHSTy->isIntegralOrEnumerationType() ||
7555          !RHSTy->isIntegralOrEnumerationType()) &&
7556         "DataRecursiveIntBinOpEvaluator should have handled integral types");
7557  // We can't continue from here for non-integral types.
7558  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7559}
7560
7561/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7562/// a result as the expression's type.
7563bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7564                                    const UnaryExprOrTypeTraitExpr *E) {
7565  switch(E->getKind()) {
7566  case UETT_AlignOf: {
7567    if (E->isArgumentType())
7568      return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7569    else
7570      return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7571  }
7572
7573  case UETT_VecStep: {
7574    QualType Ty = E->getTypeOfArgument();
7575
7576    if (Ty->isVectorType()) {
7577      unsigned n = Ty->castAs<VectorType>()->getNumElements();
7578
7579      // The vec_step built-in functions that take a 3-component
7580      // vector return 4. (OpenCL 1.1 spec 6.11.12)
7581      if (n == 3)
7582        n = 4;
7583
7584      return Success(n, E);
7585    } else
7586      return Success(1, E);
7587  }
7588
7589  case UETT_SizeOf: {
7590    QualType SrcTy = E->getTypeOfArgument();
7591    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7592    //   the result is the size of the referenced type."
7593    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7594      SrcTy = Ref->getPointeeType();
7595
7596    CharUnits Sizeof;
7597    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7598      return false;
7599    return Success(Sizeof, E);
7600  }
7601  case UETT_OpenMPRequiredSimdAlign:
7602    assert(E->isArgumentType());
7603    return Success(
7604        Info.Ctx.toCharUnitsFromBits(
7605                    Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
7606            .getQuantity(),
7607        E);
7608  }
7609
7610  llvm_unreachable("unknown expr/type trait");
7611}
7612
7613bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7614  CharUnits Result;
7615  unsigned n = OOE->getNumComponents();
7616  if (n == 0)
7617    return Error(OOE);
7618  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7619  for (unsigned i = 0; i != n; ++i) {
7620    OffsetOfNode ON = OOE->getComponent(i);
7621    switch (ON.getKind()) {
7622    case OffsetOfNode::Array: {
7623      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7624      APSInt IdxResult;
7625      if (!EvaluateInteger(Idx, IdxResult, Info))
7626        return false;
7627      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7628      if (!AT)
7629        return Error(OOE);
7630      CurrentType = AT->getElementType();
7631      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7632      Result += IdxResult.getSExtValue() * ElementSize;
7633      break;
7634    }
7635
7636    case OffsetOfNode::Field: {
7637      FieldDecl *MemberDecl = ON.getField();
7638      const RecordType *RT = CurrentType->getAs<RecordType>();
7639      if (!RT)
7640        return Error(OOE);
7641      RecordDecl *RD = RT->getDecl();
7642      if (RD->isInvalidDecl()) return false;
7643      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7644      unsigned i = MemberDecl->getFieldIndex();
7645      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7646      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7647      CurrentType = MemberDecl->getType().getNonReferenceType();
7648      break;
7649    }
7650
7651    case OffsetOfNode::Identifier:
7652      llvm_unreachable("dependent __builtin_offsetof");
7653
7654    case OffsetOfNode::Base: {
7655      CXXBaseSpecifier *BaseSpec = ON.getBase();
7656      if (BaseSpec->isVirtual())
7657        return Error(OOE);
7658
7659      // Find the layout of the class whose base we are looking into.
7660      const RecordType *RT = CurrentType->getAs<RecordType>();
7661      if (!RT)
7662        return Error(OOE);
7663      RecordDecl *RD = RT->getDecl();
7664      if (RD->isInvalidDecl()) return false;
7665      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7666
7667      // Find the base class itself.
7668      CurrentType = BaseSpec->getType();
7669      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7670      if (!BaseRT)
7671        return Error(OOE);
7672
7673      // Add the offset to the base.
7674      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7675      break;
7676    }
7677    }
7678  }
7679  return Success(Result, OOE);
7680}
7681
7682bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7683  switch (E->getOpcode()) {
7684  default:
7685    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7686    // See C99 6.6p3.
7687    return Error(E);
7688  case UO_Extension:
7689    // FIXME: Should extension allow i-c-e extension expressions in its scope?
7690    // If so, we could clear the diagnostic ID.
7691    return Visit(E->getSubExpr());
7692  case UO_Plus:
7693    // The result is just the value.
7694    return Visit(E->getSubExpr());
7695  case UO_Minus: {
7696    if (!Visit(E->getSubExpr()))
7697      return false;
7698    if (!Result.isInt()) return Error(E);
7699    const APSInt &Value = Result.getInt();
7700    if (Value.isSigned() && Value.isMinSignedValue() &&
7701        !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7702                        E->getType()))
7703      return false;
7704    return Success(-Value, E);
7705  }
7706  case UO_Not: {
7707    if (!Visit(E->getSubExpr()))
7708      return false;
7709    if (!Result.isInt()) return Error(E);
7710    return Success(~Result.getInt(), E);
7711  }
7712  case UO_LNot: {
7713    bool bres;
7714    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7715      return false;
7716    return Success(!bres, E);
7717  }
7718  }
7719}
7720
7721/// HandleCast - This is used to evaluate implicit or explicit casts where the
7722/// result type is integer.
7723bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7724  const Expr *SubExpr = E->getSubExpr();
7725  QualType DestType = E->getType();
7726  QualType SrcType = SubExpr->getType();
7727
7728  switch (E->getCastKind()) {
7729  case CK_BaseToDerived:
7730  case CK_DerivedToBase:
7731  case CK_UncheckedDerivedToBase:
7732  case CK_Dynamic:
7733  case CK_ToUnion:
7734  case CK_ArrayToPointerDecay:
7735  case CK_FunctionToPointerDecay:
7736  case CK_NullToPointer:
7737  case CK_NullToMemberPointer:
7738  case CK_BaseToDerivedMemberPointer:
7739  case CK_DerivedToBaseMemberPointer:
7740  case CK_ReinterpretMemberPointer:
7741  case CK_ConstructorConversion:
7742  case CK_IntegralToPointer:
7743  case CK_ToVoid:
7744  case CK_VectorSplat:
7745  case CK_IntegralToFloating:
7746  case CK_FloatingCast:
7747  case CK_CPointerToObjCPointerCast:
7748  case CK_BlockPointerToObjCPointerCast:
7749  case CK_AnyPointerToBlockPointerCast:
7750  case CK_ObjCObjectLValueCast:
7751  case CK_FloatingRealToComplex:
7752  case CK_FloatingComplexToReal:
7753  case CK_FloatingComplexCast:
7754  case CK_FloatingComplexToIntegralComplex:
7755  case CK_IntegralRealToComplex:
7756  case CK_IntegralComplexCast:
7757  case CK_IntegralComplexToFloatingComplex:
7758  case CK_BuiltinFnToFnPtr:
7759  case CK_ZeroToOCLEvent:
7760  case CK_NonAtomicToAtomic:
7761  case CK_AddressSpaceConversion:
7762    llvm_unreachable("invalid cast kind for integral value");
7763
7764  case CK_BitCast:
7765  case CK_Dependent:
7766  case CK_LValueBitCast:
7767  case CK_ARCProduceObject:
7768  case CK_ARCConsumeObject:
7769  case CK_ARCReclaimReturnedObject:
7770  case CK_ARCExtendBlockObject:
7771  case CK_CopyAndAutoreleaseBlockObject:
7772    return Error(E);
7773
7774  case CK_UserDefinedConversion:
7775  case CK_LValueToRValue:
7776  case CK_AtomicToNonAtomic:
7777  case CK_NoOp:
7778    return ExprEvaluatorBaseTy::VisitCastExpr(E);
7779
7780  case CK_MemberPointerToBoolean:
7781  case CK_PointerToBoolean:
7782  case CK_IntegralToBoolean:
7783  case CK_FloatingToBoolean:
7784  case CK_BooleanToSignedIntegral:
7785  case CK_FloatingComplexToBoolean:
7786  case CK_IntegralComplexToBoolean: {
7787    bool BoolResult;
7788    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7789      return false;
7790    uint64_t IntResult = BoolResult;
7791    if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
7792      IntResult = (uint64_t)-1;
7793    return Success(IntResult, E);
7794  }
7795
7796  case CK_IntegralCast: {
7797    if (!Visit(SubExpr))
7798      return false;
7799
7800    if (!Result.isInt()) {
7801      // Allow casts of address-of-label differences if they are no-ops
7802      // or narrowing.  (The narrowing case isn't actually guaranteed to
7803      // be constant-evaluatable except in some narrow cases which are hard
7804      // to detect here.  We let it through on the assumption the user knows
7805      // what they are doing.)
7806      if (Result.isAddrLabelDiff())
7807        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7808      // Only allow casts of lvalues if they are lossless.
7809      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7810    }
7811
7812    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7813                                      Result.getInt()), E);
7814  }
7815
7816  case CK_PointerToIntegral: {
7817    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7818
7819    LValue LV;
7820    if (!EvaluatePointer(SubExpr, LV, Info))
7821      return false;
7822
7823    if (LV.getLValueBase()) {
7824      // Only allow based lvalue casts if they are lossless.
7825      // FIXME: Allow a larger integer size than the pointer size, and allow
7826      // narrowing back down to pointer width in subsequent integral casts.
7827      // FIXME: Check integer type's active bits, not its type size.
7828      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7829        return Error(E);
7830
7831      LV.Designator.setInvalid();
7832      LV.moveInto(Result);
7833      return true;
7834    }
7835
7836    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7837                                         SrcType);
7838    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7839  }
7840
7841  case CK_IntegralComplexToReal: {
7842    ComplexValue C;
7843    if (!EvaluateComplex(SubExpr, C, Info))
7844      return false;
7845    return Success(C.getComplexIntReal(), E);
7846  }
7847
7848  case CK_FloatingToIntegral: {
7849    APFloat F(0.0);
7850    if (!EvaluateFloat(SubExpr, F, Info))
7851      return false;
7852
7853    APSInt Value;
7854    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7855      return false;
7856    return Success(Value, E);
7857  }
7858  }
7859
7860  llvm_unreachable("unknown cast resulting in integral value");
7861}
7862
7863bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7864  if (E->getSubExpr()->getType()->isAnyComplexType()) {
7865    ComplexValue LV;
7866    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7867      return false;
7868    if (!LV.isComplexInt())
7869      return Error(E);
7870    return Success(LV.getComplexIntReal(), E);
7871  }
7872
7873  return Visit(E->getSubExpr());
7874}
7875
7876bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7877  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7878    ComplexValue LV;
7879    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7880      return false;
7881    if (!LV.isComplexInt())
7882      return Error(E);
7883    return Success(LV.getComplexIntImag(), E);
7884  }
7885
7886  VisitIgnoredValue(E->getSubExpr());
7887  return Success(0, E);
7888}
7889
7890bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7891  return Success(E->getPackLength(), E);
7892}
7893
7894bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7895  return Success(E->getValue(), E);
7896}
7897
7898//===----------------------------------------------------------------------===//
7899// Float Evaluation
7900//===----------------------------------------------------------------------===//
7901
7902namespace {
7903class FloatExprEvaluator
7904  : public ExprEvaluatorBase<FloatExprEvaluator> {
7905  APFloat &Result;
7906public:
7907  FloatExprEvaluator(EvalInfo &info, APFloat &result)
7908    : ExprEvaluatorBaseTy(info), Result(result) {}
7909
7910  bool Success(const APValue &V, const Expr *e) {
7911    Result = V.getFloat();
7912    return true;
7913  }
7914
7915  bool ZeroInitialization(const Expr *E) {
7916    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7917    return true;
7918  }
7919
7920  bool VisitCallExpr(const CallExpr *E);
7921
7922  bool VisitUnaryOperator(const UnaryOperator *E);
7923  bool VisitBinaryOperator(const BinaryOperator *E);
7924  bool VisitFloatingLiteral(const FloatingLiteral *E);
7925  bool VisitCastExpr(const CastExpr *E);
7926
7927  bool VisitUnaryReal(const UnaryOperator *E);
7928  bool VisitUnaryImag(const UnaryOperator *E);
7929
7930  // FIXME: Missing: array subscript of vector, member of vector
7931};
7932} // end anonymous namespace
7933
7934static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7935  assert(E->isRValue() && E->getType()->isRealFloatingType());
7936  return FloatExprEvaluator(Info, Result).Visit(E);
7937}
7938
7939static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7940                                  QualType ResultTy,
7941                                  const Expr *Arg,
7942                                  bool SNaN,
7943                                  llvm::APFloat &Result) {
7944  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7945  if (!S) return false;
7946
7947  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7948
7949  llvm::APInt fill;
7950
7951  // Treat empty strings as if they were zero.
7952  if (S->getString().empty())
7953    fill = llvm::APInt(32, 0);
7954  else if (S->getString().getAsInteger(0, fill))
7955    return false;
7956
7957  if (Context.getTargetInfo().isNan2008()) {
7958    if (SNaN)
7959      Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7960    else
7961      Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7962  } else {
7963    // Prior to IEEE 754-2008, architectures were allowed to choose whether
7964    // the first bit of their significand was set for qNaN or sNaN. MIPS chose
7965    // a different encoding to what became a standard in 2008, and for pre-
7966    // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
7967    // sNaN. This is now known as "legacy NaN" encoding.
7968    if (SNaN)
7969      Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7970    else
7971      Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7972  }
7973
7974  return true;
7975}
7976
7977bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7978  switch (E->getBuiltinCallee()) {
7979  default:
7980    return ExprEvaluatorBaseTy::VisitCallExpr(E);
7981
7982  case Builtin::BI__builtin_huge_val:
7983  case Builtin::BI__builtin_huge_valf:
7984  case Builtin::BI__builtin_huge_vall:
7985  case Builtin::BI__builtin_inf:
7986  case Builtin::BI__builtin_inff:
7987  case Builtin::BI__builtin_infl: {
7988    const llvm::fltSemantics &Sem =
7989      Info.Ctx.getFloatTypeSemantics(E->getType());
7990    Result = llvm::APFloat::getInf(Sem);
7991    return true;
7992  }
7993
7994  case Builtin::BI__builtin_nans:
7995  case Builtin::BI__builtin_nansf:
7996  case Builtin::BI__builtin_nansl:
7997    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7998                               true, Result))
7999      return Error(E);
8000    return true;
8001
8002  case Builtin::BI__builtin_nan:
8003  case Builtin::BI__builtin_nanf:
8004  case Builtin::BI__builtin_nanl:
8005    // If this is __builtin_nan() turn this into a nan, otherwise we
8006    // can't constant fold it.
8007    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8008                               false, Result))
8009      return Error(E);
8010    return true;
8011
8012  case Builtin::BI__builtin_fabs:
8013  case Builtin::BI__builtin_fabsf:
8014  case Builtin::BI__builtin_fabsl:
8015    if (!EvaluateFloat(E->getArg(0), Result, Info))
8016      return false;
8017
8018    if (Result.isNegative())
8019      Result.changeSign();
8020    return true;
8021
8022  // FIXME: Builtin::BI__builtin_powi
8023  // FIXME: Builtin::BI__builtin_powif
8024  // FIXME: Builtin::BI__builtin_powil
8025
8026  case Builtin::BI__builtin_copysign:
8027  case Builtin::BI__builtin_copysignf:
8028  case Builtin::BI__builtin_copysignl: {
8029    APFloat RHS(0.);
8030    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
8031        !EvaluateFloat(E->getArg(1), RHS, Info))
8032      return false;
8033    Result.copySign(RHS);
8034    return true;
8035  }
8036  }
8037}
8038
8039bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8040  if (E->getSubExpr()->getType()->isAnyComplexType()) {
8041    ComplexValue CV;
8042    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8043      return false;
8044    Result = CV.FloatReal;
8045    return true;
8046  }
8047
8048  return Visit(E->getSubExpr());
8049}
8050
8051bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8052  if (E->getSubExpr()->getType()->isAnyComplexType()) {
8053    ComplexValue CV;
8054    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8055      return false;
8056    Result = CV.FloatImag;
8057    return true;
8058  }
8059
8060  VisitIgnoredValue(E->getSubExpr());
8061  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
8062  Result = llvm::APFloat::getZero(Sem);
8063  return true;
8064}
8065
8066bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8067  switch (E->getOpcode()) {
8068  default: return Error(E);
8069  case UO_Plus:
8070    return EvaluateFloat(E->getSubExpr(), Result, Info);
8071  case UO_Minus:
8072    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
8073      return false;
8074    Result.changeSign();
8075    return true;
8076  }
8077}
8078
8079bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8080  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8081    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8082
8083  APFloat RHS(0.0);
8084  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
8085  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
8086    return false;
8087  return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
8088         handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
8089}
8090
8091bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
8092  Result = E->getValue();
8093  return true;
8094}
8095
8096bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
8097  const Expr* SubExpr = E->getSubExpr();
8098
8099  switch (E->getCastKind()) {
8100  default:
8101    return ExprEvaluatorBaseTy::VisitCastExpr(E);
8102
8103  case CK_IntegralToFloating: {
8104    APSInt IntResult;
8105    return EvaluateInteger(SubExpr, IntResult, Info) &&
8106           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
8107                                E->getType(), Result);
8108  }
8109
8110  case CK_FloatingCast: {
8111    if (!Visit(SubExpr))
8112      return false;
8113    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
8114                                  Result);
8115  }
8116
8117  case CK_FloatingComplexToReal: {
8118    ComplexValue V;
8119    if (!EvaluateComplex(SubExpr, V, Info))
8120      return false;
8121    Result = V.getComplexFloatReal();
8122    return true;
8123  }
8124  }
8125}
8126
8127//===----------------------------------------------------------------------===//
8128// Complex Evaluation (for float and integer)
8129//===----------------------------------------------------------------------===//
8130
8131namespace {
8132class ComplexExprEvaluator
8133  : public ExprEvaluatorBase<ComplexExprEvaluator> {
8134  ComplexValue &Result;
8135
8136public:
8137  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
8138    : ExprEvaluatorBaseTy(info), Result(Result) {}
8139
8140  bool Success(const APValue &V, const Expr *e) {
8141    Result.setFrom(V);
8142    return true;
8143  }
8144
8145  bool ZeroInitialization(const Expr *E);
8146
8147  //===--------------------------------------------------------------------===//
8148  //                            Visitor Methods
8149  //===--------------------------------------------------------------------===//
8150
8151  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
8152  bool VisitCastExpr(const CastExpr *E);
8153  bool VisitBinaryOperator(const BinaryOperator *E);
8154  bool VisitUnaryOperator(const UnaryOperator *E);
8155  bool VisitInitListExpr(const InitListExpr *E);
8156};
8157} // end anonymous namespace
8158
8159static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
8160                            EvalInfo &Info) {
8161  assert(E->isRValue() && E->getType()->isAnyComplexType());
8162  return ComplexExprEvaluator(Info, Result).Visit(E);
8163}
8164
8165bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
8166  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
8167  if (ElemTy->isRealFloatingType()) {
8168    Result.makeComplexFloat();
8169    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
8170    Result.FloatReal = Zero;
8171    Result.FloatImag = Zero;
8172  } else {
8173    Result.makeComplexInt();
8174    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
8175    Result.IntReal = Zero;
8176    Result.IntImag = Zero;
8177  }
8178  return true;
8179}
8180
8181bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
8182  const Expr* SubExpr = E->getSubExpr();
8183
8184  if (SubExpr->getType()->isRealFloatingType()) {
8185    Result.makeComplexFloat();
8186    APFloat &Imag = Result.FloatImag;
8187    if (!EvaluateFloat(SubExpr, Imag, Info))
8188      return false;
8189
8190    Result.FloatReal = APFloat(Imag.getSemantics());
8191    return true;
8192  } else {
8193    assert(SubExpr->getType()->isIntegerType() &&
8194           "Unexpected imaginary literal.");
8195
8196    Result.makeComplexInt();
8197    APSInt &Imag = Result.IntImag;
8198    if (!EvaluateInteger(SubExpr, Imag, Info))
8199      return false;
8200
8201    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
8202    return true;
8203  }
8204}
8205
8206bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
8207
8208  switch (E->getCastKind()) {
8209  case CK_BitCast:
8210  case CK_BaseToDerived:
8211  case CK_DerivedToBase:
8212  case CK_UncheckedDerivedToBase:
8213  case CK_Dynamic:
8214  case CK_ToUnion:
8215  case CK_ArrayToPointerDecay:
8216  case CK_FunctionToPointerDecay:
8217  case CK_NullToPointer:
8218  case CK_NullToMemberPointer:
8219  case CK_BaseToDerivedMemberPointer:
8220  case CK_DerivedToBaseMemberPointer:
8221  case CK_MemberPointerToBoolean:
8222  case CK_ReinterpretMemberPointer:
8223  case CK_ConstructorConversion:
8224  case CK_IntegralToPointer:
8225  case CK_PointerToIntegral:
8226  case CK_PointerToBoolean:
8227  case CK_ToVoid:
8228  case CK_VectorSplat:
8229  case CK_IntegralCast:
8230  case CK_BooleanToSignedIntegral:
8231  case CK_IntegralToBoolean:
8232  case CK_IntegralToFloating:
8233  case CK_FloatingToIntegral:
8234  case CK_FloatingToBoolean:
8235  case CK_FloatingCast:
8236  case CK_CPointerToObjCPointerCast:
8237  case CK_BlockPointerToObjCPointerCast:
8238  case CK_AnyPointerToBlockPointerCast:
8239  case CK_ObjCObjectLValueCast:
8240  case CK_FloatingComplexToReal:
8241  case CK_FloatingComplexToBoolean:
8242  case CK_IntegralComplexToReal:
8243  case CK_IntegralComplexToBoolean:
8244  case CK_ARCProduceObject:
8245  case CK_ARCConsumeObject:
8246  case CK_ARCReclaimReturnedObject:
8247  case CK_ARCExtendBlockObject:
8248  case CK_CopyAndAutoreleaseBlockObject:
8249  case CK_BuiltinFnToFnPtr:
8250  case CK_ZeroToOCLEvent:
8251  case CK_NonAtomicToAtomic:
8252  case CK_AddressSpaceConversion:
8253    llvm_unreachable("invalid cast kind for complex value");
8254
8255  case CK_LValueToRValue:
8256  case CK_AtomicToNonAtomic:
8257  case CK_NoOp:
8258    return ExprEvaluatorBaseTy::VisitCastExpr(E);
8259
8260  case CK_Dependent:
8261  case CK_LValueBitCast:
8262  case CK_UserDefinedConversion:
8263    return Error(E);
8264
8265  case CK_FloatingRealToComplex: {
8266    APFloat &Real = Result.FloatReal;
8267    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
8268      return false;
8269
8270    Result.makeComplexFloat();
8271    Result.FloatImag = APFloat(Real.getSemantics());
8272    return true;
8273  }
8274
8275  case CK_FloatingComplexCast: {
8276    if (!Visit(E->getSubExpr()))
8277      return false;
8278
8279    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8280    QualType From
8281      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8282
8283    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
8284           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
8285  }
8286
8287  case CK_FloatingComplexToIntegralComplex: {
8288    if (!Visit(E->getSubExpr()))
8289      return false;
8290
8291    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8292    QualType From
8293      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8294    Result.makeComplexInt();
8295    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
8296                                To, Result.IntReal) &&
8297           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
8298                                To, Result.IntImag);
8299  }
8300
8301  case CK_IntegralRealToComplex: {
8302    APSInt &Real = Result.IntReal;
8303    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
8304      return false;
8305
8306    Result.makeComplexInt();
8307    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
8308    return true;
8309  }
8310
8311  case CK_IntegralComplexCast: {
8312    if (!Visit(E->getSubExpr()))
8313      return false;
8314
8315    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8316    QualType From
8317      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8318
8319    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
8320    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
8321    return true;
8322  }
8323
8324  case CK_IntegralComplexToFloatingComplex: {
8325    if (!Visit(E->getSubExpr()))
8326      return false;
8327
8328    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
8329    QualType From
8330      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
8331    Result.makeComplexFloat();
8332    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
8333                                To, Result.FloatReal) &&
8334           HandleIntToFloatCast(Info, E, From, Result.IntImag,
8335                                To, Result.FloatImag);
8336  }
8337  }
8338
8339  llvm_unreachable("unknown cast resulting in complex value");
8340}
8341
8342bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8343  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8344    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8345
8346  // Track whether the LHS or RHS is real at the type system level. When this is
8347  // the case we can simplify our evaluation strategy.
8348  bool LHSReal = false, RHSReal = false;
8349
8350  bool LHSOK;
8351  if (E->getLHS()->getType()->isRealFloatingType()) {
8352    LHSReal = true;
8353    APFloat &Real = Result.FloatReal;
8354    LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
8355    if (LHSOK) {
8356      Result.makeComplexFloat();
8357      Result.FloatImag = APFloat(Real.getSemantics());
8358    }
8359  } else {
8360    LHSOK = Visit(E->getLHS());
8361  }
8362  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
8363    return false;
8364
8365  ComplexValue RHS;
8366  if (E->getRHS()->getType()->isRealFloatingType()) {
8367    RHSReal = true;
8368    APFloat &Real = RHS.FloatReal;
8369    if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8370      return false;
8371    RHS.makeComplexFloat();
8372    RHS.FloatImag = APFloat(Real.getSemantics());
8373  } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8374    return false;
8375
8376  assert(!(LHSReal && RHSReal) &&
8377         "Cannot have both operands of a complex operation be real.");
8378  switch (E->getOpcode()) {
8379  default: return Error(E);
8380  case BO_Add:
8381    if (Result.isComplexFloat()) {
8382      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8383                                       APFloat::rmNearestTiesToEven);
8384      if (LHSReal)
8385        Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8386      else if (!RHSReal)
8387        Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8388                                         APFloat::rmNearestTiesToEven);
8389    } else {
8390      Result.getComplexIntReal() += RHS.getComplexIntReal();
8391      Result.getComplexIntImag() += RHS.getComplexIntImag();
8392    }
8393    break;
8394  case BO_Sub:
8395    if (Result.isComplexFloat()) {
8396      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8397                                            APFloat::rmNearestTiesToEven);
8398      if (LHSReal) {
8399        Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8400        Result.getComplexFloatImag().changeSign();
8401      } else if (!RHSReal) {
8402        Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8403                                              APFloat::rmNearestTiesToEven);
8404      }
8405    } else {
8406      Result.getComplexIntReal() -= RHS.getComplexIntReal();
8407      Result.getComplexIntImag() -= RHS.getComplexIntImag();
8408    }
8409    break;
8410  case BO_Mul:
8411    if (Result.isComplexFloat()) {
8412      // This is an implementation of complex multiplication according to the
8413      // constraints laid out in C11 Annex G. The implemantion uses the
8414      // following naming scheme:
8415      //   (a + ib) * (c + id)
8416      ComplexValue LHS = Result;
8417      APFloat &A = LHS.getComplexFloatReal();
8418      APFloat &B = LHS.getComplexFloatImag();
8419      APFloat &C = RHS.getComplexFloatReal();
8420      APFloat &D = RHS.getComplexFloatImag();
8421      APFloat &ResR = Result.getComplexFloatReal();
8422      APFloat &ResI = Result.getComplexFloatImag();
8423      if (LHSReal) {
8424        assert(!RHSReal && "Cannot have two real operands for a complex op!");
8425        ResR = A * C;
8426        ResI = A * D;
8427      } else if (RHSReal) {
8428        ResR = C * A;
8429        ResI = C * B;
8430      } else {
8431        // In the fully general case, we need to handle NaNs and infinities
8432        // robustly.
8433        APFloat AC = A * C;
8434        APFloat BD = B * D;
8435        APFloat AD = A * D;
8436        APFloat BC = B * C;
8437        ResR = AC - BD;
8438        ResI = AD + BC;
8439        if (ResR.isNaN() && ResI.isNaN()) {
8440          bool Recalc = false;
8441          if (A.isInfinity() || B.isInfinity()) {
8442            A = APFloat::copySign(
8443                APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8444            B = APFloat::copySign(
8445                APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8446            if (C.isNaN())
8447              C = APFloat::copySign(APFloat(C.getSemantics()), C);
8448            if (D.isNaN())
8449              D = APFloat::copySign(APFloat(D.getSemantics()), D);
8450            Recalc = true;
8451          }
8452          if (C.isInfinity() || D.isInfinity()) {
8453            C = APFloat::copySign(
8454                APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8455            D = APFloat::copySign(
8456                APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8457            if (A.isNaN())
8458              A = APFloat::copySign(APFloat(A.getSemantics()), A);
8459            if (B.isNaN())
8460              B = APFloat::copySign(APFloat(B.getSemantics()), B);
8461            Recalc = true;
8462          }
8463          if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8464                          AD.isInfinity() || BC.isInfinity())) {
8465            if (A.isNaN())
8466              A = APFloat::copySign(APFloat(A.getSemantics()), A);
8467            if (B.isNaN())
8468              B = APFloat::copySign(APFloat(B.getSemantics()), B);
8469            if (C.isNaN())
8470              C = APFloat::copySign(APFloat(C.getSemantics()), C);
8471            if (D.isNaN())
8472              D = APFloat::copySign(APFloat(D.getSemantics()), D);
8473            Recalc = true;
8474          }
8475          if (Recalc) {
8476            ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8477            ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8478          }
8479        }
8480      }
8481    } else {
8482      ComplexValue LHS = Result;
8483      Result.getComplexIntReal() =
8484        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8485         LHS.getComplexIntImag() * RHS.getComplexIntImag());
8486      Result.getComplexIntImag() =
8487        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8488         LHS.getComplexIntImag() * RHS.getComplexIntReal());
8489    }
8490    break;
8491  case BO_Div:
8492    if (Result.isComplexFloat()) {
8493      // This is an implementation of complex division according to the
8494      // constraints laid out in C11 Annex G. The implemantion uses the
8495      // following naming scheme:
8496      //   (a + ib) / (c + id)
8497      ComplexValue LHS = Result;
8498      APFloat &A = LHS.getComplexFloatReal();
8499      APFloat &B = LHS.getComplexFloatImag();
8500      APFloat &C = RHS.getComplexFloatReal();
8501      APFloat &D = RHS.getComplexFloatImag();
8502      APFloat &ResR = Result.getComplexFloatReal();
8503      APFloat &ResI = Result.getComplexFloatImag();
8504      if (RHSReal) {
8505        ResR = A / C;
8506        ResI = B / C;
8507      } else {
8508        if (LHSReal) {
8509          // No real optimizations we can do here, stub out with zero.
8510          B = APFloat::getZero(A.getSemantics());
8511        }
8512        int DenomLogB = 0;
8513        APFloat MaxCD = maxnum(abs(C), abs(D));
8514        if (MaxCD.isFinite()) {
8515          DenomLogB = ilogb(MaxCD);
8516          C = scalbn(C, -DenomLogB);
8517          D = scalbn(D, -DenomLogB);
8518        }
8519        APFloat Denom = C * C + D * D;
8520        ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
8521        ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
8522        if (ResR.isNaN() && ResI.isNaN()) {
8523          if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8524            ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8525            ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8526          } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8527                     D.isFinite()) {
8528            A = APFloat::copySign(
8529                APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8530            B = APFloat::copySign(
8531                APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8532            ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8533            ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8534          } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8535            C = APFloat::copySign(
8536                APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8537            D = APFloat::copySign(
8538                APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8539            ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8540            ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8541          }
8542        }
8543      }
8544    } else {
8545      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8546        return Error(E, diag::note_expr_divide_by_zero);
8547
8548      ComplexValue LHS = Result;
8549      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8550        RHS.getComplexIntImag() * RHS.getComplexIntImag();
8551      Result.getComplexIntReal() =
8552        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8553         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8554      Result.getComplexIntImag() =
8555        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8556         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8557    }
8558    break;
8559  }
8560
8561  return true;
8562}
8563
8564bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8565  // Get the operand value into 'Result'.
8566  if (!Visit(E->getSubExpr()))
8567    return false;
8568
8569  switch (E->getOpcode()) {
8570  default:
8571    return Error(E);
8572  case UO_Extension:
8573    return true;
8574  case UO_Plus:
8575    // The result is always just the subexpr.
8576    return true;
8577  case UO_Minus:
8578    if (Result.isComplexFloat()) {
8579      Result.getComplexFloatReal().changeSign();
8580      Result.getComplexFloatImag().changeSign();
8581    }
8582    else {
8583      Result.getComplexIntReal() = -Result.getComplexIntReal();
8584      Result.getComplexIntImag() = -Result.getComplexIntImag();
8585    }
8586    return true;
8587  case UO_Not:
8588    if (Result.isComplexFloat())
8589      Result.getComplexFloatImag().changeSign();
8590    else
8591      Result.getComplexIntImag() = -Result.getComplexIntImag();
8592    return true;
8593  }
8594}
8595
8596bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8597  if (E->getNumInits() == 2) {
8598    if (E->getType()->isComplexType()) {
8599      Result.makeComplexFloat();
8600      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8601        return false;
8602      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8603        return false;
8604    } else {
8605      Result.makeComplexInt();
8606      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8607        return false;
8608      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8609        return false;
8610    }
8611    return true;
8612  }
8613  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8614}
8615
8616//===----------------------------------------------------------------------===//
8617// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8618// implicit conversion.
8619//===----------------------------------------------------------------------===//
8620
8621namespace {
8622class AtomicExprEvaluator :
8623    public ExprEvaluatorBase<AtomicExprEvaluator> {
8624  APValue &Result;
8625public:
8626  AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8627      : ExprEvaluatorBaseTy(Info), Result(Result) {}
8628
8629  bool Success(const APValue &V, const Expr *E) {
8630    Result = V;
8631    return true;
8632  }
8633
8634  bool ZeroInitialization(const Expr *E) {
8635    ImplicitValueInitExpr VIE(
8636        E->getType()->castAs<AtomicType>()->getValueType());
8637    return Evaluate(Result, Info, &VIE);
8638  }
8639
8640  bool VisitCastExpr(const CastExpr *E) {
8641    switch (E->getCastKind()) {
8642    default:
8643      return ExprEvaluatorBaseTy::VisitCastExpr(E);
8644    case CK_NonAtomicToAtomic:
8645      return Evaluate(Result, Info, E->getSubExpr());
8646    }
8647  }
8648};
8649} // end anonymous namespace
8650
8651static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8652  assert(E->isRValue() && E->getType()->isAtomicType());
8653  return AtomicExprEvaluator(Info, Result).Visit(E);
8654}
8655
8656//===----------------------------------------------------------------------===//
8657// Void expression evaluation, primarily for a cast to void on the LHS of a
8658// comma operator
8659//===----------------------------------------------------------------------===//
8660
8661namespace {
8662class VoidExprEvaluator
8663  : public ExprEvaluatorBase<VoidExprEvaluator> {
8664public:
8665  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8666
8667  bool Success(const APValue &V, const Expr *e) { return true; }
8668
8669  bool VisitCastExpr(const CastExpr *E) {
8670    switch (E->getCastKind()) {
8671    default:
8672      return ExprEvaluatorBaseTy::VisitCastExpr(E);
8673    case CK_ToVoid:
8674      VisitIgnoredValue(E->getSubExpr());
8675      return true;
8676    }
8677  }
8678
8679  bool VisitCallExpr(const CallExpr *E) {
8680    switch (E->getBuiltinCallee()) {
8681    default:
8682      return ExprEvaluatorBaseTy::VisitCallExpr(E);
8683    case Builtin::BI__assume:
8684    case Builtin::BI__builtin_assume:
8685      // The argument is not evaluated!
8686      return true;
8687    }
8688  }
8689};
8690} // end anonymous namespace
8691
8692static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8693  assert(E->isRValue() && E->getType()->isVoidType());
8694  return VoidExprEvaluator(Info).Visit(E);
8695}
8696
8697//===----------------------------------------------------------------------===//
8698// Top level Expr::EvaluateAsRValue method.
8699//===----------------------------------------------------------------------===//
8700
8701static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
8702  // In C, function designators are not lvalues, but we evaluate them as if they
8703  // are.
8704  QualType T = E->getType();
8705  if (E->isGLValue() || T->isFunctionType()) {
8706    LValue LV;
8707    if (!EvaluateLValue(E, LV, Info))
8708      return false;
8709    LV.moveInto(Result);
8710  } else if (T->isVectorType()) {
8711    if (!EvaluateVector(E, Result, Info))
8712      return false;
8713  } else if (T->isIntegralOrEnumerationType()) {
8714    if (!IntExprEvaluator(Info, Result).Visit(E))
8715      return false;
8716  } else if (T->hasPointerRepresentation()) {
8717    LValue LV;
8718    if (!EvaluatePointer(E, LV, Info))
8719      return false;
8720    LV.moveInto(Result);
8721  } else if (T->isRealFloatingType()) {
8722    llvm::APFloat F(0.0);
8723    if (!EvaluateFloat(E, F, Info))
8724      return false;
8725    Result = APValue(F);
8726  } else if (T->isAnyComplexType()) {
8727    ComplexValue C;
8728    if (!EvaluateComplex(E, C, Info))
8729      return false;
8730    C.moveInto(Result);
8731  } else if (T->isMemberPointerType()) {
8732    MemberPtr P;
8733    if (!EvaluateMemberPointer(E, P, Info))
8734      return false;
8735    P.moveInto(Result);
8736    return true;
8737  } else if (T->isArrayType()) {
8738    LValue LV;
8739    LV.set(E, Info.CurrentCall->Index);
8740    APValue &Value = Info.CurrentCall->createTemporary(E, false);
8741    if (!EvaluateArray(E, LV, Value, Info))
8742      return false;
8743    Result = Value;
8744  } else if (T->isRecordType()) {
8745    LValue LV;
8746    LV.set(E, Info.CurrentCall->Index);
8747    APValue &Value = Info.CurrentCall->createTemporary(E, false);
8748    if (!EvaluateRecord(E, LV, Value, Info))
8749      return false;
8750    Result = Value;
8751  } else if (T->isVoidType()) {
8752    if (!Info.getLangOpts().CPlusPlus11)
8753      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8754        << E->getType();
8755    if (!EvaluateVoid(E, Info))
8756      return false;
8757  } else if (T->isAtomicType()) {
8758    if (!EvaluateAtomic(E, Result, Info))
8759      return false;
8760  } else if (Info.getLangOpts().CPlusPlus11) {
8761    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8762    return false;
8763  } else {
8764    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8765    return false;
8766  }
8767
8768  return true;
8769}
8770
8771/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8772/// cases, the in-place evaluation is essential, since later initializers for
8773/// an object can indirectly refer to subobjects which were initialized earlier.
8774static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8775                            const Expr *E, bool AllowNonLiteralTypes) {
8776  assert(!E->isValueDependent());
8777
8778  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8779    return false;
8780
8781  if (E->isRValue()) {
8782    // Evaluate arrays and record types in-place, so that later initializers can
8783    // refer to earlier-initialized members of the object.
8784    if (E->getType()->isArrayType())
8785      return EvaluateArray(E, This, Result, Info);
8786    else if (E->getType()->isRecordType())
8787      return EvaluateRecord(E, This, Result, Info);
8788  }
8789
8790  // For any other type, in-place evaluation is unimportant.
8791  return Evaluate(Result, Info, E);
8792}
8793
8794/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8795/// lvalue-to-rvalue cast if it is an lvalue.
8796static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8797  if (E->getType().isNull())
8798    return false;
8799
8800  if (!CheckLiteralType(Info, E))
8801    return false;
8802
8803  if (!::Evaluate(Result, Info, E))
8804    return false;
8805
8806  if (E->isGLValue()) {
8807    LValue LV;
8808    LV.setFrom(Info.Ctx, Result);
8809    if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8810      return false;
8811  }
8812
8813  // Check this core constant expression is a constant expression.
8814  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8815}
8816
8817static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8818                                 const ASTContext &Ctx, bool &IsConst) {
8819  // Fast-path evaluations of integer literals, since we sometimes see files
8820  // containing vast quantities of these.
8821  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8822    Result.Val = APValue(APSInt(L->getValue(),
8823                                L->getType()->isUnsignedIntegerType()));
8824    IsConst = true;
8825    return true;
8826  }
8827
8828  // This case should be rare, but we need to check it before we check on
8829  // the type below.
8830  if (Exp->getType().isNull()) {
8831    IsConst = false;
8832    return true;
8833  }
8834
8835  // FIXME: Evaluating values of large array and record types can cause
8836  // performance problems. Only do so in C++11 for now.
8837  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8838                          Exp->getType()->isRecordType()) &&
8839      !Ctx.getLangOpts().CPlusPlus11) {
8840    IsConst = false;
8841    return true;
8842  }
8843  return false;
8844}
8845
8846
8847/// EvaluateAsRValue - Return true if this is a constant which we can fold using
8848/// any crazy technique (that has nothing to do with language standards) that
8849/// we want to.  If this function returns true, it returns the folded constant
8850/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8851/// will be applied to the result.
8852bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8853  bool IsConst;
8854  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8855    return IsConst;
8856
8857  EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8858  return ::EvaluateAsRValue(Info, this, Result.Val);
8859}
8860
8861bool Expr::EvaluateAsBooleanCondition(bool &Result,
8862                                      const ASTContext &Ctx) const {
8863  EvalResult Scratch;
8864  return EvaluateAsRValue(Scratch, Ctx) &&
8865         HandleConversionToBool(Scratch.Val, Result);
8866}
8867
8868static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
8869                                      Expr::SideEffectsKind SEK) {
8870  return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
8871         (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
8872}
8873
8874bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8875                         SideEffectsKind AllowSideEffects) const {
8876  if (!getType()->isIntegralOrEnumerationType())
8877    return false;
8878
8879  EvalResult ExprResult;
8880  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8881      hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
8882    return false;
8883
8884  Result = ExprResult.Val.getInt();
8885  return true;
8886}
8887
8888bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8889  EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8890
8891  LValue LV;
8892  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8893      !CheckLValueConstantExpression(Info, getExprLoc(),
8894                                     Ctx.getLValueReferenceType(getType()), LV))
8895    return false;
8896
8897  LV.moveInto(Result.Val);
8898  return true;
8899}
8900
8901bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8902                                 const VarDecl *VD,
8903                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8904  // FIXME: Evaluating initializers for large array and record types can cause
8905  // performance problems. Only do so in C++11 for now.
8906  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8907      !Ctx.getLangOpts().CPlusPlus11)
8908    return false;
8909
8910  Expr::EvalStatus EStatus;
8911  EStatus.Diag = &Notes;
8912
8913  EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
8914                                      ? EvalInfo::EM_ConstantExpression
8915                                      : EvalInfo::EM_ConstantFold);
8916  InitInfo.setEvaluatingDecl(VD, Value);
8917
8918  LValue LVal;
8919  LVal.set(VD);
8920
8921  // C++11 [basic.start.init]p2:
8922  //  Variables with static storage duration or thread storage duration shall be
8923  //  zero-initialized before any other initialization takes place.
8924  // This behavior is not present in C.
8925  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8926      !VD->getType()->isReferenceType()) {
8927    ImplicitValueInitExpr VIE(VD->getType());
8928    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8929                         /*AllowNonLiteralTypes=*/true))
8930      return false;
8931  }
8932
8933  if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8934                       /*AllowNonLiteralTypes=*/true) ||
8935      EStatus.HasSideEffects)
8936    return false;
8937
8938  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8939                                 Value);
8940}
8941
8942/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8943/// constant folded, but discard the result.
8944bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
8945  EvalResult Result;
8946  return EvaluateAsRValue(Result, Ctx) &&
8947         !hasUnacceptableSideEffect(Result, SEK);
8948}
8949
8950APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8951                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8952  EvalResult EvalResult;
8953  EvalResult.Diag = Diag;
8954  bool Result = EvaluateAsRValue(EvalResult, Ctx);
8955  (void)Result;
8956  assert(Result && "Could not evaluate expression");
8957  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8958
8959  return EvalResult.Val.getInt();
8960}
8961
8962void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8963  bool IsConst;
8964  EvalResult EvalResult;
8965  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8966    EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8967    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8968  }
8969}
8970
8971bool Expr::EvalResult::isGlobalLValue() const {
8972  assert(Val.isLValue());
8973  return IsGlobalLValue(Val.getLValueBase());
8974}
8975
8976
8977/// isIntegerConstantExpr - this recursive routine will test if an expression is
8978/// an integer constant expression.
8979
8980/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8981/// comma, etc
8982
8983// CheckICE - This function does the fundamental ICE checking: the returned
8984// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8985// and a (possibly null) SourceLocation indicating the location of the problem.
8986//
8987// Note that to reduce code duplication, this helper does no evaluation
8988// itself; the caller checks whether the expression is evaluatable, and
8989// in the rare cases where CheckICE actually cares about the evaluated
8990// value, it calls into Evalute.
8991
8992namespace {
8993
8994enum ICEKind {
8995  /// This expression is an ICE.
8996  IK_ICE,
8997  /// This expression is not an ICE, but if it isn't evaluated, it's
8998  /// a legal subexpression for an ICE. This return value is used to handle
8999  /// the comma operator in C99 mode, and non-constant subexpressions.
9000  IK_ICEIfUnevaluated,
9001  /// This expression is not an ICE, and is not a legal subexpression for one.
9002  IK_NotICE
9003};
9004
9005struct ICEDiag {
9006  ICEKind Kind;
9007  SourceLocation Loc;
9008
9009  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
9010};
9011
9012}
9013
9014static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
9015
9016static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
9017
9018static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
9019  Expr::EvalResult EVResult;
9020  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
9021      !EVResult.Val.isInt())
9022    return ICEDiag(IK_NotICE, E->getLocStart());
9023
9024  return NoDiag();
9025}
9026
9027static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
9028  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
9029  if (!E->getType()->isIntegralOrEnumerationType())
9030    return ICEDiag(IK_NotICE, E->getLocStart());
9031
9032  switch (E->getStmtClass()) {
9033#define ABSTRACT_STMT(Node)
9034#define STMT(Node, Base) case Expr::Node##Class:
9035#define EXPR(Node, Base)
9036#include "clang/AST/StmtNodes.inc"
9037  case Expr::PredefinedExprClass:
9038  case Expr::FloatingLiteralClass:
9039  case Expr::ImaginaryLiteralClass:
9040  case Expr::StringLiteralClass:
9041  case Expr::ArraySubscriptExprClass:
9042  case Expr::OMPArraySectionExprClass:
9043  case Expr::MemberExprClass:
9044  case Expr::CompoundAssignOperatorClass:
9045  case Expr::CompoundLiteralExprClass:
9046  case Expr::ExtVectorElementExprClass:
9047  case Expr::DesignatedInitExprClass:
9048  case Expr::NoInitExprClass:
9049  case Expr::DesignatedInitUpdateExprClass:
9050  case Expr::ImplicitValueInitExprClass:
9051  case Expr::ParenListExprClass:
9052  case Expr::VAArgExprClass:
9053  case Expr::AddrLabelExprClass:
9054  case Expr::StmtExprClass:
9055  case Expr::CXXMemberCallExprClass:
9056  case Expr::CUDAKernelCallExprClass:
9057  case Expr::CXXDynamicCastExprClass:
9058  case Expr::CXXTypeidExprClass:
9059  case Expr::CXXUuidofExprClass:
9060  case Expr::MSPropertyRefExprClass:
9061  case Expr::MSPropertySubscriptExprClass:
9062  case Expr::CXXNullPtrLiteralExprClass:
9063  case Expr::UserDefinedLiteralClass:
9064  case Expr::CXXThisExprClass:
9065  case Expr::CXXThrowExprClass:
9066  case Expr::CXXNewExprClass:
9067  case Expr::CXXDeleteExprClass:
9068  case Expr::CXXPseudoDestructorExprClass:
9069  case Expr::UnresolvedLookupExprClass:
9070  case Expr::TypoExprClass:
9071  case Expr::DependentScopeDeclRefExprClass:
9072  case Expr::CXXConstructExprClass:
9073  case Expr::CXXStdInitializerListExprClass:
9074  case Expr::CXXBindTemporaryExprClass:
9075  case Expr::ExprWithCleanupsClass:
9076  case Expr::CXXTemporaryObjectExprClass:
9077  case Expr::CXXUnresolvedConstructExprClass:
9078  case Expr::CXXDependentScopeMemberExprClass:
9079  case Expr::UnresolvedMemberExprClass:
9080  case Expr::ObjCStringLiteralClass:
9081  case Expr::ObjCBoxedExprClass:
9082  case Expr::ObjCArrayLiteralClass:
9083  case Expr::ObjCDictionaryLiteralClass:
9084  case Expr::ObjCEncodeExprClass:
9085  case Expr::ObjCMessageExprClass:
9086  case Expr::ObjCSelectorExprClass:
9087  case Expr::ObjCProtocolExprClass:
9088  case Expr::ObjCIvarRefExprClass:
9089  case Expr::ObjCPropertyRefExprClass:
9090  case Expr::ObjCSubscriptRefExprClass:
9091  case Expr::ObjCIsaExprClass:
9092  case Expr::ShuffleVectorExprClass:
9093  case Expr::ConvertVectorExprClass:
9094  case Expr::BlockExprClass:
9095  case Expr::NoStmtClass:
9096  case Expr::OpaqueValueExprClass:
9097  case Expr::PackExpansionExprClass:
9098  case Expr::SubstNonTypeTemplateParmPackExprClass:
9099  case Expr::FunctionParmPackExprClass:
9100  case Expr::AsTypeExprClass:
9101  case Expr::ObjCIndirectCopyRestoreExprClass:
9102  case Expr::MaterializeTemporaryExprClass:
9103  case Expr::PseudoObjectExprClass:
9104  case Expr::AtomicExprClass:
9105  case Expr::LambdaExprClass:
9106  case Expr::CXXFoldExprClass:
9107  case Expr::CoawaitExprClass:
9108  case Expr::CoyieldExprClass:
9109    return ICEDiag(IK_NotICE, E->getLocStart());
9110
9111  case Expr::InitListExprClass: {
9112    // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
9113    // form "T x = { a };" is equivalent to "T x = a;".
9114    // Unless we're initializing a reference, T is a scalar as it is known to be
9115    // of integral or enumeration type.
9116    if (E->isRValue())
9117      if (cast<InitListExpr>(E)->getNumInits() == 1)
9118        return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
9119    return ICEDiag(IK_NotICE, E->getLocStart());
9120  }
9121
9122  case Expr::SizeOfPackExprClass:
9123  case Expr::GNUNullExprClass:
9124    // GCC considers the GNU __null value to be an integral constant expression.
9125    return NoDiag();
9126
9127  case Expr::SubstNonTypeTemplateParmExprClass:
9128    return
9129      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
9130
9131  case Expr::ParenExprClass:
9132    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
9133  case Expr::GenericSelectionExprClass:
9134    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
9135  case Expr::IntegerLiteralClass:
9136  case Expr::CharacterLiteralClass:
9137  case Expr::ObjCBoolLiteralExprClass:
9138  case Expr::CXXBoolLiteralExprClass:
9139  case Expr::CXXScalarValueInitExprClass:
9140  case Expr::TypeTraitExprClass:
9141  case Expr::ArrayTypeTraitExprClass:
9142  case Expr::ExpressionTraitExprClass:
9143  case Expr::CXXNoexceptExprClass:
9144    return NoDiag();
9145  case Expr::CallExprClass:
9146  case Expr::CXXOperatorCallExprClass: {
9147    // C99 6.6/3 allows function calls within unevaluated subexpressions of
9148    // constant expressions, but they can never be ICEs because an ICE cannot
9149    // contain an operand of (pointer to) function type.
9150    const CallExpr *CE = cast<CallExpr>(E);
9151    if (CE->getBuiltinCallee())
9152      return CheckEvalInICE(E, Ctx);
9153    return ICEDiag(IK_NotICE, E->getLocStart());
9154  }
9155  case Expr::DeclRefExprClass: {
9156    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
9157      return NoDiag();
9158    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
9159    if (Ctx.getLangOpts().CPlusPlus &&
9160        D && IsConstNonVolatile(D->getType())) {
9161      // Parameter variables are never constants.  Without this check,
9162      // getAnyInitializer() can find a default argument, which leads
9163      // to chaos.
9164      if (isa<ParmVarDecl>(D))
9165        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9166
9167      // C++ 7.1.5.1p2
9168      //   A variable of non-volatile const-qualified integral or enumeration
9169      //   type initialized by an ICE can be used in ICEs.
9170      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
9171        if (!Dcl->getType()->isIntegralOrEnumerationType())
9172          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9173
9174        const VarDecl *VD;
9175        // Look for a declaration of this variable that has an initializer, and
9176        // check whether it is an ICE.
9177        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
9178          return NoDiag();
9179        else
9180          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9181      }
9182    }
9183    return ICEDiag(IK_NotICE, E->getLocStart());
9184  }
9185  case Expr::UnaryOperatorClass: {
9186    const UnaryOperator *Exp = cast<UnaryOperator>(E);
9187    switch (Exp->getOpcode()) {
9188    case UO_PostInc:
9189    case UO_PostDec:
9190    case UO_PreInc:
9191    case UO_PreDec:
9192    case UO_AddrOf:
9193    case UO_Deref:
9194    case UO_Coawait:
9195      // C99 6.6/3 allows increment and decrement within unevaluated
9196      // subexpressions of constant expressions, but they can never be ICEs
9197      // because an ICE cannot contain an lvalue operand.
9198      return ICEDiag(IK_NotICE, E->getLocStart());
9199    case UO_Extension:
9200    case UO_LNot:
9201    case UO_Plus:
9202    case UO_Minus:
9203    case UO_Not:
9204    case UO_Real:
9205    case UO_Imag:
9206      return CheckICE(Exp->getSubExpr(), Ctx);
9207    }
9208
9209    // OffsetOf falls through here.
9210  }
9211  case Expr::OffsetOfExprClass: {
9212    // Note that per C99, offsetof must be an ICE. And AFAIK, using
9213    // EvaluateAsRValue matches the proposed gcc behavior for cases like
9214    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
9215    // compliance: we should warn earlier for offsetof expressions with
9216    // array subscripts that aren't ICEs, and if the array subscripts
9217    // are ICEs, the value of the offsetof must be an integer constant.
9218    return CheckEvalInICE(E, Ctx);
9219  }
9220  case Expr::UnaryExprOrTypeTraitExprClass: {
9221    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
9222    if ((Exp->getKind() ==  UETT_SizeOf) &&
9223        Exp->getTypeOfArgument()->isVariableArrayType())
9224      return ICEDiag(IK_NotICE, E->getLocStart());
9225    return NoDiag();
9226  }
9227  case Expr::BinaryOperatorClass: {
9228    const BinaryOperator *Exp = cast<BinaryOperator>(E);
9229    switch (Exp->getOpcode()) {
9230    case BO_PtrMemD:
9231    case BO_PtrMemI:
9232    case BO_Assign:
9233    case BO_MulAssign:
9234    case BO_DivAssign:
9235    case BO_RemAssign:
9236    case BO_AddAssign:
9237    case BO_SubAssign:
9238    case BO_ShlAssign:
9239    case BO_ShrAssign:
9240    case BO_AndAssign:
9241    case BO_XorAssign:
9242    case BO_OrAssign:
9243      // C99 6.6/3 allows assignments within unevaluated subexpressions of
9244      // constant expressions, but they can never be ICEs because an ICE cannot
9245      // contain an lvalue operand.
9246      return ICEDiag(IK_NotICE, E->getLocStart());
9247
9248    case BO_Mul:
9249    case BO_Div:
9250    case BO_Rem:
9251    case BO_Add:
9252    case BO_Sub:
9253    case BO_Shl:
9254    case BO_Shr:
9255    case BO_LT:
9256    case BO_GT:
9257    case BO_LE:
9258    case BO_GE:
9259    case BO_EQ:
9260    case BO_NE:
9261    case BO_And:
9262    case BO_Xor:
9263    case BO_Or:
9264    case BO_Comma: {
9265      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9266      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9267      if (Exp->getOpcode() == BO_Div ||
9268          Exp->getOpcode() == BO_Rem) {
9269        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
9270        // we don't evaluate one.
9271        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
9272          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
9273          if (REval == 0)
9274            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9275          if (REval.isSigned() && REval.isAllOnesValue()) {
9276            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
9277            if (LEval.isMinSignedValue())
9278              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9279          }
9280        }
9281      }
9282      if (Exp->getOpcode() == BO_Comma) {
9283        if (Ctx.getLangOpts().C99) {
9284          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
9285          // if it isn't evaluated.
9286          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
9287            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9288        } else {
9289          // In both C89 and C++, commas in ICEs are illegal.
9290          return ICEDiag(IK_NotICE, E->getLocStart());
9291        }
9292      }
9293      return Worst(LHSResult, RHSResult);
9294    }
9295    case BO_LAnd:
9296    case BO_LOr: {
9297      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9298      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9299      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
9300        // Rare case where the RHS has a comma "side-effect"; we need
9301        // to actually check the condition to see whether the side
9302        // with the comma is evaluated.
9303        if ((Exp->getOpcode() == BO_LAnd) !=
9304            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
9305          return RHSResult;
9306        return NoDiag();
9307      }
9308
9309      return Worst(LHSResult, RHSResult);
9310    }
9311    }
9312  }
9313  case Expr::ImplicitCastExprClass:
9314  case Expr::CStyleCastExprClass:
9315  case Expr::CXXFunctionalCastExprClass:
9316  case Expr::CXXStaticCastExprClass:
9317  case Expr::CXXReinterpretCastExprClass:
9318  case Expr::CXXConstCastExprClass:
9319  case Expr::ObjCBridgedCastExprClass: {
9320    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
9321    if (isa<ExplicitCastExpr>(E)) {
9322      if (const FloatingLiteral *FL
9323            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
9324        unsigned DestWidth = Ctx.getIntWidth(E->getType());
9325        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
9326        APSInt IgnoredVal(DestWidth, !DestSigned);
9327        bool Ignored;
9328        // If the value does not fit in the destination type, the behavior is
9329        // undefined, so we are not required to treat it as a constant
9330        // expression.
9331        if (FL->getValue().convertToInteger(IgnoredVal,
9332                                            llvm::APFloat::rmTowardZero,
9333                                            &Ignored) & APFloat::opInvalidOp)
9334          return ICEDiag(IK_NotICE, E->getLocStart());
9335        return NoDiag();
9336      }
9337    }
9338    switch (cast<CastExpr>(E)->getCastKind()) {
9339    case CK_LValueToRValue:
9340    case CK_AtomicToNonAtomic:
9341    case CK_NonAtomicToAtomic:
9342    case CK_NoOp:
9343    case CK_IntegralToBoolean:
9344    case CK_IntegralCast:
9345      return CheckICE(SubExpr, Ctx);
9346    default:
9347      return ICEDiag(IK_NotICE, E->getLocStart());
9348    }
9349  }
9350  case Expr::BinaryConditionalOperatorClass: {
9351    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
9352    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
9353    if (CommonResult.Kind == IK_NotICE) return CommonResult;
9354    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9355    if (FalseResult.Kind == IK_NotICE) return FalseResult;
9356    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
9357    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
9358        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
9359    return FalseResult;
9360  }
9361  case Expr::ConditionalOperatorClass: {
9362    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
9363    // If the condition (ignoring parens) is a __builtin_constant_p call,
9364    // then only the true side is actually considered in an integer constant
9365    // expression, and it is fully evaluated.  This is an important GNU
9366    // extension.  See GCC PR38377 for discussion.
9367    if (const CallExpr *CallCE
9368        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
9369      if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
9370        return CheckEvalInICE(E, Ctx);
9371    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
9372    if (CondResult.Kind == IK_NotICE)
9373      return CondResult;
9374
9375    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
9376    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9377
9378    if (TrueResult.Kind == IK_NotICE)
9379      return TrueResult;
9380    if (FalseResult.Kind == IK_NotICE)
9381      return FalseResult;
9382    if (CondResult.Kind == IK_ICEIfUnevaluated)
9383      return CondResult;
9384    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9385      return NoDiag();
9386    // Rare case where the diagnostics depend on which side is evaluated
9387    // Note that if we get here, CondResult is 0, and at least one of
9388    // TrueResult and FalseResult is non-zero.
9389    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9390      return FalseResult;
9391    return TrueResult;
9392  }
9393  case Expr::CXXDefaultArgExprClass:
9394    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9395  case Expr::CXXDefaultInitExprClass:
9396    return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9397  case Expr::ChooseExprClass: {
9398    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9399  }
9400  }
9401
9402  llvm_unreachable("Invalid StmtClass!");
9403}
9404
9405/// Evaluate an expression as a C++11 integral constant expression.
9406static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9407                                                    const Expr *E,
9408                                                    llvm::APSInt *Value,
9409                                                    SourceLocation *Loc) {
9410  if (!E->getType()->isIntegralOrEnumerationType()) {
9411    if (Loc) *Loc = E->getExprLoc();
9412    return false;
9413  }
9414
9415  APValue Result;
9416  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9417    return false;
9418
9419  if (!Result.isInt()) {
9420    if (Loc) *Loc = E->getExprLoc();
9421    return false;
9422  }
9423
9424  if (Value) *Value = Result.getInt();
9425  return true;
9426}
9427
9428bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9429                                 SourceLocation *Loc) const {
9430  if (Ctx.getLangOpts().CPlusPlus11)
9431    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9432
9433  ICEDiag D = CheckICE(this, Ctx);
9434  if (D.Kind != IK_ICE) {
9435    if (Loc) *Loc = D.Loc;
9436    return false;
9437  }
9438  return true;
9439}
9440
9441bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9442                                 SourceLocation *Loc, bool isEvaluated) const {
9443  if (Ctx.getLangOpts().CPlusPlus11)
9444    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9445
9446  if (!isIntegerConstantExpr(Ctx, Loc))
9447    return false;
9448  // The only possible side-effects here are due to UB discovered in the
9449  // evaluation (for instance, INT_MAX + 1). In such a case, we are still
9450  // required to treat the expression as an ICE, so we produce the folded
9451  // value.
9452  if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
9453    llvm_unreachable("ICE cannot be evaluated!");
9454  return true;
9455}
9456
9457bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9458  return CheckICE(this, Ctx).Kind == IK_ICE;
9459}
9460
9461bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9462                               SourceLocation *Loc) const {
9463  // We support this checking in C++98 mode in order to diagnose compatibility
9464  // issues.
9465  assert(Ctx.getLangOpts().CPlusPlus);
9466
9467  // Build evaluation settings.
9468  Expr::EvalStatus Status;
9469  SmallVector<PartialDiagnosticAt, 8> Diags;
9470  Status.Diag = &Diags;
9471  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9472
9473  APValue Scratch;
9474  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9475
9476  if (!Diags.empty()) {
9477    IsConstExpr = false;
9478    if (Loc) *Loc = Diags[0].first;
9479  } else if (!IsConstExpr) {
9480    // FIXME: This shouldn't happen.
9481    if (Loc) *Loc = getExprLoc();
9482  }
9483
9484  return IsConstExpr;
9485}
9486
9487bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9488                                    const FunctionDecl *Callee,
9489                                    ArrayRef<const Expr*> Args) const {
9490  Expr::EvalStatus Status;
9491  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9492
9493  ArgVector ArgValues(Args.size());
9494  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9495       I != E; ++I) {
9496    if ((*I)->isValueDependent() ||
9497        !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9498      // If evaluation fails, throw away the argument entirely.
9499      ArgValues[I - Args.begin()] = APValue();
9500    if (Info.EvalStatus.HasSideEffects)
9501      return false;
9502  }
9503
9504  // Build fake call to Callee.
9505  CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9506                       ArgValues.data());
9507  return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9508}
9509
9510bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9511                                   SmallVectorImpl<
9512                                     PartialDiagnosticAt> &Diags) {
9513  // FIXME: It would be useful to check constexpr function templates, but at the
9514  // moment the constant expression evaluator cannot cope with the non-rigorous
9515  // ASTs which we build for dependent expressions.
9516  if (FD->isDependentContext())
9517    return true;
9518
9519  Expr::EvalStatus Status;
9520  Status.Diag = &Diags;
9521
9522  EvalInfo Info(FD->getASTContext(), Status,
9523                EvalInfo::EM_PotentialConstantExpression);
9524
9525  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9526  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9527
9528  // Fabricate an arbitrary expression on the stack and pretend that it
9529  // is a temporary being used as the 'this' pointer.
9530  LValue This;
9531  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9532  This.set(&VIE, Info.CurrentCall->Index);
9533
9534  ArrayRef<const Expr*> Args;
9535
9536  SourceLocation Loc = FD->getLocation();
9537
9538  APValue Scratch;
9539  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9540    // Evaluate the call as a constant initializer, to allow the construction
9541    // of objects of non-literal types.
9542    Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9543    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
9544  } else
9545    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9546                       Args, FD->getBody(), Info, Scratch, nullptr);
9547
9548  return Diags.empty();
9549}
9550
9551bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9552                                              const FunctionDecl *FD,
9553                                              SmallVectorImpl<
9554                                                PartialDiagnosticAt> &Diags) {
9555  Expr::EvalStatus Status;
9556  Status.Diag = &Diags;
9557
9558  EvalInfo Info(FD->getASTContext(), Status,
9559                EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9560
9561  // Fabricate a call stack frame to give the arguments a plausible cover story.
9562  ArrayRef<const Expr*> Args;
9563  ArgVector ArgValues(0);
9564  bool Success = EvaluateArgs(Args, ArgValues, Info);
9565  (void)Success;
9566  assert(Success &&
9567         "Failed to set up arguments for potential constant evaluation");
9568  CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9569
9570  APValue ResultScratch;
9571  Evaluate(ResultScratch, Info, E);
9572  return Diags.empty();
9573}
9574
9575bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
9576                                 unsigned Type) const {
9577  if (!getType()->isPointerType())
9578    return false;
9579
9580  Expr::EvalStatus Status;
9581  EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
9582  return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
9583}
9584