ExprConstant.cpp revision 239462
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 rules only, at the moment), or, if folding failed too,
27//    why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/CharUnits.h"
39#include "clang/AST/RecordLayout.h"
40#include "clang/AST/StmtVisitor.h"
41#include "clang/AST/TypeLoc.h"
42#include "clang/AST/ASTDiagnostic.h"
43#include "clang/AST/Expr.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include <cstring>
48#include <functional>
49
50using namespace clang;
51using llvm::APSInt;
52using llvm::APFloat;
53
54static bool IsGlobalLValue(APValue::LValueBase B);
55
56namespace {
57  struct LValue;
58  struct CallStackFrame;
59  struct EvalInfo;
60
61  static QualType getType(APValue::LValueBase B) {
62    if (!B) return QualType();
63    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
64      return D->getType();
65    return B.get<const Expr*>()->getType();
66  }
67
68  /// Get an LValue path entry, which is known to not be an array index, as a
69  /// field or base class.
70  static
71  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
72    APValue::BaseOrMemberType Value;
73    Value.setFromOpaqueValue(E.BaseOrMember);
74    return Value;
75  }
76
77  /// Get an LValue path entry, which is known to not be an array index, as a
78  /// field declaration.
79  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
80    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
81  }
82  /// Get an LValue path entry, which is known to not be an array index, as a
83  /// base class declaration.
84  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
85    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
86  }
87  /// Determine whether this LValue path entry for a base class names a virtual
88  /// base class.
89  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
90    return getAsBaseOrMember(E).getInt();
91  }
92
93  /// Find the path length and type of the most-derived subobject in the given
94  /// path, and find the size of the containing array, if any.
95  static
96  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
97                                    ArrayRef<APValue::LValuePathEntry> Path,
98                                    uint64_t &ArraySize, QualType &Type) {
99    unsigned MostDerivedLength = 0;
100    Type = Base;
101    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
102      if (Type->isArrayType()) {
103        const ConstantArrayType *CAT =
104          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
105        Type = CAT->getElementType();
106        ArraySize = CAT->getSize().getZExtValue();
107        MostDerivedLength = I + 1;
108      } else if (Type->isAnyComplexType()) {
109        const ComplexType *CT = Type->castAs<ComplexType>();
110        Type = CT->getElementType();
111        ArraySize = 2;
112        MostDerivedLength = I + 1;
113      } else if (const FieldDecl *FD = getAsField(Path[I])) {
114        Type = FD->getType();
115        ArraySize = 0;
116        MostDerivedLength = I + 1;
117      } else {
118        // Path[I] describes a base class.
119        ArraySize = 0;
120      }
121    }
122    return MostDerivedLength;
123  }
124
125  // The order of this enum is important for diagnostics.
126  enum CheckSubobjectKind {
127    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
128    CSK_This, CSK_Real, CSK_Imag
129  };
130
131  /// A path from a glvalue to a subobject of that glvalue.
132  struct SubobjectDesignator {
133    /// True if the subobject was named in a manner not supported by C++11. Such
134    /// lvalues can still be folded, but they are not core constant expressions
135    /// and we cannot perform lvalue-to-rvalue conversions on them.
136    bool Invalid : 1;
137
138    /// Is this a pointer one past the end of an object?
139    bool IsOnePastTheEnd : 1;
140
141    /// The length of the path to the most-derived object of which this is a
142    /// subobject.
143    unsigned MostDerivedPathLength : 30;
144
145    /// The size of the array of which the most-derived object is an element, or
146    /// 0 if the most-derived object is not an array element.
147    uint64_t MostDerivedArraySize;
148
149    /// The type of the most derived object referred to by this address.
150    QualType MostDerivedType;
151
152    typedef APValue::LValuePathEntry PathEntry;
153
154    /// The entries on the path from the glvalue to the designated subobject.
155    SmallVector<PathEntry, 8> Entries;
156
157    SubobjectDesignator() : Invalid(true) {}
158
159    explicit SubobjectDesignator(QualType T)
160      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
161        MostDerivedArraySize(0), MostDerivedType(T) {}
162
163    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
164      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
165        MostDerivedPathLength(0), MostDerivedArraySize(0) {
166      if (!Invalid) {
167        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
168        ArrayRef<PathEntry> VEntries = V.getLValuePath();
169        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
170        if (V.getLValueBase())
171          MostDerivedPathLength =
172              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
173                                       V.getLValuePath(), MostDerivedArraySize,
174                                       MostDerivedType);
175      }
176    }
177
178    void setInvalid() {
179      Invalid = true;
180      Entries.clear();
181    }
182
183    /// Determine whether this is a one-past-the-end pointer.
184    bool isOnePastTheEnd() const {
185      if (IsOnePastTheEnd)
186        return true;
187      if (MostDerivedArraySize &&
188          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
189        return true;
190      return false;
191    }
192
193    /// Check that this refers to a valid subobject.
194    bool isValidSubobject() const {
195      if (Invalid)
196        return false;
197      return !isOnePastTheEnd();
198    }
199    /// Check that this refers to a valid subobject, and if not, produce a
200    /// relevant diagnostic and set the designator as invalid.
201    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
202
203    /// Update this designator to refer to the first element within this array.
204    void addArrayUnchecked(const ConstantArrayType *CAT) {
205      PathEntry Entry;
206      Entry.ArrayIndex = 0;
207      Entries.push_back(Entry);
208
209      // This is a most-derived object.
210      MostDerivedType = CAT->getElementType();
211      MostDerivedArraySize = CAT->getSize().getZExtValue();
212      MostDerivedPathLength = Entries.size();
213    }
214    /// Update this designator to refer to the given base or member of this
215    /// object.
216    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
217      PathEntry Entry;
218      APValue::BaseOrMemberType Value(D, Virtual);
219      Entry.BaseOrMember = Value.getOpaqueValue();
220      Entries.push_back(Entry);
221
222      // If this isn't a base class, it's a new most-derived object.
223      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
224        MostDerivedType = FD->getType();
225        MostDerivedArraySize = 0;
226        MostDerivedPathLength = Entries.size();
227      }
228    }
229    /// Update this designator to refer to the given complex component.
230    void addComplexUnchecked(QualType EltTy, bool Imag) {
231      PathEntry Entry;
232      Entry.ArrayIndex = Imag;
233      Entries.push_back(Entry);
234
235      // This is technically a most-derived object, though in practice this
236      // is unlikely to matter.
237      MostDerivedType = EltTy;
238      MostDerivedArraySize = 2;
239      MostDerivedPathLength = Entries.size();
240    }
241    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
242    /// Add N to the address of this subobject.
243    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
244      if (Invalid) return;
245      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
246        Entries.back().ArrayIndex += N;
247        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
248          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
249          setInvalid();
250        }
251        return;
252      }
253      // [expr.add]p4: For the purposes of these operators, a pointer to a
254      // nonarray object behaves the same as a pointer to the first element of
255      // an array of length one with the type of the object as its element type.
256      if (IsOnePastTheEnd && N == (uint64_t)-1)
257        IsOnePastTheEnd = false;
258      else if (!IsOnePastTheEnd && N == 1)
259        IsOnePastTheEnd = true;
260      else if (N != 0) {
261        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
262        setInvalid();
263      }
264    }
265  };
266
267  /// A stack frame in the constexpr call stack.
268  struct CallStackFrame {
269    EvalInfo &Info;
270
271    /// Parent - The caller of this stack frame.
272    CallStackFrame *Caller;
273
274    /// CallLoc - The location of the call expression for this call.
275    SourceLocation CallLoc;
276
277    /// Callee - The function which was called.
278    const FunctionDecl *Callee;
279
280    /// Index - The call index of this call.
281    unsigned Index;
282
283    /// This - The binding for the this pointer in this call, if any.
284    const LValue *This;
285
286    /// ParmBindings - Parameter bindings for this function call, indexed by
287    /// parameters' function scope indices.
288    const APValue *Arguments;
289
290    // Note that we intentionally use std::map here so that references to
291    // values are stable.
292    typedef std::map<const Expr*, APValue> MapTy;
293    typedef MapTy::const_iterator temp_iterator;
294    /// Temporaries - Temporary lvalues materialized within this stack frame.
295    MapTy Temporaries;
296
297    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
298                   const FunctionDecl *Callee, const LValue *This,
299                   const APValue *Arguments);
300    ~CallStackFrame();
301  };
302
303  /// A partial diagnostic which we might know in advance that we are not going
304  /// to emit.
305  class OptionalDiagnostic {
306    PartialDiagnostic *Diag;
307
308  public:
309    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
310
311    template<typename T>
312    OptionalDiagnostic &operator<<(const T &v) {
313      if (Diag)
314        *Diag << v;
315      return *this;
316    }
317
318    OptionalDiagnostic &operator<<(const APSInt &I) {
319      if (Diag) {
320        llvm::SmallVector<char, 32> Buffer;
321        I.toString(Buffer);
322        *Diag << StringRef(Buffer.data(), Buffer.size());
323      }
324      return *this;
325    }
326
327    OptionalDiagnostic &operator<<(const APFloat &F) {
328      if (Diag) {
329        llvm::SmallVector<char, 32> Buffer;
330        F.toString(Buffer);
331        *Diag << StringRef(Buffer.data(), Buffer.size());
332      }
333      return *this;
334    }
335  };
336
337  /// EvalInfo - This is a private struct used by the evaluator to capture
338  /// information about a subexpression as it is folded.  It retains information
339  /// about the AST context, but also maintains information about the folded
340  /// expression.
341  ///
342  /// If an expression could be evaluated, it is still possible it is not a C
343  /// "integer constant expression" or constant expression.  If not, this struct
344  /// captures information about how and why not.
345  ///
346  /// One bit of information passed *into* the request for constant folding
347  /// indicates whether the subexpression is "evaluated" or not according to C
348  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
349  /// evaluate the expression regardless of what the RHS is, but C only allows
350  /// certain things in certain situations.
351  struct EvalInfo {
352    ASTContext &Ctx;
353
354    /// EvalStatus - Contains information about the evaluation.
355    Expr::EvalStatus &EvalStatus;
356
357    /// CurrentCall - The top of the constexpr call stack.
358    CallStackFrame *CurrentCall;
359
360    /// CallStackDepth - The number of calls in the call stack right now.
361    unsigned CallStackDepth;
362
363    /// NextCallIndex - The next call index to assign.
364    unsigned NextCallIndex;
365
366    /// BottomFrame - The frame in which evaluation started. This must be
367    /// initialized after CurrentCall and CallStackDepth.
368    CallStackFrame BottomFrame;
369
370    /// EvaluatingDecl - This is the declaration whose initializer is being
371    /// evaluated, if any.
372    const VarDecl *EvaluatingDecl;
373
374    /// EvaluatingDeclValue - This is the value being constructed for the
375    /// declaration whose initializer is being evaluated, if any.
376    APValue *EvaluatingDeclValue;
377
378    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
379    /// notes attached to it will also be stored, otherwise they will not be.
380    bool HasActiveDiagnostic;
381
382    /// CheckingPotentialConstantExpression - Are we checking whether the
383    /// expression is a potential constant expression? If so, some diagnostics
384    /// are suppressed.
385    bool CheckingPotentialConstantExpression;
386
387    EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
388      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
389        CallStackDepth(0), NextCallIndex(1),
390        BottomFrame(*this, SourceLocation(), 0, 0, 0),
391        EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
392        CheckingPotentialConstantExpression(false) {}
393
394    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
395      EvaluatingDecl = VD;
396      EvaluatingDeclValue = &Value;
397    }
398
399    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
400
401    bool CheckCallLimit(SourceLocation Loc) {
402      // Don't perform any constexpr calls (other than the call we're checking)
403      // when checking a potential constant expression.
404      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
405        return false;
406      if (NextCallIndex == 0) {
407        // NextCallIndex has wrapped around.
408        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
409        return false;
410      }
411      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
412        return true;
413      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
414        << getLangOpts().ConstexprCallDepth;
415      return false;
416    }
417
418    CallStackFrame *getCallFrame(unsigned CallIndex) {
419      assert(CallIndex && "no call index in getCallFrame");
420      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
421      // be null in this loop.
422      CallStackFrame *Frame = CurrentCall;
423      while (Frame->Index > CallIndex)
424        Frame = Frame->Caller;
425      return (Frame->Index == CallIndex) ? Frame : 0;
426    }
427
428  private:
429    /// Add a diagnostic to the diagnostics list.
430    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
431      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
432      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
433      return EvalStatus.Diag->back().second;
434    }
435
436    /// Add notes containing a call stack to the current point of evaluation.
437    void addCallStack(unsigned Limit);
438
439  public:
440    /// Diagnose that the evaluation cannot be folded.
441    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
442                              = diag::note_invalid_subexpr_in_const_expr,
443                            unsigned ExtraNotes = 0) {
444      // If we have a prior diagnostic, it will be noting that the expression
445      // isn't a constant expression. This diagnostic is more important.
446      // FIXME: We might want to show both diagnostics to the user.
447      if (EvalStatus.Diag) {
448        unsigned CallStackNotes = CallStackDepth - 1;
449        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
450        if (Limit)
451          CallStackNotes = std::min(CallStackNotes, Limit + 1);
452        if (CheckingPotentialConstantExpression)
453          CallStackNotes = 0;
454
455        HasActiveDiagnostic = true;
456        EvalStatus.Diag->clear();
457        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
458        addDiag(Loc, DiagId);
459        if (!CheckingPotentialConstantExpression)
460          addCallStack(Limit);
461        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
462      }
463      HasActiveDiagnostic = false;
464      return OptionalDiagnostic();
465    }
466
467    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
468                              = diag::note_invalid_subexpr_in_const_expr,
469                            unsigned ExtraNotes = 0) {
470      if (EvalStatus.Diag)
471        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
472      HasActiveDiagnostic = false;
473      return OptionalDiagnostic();
474    }
475
476    /// Diagnose that the evaluation does not produce a C++11 core constant
477    /// expression.
478    template<typename LocArg>
479    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
480                                 = diag::note_invalid_subexpr_in_const_expr,
481                               unsigned ExtraNotes = 0) {
482      // Don't override a previous diagnostic.
483      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
484        HasActiveDiagnostic = false;
485        return OptionalDiagnostic();
486      }
487      return Diag(Loc, DiagId, ExtraNotes);
488    }
489
490    /// Add a note to a prior diagnostic.
491    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
492      if (!HasActiveDiagnostic)
493        return OptionalDiagnostic();
494      return OptionalDiagnostic(&addDiag(Loc, DiagId));
495    }
496
497    /// Add a stack of notes to a prior diagnostic.
498    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
499      if (HasActiveDiagnostic) {
500        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
501                                Diags.begin(), Diags.end());
502      }
503    }
504
505    /// Should we continue evaluation as much as possible after encountering a
506    /// construct which can't be folded?
507    bool keepEvaluatingAfterFailure() {
508      return CheckingPotentialConstantExpression &&
509             EvalStatus.Diag && EvalStatus.Diag->empty();
510    }
511  };
512
513  /// Object used to treat all foldable expressions as constant expressions.
514  struct FoldConstant {
515    bool Enabled;
516
517    explicit FoldConstant(EvalInfo &Info)
518      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
519                !Info.EvalStatus.HasSideEffects) {
520    }
521    // Treat the value we've computed since this object was created as constant.
522    void Fold(EvalInfo &Info) {
523      if (Enabled && !Info.EvalStatus.Diag->empty() &&
524          !Info.EvalStatus.HasSideEffects)
525        Info.EvalStatus.Diag->clear();
526    }
527  };
528
529  /// RAII object used to suppress diagnostics and side-effects from a
530  /// speculative evaluation.
531  class SpeculativeEvaluationRAII {
532    EvalInfo &Info;
533    Expr::EvalStatus Old;
534
535  public:
536    SpeculativeEvaluationRAII(EvalInfo &Info,
537                              llvm::SmallVectorImpl<PartialDiagnosticAt>
538                                *NewDiag = 0)
539      : Info(Info), Old(Info.EvalStatus) {
540      Info.EvalStatus.Diag = NewDiag;
541    }
542    ~SpeculativeEvaluationRAII() {
543      Info.EvalStatus = Old;
544    }
545  };
546}
547
548bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
549                                         CheckSubobjectKind CSK) {
550  if (Invalid)
551    return false;
552  if (isOnePastTheEnd()) {
553    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
554      << CSK;
555    setInvalid();
556    return false;
557  }
558  return true;
559}
560
561void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
562                                                    const Expr *E, uint64_t N) {
563  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
564    Info.CCEDiag(E, diag::note_constexpr_array_index)
565      << static_cast<int>(N) << /*array*/ 0
566      << static_cast<unsigned>(MostDerivedArraySize);
567  else
568    Info.CCEDiag(E, diag::note_constexpr_array_index)
569      << static_cast<int>(N) << /*non-array*/ 1;
570  setInvalid();
571}
572
573CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
574                               const FunctionDecl *Callee, const LValue *This,
575                               const APValue *Arguments)
576    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
577      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
578  Info.CurrentCall = this;
579  ++Info.CallStackDepth;
580}
581
582CallStackFrame::~CallStackFrame() {
583  assert(Info.CurrentCall == this && "calls retired out of order");
584  --Info.CallStackDepth;
585  Info.CurrentCall = Caller;
586}
587
588/// Produce a string describing the given constexpr call.
589static void describeCall(CallStackFrame *Frame, llvm::raw_ostream &Out) {
590  unsigned ArgIndex = 0;
591  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
592                      !isa<CXXConstructorDecl>(Frame->Callee) &&
593                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
594
595  if (!IsMemberCall)
596    Out << *Frame->Callee << '(';
597
598  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
599       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
600    if (ArgIndex > (unsigned)IsMemberCall)
601      Out << ", ";
602
603    const ParmVarDecl *Param = *I;
604    const APValue &Arg = Frame->Arguments[ArgIndex];
605    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
606
607    if (ArgIndex == 0 && IsMemberCall)
608      Out << "->" << *Frame->Callee << '(';
609  }
610
611  Out << ')';
612}
613
614void EvalInfo::addCallStack(unsigned Limit) {
615  // Determine which calls to skip, if any.
616  unsigned ActiveCalls = CallStackDepth - 1;
617  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
618  if (Limit && Limit < ActiveCalls) {
619    SkipStart = Limit / 2 + Limit % 2;
620    SkipEnd = ActiveCalls - Limit / 2;
621  }
622
623  // Walk the call stack and add the diagnostics.
624  unsigned CallIdx = 0;
625  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
626       Frame = Frame->Caller, ++CallIdx) {
627    // Skip this call?
628    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
629      if (CallIdx == SkipStart) {
630        // Note that we're skipping calls.
631        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
632          << unsigned(ActiveCalls - Limit);
633      }
634      continue;
635    }
636
637    llvm::SmallVector<char, 128> Buffer;
638    llvm::raw_svector_ostream Out(Buffer);
639    describeCall(Frame, Out);
640    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
641  }
642}
643
644namespace {
645  struct ComplexValue {
646  private:
647    bool IsInt;
648
649  public:
650    APSInt IntReal, IntImag;
651    APFloat FloatReal, FloatImag;
652
653    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
654
655    void makeComplexFloat() { IsInt = false; }
656    bool isComplexFloat() const { return !IsInt; }
657    APFloat &getComplexFloatReal() { return FloatReal; }
658    APFloat &getComplexFloatImag() { return FloatImag; }
659
660    void makeComplexInt() { IsInt = true; }
661    bool isComplexInt() const { return IsInt; }
662    APSInt &getComplexIntReal() { return IntReal; }
663    APSInt &getComplexIntImag() { return IntImag; }
664
665    void moveInto(APValue &v) const {
666      if (isComplexFloat())
667        v = APValue(FloatReal, FloatImag);
668      else
669        v = APValue(IntReal, IntImag);
670    }
671    void setFrom(const APValue &v) {
672      assert(v.isComplexFloat() || v.isComplexInt());
673      if (v.isComplexFloat()) {
674        makeComplexFloat();
675        FloatReal = v.getComplexFloatReal();
676        FloatImag = v.getComplexFloatImag();
677      } else {
678        makeComplexInt();
679        IntReal = v.getComplexIntReal();
680        IntImag = v.getComplexIntImag();
681      }
682    }
683  };
684
685  struct LValue {
686    APValue::LValueBase Base;
687    CharUnits Offset;
688    unsigned CallIndex;
689    SubobjectDesignator Designator;
690
691    const APValue::LValueBase getLValueBase() const { return Base; }
692    CharUnits &getLValueOffset() { return Offset; }
693    const CharUnits &getLValueOffset() const { return Offset; }
694    unsigned getLValueCallIndex() const { return CallIndex; }
695    SubobjectDesignator &getLValueDesignator() { return Designator; }
696    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
697
698    void moveInto(APValue &V) const {
699      if (Designator.Invalid)
700        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
701      else
702        V = APValue(Base, Offset, Designator.Entries,
703                    Designator.IsOnePastTheEnd, CallIndex);
704    }
705    void setFrom(ASTContext &Ctx, const APValue &V) {
706      assert(V.isLValue());
707      Base = V.getLValueBase();
708      Offset = V.getLValueOffset();
709      CallIndex = V.getLValueCallIndex();
710      Designator = SubobjectDesignator(Ctx, V);
711    }
712
713    void set(APValue::LValueBase B, unsigned I = 0) {
714      Base = B;
715      Offset = CharUnits::Zero();
716      CallIndex = I;
717      Designator = SubobjectDesignator(getType(B));
718    }
719
720    // Check that this LValue is not based on a null pointer. If it is, produce
721    // a diagnostic and mark the designator as invalid.
722    bool checkNullPointer(EvalInfo &Info, const Expr *E,
723                          CheckSubobjectKind CSK) {
724      if (Designator.Invalid)
725        return false;
726      if (!Base) {
727        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
728          << CSK;
729        Designator.setInvalid();
730        return false;
731      }
732      return true;
733    }
734
735    // Check this LValue refers to an object. If not, set the designator to be
736    // invalid and emit a diagnostic.
737    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
738      // Outside C++11, do not build a designator referring to a subobject of
739      // any object: we won't use such a designator for anything.
740      if (!Info.getLangOpts().CPlusPlus0x)
741        Designator.setInvalid();
742      return checkNullPointer(Info, E, CSK) &&
743             Designator.checkSubobject(Info, E, CSK);
744    }
745
746    void addDecl(EvalInfo &Info, const Expr *E,
747                 const Decl *D, bool Virtual = false) {
748      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
749        Designator.addDeclUnchecked(D, Virtual);
750    }
751    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
752      if (checkSubobject(Info, E, CSK_ArrayToPointer))
753        Designator.addArrayUnchecked(CAT);
754    }
755    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
756      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
757        Designator.addComplexUnchecked(EltTy, Imag);
758    }
759    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
760      if (checkNullPointer(Info, E, CSK_ArrayIndex))
761        Designator.adjustIndex(Info, E, N);
762    }
763  };
764
765  struct MemberPtr {
766    MemberPtr() {}
767    explicit MemberPtr(const ValueDecl *Decl) :
768      DeclAndIsDerivedMember(Decl, false), Path() {}
769
770    /// The member or (direct or indirect) field referred to by this member
771    /// pointer, or 0 if this is a null member pointer.
772    const ValueDecl *getDecl() const {
773      return DeclAndIsDerivedMember.getPointer();
774    }
775    /// Is this actually a member of some type derived from the relevant class?
776    bool isDerivedMember() const {
777      return DeclAndIsDerivedMember.getInt();
778    }
779    /// Get the class which the declaration actually lives in.
780    const CXXRecordDecl *getContainingRecord() const {
781      return cast<CXXRecordDecl>(
782          DeclAndIsDerivedMember.getPointer()->getDeclContext());
783    }
784
785    void moveInto(APValue &V) const {
786      V = APValue(getDecl(), isDerivedMember(), Path);
787    }
788    void setFrom(const APValue &V) {
789      assert(V.isMemberPointer());
790      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
791      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
792      Path.clear();
793      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
794      Path.insert(Path.end(), P.begin(), P.end());
795    }
796
797    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
798    /// whether the member is a member of some class derived from the class type
799    /// of the member pointer.
800    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
801    /// Path - The path of base/derived classes from the member declaration's
802    /// class (exclusive) to the class type of the member pointer (inclusive).
803    SmallVector<const CXXRecordDecl*, 4> Path;
804
805    /// Perform a cast towards the class of the Decl (either up or down the
806    /// hierarchy).
807    bool castBack(const CXXRecordDecl *Class) {
808      assert(!Path.empty());
809      const CXXRecordDecl *Expected;
810      if (Path.size() >= 2)
811        Expected = Path[Path.size() - 2];
812      else
813        Expected = getContainingRecord();
814      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
815        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
816        // if B does not contain the original member and is not a base or
817        // derived class of the class containing the original member, the result
818        // of the cast is undefined.
819        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
820        // (D::*). We consider that to be a language defect.
821        return false;
822      }
823      Path.pop_back();
824      return true;
825    }
826    /// Perform a base-to-derived member pointer cast.
827    bool castToDerived(const CXXRecordDecl *Derived) {
828      if (!getDecl())
829        return true;
830      if (!isDerivedMember()) {
831        Path.push_back(Derived);
832        return true;
833      }
834      if (!castBack(Derived))
835        return false;
836      if (Path.empty())
837        DeclAndIsDerivedMember.setInt(false);
838      return true;
839    }
840    /// Perform a derived-to-base member pointer cast.
841    bool castToBase(const CXXRecordDecl *Base) {
842      if (!getDecl())
843        return true;
844      if (Path.empty())
845        DeclAndIsDerivedMember.setInt(true);
846      if (isDerivedMember()) {
847        Path.push_back(Base);
848        return true;
849      }
850      return castBack(Base);
851    }
852  };
853
854  /// Compare two member pointers, which are assumed to be of the same type.
855  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
856    if (!LHS.getDecl() || !RHS.getDecl())
857      return !LHS.getDecl() && !RHS.getDecl();
858    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
859      return false;
860    return LHS.Path == RHS.Path;
861  }
862
863  /// Kinds of constant expression checking, for diagnostics.
864  enum CheckConstantExpressionKind {
865    CCEK_Constant,    ///< A normal constant.
866    CCEK_ReturnValue, ///< A constexpr function return value.
867    CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
868  };
869}
870
871static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
872static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
873                            const LValue &This, const Expr *E,
874                            CheckConstantExpressionKind CCEK = CCEK_Constant,
875                            bool AllowNonLiteralTypes = false);
876static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
877static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
878static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
879                                  EvalInfo &Info);
880static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
881static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
882static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
883                                    EvalInfo &Info);
884static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
885static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
886
887//===----------------------------------------------------------------------===//
888// Misc utilities
889//===----------------------------------------------------------------------===//
890
891/// Should this call expression be treated as a string literal?
892static bool IsStringLiteralCall(const CallExpr *E) {
893  unsigned Builtin = E->isBuiltinCall();
894  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
895          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
896}
897
898static bool IsGlobalLValue(APValue::LValueBase B) {
899  // C++11 [expr.const]p3 An address constant expression is a prvalue core
900  // constant expression of pointer type that evaluates to...
901
902  // ... a null pointer value, or a prvalue core constant expression of type
903  // std::nullptr_t.
904  if (!B) return true;
905
906  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
907    // ... the address of an object with static storage duration,
908    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
909      return VD->hasGlobalStorage();
910    // ... the address of a function,
911    return isa<FunctionDecl>(D);
912  }
913
914  const Expr *E = B.get<const Expr*>();
915  switch (E->getStmtClass()) {
916  default:
917    return false;
918  case Expr::CompoundLiteralExprClass: {
919    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
920    return CLE->isFileScope() && CLE->isLValue();
921  }
922  // A string literal has static storage duration.
923  case Expr::StringLiteralClass:
924  case Expr::PredefinedExprClass:
925  case Expr::ObjCStringLiteralClass:
926  case Expr::ObjCEncodeExprClass:
927  case Expr::CXXTypeidExprClass:
928  case Expr::CXXUuidofExprClass:
929    return true;
930  case Expr::CallExprClass:
931    return IsStringLiteralCall(cast<CallExpr>(E));
932  // For GCC compatibility, &&label has static storage duration.
933  case Expr::AddrLabelExprClass:
934    return true;
935  // A Block literal expression may be used as the initialization value for
936  // Block variables at global or local static scope.
937  case Expr::BlockExprClass:
938    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
939  case Expr::ImplicitValueInitExprClass:
940    // FIXME:
941    // We can never form an lvalue with an implicit value initialization as its
942    // base through expression evaluation, so these only appear in one case: the
943    // implicit variable declaration we invent when checking whether a constexpr
944    // constructor can produce a constant expression. We must assume that such
945    // an expression might be a global lvalue.
946    return true;
947  }
948}
949
950static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
951  assert(Base && "no location for a null lvalue");
952  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
953  if (VD)
954    Info.Note(VD->getLocation(), diag::note_declared_at);
955  else
956    Info.Note(Base.dyn_cast<const Expr*>()->getExprLoc(),
957              diag::note_constexpr_temporary_here);
958}
959
960/// Check that this reference or pointer core constant expression is a valid
961/// value for an address or reference constant expression. Return true if we
962/// can fold this expression, whether or not it's a constant expression.
963static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
964                                          QualType Type, const LValue &LVal) {
965  bool IsReferenceType = Type->isReferenceType();
966
967  APValue::LValueBase Base = LVal.getLValueBase();
968  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
969
970  // Check that the object is a global. Note that the fake 'this' object we
971  // manufacture when checking potential constant expressions is conservatively
972  // assumed to be global here.
973  if (!IsGlobalLValue(Base)) {
974    if (Info.getLangOpts().CPlusPlus0x) {
975      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
976      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
977        << IsReferenceType << !Designator.Entries.empty()
978        << !!VD << VD;
979      NoteLValueLocation(Info, Base);
980    } else {
981      Info.Diag(Loc);
982    }
983    // Don't allow references to temporaries to escape.
984    return false;
985  }
986  assert((Info.CheckingPotentialConstantExpression ||
987          LVal.getLValueCallIndex() == 0) &&
988         "have call index for global lvalue");
989
990  // Allow address constant expressions to be past-the-end pointers. This is
991  // an extension: the standard requires them to point to an object.
992  if (!IsReferenceType)
993    return true;
994
995  // A reference constant expression must refer to an object.
996  if (!Base) {
997    // FIXME: diagnostic
998    Info.CCEDiag(Loc);
999    return true;
1000  }
1001
1002  // Does this refer one past the end of some object?
1003  if (Designator.isOnePastTheEnd()) {
1004    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1005    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1006      << !Designator.Entries.empty() << !!VD << VD;
1007    NoteLValueLocation(Info, Base);
1008  }
1009
1010  return true;
1011}
1012
1013/// Check that this core constant expression is of literal type, and if not,
1014/// produce an appropriate diagnostic.
1015static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1016  if (!E->isRValue() || E->getType()->isLiteralType())
1017    return true;
1018
1019  // Prvalue constant expressions must be of literal types.
1020  if (Info.getLangOpts().CPlusPlus0x)
1021    Info.Diag(E, diag::note_constexpr_nonliteral)
1022      << E->getType();
1023  else
1024    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1025  return false;
1026}
1027
1028/// Check that this core constant expression value is a valid value for a
1029/// constant expression. If not, report an appropriate diagnostic. Does not
1030/// check that the expression is of literal type.
1031static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1032                                    QualType Type, const APValue &Value) {
1033  // Core issue 1454: For a literal constant expression of array or class type,
1034  // each subobject of its value shall have been initialized by a constant
1035  // expression.
1036  if (Value.isArray()) {
1037    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1038    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1039      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1040                                   Value.getArrayInitializedElt(I)))
1041        return false;
1042    }
1043    if (!Value.hasArrayFiller())
1044      return true;
1045    return CheckConstantExpression(Info, DiagLoc, EltTy,
1046                                   Value.getArrayFiller());
1047  }
1048  if (Value.isUnion() && Value.getUnionField()) {
1049    return CheckConstantExpression(Info, DiagLoc,
1050                                   Value.getUnionField()->getType(),
1051                                   Value.getUnionValue());
1052  }
1053  if (Value.isStruct()) {
1054    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1055    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1056      unsigned BaseIndex = 0;
1057      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1058             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1059        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1060                                     Value.getStructBase(BaseIndex)))
1061          return false;
1062      }
1063    }
1064    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1065         I != E; ++I) {
1066      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1067                                   Value.getStructField(I->getFieldIndex())))
1068        return false;
1069    }
1070  }
1071
1072  if (Value.isLValue()) {
1073    LValue LVal;
1074    LVal.setFrom(Info.Ctx, Value);
1075    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1076  }
1077
1078  // Everything else is fine.
1079  return true;
1080}
1081
1082const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1083  return LVal.Base.dyn_cast<const ValueDecl*>();
1084}
1085
1086static bool IsLiteralLValue(const LValue &Value) {
1087  return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1088}
1089
1090static bool IsWeakLValue(const LValue &Value) {
1091  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1092  return Decl && Decl->isWeak();
1093}
1094
1095static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1096  // A null base expression indicates a null pointer.  These are always
1097  // evaluatable, and they are false unless the offset is zero.
1098  if (!Value.getLValueBase()) {
1099    Result = !Value.getLValueOffset().isZero();
1100    return true;
1101  }
1102
1103  // We have a non-null base.  These are generally known to be true, but if it's
1104  // a weak declaration it can be null at runtime.
1105  Result = true;
1106  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1107  return !Decl || !Decl->isWeak();
1108}
1109
1110static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1111  switch (Val.getKind()) {
1112  case APValue::Uninitialized:
1113    return false;
1114  case APValue::Int:
1115    Result = Val.getInt().getBoolValue();
1116    return true;
1117  case APValue::Float:
1118    Result = !Val.getFloat().isZero();
1119    return true;
1120  case APValue::ComplexInt:
1121    Result = Val.getComplexIntReal().getBoolValue() ||
1122             Val.getComplexIntImag().getBoolValue();
1123    return true;
1124  case APValue::ComplexFloat:
1125    Result = !Val.getComplexFloatReal().isZero() ||
1126             !Val.getComplexFloatImag().isZero();
1127    return true;
1128  case APValue::LValue:
1129    return EvalPointerValueAsBool(Val, Result);
1130  case APValue::MemberPointer:
1131    Result = Val.getMemberPointerDecl();
1132    return true;
1133  case APValue::Vector:
1134  case APValue::Array:
1135  case APValue::Struct:
1136  case APValue::Union:
1137  case APValue::AddrLabelDiff:
1138    return false;
1139  }
1140
1141  llvm_unreachable("unknown APValue kind");
1142}
1143
1144static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1145                                       EvalInfo &Info) {
1146  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1147  APValue Val;
1148  if (!Evaluate(Val, Info, E))
1149    return false;
1150  return HandleConversionToBool(Val, Result);
1151}
1152
1153template<typename T>
1154static void HandleOverflow(EvalInfo &Info, const Expr *E,
1155                           const T &SrcValue, QualType DestType) {
1156  Info.CCEDiag(E, diag::note_constexpr_overflow)
1157    << SrcValue << DestType;
1158}
1159
1160static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1161                                 QualType SrcType, const APFloat &Value,
1162                                 QualType DestType, APSInt &Result) {
1163  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1164  // Determine whether we are converting to unsigned or signed.
1165  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1166
1167  Result = APSInt(DestWidth, !DestSigned);
1168  bool ignored;
1169  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1170      & APFloat::opInvalidOp)
1171    HandleOverflow(Info, E, Value, DestType);
1172  return true;
1173}
1174
1175static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1176                                   QualType SrcType, QualType DestType,
1177                                   APFloat &Result) {
1178  APFloat Value = Result;
1179  bool ignored;
1180  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1181                     APFloat::rmNearestTiesToEven, &ignored)
1182      & APFloat::opOverflow)
1183    HandleOverflow(Info, E, Value, DestType);
1184  return true;
1185}
1186
1187static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1188                                 QualType DestType, QualType SrcType,
1189                                 APSInt &Value) {
1190  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1191  APSInt Result = Value;
1192  // Figure out if this is a truncate, extend or noop cast.
1193  // If the input is signed, do a sign extend, noop, or truncate.
1194  Result = Result.extOrTrunc(DestWidth);
1195  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1196  return Result;
1197}
1198
1199static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1200                                 QualType SrcType, const APSInt &Value,
1201                                 QualType DestType, APFloat &Result) {
1202  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1203  if (Result.convertFromAPInt(Value, Value.isSigned(),
1204                              APFloat::rmNearestTiesToEven)
1205      & APFloat::opOverflow)
1206    HandleOverflow(Info, E, Value, DestType);
1207  return true;
1208}
1209
1210static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1211                                  llvm::APInt &Res) {
1212  APValue SVal;
1213  if (!Evaluate(SVal, Info, E))
1214    return false;
1215  if (SVal.isInt()) {
1216    Res = SVal.getInt();
1217    return true;
1218  }
1219  if (SVal.isFloat()) {
1220    Res = SVal.getFloat().bitcastToAPInt();
1221    return true;
1222  }
1223  if (SVal.isVector()) {
1224    QualType VecTy = E->getType();
1225    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1226    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1227    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1228    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1229    Res = llvm::APInt::getNullValue(VecSize);
1230    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1231      APValue &Elt = SVal.getVectorElt(i);
1232      llvm::APInt EltAsInt;
1233      if (Elt.isInt()) {
1234        EltAsInt = Elt.getInt();
1235      } else if (Elt.isFloat()) {
1236        EltAsInt = Elt.getFloat().bitcastToAPInt();
1237      } else {
1238        // Don't try to handle vectors of anything other than int or float
1239        // (not sure if it's possible to hit this case).
1240        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1241        return false;
1242      }
1243      unsigned BaseEltSize = EltAsInt.getBitWidth();
1244      if (BigEndian)
1245        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1246      else
1247        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1248    }
1249    return true;
1250  }
1251  // Give up if the input isn't an int, float, or vector.  For example, we
1252  // reject "(v4i16)(intptr_t)&a".
1253  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1254  return false;
1255}
1256
1257/// Cast an lvalue referring to a base subobject to a derived class, by
1258/// truncating the lvalue's path to the given length.
1259static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1260                               const RecordDecl *TruncatedType,
1261                               unsigned TruncatedElements) {
1262  SubobjectDesignator &D = Result.Designator;
1263
1264  // Check we actually point to a derived class object.
1265  if (TruncatedElements == D.Entries.size())
1266    return true;
1267  assert(TruncatedElements >= D.MostDerivedPathLength &&
1268         "not casting to a derived class");
1269  if (!Result.checkSubobject(Info, E, CSK_Derived))
1270    return false;
1271
1272  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1273  const RecordDecl *RD = TruncatedType;
1274  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1275    if (RD->isInvalidDecl()) return false;
1276    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1277    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1278    if (isVirtualBaseClass(D.Entries[I]))
1279      Result.Offset -= Layout.getVBaseClassOffset(Base);
1280    else
1281      Result.Offset -= Layout.getBaseClassOffset(Base);
1282    RD = Base;
1283  }
1284  D.Entries.resize(TruncatedElements);
1285  return true;
1286}
1287
1288static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1289                                   const CXXRecordDecl *Derived,
1290                                   const CXXRecordDecl *Base,
1291                                   const ASTRecordLayout *RL = 0) {
1292  if (!RL) {
1293    if (Derived->isInvalidDecl()) return false;
1294    RL = &Info.Ctx.getASTRecordLayout(Derived);
1295  }
1296
1297  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1298  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1299  return true;
1300}
1301
1302static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1303                             const CXXRecordDecl *DerivedDecl,
1304                             const CXXBaseSpecifier *Base) {
1305  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1306
1307  if (!Base->isVirtual())
1308    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1309
1310  SubobjectDesignator &D = Obj.Designator;
1311  if (D.Invalid)
1312    return false;
1313
1314  // Extract most-derived object and corresponding type.
1315  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1316  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1317    return false;
1318
1319  // Find the virtual base class.
1320  if (DerivedDecl->isInvalidDecl()) return false;
1321  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1322  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1323  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1324  return true;
1325}
1326
1327/// Update LVal to refer to the given field, which must be a member of the type
1328/// currently described by LVal.
1329static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1330                               const FieldDecl *FD,
1331                               const ASTRecordLayout *RL = 0) {
1332  if (!RL) {
1333    if (FD->getParent()->isInvalidDecl()) return false;
1334    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1335  }
1336
1337  unsigned I = FD->getFieldIndex();
1338  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1339  LVal.addDecl(Info, E, FD);
1340  return true;
1341}
1342
1343/// Update LVal to refer to the given indirect field.
1344static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1345                                       LValue &LVal,
1346                                       const IndirectFieldDecl *IFD) {
1347  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1348                                         CE = IFD->chain_end(); C != CE; ++C)
1349    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1350      return false;
1351  return true;
1352}
1353
1354/// Get the size of the given type in char units.
1355static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1356                         QualType Type, CharUnits &Size) {
1357  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1358  // extension.
1359  if (Type->isVoidType() || Type->isFunctionType()) {
1360    Size = CharUnits::One();
1361    return true;
1362  }
1363
1364  if (!Type->isConstantSizeType()) {
1365    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1366    // FIXME: Better diagnostic.
1367    Info.Diag(Loc);
1368    return false;
1369  }
1370
1371  Size = Info.Ctx.getTypeSizeInChars(Type);
1372  return true;
1373}
1374
1375/// Update a pointer value to model pointer arithmetic.
1376/// \param Info - Information about the ongoing evaluation.
1377/// \param E - The expression being evaluated, for diagnostic purposes.
1378/// \param LVal - The pointer value to be updated.
1379/// \param EltTy - The pointee type represented by LVal.
1380/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1381static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1382                                        LValue &LVal, QualType EltTy,
1383                                        int64_t Adjustment) {
1384  CharUnits SizeOfPointee;
1385  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1386    return false;
1387
1388  // Compute the new offset in the appropriate width.
1389  LVal.Offset += Adjustment * SizeOfPointee;
1390  LVal.adjustIndex(Info, E, Adjustment);
1391  return true;
1392}
1393
1394/// Update an lvalue to refer to a component of a complex number.
1395/// \param Info - Information about the ongoing evaluation.
1396/// \param LVal - The lvalue to be updated.
1397/// \param EltTy - The complex number's component type.
1398/// \param Imag - False for the real component, true for the imaginary.
1399static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1400                                       LValue &LVal, QualType EltTy,
1401                                       bool Imag) {
1402  if (Imag) {
1403    CharUnits SizeOfComponent;
1404    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1405      return false;
1406    LVal.Offset += SizeOfComponent;
1407  }
1408  LVal.addComplex(Info, E, EltTy, Imag);
1409  return true;
1410}
1411
1412/// Try to evaluate the initializer for a variable declaration.
1413static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1414                                const VarDecl *VD,
1415                                CallStackFrame *Frame, APValue &Result) {
1416  // If this is a parameter to an active constexpr function call, perform
1417  // argument substitution.
1418  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1419    // Assume arguments of a potential constant expression are unknown
1420    // constant expressions.
1421    if (Info.CheckingPotentialConstantExpression)
1422      return false;
1423    if (!Frame || !Frame->Arguments) {
1424      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1425      return false;
1426    }
1427    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1428    return true;
1429  }
1430
1431  // Dig out the initializer, and use the declaration which it's attached to.
1432  const Expr *Init = VD->getAnyInitializer(VD);
1433  if (!Init || Init->isValueDependent()) {
1434    // If we're checking a potential constant expression, the variable could be
1435    // initialized later.
1436    if (!Info.CheckingPotentialConstantExpression)
1437      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1438    return false;
1439  }
1440
1441  // If we're currently evaluating the initializer of this declaration, use that
1442  // in-flight value.
1443  if (Info.EvaluatingDecl == VD) {
1444    Result = *Info.EvaluatingDeclValue;
1445    return !Result.isUninit();
1446  }
1447
1448  // Never evaluate the initializer of a weak variable. We can't be sure that
1449  // this is the definition which will be used.
1450  if (VD->isWeak()) {
1451    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1452    return false;
1453  }
1454
1455  // Check that we can fold the initializer. In C++, we will have already done
1456  // this in the cases where it matters for conformance.
1457  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1458  if (!VD->evaluateValue(Notes)) {
1459    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1460              Notes.size() + 1) << VD;
1461    Info.Note(VD->getLocation(), diag::note_declared_at);
1462    Info.addNotes(Notes);
1463    return false;
1464  } else if (!VD->checkInitIsICE()) {
1465    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1466                 Notes.size() + 1) << VD;
1467    Info.Note(VD->getLocation(), diag::note_declared_at);
1468    Info.addNotes(Notes);
1469  }
1470
1471  Result = *VD->getEvaluatedValue();
1472  return true;
1473}
1474
1475static bool IsConstNonVolatile(QualType T) {
1476  Qualifiers Quals = T.getQualifiers();
1477  return Quals.hasConst() && !Quals.hasVolatile();
1478}
1479
1480/// Get the base index of the given base class within an APValue representing
1481/// the given derived class.
1482static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1483                             const CXXRecordDecl *Base) {
1484  Base = Base->getCanonicalDecl();
1485  unsigned Index = 0;
1486  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1487         E = Derived->bases_end(); I != E; ++I, ++Index) {
1488    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1489      return Index;
1490  }
1491
1492  llvm_unreachable("base class missing from derived class's bases list");
1493}
1494
1495/// Extract the value of a character from a string literal. CharType is used to
1496/// determine the expected signedness of the result -- a string literal used to
1497/// initialize an array of 'signed char' or 'unsigned char' might contain chars
1498/// of the wrong signedness.
1499static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1500                                            uint64_t Index, QualType CharType) {
1501  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1502  const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1503  assert(S && "unexpected string literal expression kind");
1504  assert(CharType->isIntegerType() && "unexpected character type");
1505
1506  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1507               CharType->isUnsignedIntegerType());
1508  if (Index < S->getLength())
1509    Value = S->getCodeUnit(Index);
1510  return Value;
1511}
1512
1513/// Extract the designated sub-object of an rvalue.
1514static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1515                             APValue &Obj, QualType ObjType,
1516                             const SubobjectDesignator &Sub, QualType SubType) {
1517  if (Sub.Invalid)
1518    // A diagnostic will have already been produced.
1519    return false;
1520  if (Sub.isOnePastTheEnd()) {
1521    Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1522                (unsigned)diag::note_constexpr_read_past_end :
1523                (unsigned)diag::note_invalid_subexpr_in_const_expr);
1524    return false;
1525  }
1526  if (Sub.Entries.empty())
1527    return true;
1528  if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1529    // This object might be initialized later.
1530    return false;
1531
1532  APValue *O = &Obj;
1533  // Walk the designator's path to find the subobject.
1534  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1535    if (ObjType->isArrayType()) {
1536      // Next subobject is an array element.
1537      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1538      assert(CAT && "vla in literal type?");
1539      uint64_t Index = Sub.Entries[I].ArrayIndex;
1540      if (CAT->getSize().ule(Index)) {
1541        // Note, it should not be possible to form a pointer with a valid
1542        // designator which points more than one past the end of the array.
1543        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1544                    (unsigned)diag::note_constexpr_read_past_end :
1545                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1546        return false;
1547      }
1548      // An array object is represented as either an Array APValue or as an
1549      // LValue which refers to a string literal.
1550      if (O->isLValue()) {
1551        assert(I == N - 1 && "extracting subobject of character?");
1552        assert(!O->hasLValuePath() || O->getLValuePath().empty());
1553        Obj = APValue(ExtractStringLiteralCharacter(
1554          Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1555        return true;
1556      } else if (O->getArrayInitializedElts() > Index)
1557        O = &O->getArrayInitializedElt(Index);
1558      else
1559        O = &O->getArrayFiller();
1560      ObjType = CAT->getElementType();
1561    } else if (ObjType->isAnyComplexType()) {
1562      // Next subobject is a complex number.
1563      uint64_t Index = Sub.Entries[I].ArrayIndex;
1564      if (Index > 1) {
1565        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1566                    (unsigned)diag::note_constexpr_read_past_end :
1567                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1568        return false;
1569      }
1570      assert(I == N - 1 && "extracting subobject of scalar?");
1571      if (O->isComplexInt()) {
1572        Obj = APValue(Index ? O->getComplexIntImag()
1573                            : O->getComplexIntReal());
1574      } else {
1575        assert(O->isComplexFloat());
1576        Obj = APValue(Index ? O->getComplexFloatImag()
1577                            : O->getComplexFloatReal());
1578      }
1579      return true;
1580    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1581      if (Field->isMutable()) {
1582        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1583          << Field;
1584        Info.Note(Field->getLocation(), diag::note_declared_at);
1585        return false;
1586      }
1587
1588      // Next subobject is a class, struct or union field.
1589      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1590      if (RD->isUnion()) {
1591        const FieldDecl *UnionField = O->getUnionField();
1592        if (!UnionField ||
1593            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1594          Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1595            << Field << !UnionField << UnionField;
1596          return false;
1597        }
1598        O = &O->getUnionValue();
1599      } else
1600        O = &O->getStructField(Field->getFieldIndex());
1601      ObjType = Field->getType();
1602
1603      if (ObjType.isVolatileQualified()) {
1604        if (Info.getLangOpts().CPlusPlus) {
1605          // FIXME: Include a description of the path to the volatile subobject.
1606          Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1607            << 2 << Field;
1608          Info.Note(Field->getLocation(), diag::note_declared_at);
1609        } else {
1610          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1611        }
1612        return false;
1613      }
1614    } else {
1615      // Next subobject is a base class.
1616      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1617      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1618      O = &O->getStructBase(getBaseIndex(Derived, Base));
1619      ObjType = Info.Ctx.getRecordType(Base);
1620    }
1621
1622    if (O->isUninit()) {
1623      if (!Info.CheckingPotentialConstantExpression)
1624        Info.Diag(E, diag::note_constexpr_read_uninit);
1625      return false;
1626    }
1627  }
1628
1629  // This may look super-stupid, but it serves an important purpose: if we just
1630  // swapped Obj and *O, we'd create an object which had itself as a subobject.
1631  // To avoid the leak, we ensure that Tmp ends up owning the original complete
1632  // object, which is destroyed by Tmp's destructor.
1633  APValue Tmp;
1634  O->swap(Tmp);
1635  Obj.swap(Tmp);
1636  return true;
1637}
1638
1639/// Find the position where two subobject designators diverge, or equivalently
1640/// the length of the common initial subsequence.
1641static unsigned FindDesignatorMismatch(QualType ObjType,
1642                                       const SubobjectDesignator &A,
1643                                       const SubobjectDesignator &B,
1644                                       bool &WasArrayIndex) {
1645  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1646  for (/**/; I != N; ++I) {
1647    if (!ObjType.isNull() &&
1648        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1649      // Next subobject is an array element.
1650      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1651        WasArrayIndex = true;
1652        return I;
1653      }
1654      if (ObjType->isAnyComplexType())
1655        ObjType = ObjType->castAs<ComplexType>()->getElementType();
1656      else
1657        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1658    } else {
1659      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1660        WasArrayIndex = false;
1661        return I;
1662      }
1663      if (const FieldDecl *FD = getAsField(A.Entries[I]))
1664        // Next subobject is a field.
1665        ObjType = FD->getType();
1666      else
1667        // Next subobject is a base class.
1668        ObjType = QualType();
1669    }
1670  }
1671  WasArrayIndex = false;
1672  return I;
1673}
1674
1675/// Determine whether the given subobject designators refer to elements of the
1676/// same array object.
1677static bool AreElementsOfSameArray(QualType ObjType,
1678                                   const SubobjectDesignator &A,
1679                                   const SubobjectDesignator &B) {
1680  if (A.Entries.size() != B.Entries.size())
1681    return false;
1682
1683  bool IsArray = A.MostDerivedArraySize != 0;
1684  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1685    // A is a subobject of the array element.
1686    return false;
1687
1688  // If A (and B) designates an array element, the last entry will be the array
1689  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1690  // of length 1' case, and the entire path must match.
1691  bool WasArrayIndex;
1692  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1693  return CommonLength >= A.Entries.size() - IsArray;
1694}
1695
1696/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1697/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1698/// for looking up the glvalue referred to by an entity of reference type.
1699///
1700/// \param Info - Information about the ongoing evaluation.
1701/// \param Conv - The expression for which we are performing the conversion.
1702///               Used for diagnostics.
1703/// \param Type - The type we expect this conversion to produce, before
1704///               stripping cv-qualifiers in the case of a non-clas type.
1705/// \param LVal - The glvalue on which we are attempting to perform this action.
1706/// \param RVal - The produced value will be placed here.
1707static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1708                                           QualType Type,
1709                                           const LValue &LVal, APValue &RVal) {
1710  if (LVal.Designator.Invalid)
1711    // A diagnostic will have already been produced.
1712    return false;
1713
1714  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1715
1716  if (!LVal.Base) {
1717    // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1718    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1719    return false;
1720  }
1721
1722  CallStackFrame *Frame = 0;
1723  if (LVal.CallIndex) {
1724    Frame = Info.getCallFrame(LVal.CallIndex);
1725    if (!Frame) {
1726      Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1727      NoteLValueLocation(Info, LVal.Base);
1728      return false;
1729    }
1730  }
1731
1732  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1733  // is not a constant expression (even if the object is non-volatile). We also
1734  // apply this rule to C++98, in order to conform to the expected 'volatile'
1735  // semantics.
1736  if (Type.isVolatileQualified()) {
1737    if (Info.getLangOpts().CPlusPlus)
1738      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1739    else
1740      Info.Diag(Conv);
1741    return false;
1742  }
1743
1744  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1745    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1746    // In C++11, constexpr, non-volatile variables initialized with constant
1747    // expressions are constant expressions too. Inside constexpr functions,
1748    // parameters are constant expressions even if they're non-const.
1749    // In C, such things can also be folded, although they are not ICEs.
1750    const VarDecl *VD = dyn_cast<VarDecl>(D);
1751    if (VD) {
1752      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1753        VD = VDef;
1754    }
1755    if (!VD || VD->isInvalidDecl()) {
1756      Info.Diag(Conv);
1757      return false;
1758    }
1759
1760    // DR1313: If the object is volatile-qualified but the glvalue was not,
1761    // behavior is undefined so the result is not a constant expression.
1762    QualType VT = VD->getType();
1763    if (VT.isVolatileQualified()) {
1764      if (Info.getLangOpts().CPlusPlus) {
1765        Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1766        Info.Note(VD->getLocation(), diag::note_declared_at);
1767      } else {
1768        Info.Diag(Conv);
1769      }
1770      return false;
1771    }
1772
1773    if (!isa<ParmVarDecl>(VD)) {
1774      if (VD->isConstexpr()) {
1775        // OK, we can read this variable.
1776      } else if (VT->isIntegralOrEnumerationType()) {
1777        if (!VT.isConstQualified()) {
1778          if (Info.getLangOpts().CPlusPlus) {
1779            Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1780            Info.Note(VD->getLocation(), diag::note_declared_at);
1781          } else {
1782            Info.Diag(Conv);
1783          }
1784          return false;
1785        }
1786      } else if (VT->isFloatingType() && VT.isConstQualified()) {
1787        // We support folding of const floating-point types, in order to make
1788        // static const data members of such types (supported as an extension)
1789        // more useful.
1790        if (Info.getLangOpts().CPlusPlus0x) {
1791          Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1792          Info.Note(VD->getLocation(), diag::note_declared_at);
1793        } else {
1794          Info.CCEDiag(Conv);
1795        }
1796      } else {
1797        // FIXME: Allow folding of values of any literal type in all languages.
1798        if (Info.getLangOpts().CPlusPlus0x) {
1799          Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1800          Info.Note(VD->getLocation(), diag::note_declared_at);
1801        } else {
1802          Info.Diag(Conv);
1803        }
1804        return false;
1805      }
1806    }
1807
1808    if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1809      return false;
1810
1811    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1812      return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1813
1814    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1815    // conversion. This happens when the declaration and the lvalue should be
1816    // considered synonymous, for instance when initializing an array of char
1817    // from a string literal. Continue as if the initializer lvalue was the
1818    // value we were originally given.
1819    assert(RVal.getLValueOffset().isZero() &&
1820           "offset for lvalue init of non-reference");
1821    Base = RVal.getLValueBase().get<const Expr*>();
1822
1823    if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1824      Frame = Info.getCallFrame(CallIndex);
1825      if (!Frame) {
1826        Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1827        NoteLValueLocation(Info, RVal.getLValueBase());
1828        return false;
1829      }
1830    } else {
1831      Frame = 0;
1832    }
1833  }
1834
1835  // Volatile temporary objects cannot be read in constant expressions.
1836  if (Base->getType().isVolatileQualified()) {
1837    if (Info.getLangOpts().CPlusPlus) {
1838      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1839      Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1840    } else {
1841      Info.Diag(Conv);
1842    }
1843    return false;
1844  }
1845
1846  if (Frame) {
1847    // If this is a temporary expression with a nontrivial initializer, grab the
1848    // value from the relevant stack frame.
1849    RVal = Frame->Temporaries[Base];
1850  } else if (const CompoundLiteralExpr *CLE
1851             = dyn_cast<CompoundLiteralExpr>(Base)) {
1852    // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1853    // initializer until now for such expressions. Such an expression can't be
1854    // an ICE in C, so this only matters for fold.
1855    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1856    if (!Evaluate(RVal, Info, CLE->getInitializer()))
1857      return false;
1858  } else if (isa<StringLiteral>(Base)) {
1859    // We represent a string literal array as an lvalue pointing at the
1860    // corresponding expression, rather than building an array of chars.
1861    // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1862    RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1863  } else {
1864    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1865    return false;
1866  }
1867
1868  return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1869                          Type);
1870}
1871
1872/// Build an lvalue for the object argument of a member function call.
1873static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1874                                   LValue &This) {
1875  if (Object->getType()->isPointerType())
1876    return EvaluatePointer(Object, This, Info);
1877
1878  if (Object->isGLValue())
1879    return EvaluateLValue(Object, This, Info);
1880
1881  if (Object->getType()->isLiteralType())
1882    return EvaluateTemporary(Object, This, Info);
1883
1884  return false;
1885}
1886
1887/// HandleMemberPointerAccess - Evaluate a member access operation and build an
1888/// lvalue referring to the result.
1889///
1890/// \param Info - Information about the ongoing evaluation.
1891/// \param BO - The member pointer access operation.
1892/// \param LV - Filled in with a reference to the resulting object.
1893/// \param IncludeMember - Specifies whether the member itself is included in
1894///        the resulting LValue subobject designator. This is not possible when
1895///        creating a bound member function.
1896/// \return The field or method declaration to which the member pointer refers,
1897///         or 0 if evaluation fails.
1898static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1899                                                  const BinaryOperator *BO,
1900                                                  LValue &LV,
1901                                                  bool IncludeMember = true) {
1902  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1903
1904  bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1905  if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1906    return 0;
1907
1908  MemberPtr MemPtr;
1909  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1910    return 0;
1911
1912  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1913  // member value, the behavior is undefined.
1914  if (!MemPtr.getDecl())
1915    return 0;
1916
1917  if (!EvalObjOK)
1918    return 0;
1919
1920  if (MemPtr.isDerivedMember()) {
1921    // This is a member of some derived class. Truncate LV appropriately.
1922    // The end of the derived-to-base path for the base object must match the
1923    // derived-to-base path for the member pointer.
1924    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1925        LV.Designator.Entries.size())
1926      return 0;
1927    unsigned PathLengthToMember =
1928        LV.Designator.Entries.size() - MemPtr.Path.size();
1929    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1930      const CXXRecordDecl *LVDecl = getAsBaseClass(
1931          LV.Designator.Entries[PathLengthToMember + I]);
1932      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1933      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1934        return 0;
1935    }
1936
1937    // Truncate the lvalue to the appropriate derived class.
1938    if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1939                            PathLengthToMember))
1940      return 0;
1941  } else if (!MemPtr.Path.empty()) {
1942    // Extend the LValue path with the member pointer's path.
1943    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1944                                  MemPtr.Path.size() + IncludeMember);
1945
1946    // Walk down to the appropriate base class.
1947    QualType LVType = BO->getLHS()->getType();
1948    if (const PointerType *PT = LVType->getAs<PointerType>())
1949      LVType = PT->getPointeeType();
1950    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1951    assert(RD && "member pointer access on non-class-type expression");
1952    // The first class in the path is that of the lvalue.
1953    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1954      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1955      if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
1956        return 0;
1957      RD = Base;
1958    }
1959    // Finally cast to the class containing the member.
1960    if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
1961      return 0;
1962  }
1963
1964  // Add the member. Note that we cannot build bound member functions here.
1965  if (IncludeMember) {
1966    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
1967      if (!HandleLValueMember(Info, BO, LV, FD))
1968        return 0;
1969    } else if (const IndirectFieldDecl *IFD =
1970                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
1971      if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
1972        return 0;
1973    } else {
1974      llvm_unreachable("can't construct reference to bound member function");
1975    }
1976  }
1977
1978  return MemPtr.getDecl();
1979}
1980
1981/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1982/// the provided lvalue, which currently refers to the base object.
1983static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
1984                                    LValue &Result) {
1985  SubobjectDesignator &D = Result.Designator;
1986  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
1987    return false;
1988
1989  QualType TargetQT = E->getType();
1990  if (const PointerType *PT = TargetQT->getAs<PointerType>())
1991    TargetQT = PT->getPointeeType();
1992
1993  // Check this cast lands within the final derived-to-base subobject path.
1994  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
1995    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
1996      << D.MostDerivedType << TargetQT;
1997    return false;
1998  }
1999
2000  // Check the type of the final cast. We don't need to check the path,
2001  // since a cast can only be formed if the path is unique.
2002  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2003  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2004  const CXXRecordDecl *FinalType;
2005  if (NewEntriesSize == D.MostDerivedPathLength)
2006    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2007  else
2008    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2009  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2010    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2011      << D.MostDerivedType << TargetQT;
2012    return false;
2013  }
2014
2015  // Truncate the lvalue to the appropriate derived class.
2016  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2017}
2018
2019namespace {
2020enum EvalStmtResult {
2021  /// Evaluation failed.
2022  ESR_Failed,
2023  /// Hit a 'return' statement.
2024  ESR_Returned,
2025  /// Evaluation succeeded.
2026  ESR_Succeeded
2027};
2028}
2029
2030// Evaluate a statement.
2031static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2032                                   const Stmt *S) {
2033  switch (S->getStmtClass()) {
2034  default:
2035    return ESR_Failed;
2036
2037  case Stmt::NullStmtClass:
2038  case Stmt::DeclStmtClass:
2039    return ESR_Succeeded;
2040
2041  case Stmt::ReturnStmtClass: {
2042    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2043    if (!Evaluate(Result, Info, RetExpr))
2044      return ESR_Failed;
2045    return ESR_Returned;
2046  }
2047
2048  case Stmt::CompoundStmtClass: {
2049    const CompoundStmt *CS = cast<CompoundStmt>(S);
2050    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2051           BE = CS->body_end(); BI != BE; ++BI) {
2052      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2053      if (ESR != ESR_Succeeded)
2054        return ESR;
2055    }
2056    return ESR_Succeeded;
2057  }
2058  }
2059}
2060
2061/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2062/// default constructor. If so, we'll fold it whether or not it's marked as
2063/// constexpr. If it is marked as constexpr, we will never implicitly define it,
2064/// so we need special handling.
2065static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2066                                           const CXXConstructorDecl *CD,
2067                                           bool IsValueInitialization) {
2068  if (!CD->isTrivial() || !CD->isDefaultConstructor())
2069    return false;
2070
2071  // Value-initialization does not call a trivial default constructor, so such a
2072  // call is a core constant expression whether or not the constructor is
2073  // constexpr.
2074  if (!CD->isConstexpr() && !IsValueInitialization) {
2075    if (Info.getLangOpts().CPlusPlus0x) {
2076      // FIXME: If DiagDecl is an implicitly-declared special member function,
2077      // we should be much more explicit about why it's not constexpr.
2078      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2079        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2080      Info.Note(CD->getLocation(), diag::note_declared_at);
2081    } else {
2082      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2083    }
2084  }
2085  return true;
2086}
2087
2088/// CheckConstexprFunction - Check that a function can be called in a constant
2089/// expression.
2090static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2091                                   const FunctionDecl *Declaration,
2092                                   const FunctionDecl *Definition) {
2093  // Potential constant expressions can contain calls to declared, but not yet
2094  // defined, constexpr functions.
2095  if (Info.CheckingPotentialConstantExpression && !Definition &&
2096      Declaration->isConstexpr())
2097    return false;
2098
2099  // Can we evaluate this function call?
2100  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2101    return true;
2102
2103  if (Info.getLangOpts().CPlusPlus0x) {
2104    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2105    // FIXME: If DiagDecl is an implicitly-declared special member function, we
2106    // should be much more explicit about why it's not constexpr.
2107    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2108      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2109      << DiagDecl;
2110    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2111  } else {
2112    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2113  }
2114  return false;
2115}
2116
2117namespace {
2118typedef SmallVector<APValue, 8> ArgVector;
2119}
2120
2121/// EvaluateArgs - Evaluate the arguments to a function call.
2122static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2123                         EvalInfo &Info) {
2124  bool Success = true;
2125  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2126       I != E; ++I) {
2127    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2128      // If we're checking for a potential constant expression, evaluate all
2129      // initializers even if some of them fail.
2130      if (!Info.keepEvaluatingAfterFailure())
2131        return false;
2132      Success = false;
2133    }
2134  }
2135  return Success;
2136}
2137
2138/// Evaluate a function call.
2139static bool HandleFunctionCall(SourceLocation CallLoc,
2140                               const FunctionDecl *Callee, const LValue *This,
2141                               ArrayRef<const Expr*> Args, const Stmt *Body,
2142                               EvalInfo &Info, APValue &Result) {
2143  ArgVector ArgValues(Args.size());
2144  if (!EvaluateArgs(Args, ArgValues, Info))
2145    return false;
2146
2147  if (!Info.CheckCallLimit(CallLoc))
2148    return false;
2149
2150  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2151  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2152}
2153
2154/// Evaluate a constructor call.
2155static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2156                                  ArrayRef<const Expr*> Args,
2157                                  const CXXConstructorDecl *Definition,
2158                                  EvalInfo &Info, APValue &Result) {
2159  ArgVector ArgValues(Args.size());
2160  if (!EvaluateArgs(Args, ArgValues, Info))
2161    return false;
2162
2163  if (!Info.CheckCallLimit(CallLoc))
2164    return false;
2165
2166  const CXXRecordDecl *RD = Definition->getParent();
2167  if (RD->getNumVBases()) {
2168    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2169    return false;
2170  }
2171
2172  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2173
2174  // If it's a delegating constructor, just delegate.
2175  if (Definition->isDelegatingConstructor()) {
2176    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2177    return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2178  }
2179
2180  // For a trivial copy or move constructor, perform an APValue copy. This is
2181  // essential for unions, where the operations performed by the constructor
2182  // cannot be represented by ctor-initializers.
2183  if (Definition->isDefaulted() &&
2184      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2185       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2186    LValue RHS;
2187    RHS.setFrom(Info.Ctx, ArgValues[0]);
2188    return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2189                                          RHS, Result);
2190  }
2191
2192  // Reserve space for the struct members.
2193  if (!RD->isUnion() && Result.isUninit())
2194    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2195                     std::distance(RD->field_begin(), RD->field_end()));
2196
2197  if (RD->isInvalidDecl()) return false;
2198  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2199
2200  bool Success = true;
2201  unsigned BasesSeen = 0;
2202#ifndef NDEBUG
2203  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2204#endif
2205  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2206       E = Definition->init_end(); I != E; ++I) {
2207    LValue Subobject = This;
2208    APValue *Value = &Result;
2209
2210    // Determine the subobject to initialize.
2211    if ((*I)->isBaseInitializer()) {
2212      QualType BaseType((*I)->getBaseClass(), 0);
2213#ifndef NDEBUG
2214      // Non-virtual base classes are initialized in the order in the class
2215      // definition. We have already checked for virtual base classes.
2216      assert(!BaseIt->isVirtual() && "virtual base for literal type");
2217      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2218             "base class initializers not in expected order");
2219      ++BaseIt;
2220#endif
2221      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2222                                  BaseType->getAsCXXRecordDecl(), &Layout))
2223        return false;
2224      Value = &Result.getStructBase(BasesSeen++);
2225    } else if (FieldDecl *FD = (*I)->getMember()) {
2226      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
2227        return false;
2228      if (RD->isUnion()) {
2229        Result = APValue(FD);
2230        Value = &Result.getUnionValue();
2231      } else {
2232        Value = &Result.getStructField(FD->getFieldIndex());
2233      }
2234    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2235      // Walk the indirect field decl's chain to find the object to initialize,
2236      // and make sure we've initialized every step along it.
2237      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2238                                             CE = IFD->chain_end();
2239           C != CE; ++C) {
2240        FieldDecl *FD = cast<FieldDecl>(*C);
2241        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2242        // Switch the union field if it differs. This happens if we had
2243        // preceding zero-initialization, and we're now initializing a union
2244        // subobject other than the first.
2245        // FIXME: In this case, the values of the other subobjects are
2246        // specified, since zero-initialization sets all padding bits to zero.
2247        if (Value->isUninit() ||
2248            (Value->isUnion() && Value->getUnionField() != FD)) {
2249          if (CD->isUnion())
2250            *Value = APValue(FD);
2251          else
2252            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2253                             std::distance(CD->field_begin(), CD->field_end()));
2254        }
2255        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
2256          return false;
2257        if (CD->isUnion())
2258          Value = &Value->getUnionValue();
2259        else
2260          Value = &Value->getStructField(FD->getFieldIndex());
2261      }
2262    } else {
2263      llvm_unreachable("unknown base initializer kind");
2264    }
2265
2266    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2267                         (*I)->isBaseInitializer()
2268                                      ? CCEK_Constant : CCEK_MemberInit)) {
2269      // If we're checking for a potential constant expression, evaluate all
2270      // initializers even if some of them fail.
2271      if (!Info.keepEvaluatingAfterFailure())
2272        return false;
2273      Success = false;
2274    }
2275  }
2276
2277  return Success;
2278}
2279
2280//===----------------------------------------------------------------------===//
2281// Generic Evaluation
2282//===----------------------------------------------------------------------===//
2283namespace {
2284
2285// FIXME: RetTy is always bool. Remove it.
2286template <class Derived, typename RetTy=bool>
2287class ExprEvaluatorBase
2288  : public ConstStmtVisitor<Derived, RetTy> {
2289private:
2290  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2291    return static_cast<Derived*>(this)->Success(V, E);
2292  }
2293  RetTy DerivedZeroInitialization(const Expr *E) {
2294    return static_cast<Derived*>(this)->ZeroInitialization(E);
2295  }
2296
2297  // Check whether a conditional operator with a non-constant condition is a
2298  // potential constant expression. If neither arm is a potential constant
2299  // expression, then the conditional operator is not either.
2300  template<typename ConditionalOperator>
2301  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2302    assert(Info.CheckingPotentialConstantExpression);
2303
2304    // Speculatively evaluate both arms.
2305    {
2306      llvm::SmallVector<PartialDiagnosticAt, 8> Diag;
2307      SpeculativeEvaluationRAII Speculate(Info, &Diag);
2308
2309      StmtVisitorTy::Visit(E->getFalseExpr());
2310      if (Diag.empty())
2311        return;
2312
2313      Diag.clear();
2314      StmtVisitorTy::Visit(E->getTrueExpr());
2315      if (Diag.empty())
2316        return;
2317    }
2318
2319    Error(E, diag::note_constexpr_conditional_never_const);
2320  }
2321
2322
2323  template<typename ConditionalOperator>
2324  bool HandleConditionalOperator(const ConditionalOperator *E) {
2325    bool BoolResult;
2326    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2327      if (Info.CheckingPotentialConstantExpression)
2328        CheckPotentialConstantConditional(E);
2329      return false;
2330    }
2331
2332    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2333    return StmtVisitorTy::Visit(EvalExpr);
2334  }
2335
2336protected:
2337  EvalInfo &Info;
2338  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2339  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2340
2341  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2342    return Info.CCEDiag(E, D);
2343  }
2344
2345  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2346
2347public:
2348  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2349
2350  EvalInfo &getEvalInfo() { return Info; }
2351
2352  /// Report an evaluation error. This should only be called when an error is
2353  /// first discovered. When propagating an error, just return false.
2354  bool Error(const Expr *E, diag::kind D) {
2355    Info.Diag(E, D);
2356    return false;
2357  }
2358  bool Error(const Expr *E) {
2359    return Error(E, diag::note_invalid_subexpr_in_const_expr);
2360  }
2361
2362  RetTy VisitStmt(const Stmt *) {
2363    llvm_unreachable("Expression evaluator should not be called on stmts");
2364  }
2365  RetTy VisitExpr(const Expr *E) {
2366    return Error(E);
2367  }
2368
2369  RetTy VisitParenExpr(const ParenExpr *E)
2370    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2371  RetTy VisitUnaryExtension(const UnaryOperator *E)
2372    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2373  RetTy VisitUnaryPlus(const UnaryOperator *E)
2374    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2375  RetTy VisitChooseExpr(const ChooseExpr *E)
2376    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
2377  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2378    { return StmtVisitorTy::Visit(E->getResultExpr()); }
2379  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2380    { return StmtVisitorTy::Visit(E->getReplacement()); }
2381  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2382    { return StmtVisitorTy::Visit(E->getExpr()); }
2383  // We cannot create any objects for which cleanups are required, so there is
2384  // nothing to do here; all cleanups must come from unevaluated subexpressions.
2385  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2386    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2387
2388  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2389    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2390    return static_cast<Derived*>(this)->VisitCastExpr(E);
2391  }
2392  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2393    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2394    return static_cast<Derived*>(this)->VisitCastExpr(E);
2395  }
2396
2397  RetTy VisitBinaryOperator(const BinaryOperator *E) {
2398    switch (E->getOpcode()) {
2399    default:
2400      return Error(E);
2401
2402    case BO_Comma:
2403      VisitIgnoredValue(E->getLHS());
2404      return StmtVisitorTy::Visit(E->getRHS());
2405
2406    case BO_PtrMemD:
2407    case BO_PtrMemI: {
2408      LValue Obj;
2409      if (!HandleMemberPointerAccess(Info, E, Obj))
2410        return false;
2411      APValue Result;
2412      if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2413        return false;
2414      return DerivedSuccess(Result, E);
2415    }
2416    }
2417  }
2418
2419  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2420    // Evaluate and cache the common expression. We treat it as a temporary,
2421    // even though it's not quite the same thing.
2422    if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
2423                  Info, E->getCommon()))
2424      return false;
2425
2426    return HandleConditionalOperator(E);
2427  }
2428
2429  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2430    bool IsBcpCall = false;
2431    // If the condition (ignoring parens) is a __builtin_constant_p call,
2432    // the result is a constant expression if it can be folded without
2433    // side-effects. This is an important GNU extension. See GCC PR38377
2434    // for discussion.
2435    if (const CallExpr *CallCE =
2436          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2437      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2438        IsBcpCall = true;
2439
2440    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2441    // constant expression; we can't check whether it's potentially foldable.
2442    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2443      return false;
2444
2445    FoldConstant Fold(Info);
2446
2447    if (!HandleConditionalOperator(E))
2448      return false;
2449
2450    if (IsBcpCall)
2451      Fold.Fold(Info);
2452
2453    return true;
2454  }
2455
2456  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2457    APValue &Value = Info.CurrentCall->Temporaries[E];
2458    if (Value.isUninit()) {
2459      const Expr *Source = E->getSourceExpr();
2460      if (!Source)
2461        return Error(E);
2462      if (Source == E) { // sanity checking.
2463        assert(0 && "OpaqueValueExpr recursively refers to itself");
2464        return Error(E);
2465      }
2466      return StmtVisitorTy::Visit(Source);
2467    }
2468    return DerivedSuccess(Value, E);
2469  }
2470
2471  RetTy VisitCallExpr(const CallExpr *E) {
2472    const Expr *Callee = E->getCallee()->IgnoreParens();
2473    QualType CalleeType = Callee->getType();
2474
2475    const FunctionDecl *FD = 0;
2476    LValue *This = 0, ThisVal;
2477    llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
2478    bool HasQualifier = false;
2479
2480    // Extract function decl and 'this' pointer from the callee.
2481    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2482      const ValueDecl *Member = 0;
2483      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2484        // Explicit bound member calls, such as x.f() or p->g();
2485        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2486          return false;
2487        Member = ME->getMemberDecl();
2488        This = &ThisVal;
2489        HasQualifier = ME->hasQualifier();
2490      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2491        // Indirect bound member calls ('.*' or '->*').
2492        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2493        if (!Member) return false;
2494        This = &ThisVal;
2495      } else
2496        return Error(Callee);
2497
2498      FD = dyn_cast<FunctionDecl>(Member);
2499      if (!FD)
2500        return Error(Callee);
2501    } else if (CalleeType->isFunctionPointerType()) {
2502      LValue Call;
2503      if (!EvaluatePointer(Callee, Call, Info))
2504        return false;
2505
2506      if (!Call.getLValueOffset().isZero())
2507        return Error(Callee);
2508      FD = dyn_cast_or_null<FunctionDecl>(
2509                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
2510      if (!FD)
2511        return Error(Callee);
2512
2513      // Overloaded operator calls to member functions are represented as normal
2514      // calls with '*this' as the first argument.
2515      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2516      if (MD && !MD->isStatic()) {
2517        // FIXME: When selecting an implicit conversion for an overloaded
2518        // operator delete, we sometimes try to evaluate calls to conversion
2519        // operators without a 'this' parameter!
2520        if (Args.empty())
2521          return Error(E);
2522
2523        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2524          return false;
2525        This = &ThisVal;
2526        Args = Args.slice(1);
2527      }
2528
2529      // Don't call function pointers which have been cast to some other type.
2530      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2531        return Error(E);
2532    } else
2533      return Error(E);
2534
2535    if (This && !This->checkSubobject(Info, E, CSK_This))
2536      return false;
2537
2538    // DR1358 allows virtual constexpr functions in some cases. Don't allow
2539    // calls to such functions in constant expressions.
2540    if (This && !HasQualifier &&
2541        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2542      return Error(E, diag::note_constexpr_virtual_call);
2543
2544    const FunctionDecl *Definition = 0;
2545    Stmt *Body = FD->getBody(Definition);
2546    APValue Result;
2547
2548    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2549        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2550                            Info, Result))
2551      return false;
2552
2553    return DerivedSuccess(Result, E);
2554  }
2555
2556  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2557    return StmtVisitorTy::Visit(E->getInitializer());
2558  }
2559  RetTy VisitInitListExpr(const InitListExpr *E) {
2560    if (E->getNumInits() == 0)
2561      return DerivedZeroInitialization(E);
2562    if (E->getNumInits() == 1)
2563      return StmtVisitorTy::Visit(E->getInit(0));
2564    return Error(E);
2565  }
2566  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2567    return DerivedZeroInitialization(E);
2568  }
2569  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2570    return DerivedZeroInitialization(E);
2571  }
2572  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2573    return DerivedZeroInitialization(E);
2574  }
2575
2576  /// A member expression where the object is a prvalue is itself a prvalue.
2577  RetTy VisitMemberExpr(const MemberExpr *E) {
2578    assert(!E->isArrow() && "missing call to bound member function?");
2579
2580    APValue Val;
2581    if (!Evaluate(Val, Info, E->getBase()))
2582      return false;
2583
2584    QualType BaseTy = E->getBase()->getType();
2585
2586    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2587    if (!FD) return Error(E);
2588    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2589    assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2590           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2591
2592    SubobjectDesignator Designator(BaseTy);
2593    Designator.addDeclUnchecked(FD);
2594
2595    return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2596           DerivedSuccess(Val, E);
2597  }
2598
2599  RetTy VisitCastExpr(const CastExpr *E) {
2600    switch (E->getCastKind()) {
2601    default:
2602      break;
2603
2604    case CK_AtomicToNonAtomic:
2605    case CK_NonAtomicToAtomic:
2606    case CK_NoOp:
2607    case CK_UserDefinedConversion:
2608      return StmtVisitorTy::Visit(E->getSubExpr());
2609
2610    case CK_LValueToRValue: {
2611      LValue LVal;
2612      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2613        return false;
2614      APValue RVal;
2615      // Note, we use the subexpression's type in order to retain cv-qualifiers.
2616      if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2617                                          LVal, RVal))
2618        return false;
2619      return DerivedSuccess(RVal, E);
2620    }
2621    }
2622
2623    return Error(E);
2624  }
2625
2626  /// Visit a value which is evaluated, but whose value is ignored.
2627  void VisitIgnoredValue(const Expr *E) {
2628    APValue Scratch;
2629    if (!Evaluate(Scratch, Info, E))
2630      Info.EvalStatus.HasSideEffects = true;
2631  }
2632};
2633
2634}
2635
2636//===----------------------------------------------------------------------===//
2637// Common base class for lvalue and temporary evaluation.
2638//===----------------------------------------------------------------------===//
2639namespace {
2640template<class Derived>
2641class LValueExprEvaluatorBase
2642  : public ExprEvaluatorBase<Derived, bool> {
2643protected:
2644  LValue &Result;
2645  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2646  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2647
2648  bool Success(APValue::LValueBase B) {
2649    Result.set(B);
2650    return true;
2651  }
2652
2653public:
2654  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2655    ExprEvaluatorBaseTy(Info), Result(Result) {}
2656
2657  bool Success(const APValue &V, const Expr *E) {
2658    Result.setFrom(this->Info.Ctx, V);
2659    return true;
2660  }
2661
2662  bool VisitMemberExpr(const MemberExpr *E) {
2663    // Handle non-static data members.
2664    QualType BaseTy;
2665    if (E->isArrow()) {
2666      if (!EvaluatePointer(E->getBase(), Result, this->Info))
2667        return false;
2668      BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
2669    } else if (E->getBase()->isRValue()) {
2670      assert(E->getBase()->getType()->isRecordType());
2671      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2672        return false;
2673      BaseTy = E->getBase()->getType();
2674    } else {
2675      if (!this->Visit(E->getBase()))
2676        return false;
2677      BaseTy = E->getBase()->getType();
2678    }
2679
2680    const ValueDecl *MD = E->getMemberDecl();
2681    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2682      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2683             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2684      (void)BaseTy;
2685      if (!HandleLValueMember(this->Info, E, Result, FD))
2686        return false;
2687    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2688      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
2689        return false;
2690    } else
2691      return this->Error(E);
2692
2693    if (MD->getType()->isReferenceType()) {
2694      APValue RefValue;
2695      if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2696                                          RefValue))
2697        return false;
2698      return Success(RefValue, E);
2699    }
2700    return true;
2701  }
2702
2703  bool VisitBinaryOperator(const BinaryOperator *E) {
2704    switch (E->getOpcode()) {
2705    default:
2706      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2707
2708    case BO_PtrMemD:
2709    case BO_PtrMemI:
2710      return HandleMemberPointerAccess(this->Info, E, Result);
2711    }
2712  }
2713
2714  bool VisitCastExpr(const CastExpr *E) {
2715    switch (E->getCastKind()) {
2716    default:
2717      return ExprEvaluatorBaseTy::VisitCastExpr(E);
2718
2719    case CK_DerivedToBase:
2720    case CK_UncheckedDerivedToBase: {
2721      if (!this->Visit(E->getSubExpr()))
2722        return false;
2723
2724      // Now figure out the necessary offset to add to the base LV to get from
2725      // the derived class to the base class.
2726      QualType Type = E->getSubExpr()->getType();
2727
2728      for (CastExpr::path_const_iterator PathI = E->path_begin(),
2729           PathE = E->path_end(); PathI != PathE; ++PathI) {
2730        if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2731                              *PathI))
2732          return false;
2733        Type = (*PathI)->getType();
2734      }
2735
2736      return true;
2737    }
2738    }
2739  }
2740};
2741}
2742
2743//===----------------------------------------------------------------------===//
2744// LValue Evaluation
2745//
2746// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2747// function designators (in C), decl references to void objects (in C), and
2748// temporaries (if building with -Wno-address-of-temporary).
2749//
2750// LValue evaluation produces values comprising a base expression of one of the
2751// following types:
2752// - Declarations
2753//  * VarDecl
2754//  * FunctionDecl
2755// - Literals
2756//  * CompoundLiteralExpr in C
2757//  * StringLiteral
2758//  * CXXTypeidExpr
2759//  * PredefinedExpr
2760//  * ObjCStringLiteralExpr
2761//  * ObjCEncodeExpr
2762//  * AddrLabelExpr
2763//  * BlockExpr
2764//  * CallExpr for a MakeStringConstant builtin
2765// - Locals and temporaries
2766//  * Any Expr, with a CallIndex indicating the function in which the temporary
2767//    was evaluated.
2768// plus an offset in bytes.
2769//===----------------------------------------------------------------------===//
2770namespace {
2771class LValueExprEvaluator
2772  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2773public:
2774  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2775    LValueExprEvaluatorBaseTy(Info, Result) {}
2776
2777  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2778
2779  bool VisitDeclRefExpr(const DeclRefExpr *E);
2780  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2781  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2782  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2783  bool VisitMemberExpr(const MemberExpr *E);
2784  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
2785  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2786  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2787  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2788  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2789  bool VisitUnaryDeref(const UnaryOperator *E);
2790  bool VisitUnaryReal(const UnaryOperator *E);
2791  bool VisitUnaryImag(const UnaryOperator *E);
2792
2793  bool VisitCastExpr(const CastExpr *E) {
2794    switch (E->getCastKind()) {
2795    default:
2796      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2797
2798    case CK_LValueBitCast:
2799      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2800      if (!Visit(E->getSubExpr()))
2801        return false;
2802      Result.Designator.setInvalid();
2803      return true;
2804
2805    case CK_BaseToDerived:
2806      if (!Visit(E->getSubExpr()))
2807        return false;
2808      return HandleBaseToDerivedCast(Info, E, Result);
2809    }
2810  }
2811};
2812} // end anonymous namespace
2813
2814/// Evaluate an expression as an lvalue. This can be legitimately called on
2815/// expressions which are not glvalues, in a few cases:
2816///  * function designators in C,
2817///  * "extern void" objects,
2818///  * temporaries, if building with -Wno-address-of-temporary.
2819static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2820  assert((E->isGLValue() || E->getType()->isFunctionType() ||
2821          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2822         "can't evaluate expression as an lvalue");
2823  return LValueExprEvaluator(Info, Result).Visit(E);
2824}
2825
2826bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2827  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2828    return Success(FD);
2829  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2830    return VisitVarDecl(E, VD);
2831  return Error(E);
2832}
2833
2834bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2835  if (!VD->getType()->isReferenceType()) {
2836    if (isa<ParmVarDecl>(VD)) {
2837      Result.set(VD, Info.CurrentCall->Index);
2838      return true;
2839    }
2840    return Success(VD);
2841  }
2842
2843  APValue V;
2844  if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2845    return false;
2846  return Success(V, E);
2847}
2848
2849bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2850    const MaterializeTemporaryExpr *E) {
2851  if (E->GetTemporaryExpr()->isRValue()) {
2852    if (E->getType()->isRecordType())
2853      return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2854
2855    Result.set(E, Info.CurrentCall->Index);
2856    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2857                           Result, E->GetTemporaryExpr());
2858  }
2859
2860  // Materialization of an lvalue temporary occurs when we need to force a copy
2861  // (for instance, if it's a bitfield).
2862  // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2863  if (!Visit(E->GetTemporaryExpr()))
2864    return false;
2865  if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2866                                      Info.CurrentCall->Temporaries[E]))
2867    return false;
2868  Result.set(E, Info.CurrentCall->Index);
2869  return true;
2870}
2871
2872bool
2873LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2874  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2875  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2876  // only see this when folding in C, so there's no standard to follow here.
2877  return Success(E);
2878}
2879
2880bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2881  if (E->isTypeOperand())
2882    return Success(E);
2883  CXXRecordDecl *RD = E->getExprOperand()->getType()->getAsCXXRecordDecl();
2884  // FIXME: The standard says "a typeid expression whose operand is of a
2885  // polymorphic class type" is not a constant expression, but it probably
2886  // means "a typeid expression whose operand is potentially evaluated".
2887  if (RD && RD->isPolymorphic()) {
2888    Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2889      << E->getExprOperand()->getType()
2890      << E->getExprOperand()->getSourceRange();
2891    return false;
2892  }
2893  return Success(E);
2894}
2895
2896bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2897  return Success(E);
2898}
2899
2900bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2901  // Handle static data members.
2902  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2903    VisitIgnoredValue(E->getBase());
2904    return VisitVarDecl(E, VD);
2905  }
2906
2907  // Handle static member functions.
2908  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2909    if (MD->isStatic()) {
2910      VisitIgnoredValue(E->getBase());
2911      return Success(MD);
2912    }
2913  }
2914
2915  // Handle non-static data members.
2916  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2917}
2918
2919bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2920  // FIXME: Deal with vectors as array subscript bases.
2921  if (E->getBase()->getType()->isVectorType())
2922    return Error(E);
2923
2924  if (!EvaluatePointer(E->getBase(), Result, Info))
2925    return false;
2926
2927  APSInt Index;
2928  if (!EvaluateInteger(E->getIdx(), Index, Info))
2929    return false;
2930  int64_t IndexValue
2931    = Index.isSigned() ? Index.getSExtValue()
2932                       : static_cast<int64_t>(Index.getZExtValue());
2933
2934  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
2935}
2936
2937bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
2938  return EvaluatePointer(E->getSubExpr(), Result, Info);
2939}
2940
2941bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2942  if (!Visit(E->getSubExpr()))
2943    return false;
2944  // __real is a no-op on scalar lvalues.
2945  if (E->getSubExpr()->getType()->isAnyComplexType())
2946    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
2947  return true;
2948}
2949
2950bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2951  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
2952         "lvalue __imag__ on scalar?");
2953  if (!Visit(E->getSubExpr()))
2954    return false;
2955  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
2956  return true;
2957}
2958
2959//===----------------------------------------------------------------------===//
2960// Pointer Evaluation
2961//===----------------------------------------------------------------------===//
2962
2963namespace {
2964class PointerExprEvaluator
2965  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
2966  LValue &Result;
2967
2968  bool Success(const Expr *E) {
2969    Result.set(E);
2970    return true;
2971  }
2972public:
2973
2974  PointerExprEvaluator(EvalInfo &info, LValue &Result)
2975    : ExprEvaluatorBaseTy(info), Result(Result) {}
2976
2977  bool Success(const APValue &V, const Expr *E) {
2978    Result.setFrom(Info.Ctx, V);
2979    return true;
2980  }
2981  bool ZeroInitialization(const Expr *E) {
2982    return Success((Expr*)0);
2983  }
2984
2985  bool VisitBinaryOperator(const BinaryOperator *E);
2986  bool VisitCastExpr(const CastExpr* E);
2987  bool VisitUnaryAddrOf(const UnaryOperator *E);
2988  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
2989      { return Success(E); }
2990  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
2991      { return Success(E); }
2992  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
2993      { return Success(E); }
2994  bool VisitCallExpr(const CallExpr *E);
2995  bool VisitBlockExpr(const BlockExpr *E) {
2996    if (!E->getBlockDecl()->hasCaptures())
2997      return Success(E);
2998    return Error(E);
2999  }
3000  bool VisitCXXThisExpr(const CXXThisExpr *E) {
3001    if (!Info.CurrentCall->This)
3002      return Error(E);
3003    Result = *Info.CurrentCall->This;
3004    return true;
3005  }
3006
3007  // FIXME: Missing: @protocol, @selector
3008};
3009} // end anonymous namespace
3010
3011static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3012  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3013  return PointerExprEvaluator(Info, Result).Visit(E);
3014}
3015
3016bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3017  if (E->getOpcode() != BO_Add &&
3018      E->getOpcode() != BO_Sub)
3019    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3020
3021  const Expr *PExp = E->getLHS();
3022  const Expr *IExp = E->getRHS();
3023  if (IExp->getType()->isPointerType())
3024    std::swap(PExp, IExp);
3025
3026  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3027  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3028    return false;
3029
3030  llvm::APSInt Offset;
3031  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3032    return false;
3033  int64_t AdditionalOffset
3034    = Offset.isSigned() ? Offset.getSExtValue()
3035                        : static_cast<int64_t>(Offset.getZExtValue());
3036  if (E->getOpcode() == BO_Sub)
3037    AdditionalOffset = -AdditionalOffset;
3038
3039  QualType Pointee = PExp->getType()->getAs<PointerType>()->getPointeeType();
3040  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3041                                     AdditionalOffset);
3042}
3043
3044bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3045  return EvaluateLValue(E->getSubExpr(), Result, Info);
3046}
3047
3048bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3049  const Expr* SubExpr = E->getSubExpr();
3050
3051  switch (E->getCastKind()) {
3052  default:
3053    break;
3054
3055  case CK_BitCast:
3056  case CK_CPointerToObjCPointerCast:
3057  case CK_BlockPointerToObjCPointerCast:
3058  case CK_AnyPointerToBlockPointerCast:
3059    if (!Visit(SubExpr))
3060      return false;
3061    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3062    // permitted in constant expressions in C++11. Bitcasts from cv void* are
3063    // also static_casts, but we disallow them as a resolution to DR1312.
3064    if (!E->getType()->isVoidPointerType()) {
3065      Result.Designator.setInvalid();
3066      if (SubExpr->getType()->isVoidPointerType())
3067        CCEDiag(E, diag::note_constexpr_invalid_cast)
3068          << 3 << SubExpr->getType();
3069      else
3070        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3071    }
3072    return true;
3073
3074  case CK_DerivedToBase:
3075  case CK_UncheckedDerivedToBase: {
3076    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3077      return false;
3078    if (!Result.Base && Result.Offset.isZero())
3079      return true;
3080
3081    // Now figure out the necessary offset to add to the base LV to get from
3082    // the derived class to the base class.
3083    QualType Type =
3084        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3085
3086    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3087         PathE = E->path_end(); PathI != PathE; ++PathI) {
3088      if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3089                            *PathI))
3090        return false;
3091      Type = (*PathI)->getType();
3092    }
3093
3094    return true;
3095  }
3096
3097  case CK_BaseToDerived:
3098    if (!Visit(E->getSubExpr()))
3099      return false;
3100    if (!Result.Base && Result.Offset.isZero())
3101      return true;
3102    return HandleBaseToDerivedCast(Info, E, Result);
3103
3104  case CK_NullToPointer:
3105    VisitIgnoredValue(E->getSubExpr());
3106    return ZeroInitialization(E);
3107
3108  case CK_IntegralToPointer: {
3109    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3110
3111    APValue Value;
3112    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3113      break;
3114
3115    if (Value.isInt()) {
3116      unsigned Size = Info.Ctx.getTypeSize(E->getType());
3117      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3118      Result.Base = (Expr*)0;
3119      Result.Offset = CharUnits::fromQuantity(N);
3120      Result.CallIndex = 0;
3121      Result.Designator.setInvalid();
3122      return true;
3123    } else {
3124      // Cast is of an lvalue, no need to change value.
3125      Result.setFrom(Info.Ctx, Value);
3126      return true;
3127    }
3128  }
3129  case CK_ArrayToPointerDecay:
3130    if (SubExpr->isGLValue()) {
3131      if (!EvaluateLValue(SubExpr, Result, Info))
3132        return false;
3133    } else {
3134      Result.set(SubExpr, Info.CurrentCall->Index);
3135      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3136                           Info, Result, SubExpr))
3137        return false;
3138    }
3139    // The result is a pointer to the first element of the array.
3140    if (const ConstantArrayType *CAT
3141          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3142      Result.addArray(Info, E, CAT);
3143    else
3144      Result.Designator.setInvalid();
3145    return true;
3146
3147  case CK_FunctionToPointerDecay:
3148    return EvaluateLValue(SubExpr, Result, Info);
3149  }
3150
3151  return ExprEvaluatorBaseTy::VisitCastExpr(E);
3152}
3153
3154bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3155  if (IsStringLiteralCall(E))
3156    return Success(E);
3157
3158  return ExprEvaluatorBaseTy::VisitCallExpr(E);
3159}
3160
3161//===----------------------------------------------------------------------===//
3162// Member Pointer Evaluation
3163//===----------------------------------------------------------------------===//
3164
3165namespace {
3166class MemberPointerExprEvaluator
3167  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3168  MemberPtr &Result;
3169
3170  bool Success(const ValueDecl *D) {
3171    Result = MemberPtr(D);
3172    return true;
3173  }
3174public:
3175
3176  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3177    : ExprEvaluatorBaseTy(Info), Result(Result) {}
3178
3179  bool Success(const APValue &V, const Expr *E) {
3180    Result.setFrom(V);
3181    return true;
3182  }
3183  bool ZeroInitialization(const Expr *E) {
3184    return Success((const ValueDecl*)0);
3185  }
3186
3187  bool VisitCastExpr(const CastExpr *E);
3188  bool VisitUnaryAddrOf(const UnaryOperator *E);
3189};
3190} // end anonymous namespace
3191
3192static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3193                                  EvalInfo &Info) {
3194  assert(E->isRValue() && E->getType()->isMemberPointerType());
3195  return MemberPointerExprEvaluator(Info, Result).Visit(E);
3196}
3197
3198bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3199  switch (E->getCastKind()) {
3200  default:
3201    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3202
3203  case CK_NullToMemberPointer:
3204    VisitIgnoredValue(E->getSubExpr());
3205    return ZeroInitialization(E);
3206
3207  case CK_BaseToDerivedMemberPointer: {
3208    if (!Visit(E->getSubExpr()))
3209      return false;
3210    if (E->path_empty())
3211      return true;
3212    // Base-to-derived member pointer casts store the path in derived-to-base
3213    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3214    // the wrong end of the derived->base arc, so stagger the path by one class.
3215    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3216    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3217         PathI != PathE; ++PathI) {
3218      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3219      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3220      if (!Result.castToDerived(Derived))
3221        return Error(E);
3222    }
3223    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3224    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3225      return Error(E);
3226    return true;
3227  }
3228
3229  case CK_DerivedToBaseMemberPointer:
3230    if (!Visit(E->getSubExpr()))
3231      return false;
3232    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3233         PathE = E->path_end(); PathI != PathE; ++PathI) {
3234      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3235      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3236      if (!Result.castToBase(Base))
3237        return Error(E);
3238    }
3239    return true;
3240  }
3241}
3242
3243bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3244  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3245  // member can be formed.
3246  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3247}
3248
3249//===----------------------------------------------------------------------===//
3250// Record Evaluation
3251//===----------------------------------------------------------------------===//
3252
3253namespace {
3254  class RecordExprEvaluator
3255  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3256    const LValue &This;
3257    APValue &Result;
3258  public:
3259
3260    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3261      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3262
3263    bool Success(const APValue &V, const Expr *E) {
3264      Result = V;
3265      return true;
3266    }
3267    bool ZeroInitialization(const Expr *E);
3268
3269    bool VisitCastExpr(const CastExpr *E);
3270    bool VisitInitListExpr(const InitListExpr *E);
3271    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3272  };
3273}
3274
3275/// Perform zero-initialization on an object of non-union class type.
3276/// C++11 [dcl.init]p5:
3277///  To zero-initialize an object or reference of type T means:
3278///    [...]
3279///    -- if T is a (possibly cv-qualified) non-union class type,
3280///       each non-static data member and each base-class subobject is
3281///       zero-initialized
3282static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3283                                          const RecordDecl *RD,
3284                                          const LValue &This, APValue &Result) {
3285  assert(!RD->isUnion() && "Expected non-union class type");
3286  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3287  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3288                   std::distance(RD->field_begin(), RD->field_end()));
3289
3290  if (RD->isInvalidDecl()) return false;
3291  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3292
3293  if (CD) {
3294    unsigned Index = 0;
3295    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3296           End = CD->bases_end(); I != End; ++I, ++Index) {
3297      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3298      LValue Subobject = This;
3299      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
3300        return false;
3301      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3302                                         Result.getStructBase(Index)))
3303        return false;
3304    }
3305  }
3306
3307  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3308       I != End; ++I) {
3309    // -- if T is a reference type, no initialization is performed.
3310    if (I->getType()->isReferenceType())
3311      continue;
3312
3313    LValue Subobject = This;
3314    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
3315      return false;
3316
3317    ImplicitValueInitExpr VIE(I->getType());
3318    if (!EvaluateInPlace(
3319          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
3320      return false;
3321  }
3322
3323  return true;
3324}
3325
3326bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3327  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3328  if (RD->isInvalidDecl()) return false;
3329  if (RD->isUnion()) {
3330    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3331    // object's first non-static named data member is zero-initialized
3332    RecordDecl::field_iterator I = RD->field_begin();
3333    if (I == RD->field_end()) {
3334      Result = APValue((const FieldDecl*)0);
3335      return true;
3336    }
3337
3338    LValue Subobject = This;
3339    if (!HandleLValueMember(Info, E, Subobject, *I))
3340      return false;
3341    Result = APValue(*I);
3342    ImplicitValueInitExpr VIE(I->getType());
3343    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3344  }
3345
3346  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3347    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3348    return false;
3349  }
3350
3351  return HandleClassZeroInitialization(Info, E, RD, This, Result);
3352}
3353
3354bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3355  switch (E->getCastKind()) {
3356  default:
3357    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3358
3359  case CK_ConstructorConversion:
3360    return Visit(E->getSubExpr());
3361
3362  case CK_DerivedToBase:
3363  case CK_UncheckedDerivedToBase: {
3364    APValue DerivedObject;
3365    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3366      return false;
3367    if (!DerivedObject.isStruct())
3368      return Error(E->getSubExpr());
3369
3370    // Derived-to-base rvalue conversion: just slice off the derived part.
3371    APValue *Value = &DerivedObject;
3372    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3373    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3374         PathE = E->path_end(); PathI != PathE; ++PathI) {
3375      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3376      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3377      Value = &Value->getStructBase(getBaseIndex(RD, Base));
3378      RD = Base;
3379    }
3380    Result = *Value;
3381    return true;
3382  }
3383  }
3384}
3385
3386bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3387  // Cannot constant-evaluate std::initializer_list inits.
3388  if (E->initializesStdInitializerList())
3389    return false;
3390
3391  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3392  if (RD->isInvalidDecl()) return false;
3393  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3394
3395  if (RD->isUnion()) {
3396    const FieldDecl *Field = E->getInitializedFieldInUnion();
3397    Result = APValue(Field);
3398    if (!Field)
3399      return true;
3400
3401    // If the initializer list for a union does not contain any elements, the
3402    // first element of the union is value-initialized.
3403    ImplicitValueInitExpr VIE(Field->getType());
3404    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3405
3406    LValue Subobject = This;
3407    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
3408      return false;
3409    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3410  }
3411
3412  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3413         "initializer list for class with base classes");
3414  Result = APValue(APValue::UninitStruct(), 0,
3415                   std::distance(RD->field_begin(), RD->field_end()));
3416  unsigned ElementNo = 0;
3417  bool Success = true;
3418  for (RecordDecl::field_iterator Field = RD->field_begin(),
3419       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3420    // Anonymous bit-fields are not considered members of the class for
3421    // purposes of aggregate initialization.
3422    if (Field->isUnnamedBitfield())
3423      continue;
3424
3425    LValue Subobject = This;
3426
3427    bool HaveInit = ElementNo < E->getNumInits();
3428
3429    // FIXME: Diagnostics here should point to the end of the initializer
3430    // list, not the start.
3431    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
3432                            Subobject, *Field, &Layout))
3433      return false;
3434
3435    // Perform an implicit value-initialization for members beyond the end of
3436    // the initializer list.
3437    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3438
3439    if (!EvaluateInPlace(
3440          Result.getStructField(Field->getFieldIndex()),
3441          Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3442      if (!Info.keepEvaluatingAfterFailure())
3443        return false;
3444      Success = false;
3445    }
3446  }
3447
3448  return Success;
3449}
3450
3451bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3452  const CXXConstructorDecl *FD = E->getConstructor();
3453  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
3454
3455  bool ZeroInit = E->requiresZeroInitialization();
3456  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3457    // If we've already performed zero-initialization, we're already done.
3458    if (!Result.isUninit())
3459      return true;
3460
3461    if (ZeroInit)
3462      return ZeroInitialization(E);
3463
3464    const CXXRecordDecl *RD = FD->getParent();
3465    if (RD->isUnion())
3466      Result = APValue((FieldDecl*)0);
3467    else
3468      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3469                       std::distance(RD->field_begin(), RD->field_end()));
3470    return true;
3471  }
3472
3473  const FunctionDecl *Definition = 0;
3474  FD->getBody(Definition);
3475
3476  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3477    return false;
3478
3479  // Avoid materializing a temporary for an elidable copy/move constructor.
3480  if (E->isElidable() && !ZeroInit)
3481    if (const MaterializeTemporaryExpr *ME
3482          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3483      return Visit(ME->GetTemporaryExpr());
3484
3485  if (ZeroInit && !ZeroInitialization(E))
3486    return false;
3487
3488  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3489  return HandleConstructorCall(E->getExprLoc(), This, Args,
3490                               cast<CXXConstructorDecl>(Definition), Info,
3491                               Result);
3492}
3493
3494static bool EvaluateRecord(const Expr *E, const LValue &This,
3495                           APValue &Result, EvalInfo &Info) {
3496  assert(E->isRValue() && E->getType()->isRecordType() &&
3497         "can't evaluate expression as a record rvalue");
3498  return RecordExprEvaluator(Info, This, Result).Visit(E);
3499}
3500
3501//===----------------------------------------------------------------------===//
3502// Temporary Evaluation
3503//
3504// Temporaries are represented in the AST as rvalues, but generally behave like
3505// lvalues. The full-object of which the temporary is a subobject is implicitly
3506// materialized so that a reference can bind to it.
3507//===----------------------------------------------------------------------===//
3508namespace {
3509class TemporaryExprEvaluator
3510  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3511public:
3512  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3513    LValueExprEvaluatorBaseTy(Info, Result) {}
3514
3515  /// Visit an expression which constructs the value of this temporary.
3516  bool VisitConstructExpr(const Expr *E) {
3517    Result.set(E, Info.CurrentCall->Index);
3518    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3519  }
3520
3521  bool VisitCastExpr(const CastExpr *E) {
3522    switch (E->getCastKind()) {
3523    default:
3524      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3525
3526    case CK_ConstructorConversion:
3527      return VisitConstructExpr(E->getSubExpr());
3528    }
3529  }
3530  bool VisitInitListExpr(const InitListExpr *E) {
3531    return VisitConstructExpr(E);
3532  }
3533  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3534    return VisitConstructExpr(E);
3535  }
3536  bool VisitCallExpr(const CallExpr *E) {
3537    return VisitConstructExpr(E);
3538  }
3539};
3540} // end anonymous namespace
3541
3542/// Evaluate an expression of record type as a temporary.
3543static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3544  assert(E->isRValue() && E->getType()->isRecordType());
3545  return TemporaryExprEvaluator(Info, Result).Visit(E);
3546}
3547
3548//===----------------------------------------------------------------------===//
3549// Vector Evaluation
3550//===----------------------------------------------------------------------===//
3551
3552namespace {
3553  class VectorExprEvaluator
3554  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3555    APValue &Result;
3556  public:
3557
3558    VectorExprEvaluator(EvalInfo &info, APValue &Result)
3559      : ExprEvaluatorBaseTy(info), Result(Result) {}
3560
3561    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3562      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3563      // FIXME: remove this APValue copy.
3564      Result = APValue(V.data(), V.size());
3565      return true;
3566    }
3567    bool Success(const APValue &V, const Expr *E) {
3568      assert(V.isVector());
3569      Result = V;
3570      return true;
3571    }
3572    bool ZeroInitialization(const Expr *E);
3573
3574    bool VisitUnaryReal(const UnaryOperator *E)
3575      { return Visit(E->getSubExpr()); }
3576    bool VisitCastExpr(const CastExpr* E);
3577    bool VisitInitListExpr(const InitListExpr *E);
3578    bool VisitUnaryImag(const UnaryOperator *E);
3579    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3580    //                 binary comparisons, binary and/or/xor,
3581    //                 shufflevector, ExtVectorElementExpr
3582  };
3583} // end anonymous namespace
3584
3585static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3586  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3587  return VectorExprEvaluator(Info, Result).Visit(E);
3588}
3589
3590bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3591  const VectorType *VTy = E->getType()->castAs<VectorType>();
3592  unsigned NElts = VTy->getNumElements();
3593
3594  const Expr *SE = E->getSubExpr();
3595  QualType SETy = SE->getType();
3596
3597  switch (E->getCastKind()) {
3598  case CK_VectorSplat: {
3599    APValue Val = APValue();
3600    if (SETy->isIntegerType()) {
3601      APSInt IntResult;
3602      if (!EvaluateInteger(SE, IntResult, Info))
3603         return false;
3604      Val = APValue(IntResult);
3605    } else if (SETy->isRealFloatingType()) {
3606       APFloat F(0.0);
3607       if (!EvaluateFloat(SE, F, Info))
3608         return false;
3609       Val = APValue(F);
3610    } else {
3611      return Error(E);
3612    }
3613
3614    // Splat and create vector APValue.
3615    SmallVector<APValue, 4> Elts(NElts, Val);
3616    return Success(Elts, E);
3617  }
3618  case CK_BitCast: {
3619    // Evaluate the operand into an APInt we can extract from.
3620    llvm::APInt SValInt;
3621    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3622      return false;
3623    // Extract the elements
3624    QualType EltTy = VTy->getElementType();
3625    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3626    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3627    SmallVector<APValue, 4> Elts;
3628    if (EltTy->isRealFloatingType()) {
3629      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3630      bool isIEESem = &Sem != &APFloat::PPCDoubleDouble;
3631      unsigned FloatEltSize = EltSize;
3632      if (&Sem == &APFloat::x87DoubleExtended)
3633        FloatEltSize = 80;
3634      for (unsigned i = 0; i < NElts; i++) {
3635        llvm::APInt Elt;
3636        if (BigEndian)
3637          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3638        else
3639          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3640        Elts.push_back(APValue(APFloat(Elt, isIEESem)));
3641      }
3642    } else if (EltTy->isIntegerType()) {
3643      for (unsigned i = 0; i < NElts; i++) {
3644        llvm::APInt Elt;
3645        if (BigEndian)
3646          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3647        else
3648          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3649        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3650      }
3651    } else {
3652      return Error(E);
3653    }
3654    return Success(Elts, E);
3655  }
3656  default:
3657    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3658  }
3659}
3660
3661bool
3662VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3663  const VectorType *VT = E->getType()->castAs<VectorType>();
3664  unsigned NumInits = E->getNumInits();
3665  unsigned NumElements = VT->getNumElements();
3666
3667  QualType EltTy = VT->getElementType();
3668  SmallVector<APValue, 4> Elements;
3669
3670  // The number of initializers can be less than the number of
3671  // vector elements. For OpenCL, this can be due to nested vector
3672  // initialization. For GCC compatibility, missing trailing elements
3673  // should be initialized with zeroes.
3674  unsigned CountInits = 0, CountElts = 0;
3675  while (CountElts < NumElements) {
3676    // Handle nested vector initialization.
3677    if (CountInits < NumInits
3678        && E->getInit(CountInits)->getType()->isExtVectorType()) {
3679      APValue v;
3680      if (!EvaluateVector(E->getInit(CountInits), v, Info))
3681        return Error(E);
3682      unsigned vlen = v.getVectorLength();
3683      for (unsigned j = 0; j < vlen; j++)
3684        Elements.push_back(v.getVectorElt(j));
3685      CountElts += vlen;
3686    } else if (EltTy->isIntegerType()) {
3687      llvm::APSInt sInt(32);
3688      if (CountInits < NumInits) {
3689        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3690          return false;
3691      } else // trailing integer zero.
3692        sInt = Info.Ctx.MakeIntValue(0, EltTy);
3693      Elements.push_back(APValue(sInt));
3694      CountElts++;
3695    } else {
3696      llvm::APFloat f(0.0);
3697      if (CountInits < NumInits) {
3698        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3699          return false;
3700      } else // trailing float zero.
3701        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3702      Elements.push_back(APValue(f));
3703      CountElts++;
3704    }
3705    CountInits++;
3706  }
3707  return Success(Elements, E);
3708}
3709
3710bool
3711VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3712  const VectorType *VT = E->getType()->getAs<VectorType>();
3713  QualType EltTy = VT->getElementType();
3714  APValue ZeroElement;
3715  if (EltTy->isIntegerType())
3716    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3717  else
3718    ZeroElement =
3719        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3720
3721  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3722  return Success(Elements, E);
3723}
3724
3725bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3726  VisitIgnoredValue(E->getSubExpr());
3727  return ZeroInitialization(E);
3728}
3729
3730//===----------------------------------------------------------------------===//
3731// Array Evaluation
3732//===----------------------------------------------------------------------===//
3733
3734namespace {
3735  class ArrayExprEvaluator
3736  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3737    const LValue &This;
3738    APValue &Result;
3739  public:
3740
3741    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3742      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3743
3744    bool Success(const APValue &V, const Expr *E) {
3745      assert((V.isArray() || V.isLValue()) &&
3746             "expected array or string literal");
3747      Result = V;
3748      return true;
3749    }
3750
3751    bool ZeroInitialization(const Expr *E) {
3752      const ConstantArrayType *CAT =
3753          Info.Ctx.getAsConstantArrayType(E->getType());
3754      if (!CAT)
3755        return Error(E);
3756
3757      Result = APValue(APValue::UninitArray(), 0,
3758                       CAT->getSize().getZExtValue());
3759      if (!Result.hasArrayFiller()) return true;
3760
3761      // Zero-initialize all elements.
3762      LValue Subobject = This;
3763      Subobject.addArray(Info, E, CAT);
3764      ImplicitValueInitExpr VIE(CAT->getElementType());
3765      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3766    }
3767
3768    bool VisitInitListExpr(const InitListExpr *E);
3769    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3770  };
3771} // end anonymous namespace
3772
3773static bool EvaluateArray(const Expr *E, const LValue &This,
3774                          APValue &Result, EvalInfo &Info) {
3775  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3776  return ArrayExprEvaluator(Info, This, Result).Visit(E);
3777}
3778
3779bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3780  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3781  if (!CAT)
3782    return Error(E);
3783
3784  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3785  // an appropriately-typed string literal enclosed in braces.
3786  if (E->isStringLiteralInit()) {
3787    LValue LV;
3788    if (!EvaluateLValue(E->getInit(0), LV, Info))
3789      return false;
3790    APValue Val;
3791    LV.moveInto(Val);
3792    return Success(Val, E);
3793  }
3794
3795  bool Success = true;
3796
3797  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
3798         "zero-initialized array shouldn't have any initialized elts");
3799  APValue Filler;
3800  if (Result.isArray() && Result.hasArrayFiller())
3801    Filler = Result.getArrayFiller();
3802
3803  Result = APValue(APValue::UninitArray(), E->getNumInits(),
3804                   CAT->getSize().getZExtValue());
3805
3806  // If the array was previously zero-initialized, preserve the
3807  // zero-initialized values.
3808  if (!Filler.isUninit()) {
3809    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
3810      Result.getArrayInitializedElt(I) = Filler;
3811    if (Result.hasArrayFiller())
3812      Result.getArrayFiller() = Filler;
3813  }
3814
3815  LValue Subobject = This;
3816  Subobject.addArray(Info, E, CAT);
3817  unsigned Index = 0;
3818  for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3819       I != End; ++I, ++Index) {
3820    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3821                         Info, Subobject, cast<Expr>(*I)) ||
3822        !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3823                                     CAT->getElementType(), 1)) {
3824      if (!Info.keepEvaluatingAfterFailure())
3825        return false;
3826      Success = false;
3827    }
3828  }
3829
3830  if (!Result.hasArrayFiller()) return Success;
3831  assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3832  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3833  // but sometimes does:
3834  //   struct S { constexpr S() : p(&p) {} void *p; };
3835  //   S s[10] = {};
3836  return EvaluateInPlace(Result.getArrayFiller(), Info,
3837                         Subobject, E->getArrayFiller()) && Success;
3838}
3839
3840bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3841  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3842  // but sometimes does:
3843  //   struct S { constexpr S() : p(&p) {} void *p; };
3844  //   S s[10];
3845  LValue Subobject = This;
3846
3847  APValue *Value = &Result;
3848  bool HadZeroInit = true;
3849  QualType ElemTy = E->getType();
3850  while (const ConstantArrayType *CAT =
3851           Info.Ctx.getAsConstantArrayType(ElemTy)) {
3852    Subobject.addArray(Info, E, CAT);
3853    HadZeroInit &= !Value->isUninit();
3854    if (!HadZeroInit)
3855      *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3856    if (!Value->hasArrayFiller())
3857      return true;
3858    Value = &Value->getArrayFiller();
3859    ElemTy = CAT->getElementType();
3860  }
3861
3862  if (!ElemTy->isRecordType())
3863    return Error(E);
3864
3865  const CXXConstructorDecl *FD = E->getConstructor();
3866
3867  bool ZeroInit = E->requiresZeroInitialization();
3868  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3869    if (HadZeroInit)
3870      return true;
3871
3872    if (ZeroInit) {
3873      ImplicitValueInitExpr VIE(ElemTy);
3874      return EvaluateInPlace(*Value, Info, Subobject, &VIE);
3875    }
3876
3877    const CXXRecordDecl *RD = FD->getParent();
3878    if (RD->isUnion())
3879      *Value = APValue((FieldDecl*)0);
3880    else
3881      *Value =
3882          APValue(APValue::UninitStruct(), RD->getNumBases(),
3883                  std::distance(RD->field_begin(), RD->field_end()));
3884    return true;
3885  }
3886
3887  const FunctionDecl *Definition = 0;
3888  FD->getBody(Definition);
3889
3890  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3891    return false;
3892
3893  if (ZeroInit && !HadZeroInit) {
3894    ImplicitValueInitExpr VIE(ElemTy);
3895    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
3896      return false;
3897  }
3898
3899  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3900  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3901                               cast<CXXConstructorDecl>(Definition),
3902                               Info, *Value);
3903}
3904
3905//===----------------------------------------------------------------------===//
3906// Integer Evaluation
3907//
3908// As a GNU extension, we support casting pointers to sufficiently-wide integer
3909// types and back in constant folding. Integer values are thus represented
3910// either as an integer-valued APValue, or as an lvalue-valued APValue.
3911//===----------------------------------------------------------------------===//
3912
3913namespace {
3914class IntExprEvaluator
3915  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3916  APValue &Result;
3917public:
3918  IntExprEvaluator(EvalInfo &info, APValue &result)
3919    : ExprEvaluatorBaseTy(info), Result(result) {}
3920
3921  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3922    assert(E->getType()->isIntegralOrEnumerationType() &&
3923           "Invalid evaluation result.");
3924    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3925           "Invalid evaluation result.");
3926    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3927           "Invalid evaluation result.");
3928    Result = APValue(SI);
3929    return true;
3930  }
3931  bool Success(const llvm::APSInt &SI, const Expr *E) {
3932    return Success(SI, E, Result);
3933  }
3934
3935  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3936    assert(E->getType()->isIntegralOrEnumerationType() &&
3937           "Invalid evaluation result.");
3938    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3939           "Invalid evaluation result.");
3940    Result = APValue(APSInt(I));
3941    Result.getInt().setIsUnsigned(
3942                            E->getType()->isUnsignedIntegerOrEnumerationType());
3943    return true;
3944  }
3945  bool Success(const llvm::APInt &I, const Expr *E) {
3946    return Success(I, E, Result);
3947  }
3948
3949  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3950    assert(E->getType()->isIntegralOrEnumerationType() &&
3951           "Invalid evaluation result.");
3952    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3953    return true;
3954  }
3955  bool Success(uint64_t Value, const Expr *E) {
3956    return Success(Value, E, Result);
3957  }
3958
3959  bool Success(CharUnits Size, const Expr *E) {
3960    return Success(Size.getQuantity(), E);
3961  }
3962
3963  bool Success(const APValue &V, const Expr *E) {
3964    if (V.isLValue() || V.isAddrLabelDiff()) {
3965      Result = V;
3966      return true;
3967    }
3968    return Success(V.getInt(), E);
3969  }
3970
3971  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
3972
3973  //===--------------------------------------------------------------------===//
3974  //                            Visitor Methods
3975  //===--------------------------------------------------------------------===//
3976
3977  bool VisitIntegerLiteral(const IntegerLiteral *E) {
3978    return Success(E->getValue(), E);
3979  }
3980  bool VisitCharacterLiteral(const CharacterLiteral *E) {
3981    return Success(E->getValue(), E);
3982  }
3983
3984  bool CheckReferencedDecl(const Expr *E, const Decl *D);
3985  bool VisitDeclRefExpr(const DeclRefExpr *E) {
3986    if (CheckReferencedDecl(E, E->getDecl()))
3987      return true;
3988
3989    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
3990  }
3991  bool VisitMemberExpr(const MemberExpr *E) {
3992    if (CheckReferencedDecl(E, E->getMemberDecl())) {
3993      VisitIgnoredValue(E->getBase());
3994      return true;
3995    }
3996
3997    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
3998  }
3999
4000  bool VisitCallExpr(const CallExpr *E);
4001  bool VisitBinaryOperator(const BinaryOperator *E);
4002  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4003  bool VisitUnaryOperator(const UnaryOperator *E);
4004
4005  bool VisitCastExpr(const CastExpr* E);
4006  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4007
4008  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4009    return Success(E->getValue(), E);
4010  }
4011
4012  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4013    return Success(E->getValue(), E);
4014  }
4015
4016  // Note, GNU defines __null as an integer, not a pointer.
4017  bool VisitGNUNullExpr(const GNUNullExpr *E) {
4018    return ZeroInitialization(E);
4019  }
4020
4021  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4022    return Success(E->getValue(), E);
4023  }
4024
4025  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4026    return Success(E->getValue(), E);
4027  }
4028
4029  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4030    return Success(E->getValue(), E);
4031  }
4032
4033  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4034    return Success(E->getValue(), E);
4035  }
4036
4037  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4038    return Success(E->getValue(), E);
4039  }
4040
4041  bool VisitUnaryReal(const UnaryOperator *E);
4042  bool VisitUnaryImag(const UnaryOperator *E);
4043
4044  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4045  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4046
4047private:
4048  CharUnits GetAlignOfExpr(const Expr *E);
4049  CharUnits GetAlignOfType(QualType T);
4050  static QualType GetObjectType(APValue::LValueBase B);
4051  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4052  // FIXME: Missing: array subscript of vector, member of vector
4053};
4054} // end anonymous namespace
4055
4056/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4057/// produce either the integer value or a pointer.
4058///
4059/// GCC has a heinous extension which folds casts between pointer types and
4060/// pointer-sized integral types. We support this by allowing the evaluation of
4061/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4062/// Some simple arithmetic on such values is supported (they are treated much
4063/// like char*).
4064static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4065                                    EvalInfo &Info) {
4066  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4067  return IntExprEvaluator(Info, Result).Visit(E);
4068}
4069
4070static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4071  APValue Val;
4072  if (!EvaluateIntegerOrLValue(E, Val, Info))
4073    return false;
4074  if (!Val.isInt()) {
4075    // FIXME: It would be better to produce the diagnostic for casting
4076    //        a pointer to an integer.
4077    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4078    return false;
4079  }
4080  Result = Val.getInt();
4081  return true;
4082}
4083
4084/// Check whether the given declaration can be directly converted to an integral
4085/// rvalue. If not, no diagnostic is produced; there are other things we can
4086/// try.
4087bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4088  // Enums are integer constant exprs.
4089  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4090    // Check for signedness/width mismatches between E type and ECD value.
4091    bool SameSign = (ECD->getInitVal().isSigned()
4092                     == E->getType()->isSignedIntegerOrEnumerationType());
4093    bool SameWidth = (ECD->getInitVal().getBitWidth()
4094                      == Info.Ctx.getIntWidth(E->getType()));
4095    if (SameSign && SameWidth)
4096      return Success(ECD->getInitVal(), E);
4097    else {
4098      // Get rid of mismatch (otherwise Success assertions will fail)
4099      // by computing a new value matching the type of E.
4100      llvm::APSInt Val = ECD->getInitVal();
4101      if (!SameSign)
4102        Val.setIsSigned(!ECD->getInitVal().isSigned());
4103      if (!SameWidth)
4104        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4105      return Success(Val, E);
4106    }
4107  }
4108  return false;
4109}
4110
4111/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4112/// as GCC.
4113static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4114  // The following enum mimics the values returned by GCC.
4115  // FIXME: Does GCC differ between lvalue and rvalue references here?
4116  enum gcc_type_class {
4117    no_type_class = -1,
4118    void_type_class, integer_type_class, char_type_class,
4119    enumeral_type_class, boolean_type_class,
4120    pointer_type_class, reference_type_class, offset_type_class,
4121    real_type_class, complex_type_class,
4122    function_type_class, method_type_class,
4123    record_type_class, union_type_class,
4124    array_type_class, string_type_class,
4125    lang_type_class
4126  };
4127
4128  // If no argument was supplied, default to "no_type_class". This isn't
4129  // ideal, however it is what gcc does.
4130  if (E->getNumArgs() == 0)
4131    return no_type_class;
4132
4133  QualType ArgTy = E->getArg(0)->getType();
4134  if (ArgTy->isVoidType())
4135    return void_type_class;
4136  else if (ArgTy->isEnumeralType())
4137    return enumeral_type_class;
4138  else if (ArgTy->isBooleanType())
4139    return boolean_type_class;
4140  else if (ArgTy->isCharType())
4141    return string_type_class; // gcc doesn't appear to use char_type_class
4142  else if (ArgTy->isIntegerType())
4143    return integer_type_class;
4144  else if (ArgTy->isPointerType())
4145    return pointer_type_class;
4146  else if (ArgTy->isReferenceType())
4147    return reference_type_class;
4148  else if (ArgTy->isRealType())
4149    return real_type_class;
4150  else if (ArgTy->isComplexType())
4151    return complex_type_class;
4152  else if (ArgTy->isFunctionType())
4153    return function_type_class;
4154  else if (ArgTy->isStructureOrClassType())
4155    return record_type_class;
4156  else if (ArgTy->isUnionType())
4157    return union_type_class;
4158  else if (ArgTy->isArrayType())
4159    return array_type_class;
4160  else if (ArgTy->isUnionType())
4161    return union_type_class;
4162  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4163    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4164}
4165
4166/// EvaluateBuiltinConstantPForLValue - Determine the result of
4167/// __builtin_constant_p when applied to the given lvalue.
4168///
4169/// An lvalue is only "constant" if it is a pointer or reference to the first
4170/// character of a string literal.
4171template<typename LValue>
4172static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4173  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4174  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4175}
4176
4177/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4178/// GCC as we can manage.
4179static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4180  QualType ArgType = Arg->getType();
4181
4182  // __builtin_constant_p always has one operand. The rules which gcc follows
4183  // are not precisely documented, but are as follows:
4184  //
4185  //  - If the operand is of integral, floating, complex or enumeration type,
4186  //    and can be folded to a known value of that type, it returns 1.
4187  //  - If the operand and can be folded to a pointer to the first character
4188  //    of a string literal (or such a pointer cast to an integral type), it
4189  //    returns 1.
4190  //
4191  // Otherwise, it returns 0.
4192  //
4193  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4194  // its support for this does not currently work.
4195  if (ArgType->isIntegralOrEnumerationType()) {
4196    Expr::EvalResult Result;
4197    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4198      return false;
4199
4200    APValue &V = Result.Val;
4201    if (V.getKind() == APValue::Int)
4202      return true;
4203
4204    return EvaluateBuiltinConstantPForLValue(V);
4205  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4206    return Arg->isEvaluatable(Ctx);
4207  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4208    LValue LV;
4209    Expr::EvalStatus Status;
4210    EvalInfo Info(Ctx, Status);
4211    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4212                          : EvaluatePointer(Arg, LV, Info)) &&
4213        !Status.HasSideEffects)
4214      return EvaluateBuiltinConstantPForLValue(LV);
4215  }
4216
4217  // Anything else isn't considered to be sufficiently constant.
4218  return false;
4219}
4220
4221/// Retrieves the "underlying object type" of the given expression,
4222/// as used by __builtin_object_size.
4223QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4224  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4225    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4226      return VD->getType();
4227  } else if (const Expr *E = B.get<const Expr*>()) {
4228    if (isa<CompoundLiteralExpr>(E))
4229      return E->getType();
4230  }
4231
4232  return QualType();
4233}
4234
4235bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4236  LValue Base;
4237
4238  {
4239    // The operand of __builtin_object_size is never evaluated for side-effects.
4240    // If there are any, but we can determine the pointed-to object anyway, then
4241    // ignore the side-effects.
4242    SpeculativeEvaluationRAII SpeculativeEval(Info);
4243    if (!EvaluatePointer(E->getArg(0), Base, Info))
4244      return false;
4245  }
4246
4247  // If we can prove the base is null, lower to zero now.
4248  if (!Base.getLValueBase()) return Success(0, E);
4249
4250  QualType T = GetObjectType(Base.getLValueBase());
4251  if (T.isNull() ||
4252      T->isIncompleteType() ||
4253      T->isFunctionType() ||
4254      T->isVariablyModifiedType() ||
4255      T->isDependentType())
4256    return Error(E);
4257
4258  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4259  CharUnits Offset = Base.getLValueOffset();
4260
4261  if (!Offset.isNegative() && Offset <= Size)
4262    Size -= Offset;
4263  else
4264    Size = CharUnits::Zero();
4265  return Success(Size, E);
4266}
4267
4268bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4269  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4270  default:
4271    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4272
4273  case Builtin::BI__builtin_object_size: {
4274    if (TryEvaluateBuiltinObjectSize(E))
4275      return true;
4276
4277    // If evaluating the argument has side-effects, we can't determine the size
4278    // of the object, and so we lower it to unknown now. CodeGen relies on us to
4279    // handle all cases where the expression has side-effects.
4280    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4281      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4282        return Success(-1ULL, E);
4283      return Success(0, E);
4284    }
4285
4286    // Expression had no side effects, but we couldn't statically determine the
4287    // size of the referenced object.
4288    return Error(E);
4289  }
4290
4291  case Builtin::BI__builtin_classify_type:
4292    return Success(EvaluateBuiltinClassifyType(E), E);
4293
4294  case Builtin::BI__builtin_constant_p:
4295    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4296
4297  case Builtin::BI__builtin_eh_return_data_regno: {
4298    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4299    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4300    return Success(Operand, E);
4301  }
4302
4303  case Builtin::BI__builtin_expect:
4304    return Visit(E->getArg(0));
4305
4306  case Builtin::BIstrlen:
4307    // A call to strlen is not a constant expression.
4308    if (Info.getLangOpts().CPlusPlus0x)
4309      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4310        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4311    else
4312      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4313    // Fall through.
4314  case Builtin::BI__builtin_strlen:
4315    // As an extension, we support strlen() and __builtin_strlen() as constant
4316    // expressions when the argument is a string literal.
4317    if (const StringLiteral *S
4318               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4319      // The string literal may have embedded null characters. Find the first
4320      // one and truncate there.
4321      StringRef Str = S->getString();
4322      StringRef::size_type Pos = Str.find(0);
4323      if (Pos != StringRef::npos)
4324        Str = Str.substr(0, Pos);
4325
4326      return Success(Str.size(), E);
4327    }
4328
4329    return Error(E);
4330
4331  case Builtin::BI__atomic_always_lock_free:
4332  case Builtin::BI__atomic_is_lock_free:
4333  case Builtin::BI__c11_atomic_is_lock_free: {
4334    APSInt SizeVal;
4335    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4336      return false;
4337
4338    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4339    // of two less than the maximum inline atomic width, we know it is
4340    // lock-free.  If the size isn't a power of two, or greater than the
4341    // maximum alignment where we promote atomics, we know it is not lock-free
4342    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4343    // the answer can only be determined at runtime; for example, 16-byte
4344    // atomics have lock-free implementations on some, but not all,
4345    // x86-64 processors.
4346
4347    // Check power-of-two.
4348    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4349    if (Size.isPowerOfTwo()) {
4350      // Check against inlining width.
4351      unsigned InlineWidthBits =
4352          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4353      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4354        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4355            Size == CharUnits::One() ||
4356            E->getArg(1)->isNullPointerConstant(Info.Ctx,
4357                                                Expr::NPC_NeverValueDependent))
4358          // OK, we will inline appropriately-aligned operations of this size,
4359          // and _Atomic(T) is appropriately-aligned.
4360          return Success(1, E);
4361
4362        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4363          castAs<PointerType>()->getPointeeType();
4364        if (!PointeeType->isIncompleteType() &&
4365            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4366          // OK, we will inline operations on this object.
4367          return Success(1, E);
4368        }
4369      }
4370    }
4371
4372    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4373        Success(0, E) : Error(E);
4374  }
4375  }
4376}
4377
4378static bool HasSameBase(const LValue &A, const LValue &B) {
4379  if (!A.getLValueBase())
4380    return !B.getLValueBase();
4381  if (!B.getLValueBase())
4382    return false;
4383
4384  if (A.getLValueBase().getOpaqueValue() !=
4385      B.getLValueBase().getOpaqueValue()) {
4386    const Decl *ADecl = GetLValueBaseDecl(A);
4387    if (!ADecl)
4388      return false;
4389    const Decl *BDecl = GetLValueBaseDecl(B);
4390    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4391      return false;
4392  }
4393
4394  return IsGlobalLValue(A.getLValueBase()) ||
4395         A.getLValueCallIndex() == B.getLValueCallIndex();
4396}
4397
4398/// Perform the given integer operation, which is known to need at most BitWidth
4399/// bits, and check for overflow in the original type (if that type was not an
4400/// unsigned type).
4401template<typename Operation>
4402static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4403                                   const APSInt &LHS, const APSInt &RHS,
4404                                   unsigned BitWidth, Operation Op) {
4405  if (LHS.isUnsigned())
4406    return Op(LHS, RHS);
4407
4408  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4409  APSInt Result = Value.trunc(LHS.getBitWidth());
4410  if (Result.extend(BitWidth) != Value)
4411    HandleOverflow(Info, E, Value, E->getType());
4412  return Result;
4413}
4414
4415namespace {
4416
4417/// \brief Data recursive integer evaluator of certain binary operators.
4418///
4419/// We use a data recursive algorithm for binary operators so that we are able
4420/// to handle extreme cases of chained binary operators without causing stack
4421/// overflow.
4422class DataRecursiveIntBinOpEvaluator {
4423  struct EvalResult {
4424    APValue Val;
4425    bool Failed;
4426
4427    EvalResult() : Failed(false) { }
4428
4429    void swap(EvalResult &RHS) {
4430      Val.swap(RHS.Val);
4431      Failed = RHS.Failed;
4432      RHS.Failed = false;
4433    }
4434  };
4435
4436  struct Job {
4437    const Expr *E;
4438    EvalResult LHSResult; // meaningful only for binary operator expression.
4439    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4440
4441    Job() : StoredInfo(0) { }
4442    void startSpeculativeEval(EvalInfo &Info) {
4443      OldEvalStatus = Info.EvalStatus;
4444      Info.EvalStatus.Diag = 0;
4445      StoredInfo = &Info;
4446    }
4447    ~Job() {
4448      if (StoredInfo) {
4449        StoredInfo->EvalStatus = OldEvalStatus;
4450      }
4451    }
4452  private:
4453    EvalInfo *StoredInfo; // non-null if status changed.
4454    Expr::EvalStatus OldEvalStatus;
4455  };
4456
4457  SmallVector<Job, 16> Queue;
4458
4459  IntExprEvaluator &IntEval;
4460  EvalInfo &Info;
4461  APValue &FinalResult;
4462
4463public:
4464  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4465    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4466
4467  /// \brief True if \param E is a binary operator that we are going to handle
4468  /// data recursively.
4469  /// We handle binary operators that are comma, logical, or that have operands
4470  /// with integral or enumeration type.
4471  static bool shouldEnqueue(const BinaryOperator *E) {
4472    return E->getOpcode() == BO_Comma ||
4473           E->isLogicalOp() ||
4474           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4475            E->getRHS()->getType()->isIntegralOrEnumerationType());
4476  }
4477
4478  bool Traverse(const BinaryOperator *E) {
4479    enqueue(E);
4480    EvalResult PrevResult;
4481    while (!Queue.empty())
4482      process(PrevResult);
4483
4484    if (PrevResult.Failed) return false;
4485
4486    FinalResult.swap(PrevResult.Val);
4487    return true;
4488  }
4489
4490private:
4491  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4492    return IntEval.Success(Value, E, Result);
4493  }
4494  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4495    return IntEval.Success(Value, E, Result);
4496  }
4497  bool Error(const Expr *E) {
4498    return IntEval.Error(E);
4499  }
4500  bool Error(const Expr *E, diag::kind D) {
4501    return IntEval.Error(E, D);
4502  }
4503
4504  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4505    return Info.CCEDiag(E, D);
4506  }
4507
4508  // \brief Returns true if visiting the RHS is necessary, false otherwise.
4509  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4510                         bool &SuppressRHSDiags);
4511
4512  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4513                  const BinaryOperator *E, APValue &Result);
4514
4515  void EvaluateExpr(const Expr *E, EvalResult &Result) {
4516    Result.Failed = !Evaluate(Result.Val, Info, E);
4517    if (Result.Failed)
4518      Result.Val = APValue();
4519  }
4520
4521  void process(EvalResult &Result);
4522
4523  void enqueue(const Expr *E) {
4524    E = E->IgnoreParens();
4525    Queue.resize(Queue.size()+1);
4526    Queue.back().E = E;
4527    Queue.back().Kind = Job::AnyExprKind;
4528  }
4529};
4530
4531}
4532
4533bool DataRecursiveIntBinOpEvaluator::
4534       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4535                         bool &SuppressRHSDiags) {
4536  if (E->getOpcode() == BO_Comma) {
4537    // Ignore LHS but note if we could not evaluate it.
4538    if (LHSResult.Failed)
4539      Info.EvalStatus.HasSideEffects = true;
4540    return true;
4541  }
4542
4543  if (E->isLogicalOp()) {
4544    bool lhsResult;
4545    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4546      // We were able to evaluate the LHS, see if we can get away with not
4547      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4548      if (lhsResult == (E->getOpcode() == BO_LOr)) {
4549        Success(lhsResult, E, LHSResult.Val);
4550        return false; // Ignore RHS
4551      }
4552    } else {
4553      // Since we weren't able to evaluate the left hand side, it
4554      // must have had side effects.
4555      Info.EvalStatus.HasSideEffects = true;
4556
4557      // We can't evaluate the LHS; however, sometimes the result
4558      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4559      // Don't ignore RHS and suppress diagnostics from this arm.
4560      SuppressRHSDiags = true;
4561    }
4562
4563    return true;
4564  }
4565
4566  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4567         E->getRHS()->getType()->isIntegralOrEnumerationType());
4568
4569  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4570    return false; // Ignore RHS;
4571
4572  return true;
4573}
4574
4575bool DataRecursiveIntBinOpEvaluator::
4576       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4577                  const BinaryOperator *E, APValue &Result) {
4578  if (E->getOpcode() == BO_Comma) {
4579    if (RHSResult.Failed)
4580      return false;
4581    Result = RHSResult.Val;
4582    return true;
4583  }
4584
4585  if (E->isLogicalOp()) {
4586    bool lhsResult, rhsResult;
4587    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4588    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4589
4590    if (LHSIsOK) {
4591      if (RHSIsOK) {
4592        if (E->getOpcode() == BO_LOr)
4593          return Success(lhsResult || rhsResult, E, Result);
4594        else
4595          return Success(lhsResult && rhsResult, E, Result);
4596      }
4597    } else {
4598      if (RHSIsOK) {
4599        // We can't evaluate the LHS; however, sometimes the result
4600        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4601        if (rhsResult == (E->getOpcode() == BO_LOr))
4602          return Success(rhsResult, E, Result);
4603      }
4604    }
4605
4606    return false;
4607  }
4608
4609  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4610         E->getRHS()->getType()->isIntegralOrEnumerationType());
4611
4612  if (LHSResult.Failed || RHSResult.Failed)
4613    return false;
4614
4615  const APValue &LHSVal = LHSResult.Val;
4616  const APValue &RHSVal = RHSResult.Val;
4617
4618  // Handle cases like (unsigned long)&a + 4.
4619  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4620    Result = LHSVal;
4621    CharUnits AdditionalOffset = CharUnits::fromQuantity(
4622                                                         RHSVal.getInt().getZExtValue());
4623    if (E->getOpcode() == BO_Add)
4624      Result.getLValueOffset() += AdditionalOffset;
4625    else
4626      Result.getLValueOffset() -= AdditionalOffset;
4627    return true;
4628  }
4629
4630  // Handle cases like 4 + (unsigned long)&a
4631  if (E->getOpcode() == BO_Add &&
4632      RHSVal.isLValue() && LHSVal.isInt()) {
4633    Result = RHSVal;
4634    Result.getLValueOffset() += CharUnits::fromQuantity(
4635                                                        LHSVal.getInt().getZExtValue());
4636    return true;
4637  }
4638
4639  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4640    // Handle (intptr_t)&&A - (intptr_t)&&B.
4641    if (!LHSVal.getLValueOffset().isZero() ||
4642        !RHSVal.getLValueOffset().isZero())
4643      return false;
4644    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4645    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4646    if (!LHSExpr || !RHSExpr)
4647      return false;
4648    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4649    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4650    if (!LHSAddrExpr || !RHSAddrExpr)
4651      return false;
4652    // Make sure both labels come from the same function.
4653    if (LHSAddrExpr->getLabel()->getDeclContext() !=
4654        RHSAddrExpr->getLabel()->getDeclContext())
4655      return false;
4656    Result = APValue(LHSAddrExpr, RHSAddrExpr);
4657    return true;
4658  }
4659
4660  // All the following cases expect both operands to be an integer
4661  if (!LHSVal.isInt() || !RHSVal.isInt())
4662    return Error(E);
4663
4664  const APSInt &LHS = LHSVal.getInt();
4665  APSInt RHS = RHSVal.getInt();
4666
4667  switch (E->getOpcode()) {
4668    default:
4669      return Error(E);
4670    case BO_Mul:
4671      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4672                                          LHS.getBitWidth() * 2,
4673                                          std::multiplies<APSInt>()), E,
4674                     Result);
4675    case BO_Add:
4676      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4677                                          LHS.getBitWidth() + 1,
4678                                          std::plus<APSInt>()), E, Result);
4679    case BO_Sub:
4680      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4681                                          LHS.getBitWidth() + 1,
4682                                          std::minus<APSInt>()), E, Result);
4683    case BO_And: return Success(LHS & RHS, E, Result);
4684    case BO_Xor: return Success(LHS ^ RHS, E, Result);
4685    case BO_Or:  return Success(LHS | RHS, E, Result);
4686    case BO_Div:
4687    case BO_Rem:
4688      if (RHS == 0)
4689        return Error(E, diag::note_expr_divide_by_zero);
4690      // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4691      // not actually undefined behavior in C++11 due to a language defect.
4692      if (RHS.isNegative() && RHS.isAllOnesValue() &&
4693          LHS.isSigned() && LHS.isMinSignedValue())
4694        HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4695      return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4696                     Result);
4697    case BO_Shl: {
4698      // During constant-folding, a negative shift is an opposite shift. Such
4699      // a shift is not a constant expression.
4700      if (RHS.isSigned() && RHS.isNegative()) {
4701        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4702        RHS = -RHS;
4703        goto shift_right;
4704      }
4705
4706    shift_left:
4707      // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4708      // the shifted type.
4709      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4710      if (SA != RHS) {
4711        CCEDiag(E, diag::note_constexpr_large_shift)
4712        << RHS << E->getType() << LHS.getBitWidth();
4713      } else if (LHS.isSigned()) {
4714        // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4715        // operand, and must not overflow the corresponding unsigned type.
4716        if (LHS.isNegative())
4717          CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4718        else if (LHS.countLeadingZeros() < SA)
4719          CCEDiag(E, diag::note_constexpr_lshift_discards);
4720      }
4721
4722      return Success(LHS << SA, E, Result);
4723    }
4724    case BO_Shr: {
4725      // During constant-folding, a negative shift is an opposite shift. Such a
4726      // shift is not a constant expression.
4727      if (RHS.isSigned() && RHS.isNegative()) {
4728        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4729        RHS = -RHS;
4730        goto shift_left;
4731      }
4732
4733    shift_right:
4734      // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4735      // shifted type.
4736      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4737      if (SA != RHS)
4738        CCEDiag(E, diag::note_constexpr_large_shift)
4739        << RHS << E->getType() << LHS.getBitWidth();
4740
4741      return Success(LHS >> SA, E, Result);
4742    }
4743
4744    case BO_LT: return Success(LHS < RHS, E, Result);
4745    case BO_GT: return Success(LHS > RHS, E, Result);
4746    case BO_LE: return Success(LHS <= RHS, E, Result);
4747    case BO_GE: return Success(LHS >= RHS, E, Result);
4748    case BO_EQ: return Success(LHS == RHS, E, Result);
4749    case BO_NE: return Success(LHS != RHS, E, Result);
4750  }
4751}
4752
4753void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4754  Job &job = Queue.back();
4755
4756  switch (job.Kind) {
4757    case Job::AnyExprKind: {
4758      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4759        if (shouldEnqueue(Bop)) {
4760          job.Kind = Job::BinOpKind;
4761          enqueue(Bop->getLHS());
4762          return;
4763        }
4764      }
4765
4766      EvaluateExpr(job.E, Result);
4767      Queue.pop_back();
4768      return;
4769    }
4770
4771    case Job::BinOpKind: {
4772      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4773      bool SuppressRHSDiags = false;
4774      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4775        Queue.pop_back();
4776        return;
4777      }
4778      if (SuppressRHSDiags)
4779        job.startSpeculativeEval(Info);
4780      job.LHSResult.swap(Result);
4781      job.Kind = Job::BinOpVisitedLHSKind;
4782      enqueue(Bop->getRHS());
4783      return;
4784    }
4785
4786    case Job::BinOpVisitedLHSKind: {
4787      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4788      EvalResult RHS;
4789      RHS.swap(Result);
4790      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4791      Queue.pop_back();
4792      return;
4793    }
4794  }
4795
4796  llvm_unreachable("Invalid Job::Kind!");
4797}
4798
4799bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4800  if (E->isAssignmentOp())
4801    return Error(E);
4802
4803  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4804    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4805
4806  QualType LHSTy = E->getLHS()->getType();
4807  QualType RHSTy = E->getRHS()->getType();
4808
4809  if (LHSTy->isAnyComplexType()) {
4810    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4811    ComplexValue LHS, RHS;
4812
4813    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4814    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4815      return false;
4816
4817    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4818      return false;
4819
4820    if (LHS.isComplexFloat()) {
4821      APFloat::cmpResult CR_r =
4822        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4823      APFloat::cmpResult CR_i =
4824        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4825
4826      if (E->getOpcode() == BO_EQ)
4827        return Success((CR_r == APFloat::cmpEqual &&
4828                        CR_i == APFloat::cmpEqual), E);
4829      else {
4830        assert(E->getOpcode() == BO_NE &&
4831               "Invalid complex comparison.");
4832        return Success(((CR_r == APFloat::cmpGreaterThan ||
4833                         CR_r == APFloat::cmpLessThan ||
4834                         CR_r == APFloat::cmpUnordered) ||
4835                        (CR_i == APFloat::cmpGreaterThan ||
4836                         CR_i == APFloat::cmpLessThan ||
4837                         CR_i == APFloat::cmpUnordered)), E);
4838      }
4839    } else {
4840      if (E->getOpcode() == BO_EQ)
4841        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4842                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4843      else {
4844        assert(E->getOpcode() == BO_NE &&
4845               "Invalid compex comparison.");
4846        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4847                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4848      }
4849    }
4850  }
4851
4852  if (LHSTy->isRealFloatingType() &&
4853      RHSTy->isRealFloatingType()) {
4854    APFloat RHS(0.0), LHS(0.0);
4855
4856    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4857    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4858      return false;
4859
4860    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4861      return false;
4862
4863    APFloat::cmpResult CR = LHS.compare(RHS);
4864
4865    switch (E->getOpcode()) {
4866    default:
4867      llvm_unreachable("Invalid binary operator!");
4868    case BO_LT:
4869      return Success(CR == APFloat::cmpLessThan, E);
4870    case BO_GT:
4871      return Success(CR == APFloat::cmpGreaterThan, E);
4872    case BO_LE:
4873      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4874    case BO_GE:
4875      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4876                     E);
4877    case BO_EQ:
4878      return Success(CR == APFloat::cmpEqual, E);
4879    case BO_NE:
4880      return Success(CR == APFloat::cmpGreaterThan
4881                     || CR == APFloat::cmpLessThan
4882                     || CR == APFloat::cmpUnordered, E);
4883    }
4884  }
4885
4886  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4887    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4888      LValue LHSValue, RHSValue;
4889
4890      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4891      if (!LHSOK && Info.keepEvaluatingAfterFailure())
4892        return false;
4893
4894      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4895        return false;
4896
4897      // Reject differing bases from the normal codepath; we special-case
4898      // comparisons to null.
4899      if (!HasSameBase(LHSValue, RHSValue)) {
4900        if (E->getOpcode() == BO_Sub) {
4901          // Handle &&A - &&B.
4902          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4903            return false;
4904          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4905          const Expr *RHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4906          if (!LHSExpr || !RHSExpr)
4907            return false;
4908          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4909          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4910          if (!LHSAddrExpr || !RHSAddrExpr)
4911            return false;
4912          // Make sure both labels come from the same function.
4913          if (LHSAddrExpr->getLabel()->getDeclContext() !=
4914              RHSAddrExpr->getLabel()->getDeclContext())
4915            return false;
4916          Result = APValue(LHSAddrExpr, RHSAddrExpr);
4917          return true;
4918        }
4919        // Inequalities and subtractions between unrelated pointers have
4920        // unspecified or undefined behavior.
4921        if (!E->isEqualityOp())
4922          return Error(E);
4923        // A constant address may compare equal to the address of a symbol.
4924        // The one exception is that address of an object cannot compare equal
4925        // to a null pointer constant.
4926        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4927            (!RHSValue.Base && !RHSValue.Offset.isZero()))
4928          return Error(E);
4929        // It's implementation-defined whether distinct literals will have
4930        // distinct addresses. In clang, the result of such a comparison is
4931        // unspecified, so it is not a constant expression. However, we do know
4932        // that the address of a literal will be non-null.
4933        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4934            LHSValue.Base && RHSValue.Base)
4935          return Error(E);
4936        // We can't tell whether weak symbols will end up pointing to the same
4937        // object.
4938        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4939          return Error(E);
4940        // Pointers with different bases cannot represent the same object.
4941        // (Note that clang defaults to -fmerge-all-constants, which can
4942        // lead to inconsistent results for comparisons involving the address
4943        // of a constant; this generally doesn't matter in practice.)
4944        return Success(E->getOpcode() == BO_NE, E);
4945      }
4946
4947      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4948      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4949
4950      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4951      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4952
4953      if (E->getOpcode() == BO_Sub) {
4954        // C++11 [expr.add]p6:
4955        //   Unless both pointers point to elements of the same array object, or
4956        //   one past the last element of the array object, the behavior is
4957        //   undefined.
4958        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4959            !AreElementsOfSameArray(getType(LHSValue.Base),
4960                                    LHSDesignator, RHSDesignator))
4961          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4962
4963        QualType Type = E->getLHS()->getType();
4964        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
4965
4966        CharUnits ElementSize;
4967        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
4968          return false;
4969
4970        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
4971        // and produce incorrect results when it overflows. Such behavior
4972        // appears to be non-conforming, but is common, so perhaps we should
4973        // assume the standard intended for such cases to be undefined behavior
4974        // and check for them.
4975
4976        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
4977        // overflow in the final conversion to ptrdiff_t.
4978        APSInt LHS(
4979          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
4980        APSInt RHS(
4981          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
4982        APSInt ElemSize(
4983          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
4984        APSInt TrueResult = (LHS - RHS) / ElemSize;
4985        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
4986
4987        if (Result.extend(65) != TrueResult)
4988          HandleOverflow(Info, E, TrueResult, E->getType());
4989        return Success(Result, E);
4990      }
4991
4992      // C++11 [expr.rel]p3:
4993      //   Pointers to void (after pointer conversions) can be compared, with a
4994      //   result defined as follows: If both pointers represent the same
4995      //   address or are both the null pointer value, the result is true if the
4996      //   operator is <= or >= and false otherwise; otherwise the result is
4997      //   unspecified.
4998      // We interpret this as applying to pointers to *cv* void.
4999      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5000          E->isRelationalOp())
5001        CCEDiag(E, diag::note_constexpr_void_comparison);
5002
5003      // C++11 [expr.rel]p2:
5004      // - If two pointers point to non-static data members of the same object,
5005      //   or to subobjects or array elements fo such members, recursively, the
5006      //   pointer to the later declared member compares greater provided the
5007      //   two members have the same access control and provided their class is
5008      //   not a union.
5009      //   [...]
5010      // - Otherwise pointer comparisons are unspecified.
5011      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5012          E->isRelationalOp()) {
5013        bool WasArrayIndex;
5014        unsigned Mismatch =
5015          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5016                                 RHSDesignator, WasArrayIndex);
5017        // At the point where the designators diverge, the comparison has a
5018        // specified value if:
5019        //  - we are comparing array indices
5020        //  - we are comparing fields of a union, or fields with the same access
5021        // Otherwise, the result is unspecified and thus the comparison is not a
5022        // constant expression.
5023        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5024            Mismatch < RHSDesignator.Entries.size()) {
5025          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5026          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5027          if (!LF && !RF)
5028            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5029          else if (!LF)
5030            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5031              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5032              << RF->getParent() << RF;
5033          else if (!RF)
5034            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5035              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5036              << LF->getParent() << LF;
5037          else if (!LF->getParent()->isUnion() &&
5038                   LF->getAccess() != RF->getAccess())
5039            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5040              << LF << LF->getAccess() << RF << RF->getAccess()
5041              << LF->getParent();
5042        }
5043      }
5044
5045      // The comparison here must be unsigned, and performed with the same
5046      // width as the pointer.
5047      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5048      uint64_t CompareLHS = LHSOffset.getQuantity();
5049      uint64_t CompareRHS = RHSOffset.getQuantity();
5050      assert(PtrSize <= 64 && "Unexpected pointer width");
5051      uint64_t Mask = ~0ULL >> (64 - PtrSize);
5052      CompareLHS &= Mask;
5053      CompareRHS &= Mask;
5054
5055      // If there is a base and this is a relational operator, we can only
5056      // compare pointers within the object in question; otherwise, the result
5057      // depends on where the object is located in memory.
5058      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5059        QualType BaseTy = getType(LHSValue.Base);
5060        if (BaseTy->isIncompleteType())
5061          return Error(E);
5062        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5063        uint64_t OffsetLimit = Size.getQuantity();
5064        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5065          return Error(E);
5066      }
5067
5068      switch (E->getOpcode()) {
5069      default: llvm_unreachable("missing comparison operator");
5070      case BO_LT: return Success(CompareLHS < CompareRHS, E);
5071      case BO_GT: return Success(CompareLHS > CompareRHS, E);
5072      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5073      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5074      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5075      case BO_NE: return Success(CompareLHS != CompareRHS, E);
5076      }
5077    }
5078  }
5079
5080  if (LHSTy->isMemberPointerType()) {
5081    assert(E->isEqualityOp() && "unexpected member pointer operation");
5082    assert(RHSTy->isMemberPointerType() && "invalid comparison");
5083
5084    MemberPtr LHSValue, RHSValue;
5085
5086    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5087    if (!LHSOK && Info.keepEvaluatingAfterFailure())
5088      return false;
5089
5090    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5091      return false;
5092
5093    // C++11 [expr.eq]p2:
5094    //   If both operands are null, they compare equal. Otherwise if only one is
5095    //   null, they compare unequal.
5096    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5097      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5098      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5099    }
5100
5101    //   Otherwise if either is a pointer to a virtual member function, the
5102    //   result is unspecified.
5103    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5104      if (MD->isVirtual())
5105        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5106    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5107      if (MD->isVirtual())
5108        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5109
5110    //   Otherwise they compare equal if and only if they would refer to the
5111    //   same member of the same most derived object or the same subobject if
5112    //   they were dereferenced with a hypothetical object of the associated
5113    //   class type.
5114    bool Equal = LHSValue == RHSValue;
5115    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5116  }
5117
5118  if (LHSTy->isNullPtrType()) {
5119    assert(E->isComparisonOp() && "unexpected nullptr operation");
5120    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5121    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5122    // are compared, the result is true of the operator is <=, >= or ==, and
5123    // false otherwise.
5124    BinaryOperator::Opcode Opcode = E->getOpcode();
5125    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5126  }
5127
5128  assert((!LHSTy->isIntegralOrEnumerationType() ||
5129          !RHSTy->isIntegralOrEnumerationType()) &&
5130         "DataRecursiveIntBinOpEvaluator should have handled integral types");
5131  // We can't continue from here for non-integral types.
5132  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5133}
5134
5135CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5136  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5137  //   result shall be the alignment of the referenced type."
5138  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5139    T = Ref->getPointeeType();
5140
5141  // __alignof is defined to return the preferred alignment.
5142  return Info.Ctx.toCharUnitsFromBits(
5143    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5144}
5145
5146CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5147  E = E->IgnoreParens();
5148
5149  // alignof decl is always accepted, even if it doesn't make sense: we default
5150  // to 1 in those cases.
5151  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5152    return Info.Ctx.getDeclAlign(DRE->getDecl(),
5153                                 /*RefAsPointee*/true);
5154
5155  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5156    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5157                                 /*RefAsPointee*/true);
5158
5159  return GetAlignOfType(E->getType());
5160}
5161
5162
5163/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5164/// a result as the expression's type.
5165bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5166                                    const UnaryExprOrTypeTraitExpr *E) {
5167  switch(E->getKind()) {
5168  case UETT_AlignOf: {
5169    if (E->isArgumentType())
5170      return Success(GetAlignOfType(E->getArgumentType()), E);
5171    else
5172      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5173  }
5174
5175  case UETT_VecStep: {
5176    QualType Ty = E->getTypeOfArgument();
5177
5178    if (Ty->isVectorType()) {
5179      unsigned n = Ty->getAs<VectorType>()->getNumElements();
5180
5181      // The vec_step built-in functions that take a 3-component
5182      // vector return 4. (OpenCL 1.1 spec 6.11.12)
5183      if (n == 3)
5184        n = 4;
5185
5186      return Success(n, E);
5187    } else
5188      return Success(1, E);
5189  }
5190
5191  case UETT_SizeOf: {
5192    QualType SrcTy = E->getTypeOfArgument();
5193    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5194    //   the result is the size of the referenced type."
5195    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5196      SrcTy = Ref->getPointeeType();
5197
5198    CharUnits Sizeof;
5199    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5200      return false;
5201    return Success(Sizeof, E);
5202  }
5203  }
5204
5205  llvm_unreachable("unknown expr/type trait");
5206}
5207
5208bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5209  CharUnits Result;
5210  unsigned n = OOE->getNumComponents();
5211  if (n == 0)
5212    return Error(OOE);
5213  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5214  for (unsigned i = 0; i != n; ++i) {
5215    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5216    switch (ON.getKind()) {
5217    case OffsetOfExpr::OffsetOfNode::Array: {
5218      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5219      APSInt IdxResult;
5220      if (!EvaluateInteger(Idx, IdxResult, Info))
5221        return false;
5222      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5223      if (!AT)
5224        return Error(OOE);
5225      CurrentType = AT->getElementType();
5226      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5227      Result += IdxResult.getSExtValue() * ElementSize;
5228        break;
5229    }
5230
5231    case OffsetOfExpr::OffsetOfNode::Field: {
5232      FieldDecl *MemberDecl = ON.getField();
5233      const RecordType *RT = CurrentType->getAs<RecordType>();
5234      if (!RT)
5235        return Error(OOE);
5236      RecordDecl *RD = RT->getDecl();
5237      if (RD->isInvalidDecl()) return false;
5238      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5239      unsigned i = MemberDecl->getFieldIndex();
5240      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5241      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5242      CurrentType = MemberDecl->getType().getNonReferenceType();
5243      break;
5244    }
5245
5246    case OffsetOfExpr::OffsetOfNode::Identifier:
5247      llvm_unreachable("dependent __builtin_offsetof");
5248
5249    case OffsetOfExpr::OffsetOfNode::Base: {
5250      CXXBaseSpecifier *BaseSpec = ON.getBase();
5251      if (BaseSpec->isVirtual())
5252        return Error(OOE);
5253
5254      // Find the layout of the class whose base we are looking into.
5255      const RecordType *RT = CurrentType->getAs<RecordType>();
5256      if (!RT)
5257        return Error(OOE);
5258      RecordDecl *RD = RT->getDecl();
5259      if (RD->isInvalidDecl()) return false;
5260      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5261
5262      // Find the base class itself.
5263      CurrentType = BaseSpec->getType();
5264      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5265      if (!BaseRT)
5266        return Error(OOE);
5267
5268      // Add the offset to the base.
5269      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5270      break;
5271    }
5272    }
5273  }
5274  return Success(Result, OOE);
5275}
5276
5277bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5278  switch (E->getOpcode()) {
5279  default:
5280    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5281    // See C99 6.6p3.
5282    return Error(E);
5283  case UO_Extension:
5284    // FIXME: Should extension allow i-c-e extension expressions in its scope?
5285    // If so, we could clear the diagnostic ID.
5286    return Visit(E->getSubExpr());
5287  case UO_Plus:
5288    // The result is just the value.
5289    return Visit(E->getSubExpr());
5290  case UO_Minus: {
5291    if (!Visit(E->getSubExpr()))
5292      return false;
5293    if (!Result.isInt()) return Error(E);
5294    const APSInt &Value = Result.getInt();
5295    if (Value.isSigned() && Value.isMinSignedValue())
5296      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5297                     E->getType());
5298    return Success(-Value, E);
5299  }
5300  case UO_Not: {
5301    if (!Visit(E->getSubExpr()))
5302      return false;
5303    if (!Result.isInt()) return Error(E);
5304    return Success(~Result.getInt(), E);
5305  }
5306  case UO_LNot: {
5307    bool bres;
5308    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5309      return false;
5310    return Success(!bres, E);
5311  }
5312  }
5313}
5314
5315/// HandleCast - This is used to evaluate implicit or explicit casts where the
5316/// result type is integer.
5317bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5318  const Expr *SubExpr = E->getSubExpr();
5319  QualType DestType = E->getType();
5320  QualType SrcType = SubExpr->getType();
5321
5322  switch (E->getCastKind()) {
5323  case CK_BaseToDerived:
5324  case CK_DerivedToBase:
5325  case CK_UncheckedDerivedToBase:
5326  case CK_Dynamic:
5327  case CK_ToUnion:
5328  case CK_ArrayToPointerDecay:
5329  case CK_FunctionToPointerDecay:
5330  case CK_NullToPointer:
5331  case CK_NullToMemberPointer:
5332  case CK_BaseToDerivedMemberPointer:
5333  case CK_DerivedToBaseMemberPointer:
5334  case CK_ReinterpretMemberPointer:
5335  case CK_ConstructorConversion:
5336  case CK_IntegralToPointer:
5337  case CK_ToVoid:
5338  case CK_VectorSplat:
5339  case CK_IntegralToFloating:
5340  case CK_FloatingCast:
5341  case CK_CPointerToObjCPointerCast:
5342  case CK_BlockPointerToObjCPointerCast:
5343  case CK_AnyPointerToBlockPointerCast:
5344  case CK_ObjCObjectLValueCast:
5345  case CK_FloatingRealToComplex:
5346  case CK_FloatingComplexToReal:
5347  case CK_FloatingComplexCast:
5348  case CK_FloatingComplexToIntegralComplex:
5349  case CK_IntegralRealToComplex:
5350  case CK_IntegralComplexCast:
5351  case CK_IntegralComplexToFloatingComplex:
5352    llvm_unreachable("invalid cast kind for integral value");
5353
5354  case CK_BitCast:
5355  case CK_Dependent:
5356  case CK_LValueBitCast:
5357  case CK_ARCProduceObject:
5358  case CK_ARCConsumeObject:
5359  case CK_ARCReclaimReturnedObject:
5360  case CK_ARCExtendBlockObject:
5361  case CK_CopyAndAutoreleaseBlockObject:
5362    return Error(E);
5363
5364  case CK_UserDefinedConversion:
5365  case CK_LValueToRValue:
5366  case CK_AtomicToNonAtomic:
5367  case CK_NonAtomicToAtomic:
5368  case CK_NoOp:
5369    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5370
5371  case CK_MemberPointerToBoolean:
5372  case CK_PointerToBoolean:
5373  case CK_IntegralToBoolean:
5374  case CK_FloatingToBoolean:
5375  case CK_FloatingComplexToBoolean:
5376  case CK_IntegralComplexToBoolean: {
5377    bool BoolResult;
5378    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5379      return false;
5380    return Success(BoolResult, E);
5381  }
5382
5383  case CK_IntegralCast: {
5384    if (!Visit(SubExpr))
5385      return false;
5386
5387    if (!Result.isInt()) {
5388      // Allow casts of address-of-label differences if they are no-ops
5389      // or narrowing.  (The narrowing case isn't actually guaranteed to
5390      // be constant-evaluatable except in some narrow cases which are hard
5391      // to detect here.  We let it through on the assumption the user knows
5392      // what they are doing.)
5393      if (Result.isAddrLabelDiff())
5394        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5395      // Only allow casts of lvalues if they are lossless.
5396      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5397    }
5398
5399    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5400                                      Result.getInt()), E);
5401  }
5402
5403  case CK_PointerToIntegral: {
5404    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5405
5406    LValue LV;
5407    if (!EvaluatePointer(SubExpr, LV, Info))
5408      return false;
5409
5410    if (LV.getLValueBase()) {
5411      // Only allow based lvalue casts if they are lossless.
5412      // FIXME: Allow a larger integer size than the pointer size, and allow
5413      // narrowing back down to pointer width in subsequent integral casts.
5414      // FIXME: Check integer type's active bits, not its type size.
5415      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5416        return Error(E);
5417
5418      LV.Designator.setInvalid();
5419      LV.moveInto(Result);
5420      return true;
5421    }
5422
5423    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5424                                         SrcType);
5425    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5426  }
5427
5428  case CK_IntegralComplexToReal: {
5429    ComplexValue C;
5430    if (!EvaluateComplex(SubExpr, C, Info))
5431      return false;
5432    return Success(C.getComplexIntReal(), E);
5433  }
5434
5435  case CK_FloatingToIntegral: {
5436    APFloat F(0.0);
5437    if (!EvaluateFloat(SubExpr, F, Info))
5438      return false;
5439
5440    APSInt Value;
5441    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5442      return false;
5443    return Success(Value, E);
5444  }
5445  }
5446
5447  llvm_unreachable("unknown cast resulting in integral value");
5448}
5449
5450bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5451  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5452    ComplexValue LV;
5453    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5454      return false;
5455    if (!LV.isComplexInt())
5456      return Error(E);
5457    return Success(LV.getComplexIntReal(), E);
5458  }
5459
5460  return Visit(E->getSubExpr());
5461}
5462
5463bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5464  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5465    ComplexValue LV;
5466    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5467      return false;
5468    if (!LV.isComplexInt())
5469      return Error(E);
5470    return Success(LV.getComplexIntImag(), E);
5471  }
5472
5473  VisitIgnoredValue(E->getSubExpr());
5474  return Success(0, E);
5475}
5476
5477bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5478  return Success(E->getPackLength(), E);
5479}
5480
5481bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5482  return Success(E->getValue(), E);
5483}
5484
5485//===----------------------------------------------------------------------===//
5486// Float Evaluation
5487//===----------------------------------------------------------------------===//
5488
5489namespace {
5490class FloatExprEvaluator
5491  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5492  APFloat &Result;
5493public:
5494  FloatExprEvaluator(EvalInfo &info, APFloat &result)
5495    : ExprEvaluatorBaseTy(info), Result(result) {}
5496
5497  bool Success(const APValue &V, const Expr *e) {
5498    Result = V.getFloat();
5499    return true;
5500  }
5501
5502  bool ZeroInitialization(const Expr *E) {
5503    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5504    return true;
5505  }
5506
5507  bool VisitCallExpr(const CallExpr *E);
5508
5509  bool VisitUnaryOperator(const UnaryOperator *E);
5510  bool VisitBinaryOperator(const BinaryOperator *E);
5511  bool VisitFloatingLiteral(const FloatingLiteral *E);
5512  bool VisitCastExpr(const CastExpr *E);
5513
5514  bool VisitUnaryReal(const UnaryOperator *E);
5515  bool VisitUnaryImag(const UnaryOperator *E);
5516
5517  // FIXME: Missing: array subscript of vector, member of vector
5518};
5519} // end anonymous namespace
5520
5521static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5522  assert(E->isRValue() && E->getType()->isRealFloatingType());
5523  return FloatExprEvaluator(Info, Result).Visit(E);
5524}
5525
5526static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5527                                  QualType ResultTy,
5528                                  const Expr *Arg,
5529                                  bool SNaN,
5530                                  llvm::APFloat &Result) {
5531  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5532  if (!S) return false;
5533
5534  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5535
5536  llvm::APInt fill;
5537
5538  // Treat empty strings as if they were zero.
5539  if (S->getString().empty())
5540    fill = llvm::APInt(32, 0);
5541  else if (S->getString().getAsInteger(0, fill))
5542    return false;
5543
5544  if (SNaN)
5545    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5546  else
5547    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5548  return true;
5549}
5550
5551bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5552  switch (E->isBuiltinCall()) {
5553  default:
5554    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5555
5556  case Builtin::BI__builtin_huge_val:
5557  case Builtin::BI__builtin_huge_valf:
5558  case Builtin::BI__builtin_huge_vall:
5559  case Builtin::BI__builtin_inf:
5560  case Builtin::BI__builtin_inff:
5561  case Builtin::BI__builtin_infl: {
5562    const llvm::fltSemantics &Sem =
5563      Info.Ctx.getFloatTypeSemantics(E->getType());
5564    Result = llvm::APFloat::getInf(Sem);
5565    return true;
5566  }
5567
5568  case Builtin::BI__builtin_nans:
5569  case Builtin::BI__builtin_nansf:
5570  case Builtin::BI__builtin_nansl:
5571    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5572                               true, Result))
5573      return Error(E);
5574    return true;
5575
5576  case Builtin::BI__builtin_nan:
5577  case Builtin::BI__builtin_nanf:
5578  case Builtin::BI__builtin_nanl:
5579    // If this is __builtin_nan() turn this into a nan, otherwise we
5580    // can't constant fold it.
5581    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5582                               false, Result))
5583      return Error(E);
5584    return true;
5585
5586  case Builtin::BI__builtin_fabs:
5587  case Builtin::BI__builtin_fabsf:
5588  case Builtin::BI__builtin_fabsl:
5589    if (!EvaluateFloat(E->getArg(0), Result, Info))
5590      return false;
5591
5592    if (Result.isNegative())
5593      Result.changeSign();
5594    return true;
5595
5596  case Builtin::BI__builtin_copysign:
5597  case Builtin::BI__builtin_copysignf:
5598  case Builtin::BI__builtin_copysignl: {
5599    APFloat RHS(0.);
5600    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5601        !EvaluateFloat(E->getArg(1), RHS, Info))
5602      return false;
5603    Result.copySign(RHS);
5604    return true;
5605  }
5606  }
5607}
5608
5609bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5610  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5611    ComplexValue CV;
5612    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5613      return false;
5614    Result = CV.FloatReal;
5615    return true;
5616  }
5617
5618  return Visit(E->getSubExpr());
5619}
5620
5621bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5622  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5623    ComplexValue CV;
5624    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5625      return false;
5626    Result = CV.FloatImag;
5627    return true;
5628  }
5629
5630  VisitIgnoredValue(E->getSubExpr());
5631  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5632  Result = llvm::APFloat::getZero(Sem);
5633  return true;
5634}
5635
5636bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5637  switch (E->getOpcode()) {
5638  default: return Error(E);
5639  case UO_Plus:
5640    return EvaluateFloat(E->getSubExpr(), Result, Info);
5641  case UO_Minus:
5642    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5643      return false;
5644    Result.changeSign();
5645    return true;
5646  }
5647}
5648
5649bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5650  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5651    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5652
5653  APFloat RHS(0.0);
5654  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5655  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5656    return false;
5657  if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5658    return false;
5659
5660  switch (E->getOpcode()) {
5661  default: return Error(E);
5662  case BO_Mul:
5663    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5664    break;
5665  case BO_Add:
5666    Result.add(RHS, APFloat::rmNearestTiesToEven);
5667    break;
5668  case BO_Sub:
5669    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5670    break;
5671  case BO_Div:
5672    Result.divide(RHS, APFloat::rmNearestTiesToEven);
5673    break;
5674  }
5675
5676  if (Result.isInfinity() || Result.isNaN())
5677    CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5678  return true;
5679}
5680
5681bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5682  Result = E->getValue();
5683  return true;
5684}
5685
5686bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5687  const Expr* SubExpr = E->getSubExpr();
5688
5689  switch (E->getCastKind()) {
5690  default:
5691    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5692
5693  case CK_IntegralToFloating: {
5694    APSInt IntResult;
5695    return EvaluateInteger(SubExpr, IntResult, Info) &&
5696           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5697                                E->getType(), Result);
5698  }
5699
5700  case CK_FloatingCast: {
5701    if (!Visit(SubExpr))
5702      return false;
5703    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5704                                  Result);
5705  }
5706
5707  case CK_FloatingComplexToReal: {
5708    ComplexValue V;
5709    if (!EvaluateComplex(SubExpr, V, Info))
5710      return false;
5711    Result = V.getComplexFloatReal();
5712    return true;
5713  }
5714  }
5715}
5716
5717//===----------------------------------------------------------------------===//
5718// Complex Evaluation (for float and integer)
5719//===----------------------------------------------------------------------===//
5720
5721namespace {
5722class ComplexExprEvaluator
5723  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5724  ComplexValue &Result;
5725
5726public:
5727  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5728    : ExprEvaluatorBaseTy(info), Result(Result) {}
5729
5730  bool Success(const APValue &V, const Expr *e) {
5731    Result.setFrom(V);
5732    return true;
5733  }
5734
5735  bool ZeroInitialization(const Expr *E);
5736
5737  //===--------------------------------------------------------------------===//
5738  //                            Visitor Methods
5739  //===--------------------------------------------------------------------===//
5740
5741  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5742  bool VisitCastExpr(const CastExpr *E);
5743  bool VisitBinaryOperator(const BinaryOperator *E);
5744  bool VisitUnaryOperator(const UnaryOperator *E);
5745  bool VisitInitListExpr(const InitListExpr *E);
5746};
5747} // end anonymous namespace
5748
5749static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5750                            EvalInfo &Info) {
5751  assert(E->isRValue() && E->getType()->isAnyComplexType());
5752  return ComplexExprEvaluator(Info, Result).Visit(E);
5753}
5754
5755bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5756  QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
5757  if (ElemTy->isRealFloatingType()) {
5758    Result.makeComplexFloat();
5759    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5760    Result.FloatReal = Zero;
5761    Result.FloatImag = Zero;
5762  } else {
5763    Result.makeComplexInt();
5764    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5765    Result.IntReal = Zero;
5766    Result.IntImag = Zero;
5767  }
5768  return true;
5769}
5770
5771bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5772  const Expr* SubExpr = E->getSubExpr();
5773
5774  if (SubExpr->getType()->isRealFloatingType()) {
5775    Result.makeComplexFloat();
5776    APFloat &Imag = Result.FloatImag;
5777    if (!EvaluateFloat(SubExpr, Imag, Info))
5778      return false;
5779
5780    Result.FloatReal = APFloat(Imag.getSemantics());
5781    return true;
5782  } else {
5783    assert(SubExpr->getType()->isIntegerType() &&
5784           "Unexpected imaginary literal.");
5785
5786    Result.makeComplexInt();
5787    APSInt &Imag = Result.IntImag;
5788    if (!EvaluateInteger(SubExpr, Imag, Info))
5789      return false;
5790
5791    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5792    return true;
5793  }
5794}
5795
5796bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5797
5798  switch (E->getCastKind()) {
5799  case CK_BitCast:
5800  case CK_BaseToDerived:
5801  case CK_DerivedToBase:
5802  case CK_UncheckedDerivedToBase:
5803  case CK_Dynamic:
5804  case CK_ToUnion:
5805  case CK_ArrayToPointerDecay:
5806  case CK_FunctionToPointerDecay:
5807  case CK_NullToPointer:
5808  case CK_NullToMemberPointer:
5809  case CK_BaseToDerivedMemberPointer:
5810  case CK_DerivedToBaseMemberPointer:
5811  case CK_MemberPointerToBoolean:
5812  case CK_ReinterpretMemberPointer:
5813  case CK_ConstructorConversion:
5814  case CK_IntegralToPointer:
5815  case CK_PointerToIntegral:
5816  case CK_PointerToBoolean:
5817  case CK_ToVoid:
5818  case CK_VectorSplat:
5819  case CK_IntegralCast:
5820  case CK_IntegralToBoolean:
5821  case CK_IntegralToFloating:
5822  case CK_FloatingToIntegral:
5823  case CK_FloatingToBoolean:
5824  case CK_FloatingCast:
5825  case CK_CPointerToObjCPointerCast:
5826  case CK_BlockPointerToObjCPointerCast:
5827  case CK_AnyPointerToBlockPointerCast:
5828  case CK_ObjCObjectLValueCast:
5829  case CK_FloatingComplexToReal:
5830  case CK_FloatingComplexToBoolean:
5831  case CK_IntegralComplexToReal:
5832  case CK_IntegralComplexToBoolean:
5833  case CK_ARCProduceObject:
5834  case CK_ARCConsumeObject:
5835  case CK_ARCReclaimReturnedObject:
5836  case CK_ARCExtendBlockObject:
5837  case CK_CopyAndAutoreleaseBlockObject:
5838    llvm_unreachable("invalid cast kind for complex value");
5839
5840  case CK_LValueToRValue:
5841  case CK_AtomicToNonAtomic:
5842  case CK_NonAtomicToAtomic:
5843  case CK_NoOp:
5844    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5845
5846  case CK_Dependent:
5847  case CK_LValueBitCast:
5848  case CK_UserDefinedConversion:
5849    return Error(E);
5850
5851  case CK_FloatingRealToComplex: {
5852    APFloat &Real = Result.FloatReal;
5853    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5854      return false;
5855
5856    Result.makeComplexFloat();
5857    Result.FloatImag = APFloat(Real.getSemantics());
5858    return true;
5859  }
5860
5861  case CK_FloatingComplexCast: {
5862    if (!Visit(E->getSubExpr()))
5863      return false;
5864
5865    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5866    QualType From
5867      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5868
5869    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5870           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5871  }
5872
5873  case CK_FloatingComplexToIntegralComplex: {
5874    if (!Visit(E->getSubExpr()))
5875      return false;
5876
5877    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5878    QualType From
5879      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5880    Result.makeComplexInt();
5881    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5882                                To, Result.IntReal) &&
5883           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5884                                To, Result.IntImag);
5885  }
5886
5887  case CK_IntegralRealToComplex: {
5888    APSInt &Real = Result.IntReal;
5889    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5890      return false;
5891
5892    Result.makeComplexInt();
5893    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5894    return true;
5895  }
5896
5897  case CK_IntegralComplexCast: {
5898    if (!Visit(E->getSubExpr()))
5899      return false;
5900
5901    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5902    QualType From
5903      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5904
5905    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5906    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5907    return true;
5908  }
5909
5910  case CK_IntegralComplexToFloatingComplex: {
5911    if (!Visit(E->getSubExpr()))
5912      return false;
5913
5914    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5915    QualType From
5916      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5917    Result.makeComplexFloat();
5918    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5919                                To, Result.FloatReal) &&
5920           HandleIntToFloatCast(Info, E, From, Result.IntImag,
5921                                To, Result.FloatImag);
5922  }
5923  }
5924
5925  llvm_unreachable("unknown cast resulting in complex value");
5926}
5927
5928bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5929  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5930    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5931
5932  bool LHSOK = Visit(E->getLHS());
5933  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5934    return false;
5935
5936  ComplexValue RHS;
5937  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5938    return false;
5939
5940  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5941         "Invalid operands to binary operator.");
5942  switch (E->getOpcode()) {
5943  default: return Error(E);
5944  case BO_Add:
5945    if (Result.isComplexFloat()) {
5946      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5947                                       APFloat::rmNearestTiesToEven);
5948      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5949                                       APFloat::rmNearestTiesToEven);
5950    } else {
5951      Result.getComplexIntReal() += RHS.getComplexIntReal();
5952      Result.getComplexIntImag() += RHS.getComplexIntImag();
5953    }
5954    break;
5955  case BO_Sub:
5956    if (Result.isComplexFloat()) {
5957      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5958                                            APFloat::rmNearestTiesToEven);
5959      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
5960                                            APFloat::rmNearestTiesToEven);
5961    } else {
5962      Result.getComplexIntReal() -= RHS.getComplexIntReal();
5963      Result.getComplexIntImag() -= RHS.getComplexIntImag();
5964    }
5965    break;
5966  case BO_Mul:
5967    if (Result.isComplexFloat()) {
5968      ComplexValue LHS = Result;
5969      APFloat &LHS_r = LHS.getComplexFloatReal();
5970      APFloat &LHS_i = LHS.getComplexFloatImag();
5971      APFloat &RHS_r = RHS.getComplexFloatReal();
5972      APFloat &RHS_i = RHS.getComplexFloatImag();
5973
5974      APFloat Tmp = LHS_r;
5975      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5976      Result.getComplexFloatReal() = Tmp;
5977      Tmp = LHS_i;
5978      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5979      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
5980
5981      Tmp = LHS_r;
5982      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
5983      Result.getComplexFloatImag() = Tmp;
5984      Tmp = LHS_i;
5985      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
5986      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
5987    } else {
5988      ComplexValue LHS = Result;
5989      Result.getComplexIntReal() =
5990        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
5991         LHS.getComplexIntImag() * RHS.getComplexIntImag());
5992      Result.getComplexIntImag() =
5993        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
5994         LHS.getComplexIntImag() * RHS.getComplexIntReal());
5995    }
5996    break;
5997  case BO_Div:
5998    if (Result.isComplexFloat()) {
5999      ComplexValue LHS = Result;
6000      APFloat &LHS_r = LHS.getComplexFloatReal();
6001      APFloat &LHS_i = LHS.getComplexFloatImag();
6002      APFloat &RHS_r = RHS.getComplexFloatReal();
6003      APFloat &RHS_i = RHS.getComplexFloatImag();
6004      APFloat &Res_r = Result.getComplexFloatReal();
6005      APFloat &Res_i = Result.getComplexFloatImag();
6006
6007      APFloat Den = RHS_r;
6008      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6009      APFloat Tmp = RHS_i;
6010      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6011      Den.add(Tmp, APFloat::rmNearestTiesToEven);
6012
6013      Res_r = LHS_r;
6014      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6015      Tmp = LHS_i;
6016      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6017      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6018      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6019
6020      Res_i = LHS_i;
6021      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6022      Tmp = LHS_r;
6023      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6024      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6025      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6026    } else {
6027      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6028        return Error(E, diag::note_expr_divide_by_zero);
6029
6030      ComplexValue LHS = Result;
6031      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6032        RHS.getComplexIntImag() * RHS.getComplexIntImag();
6033      Result.getComplexIntReal() =
6034        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6035         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6036      Result.getComplexIntImag() =
6037        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6038         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6039    }
6040    break;
6041  }
6042
6043  return true;
6044}
6045
6046bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6047  // Get the operand value into 'Result'.
6048  if (!Visit(E->getSubExpr()))
6049    return false;
6050
6051  switch (E->getOpcode()) {
6052  default:
6053    return Error(E);
6054  case UO_Extension:
6055    return true;
6056  case UO_Plus:
6057    // The result is always just the subexpr.
6058    return true;
6059  case UO_Minus:
6060    if (Result.isComplexFloat()) {
6061      Result.getComplexFloatReal().changeSign();
6062      Result.getComplexFloatImag().changeSign();
6063    }
6064    else {
6065      Result.getComplexIntReal() = -Result.getComplexIntReal();
6066      Result.getComplexIntImag() = -Result.getComplexIntImag();
6067    }
6068    return true;
6069  case UO_Not:
6070    if (Result.isComplexFloat())
6071      Result.getComplexFloatImag().changeSign();
6072    else
6073      Result.getComplexIntImag() = -Result.getComplexIntImag();
6074    return true;
6075  }
6076}
6077
6078bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6079  if (E->getNumInits() == 2) {
6080    if (E->getType()->isComplexType()) {
6081      Result.makeComplexFloat();
6082      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6083        return false;
6084      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6085        return false;
6086    } else {
6087      Result.makeComplexInt();
6088      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6089        return false;
6090      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6091        return false;
6092    }
6093    return true;
6094  }
6095  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6096}
6097
6098//===----------------------------------------------------------------------===//
6099// Void expression evaluation, primarily for a cast to void on the LHS of a
6100// comma operator
6101//===----------------------------------------------------------------------===//
6102
6103namespace {
6104class VoidExprEvaluator
6105  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6106public:
6107  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6108
6109  bool Success(const APValue &V, const Expr *e) { return true; }
6110
6111  bool VisitCastExpr(const CastExpr *E) {
6112    switch (E->getCastKind()) {
6113    default:
6114      return ExprEvaluatorBaseTy::VisitCastExpr(E);
6115    case CK_ToVoid:
6116      VisitIgnoredValue(E->getSubExpr());
6117      return true;
6118    }
6119  }
6120};
6121} // end anonymous namespace
6122
6123static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6124  assert(E->isRValue() && E->getType()->isVoidType());
6125  return VoidExprEvaluator(Info).Visit(E);
6126}
6127
6128//===----------------------------------------------------------------------===//
6129// Top level Expr::EvaluateAsRValue method.
6130//===----------------------------------------------------------------------===//
6131
6132static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6133  // In C, function designators are not lvalues, but we evaluate them as if they
6134  // are.
6135  if (E->isGLValue() || E->getType()->isFunctionType()) {
6136    LValue LV;
6137    if (!EvaluateLValue(E, LV, Info))
6138      return false;
6139    LV.moveInto(Result);
6140  } else if (E->getType()->isVectorType()) {
6141    if (!EvaluateVector(E, Result, Info))
6142      return false;
6143  } else if (E->getType()->isIntegralOrEnumerationType()) {
6144    if (!IntExprEvaluator(Info, Result).Visit(E))
6145      return false;
6146  } else if (E->getType()->hasPointerRepresentation()) {
6147    LValue LV;
6148    if (!EvaluatePointer(E, LV, Info))
6149      return false;
6150    LV.moveInto(Result);
6151  } else if (E->getType()->isRealFloatingType()) {
6152    llvm::APFloat F(0.0);
6153    if (!EvaluateFloat(E, F, Info))
6154      return false;
6155    Result = APValue(F);
6156  } else if (E->getType()->isAnyComplexType()) {
6157    ComplexValue C;
6158    if (!EvaluateComplex(E, C, Info))
6159      return false;
6160    C.moveInto(Result);
6161  } else if (E->getType()->isMemberPointerType()) {
6162    MemberPtr P;
6163    if (!EvaluateMemberPointer(E, P, Info))
6164      return false;
6165    P.moveInto(Result);
6166    return true;
6167  } else if (E->getType()->isArrayType()) {
6168    LValue LV;
6169    LV.set(E, Info.CurrentCall->Index);
6170    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6171      return false;
6172    Result = Info.CurrentCall->Temporaries[E];
6173  } else if (E->getType()->isRecordType()) {
6174    LValue LV;
6175    LV.set(E, Info.CurrentCall->Index);
6176    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6177      return false;
6178    Result = Info.CurrentCall->Temporaries[E];
6179  } else if (E->getType()->isVoidType()) {
6180    if (Info.getLangOpts().CPlusPlus0x)
6181      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6182        << E->getType();
6183    else
6184      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6185    if (!EvaluateVoid(E, Info))
6186      return false;
6187  } else if (Info.getLangOpts().CPlusPlus0x) {
6188    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6189    return false;
6190  } else {
6191    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6192    return false;
6193  }
6194
6195  return true;
6196}
6197
6198/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6199/// cases, the in-place evaluation is essential, since later initializers for
6200/// an object can indirectly refer to subobjects which were initialized earlier.
6201static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6202                            const Expr *E, CheckConstantExpressionKind CCEK,
6203                            bool AllowNonLiteralTypes) {
6204  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6205    return false;
6206
6207  if (E->isRValue()) {
6208    // Evaluate arrays and record types in-place, so that later initializers can
6209    // refer to earlier-initialized members of the object.
6210    if (E->getType()->isArrayType())
6211      return EvaluateArray(E, This, Result, Info);
6212    else if (E->getType()->isRecordType())
6213      return EvaluateRecord(E, This, Result, Info);
6214  }
6215
6216  // For any other type, in-place evaluation is unimportant.
6217  return Evaluate(Result, Info, E);
6218}
6219
6220/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6221/// lvalue-to-rvalue cast if it is an lvalue.
6222static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6223  if (!CheckLiteralType(Info, E))
6224    return false;
6225
6226  if (!::Evaluate(Result, Info, E))
6227    return false;
6228
6229  if (E->isGLValue()) {
6230    LValue LV;
6231    LV.setFrom(Info.Ctx, Result);
6232    if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6233      return false;
6234  }
6235
6236  // Check this core constant expression is a constant expression.
6237  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6238}
6239
6240/// EvaluateAsRValue - Return true if this is a constant which we can fold using
6241/// any crazy technique (that has nothing to do with language standards) that
6242/// we want to.  If this function returns true, it returns the folded constant
6243/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6244/// will be applied to the result.
6245bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6246  // Fast-path evaluations of integer literals, since we sometimes see files
6247  // containing vast quantities of these.
6248  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
6249    Result.Val = APValue(APSInt(L->getValue(),
6250                                L->getType()->isUnsignedIntegerType()));
6251    return true;
6252  }
6253
6254  // FIXME: Evaluating values of large array and record types can cause
6255  // performance problems. Only do so in C++11 for now.
6256  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6257      !Ctx.getLangOpts().CPlusPlus0x)
6258    return false;
6259
6260  EvalInfo Info(Ctx, Result);
6261  return ::EvaluateAsRValue(Info, this, Result.Val);
6262}
6263
6264bool Expr::EvaluateAsBooleanCondition(bool &Result,
6265                                      const ASTContext &Ctx) const {
6266  EvalResult Scratch;
6267  return EvaluateAsRValue(Scratch, Ctx) &&
6268         HandleConversionToBool(Scratch.Val, Result);
6269}
6270
6271bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6272                         SideEffectsKind AllowSideEffects) const {
6273  if (!getType()->isIntegralOrEnumerationType())
6274    return false;
6275
6276  EvalResult ExprResult;
6277  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6278      (!AllowSideEffects && ExprResult.HasSideEffects))
6279    return false;
6280
6281  Result = ExprResult.Val.getInt();
6282  return true;
6283}
6284
6285bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6286  EvalInfo Info(Ctx, Result);
6287
6288  LValue LV;
6289  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6290      !CheckLValueConstantExpression(Info, getExprLoc(),
6291                                     Ctx.getLValueReferenceType(getType()), LV))
6292    return false;
6293
6294  LV.moveInto(Result.Val);
6295  return true;
6296}
6297
6298bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6299                                 const VarDecl *VD,
6300                      llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6301  // FIXME: Evaluating initializers for large array and record types can cause
6302  // performance problems. Only do so in C++11 for now.
6303  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6304      !Ctx.getLangOpts().CPlusPlus0x)
6305    return false;
6306
6307  Expr::EvalStatus EStatus;
6308  EStatus.Diag = &Notes;
6309
6310  EvalInfo InitInfo(Ctx, EStatus);
6311  InitInfo.setEvaluatingDecl(VD, Value);
6312
6313  LValue LVal;
6314  LVal.set(VD);
6315
6316  // C++11 [basic.start.init]p2:
6317  //  Variables with static storage duration or thread storage duration shall be
6318  //  zero-initialized before any other initialization takes place.
6319  // This behavior is not present in C.
6320  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6321      !VD->getType()->isReferenceType()) {
6322    ImplicitValueInitExpr VIE(VD->getType());
6323    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6324                         /*AllowNonLiteralTypes=*/true))
6325      return false;
6326  }
6327
6328  if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6329                         /*AllowNonLiteralTypes=*/true) ||
6330      EStatus.HasSideEffects)
6331    return false;
6332
6333  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6334                                 Value);
6335}
6336
6337/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6338/// constant folded, but discard the result.
6339bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6340  EvalResult Result;
6341  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6342}
6343
6344APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
6345  EvalResult EvalResult;
6346  bool Result = EvaluateAsRValue(EvalResult, Ctx);
6347  (void)Result;
6348  assert(Result && "Could not evaluate expression");
6349  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6350
6351  return EvalResult.Val.getInt();
6352}
6353
6354 bool Expr::EvalResult::isGlobalLValue() const {
6355   assert(Val.isLValue());
6356   return IsGlobalLValue(Val.getLValueBase());
6357 }
6358
6359
6360/// isIntegerConstantExpr - this recursive routine will test if an expression is
6361/// an integer constant expression.
6362
6363/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6364/// comma, etc
6365///
6366/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
6367/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
6368/// cast+dereference.
6369
6370// CheckICE - This function does the fundamental ICE checking: the returned
6371// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
6372// Note that to reduce code duplication, this helper does no evaluation
6373// itself; the caller checks whether the expression is evaluatable, and
6374// in the rare cases where CheckICE actually cares about the evaluated
6375// value, it calls into Evalute.
6376//
6377// Meanings of Val:
6378// 0: This expression is an ICE.
6379// 1: This expression is not an ICE, but if it isn't evaluated, it's
6380//    a legal subexpression for an ICE. This return value is used to handle
6381//    the comma operator in C99 mode.
6382// 2: This expression is not an ICE, and is not a legal subexpression for one.
6383
6384namespace {
6385
6386struct ICEDiag {
6387  unsigned Val;
6388  SourceLocation Loc;
6389
6390  public:
6391  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
6392  ICEDiag() : Val(0) {}
6393};
6394
6395}
6396
6397static ICEDiag NoDiag() { return ICEDiag(); }
6398
6399static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6400  Expr::EvalResult EVResult;
6401  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6402      !EVResult.Val.isInt()) {
6403    return ICEDiag(2, E->getLocStart());
6404  }
6405  return NoDiag();
6406}
6407
6408static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6409  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6410  if (!E->getType()->isIntegralOrEnumerationType()) {
6411    return ICEDiag(2, E->getLocStart());
6412  }
6413
6414  switch (E->getStmtClass()) {
6415#define ABSTRACT_STMT(Node)
6416#define STMT(Node, Base) case Expr::Node##Class:
6417#define EXPR(Node, Base)
6418#include "clang/AST/StmtNodes.inc"
6419  case Expr::PredefinedExprClass:
6420  case Expr::FloatingLiteralClass:
6421  case Expr::ImaginaryLiteralClass:
6422  case Expr::StringLiteralClass:
6423  case Expr::ArraySubscriptExprClass:
6424  case Expr::MemberExprClass:
6425  case Expr::CompoundAssignOperatorClass:
6426  case Expr::CompoundLiteralExprClass:
6427  case Expr::ExtVectorElementExprClass:
6428  case Expr::DesignatedInitExprClass:
6429  case Expr::ImplicitValueInitExprClass:
6430  case Expr::ParenListExprClass:
6431  case Expr::VAArgExprClass:
6432  case Expr::AddrLabelExprClass:
6433  case Expr::StmtExprClass:
6434  case Expr::CXXMemberCallExprClass:
6435  case Expr::CUDAKernelCallExprClass:
6436  case Expr::CXXDynamicCastExprClass:
6437  case Expr::CXXTypeidExprClass:
6438  case Expr::CXXUuidofExprClass:
6439  case Expr::CXXNullPtrLiteralExprClass:
6440  case Expr::UserDefinedLiteralClass:
6441  case Expr::CXXThisExprClass:
6442  case Expr::CXXThrowExprClass:
6443  case Expr::CXXNewExprClass:
6444  case Expr::CXXDeleteExprClass:
6445  case Expr::CXXPseudoDestructorExprClass:
6446  case Expr::UnresolvedLookupExprClass:
6447  case Expr::DependentScopeDeclRefExprClass:
6448  case Expr::CXXConstructExprClass:
6449  case Expr::CXXBindTemporaryExprClass:
6450  case Expr::ExprWithCleanupsClass:
6451  case Expr::CXXTemporaryObjectExprClass:
6452  case Expr::CXXUnresolvedConstructExprClass:
6453  case Expr::CXXDependentScopeMemberExprClass:
6454  case Expr::UnresolvedMemberExprClass:
6455  case Expr::ObjCStringLiteralClass:
6456  case Expr::ObjCBoxedExprClass:
6457  case Expr::ObjCArrayLiteralClass:
6458  case Expr::ObjCDictionaryLiteralClass:
6459  case Expr::ObjCEncodeExprClass:
6460  case Expr::ObjCMessageExprClass:
6461  case Expr::ObjCSelectorExprClass:
6462  case Expr::ObjCProtocolExprClass:
6463  case Expr::ObjCIvarRefExprClass:
6464  case Expr::ObjCPropertyRefExprClass:
6465  case Expr::ObjCSubscriptRefExprClass:
6466  case Expr::ObjCIsaExprClass:
6467  case Expr::ShuffleVectorExprClass:
6468  case Expr::BlockExprClass:
6469  case Expr::NoStmtClass:
6470  case Expr::OpaqueValueExprClass:
6471  case Expr::PackExpansionExprClass:
6472  case Expr::SubstNonTypeTemplateParmPackExprClass:
6473  case Expr::AsTypeExprClass:
6474  case Expr::ObjCIndirectCopyRestoreExprClass:
6475  case Expr::MaterializeTemporaryExprClass:
6476  case Expr::PseudoObjectExprClass:
6477  case Expr::AtomicExprClass:
6478  case Expr::InitListExprClass:
6479  case Expr::LambdaExprClass:
6480    return ICEDiag(2, E->getLocStart());
6481
6482  case Expr::SizeOfPackExprClass:
6483  case Expr::GNUNullExprClass:
6484    // GCC considers the GNU __null value to be an integral constant expression.
6485    return NoDiag();
6486
6487  case Expr::SubstNonTypeTemplateParmExprClass:
6488    return
6489      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6490
6491  case Expr::ParenExprClass:
6492    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6493  case Expr::GenericSelectionExprClass:
6494    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6495  case Expr::IntegerLiteralClass:
6496  case Expr::CharacterLiteralClass:
6497  case Expr::ObjCBoolLiteralExprClass:
6498  case Expr::CXXBoolLiteralExprClass:
6499  case Expr::CXXScalarValueInitExprClass:
6500  case Expr::UnaryTypeTraitExprClass:
6501  case Expr::BinaryTypeTraitExprClass:
6502  case Expr::TypeTraitExprClass:
6503  case Expr::ArrayTypeTraitExprClass:
6504  case Expr::ExpressionTraitExprClass:
6505  case Expr::CXXNoexceptExprClass:
6506    return NoDiag();
6507  case Expr::CallExprClass:
6508  case Expr::CXXOperatorCallExprClass: {
6509    // C99 6.6/3 allows function calls within unevaluated subexpressions of
6510    // constant expressions, but they can never be ICEs because an ICE cannot
6511    // contain an operand of (pointer to) function type.
6512    const CallExpr *CE = cast<CallExpr>(E);
6513    if (CE->isBuiltinCall())
6514      return CheckEvalInICE(E, Ctx);
6515    return ICEDiag(2, E->getLocStart());
6516  }
6517  case Expr::DeclRefExprClass: {
6518    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6519      return NoDiag();
6520    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6521    if (Ctx.getLangOpts().CPlusPlus &&
6522        D && IsConstNonVolatile(D->getType())) {
6523      // Parameter variables are never constants.  Without this check,
6524      // getAnyInitializer() can find a default argument, which leads
6525      // to chaos.
6526      if (isa<ParmVarDecl>(D))
6527        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6528
6529      // C++ 7.1.5.1p2
6530      //   A variable of non-volatile const-qualified integral or enumeration
6531      //   type initialized by an ICE can be used in ICEs.
6532      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6533        if (!Dcl->getType()->isIntegralOrEnumerationType())
6534          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6535
6536        const VarDecl *VD;
6537        // Look for a declaration of this variable that has an initializer, and
6538        // check whether it is an ICE.
6539        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6540          return NoDiag();
6541        else
6542          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6543      }
6544    }
6545    return ICEDiag(2, E->getLocStart());
6546  }
6547  case Expr::UnaryOperatorClass: {
6548    const UnaryOperator *Exp = cast<UnaryOperator>(E);
6549    switch (Exp->getOpcode()) {
6550    case UO_PostInc:
6551    case UO_PostDec:
6552    case UO_PreInc:
6553    case UO_PreDec:
6554    case UO_AddrOf:
6555    case UO_Deref:
6556      // C99 6.6/3 allows increment and decrement within unevaluated
6557      // subexpressions of constant expressions, but they can never be ICEs
6558      // because an ICE cannot contain an lvalue operand.
6559      return ICEDiag(2, E->getLocStart());
6560    case UO_Extension:
6561    case UO_LNot:
6562    case UO_Plus:
6563    case UO_Minus:
6564    case UO_Not:
6565    case UO_Real:
6566    case UO_Imag:
6567      return CheckICE(Exp->getSubExpr(), Ctx);
6568    }
6569
6570    // OffsetOf falls through here.
6571  }
6572  case Expr::OffsetOfExprClass: {
6573      // Note that per C99, offsetof must be an ICE. And AFAIK, using
6574      // EvaluateAsRValue matches the proposed gcc behavior for cases like
6575      // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6576      // compliance: we should warn earlier for offsetof expressions with
6577      // array subscripts that aren't ICEs, and if the array subscripts
6578      // are ICEs, the value of the offsetof must be an integer constant.
6579      return CheckEvalInICE(E, Ctx);
6580  }
6581  case Expr::UnaryExprOrTypeTraitExprClass: {
6582    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6583    if ((Exp->getKind() ==  UETT_SizeOf) &&
6584        Exp->getTypeOfArgument()->isVariableArrayType())
6585      return ICEDiag(2, E->getLocStart());
6586    return NoDiag();
6587  }
6588  case Expr::BinaryOperatorClass: {
6589    const BinaryOperator *Exp = cast<BinaryOperator>(E);
6590    switch (Exp->getOpcode()) {
6591    case BO_PtrMemD:
6592    case BO_PtrMemI:
6593    case BO_Assign:
6594    case BO_MulAssign:
6595    case BO_DivAssign:
6596    case BO_RemAssign:
6597    case BO_AddAssign:
6598    case BO_SubAssign:
6599    case BO_ShlAssign:
6600    case BO_ShrAssign:
6601    case BO_AndAssign:
6602    case BO_XorAssign:
6603    case BO_OrAssign:
6604      // C99 6.6/3 allows assignments within unevaluated subexpressions of
6605      // constant expressions, but they can never be ICEs because an ICE cannot
6606      // contain an lvalue operand.
6607      return ICEDiag(2, E->getLocStart());
6608
6609    case BO_Mul:
6610    case BO_Div:
6611    case BO_Rem:
6612    case BO_Add:
6613    case BO_Sub:
6614    case BO_Shl:
6615    case BO_Shr:
6616    case BO_LT:
6617    case BO_GT:
6618    case BO_LE:
6619    case BO_GE:
6620    case BO_EQ:
6621    case BO_NE:
6622    case BO_And:
6623    case BO_Xor:
6624    case BO_Or:
6625    case BO_Comma: {
6626      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6627      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6628      if (Exp->getOpcode() == BO_Div ||
6629          Exp->getOpcode() == BO_Rem) {
6630        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6631        // we don't evaluate one.
6632        if (LHSResult.Val == 0 && RHSResult.Val == 0) {
6633          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6634          if (REval == 0)
6635            return ICEDiag(1, E->getLocStart());
6636          if (REval.isSigned() && REval.isAllOnesValue()) {
6637            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6638            if (LEval.isMinSignedValue())
6639              return ICEDiag(1, E->getLocStart());
6640          }
6641        }
6642      }
6643      if (Exp->getOpcode() == BO_Comma) {
6644        if (Ctx.getLangOpts().C99) {
6645          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6646          // if it isn't evaluated.
6647          if (LHSResult.Val == 0 && RHSResult.Val == 0)
6648            return ICEDiag(1, E->getLocStart());
6649        } else {
6650          // In both C89 and C++, commas in ICEs are illegal.
6651          return ICEDiag(2, E->getLocStart());
6652        }
6653      }
6654      if (LHSResult.Val >= RHSResult.Val)
6655        return LHSResult;
6656      return RHSResult;
6657    }
6658    case BO_LAnd:
6659    case BO_LOr: {
6660      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6661      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6662      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
6663        // Rare case where the RHS has a comma "side-effect"; we need
6664        // to actually check the condition to see whether the side
6665        // with the comma is evaluated.
6666        if ((Exp->getOpcode() == BO_LAnd) !=
6667            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6668          return RHSResult;
6669        return NoDiag();
6670      }
6671
6672      if (LHSResult.Val >= RHSResult.Val)
6673        return LHSResult;
6674      return RHSResult;
6675    }
6676    }
6677  }
6678  case Expr::ImplicitCastExprClass:
6679  case Expr::CStyleCastExprClass:
6680  case Expr::CXXFunctionalCastExprClass:
6681  case Expr::CXXStaticCastExprClass:
6682  case Expr::CXXReinterpretCastExprClass:
6683  case Expr::CXXConstCastExprClass:
6684  case Expr::ObjCBridgedCastExprClass: {
6685    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6686    if (isa<ExplicitCastExpr>(E)) {
6687      if (const FloatingLiteral *FL
6688            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6689        unsigned DestWidth = Ctx.getIntWidth(E->getType());
6690        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6691        APSInt IgnoredVal(DestWidth, !DestSigned);
6692        bool Ignored;
6693        // If the value does not fit in the destination type, the behavior is
6694        // undefined, so we are not required to treat it as a constant
6695        // expression.
6696        if (FL->getValue().convertToInteger(IgnoredVal,
6697                                            llvm::APFloat::rmTowardZero,
6698                                            &Ignored) & APFloat::opInvalidOp)
6699          return ICEDiag(2, E->getLocStart());
6700        return NoDiag();
6701      }
6702    }
6703    switch (cast<CastExpr>(E)->getCastKind()) {
6704    case CK_LValueToRValue:
6705    case CK_AtomicToNonAtomic:
6706    case CK_NonAtomicToAtomic:
6707    case CK_NoOp:
6708    case CK_IntegralToBoolean:
6709    case CK_IntegralCast:
6710      return CheckICE(SubExpr, Ctx);
6711    default:
6712      return ICEDiag(2, E->getLocStart());
6713    }
6714  }
6715  case Expr::BinaryConditionalOperatorClass: {
6716    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6717    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6718    if (CommonResult.Val == 2) return CommonResult;
6719    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6720    if (FalseResult.Val == 2) return FalseResult;
6721    if (CommonResult.Val == 1) return CommonResult;
6722    if (FalseResult.Val == 1 &&
6723        Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
6724    return FalseResult;
6725  }
6726  case Expr::ConditionalOperatorClass: {
6727    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6728    // If the condition (ignoring parens) is a __builtin_constant_p call,
6729    // then only the true side is actually considered in an integer constant
6730    // expression, and it is fully evaluated.  This is an important GNU
6731    // extension.  See GCC PR38377 for discussion.
6732    if (const CallExpr *CallCE
6733        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6734      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6735        return CheckEvalInICE(E, Ctx);
6736    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6737    if (CondResult.Val == 2)
6738      return CondResult;
6739
6740    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6741    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6742
6743    if (TrueResult.Val == 2)
6744      return TrueResult;
6745    if (FalseResult.Val == 2)
6746      return FalseResult;
6747    if (CondResult.Val == 1)
6748      return CondResult;
6749    if (TrueResult.Val == 0 && FalseResult.Val == 0)
6750      return NoDiag();
6751    // Rare case where the diagnostics depend on which side is evaluated
6752    // Note that if we get here, CondResult is 0, and at least one of
6753    // TrueResult and FalseResult is non-zero.
6754    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
6755      return FalseResult;
6756    }
6757    return TrueResult;
6758  }
6759  case Expr::CXXDefaultArgExprClass:
6760    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6761  case Expr::ChooseExprClass: {
6762    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6763  }
6764  }
6765
6766  llvm_unreachable("Invalid StmtClass!");
6767}
6768
6769/// Evaluate an expression as a C++11 integral constant expression.
6770static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6771                                                    const Expr *E,
6772                                                    llvm::APSInt *Value,
6773                                                    SourceLocation *Loc) {
6774  if (!E->getType()->isIntegralOrEnumerationType()) {
6775    if (Loc) *Loc = E->getExprLoc();
6776    return false;
6777  }
6778
6779  APValue Result;
6780  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6781    return false;
6782
6783  assert(Result.isInt() && "pointer cast to int is not an ICE");
6784  if (Value) *Value = Result.getInt();
6785  return true;
6786}
6787
6788bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6789  if (Ctx.getLangOpts().CPlusPlus0x)
6790    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6791
6792  ICEDiag d = CheckICE(this, Ctx);
6793  if (d.Val != 0) {
6794    if (Loc) *Loc = d.Loc;
6795    return false;
6796  }
6797  return true;
6798}
6799
6800bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6801                                 SourceLocation *Loc, bool isEvaluated) const {
6802  if (Ctx.getLangOpts().CPlusPlus0x)
6803    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6804
6805  if (!isIntegerConstantExpr(Ctx, Loc))
6806    return false;
6807  if (!EvaluateAsInt(Value, Ctx))
6808    llvm_unreachable("ICE cannot be evaluated!");
6809  return true;
6810}
6811
6812bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6813  return CheckICE(this, Ctx).Val == 0;
6814}
6815
6816bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6817                               SourceLocation *Loc) const {
6818  // We support this checking in C++98 mode in order to diagnose compatibility
6819  // issues.
6820  assert(Ctx.getLangOpts().CPlusPlus);
6821
6822  // Build evaluation settings.
6823  Expr::EvalStatus Status;
6824  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
6825  Status.Diag = &Diags;
6826  EvalInfo Info(Ctx, Status);
6827
6828  APValue Scratch;
6829  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6830
6831  if (!Diags.empty()) {
6832    IsConstExpr = false;
6833    if (Loc) *Loc = Diags[0].first;
6834  } else if (!IsConstExpr) {
6835    // FIXME: This shouldn't happen.
6836    if (Loc) *Loc = getExprLoc();
6837  }
6838
6839  return IsConstExpr;
6840}
6841
6842bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6843                                   llvm::SmallVectorImpl<
6844                                     PartialDiagnosticAt> &Diags) {
6845  // FIXME: It would be useful to check constexpr function templates, but at the
6846  // moment the constant expression evaluator cannot cope with the non-rigorous
6847  // ASTs which we build for dependent expressions.
6848  if (FD->isDependentContext())
6849    return true;
6850
6851  Expr::EvalStatus Status;
6852  Status.Diag = &Diags;
6853
6854  EvalInfo Info(FD->getASTContext(), Status);
6855  Info.CheckingPotentialConstantExpression = true;
6856
6857  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6858  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6859
6860  // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6861  // is a temporary being used as the 'this' pointer.
6862  LValue This;
6863  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6864  This.set(&VIE, Info.CurrentCall->Index);
6865
6866  ArrayRef<const Expr*> Args;
6867
6868  SourceLocation Loc = FD->getLocation();
6869
6870  APValue Scratch;
6871  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6872    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6873  else
6874    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6875                       Args, FD->getBody(), Info, Scratch);
6876
6877  return Diags.empty();
6878}
6879