ASTContext.cpp revision 283526
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60  HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64  if (!CommentsLoaded && ExternalSource) {
65    ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68    ArrayRef<RawComment *> RawComments = Comments.getComments();
69    assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70                          BeforeThanCompare<RawComment>(SourceMgr)));
71#endif
72
73    CommentsLoaded = true;
74  }
75
76  assert(D);
77
78  // User can not attach documentation to implicit declarations.
79  if (D->isImplicit())
80    return nullptr;
81
82  // User can not attach documentation to implicit instantiations.
83  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return nullptr;
86  }
87
88  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89    if (VD->isStaticDataMember() &&
90        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91      return nullptr;
92  }
93
94  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96      return nullptr;
97  }
98
99  if (const ClassTemplateSpecializationDecl *CTSD =
100          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102    if (TSK == TSK_ImplicitInstantiation ||
103        TSK == TSK_Undeclared)
104      return nullptr;
105  }
106
107  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109      return nullptr;
110  }
111  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112    // When tag declaration (but not definition!) is part of the
113    // decl-specifier-seq of some other declaration, it doesn't get comment
114    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115      return nullptr;
116  }
117  // TODO: handle comments for function parameters properly.
118  if (isa<ParmVarDecl>(D))
119    return nullptr;
120
121  // TODO: we could look up template parameter documentation in the template
122  // documentation.
123  if (isa<TemplateTypeParmDecl>(D) ||
124      isa<NonTypeTemplateParmDecl>(D) ||
125      isa<TemplateTemplateParmDecl>(D))
126    return nullptr;
127
128  ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130  // If there are no comments anywhere, we won't find anything.
131  if (RawComments.empty())
132    return nullptr;
133
134  // Find declaration location.
135  // For Objective-C declarations we generally don't expect to have multiple
136  // declarators, thus use declaration starting location as the "declaration
137  // location".
138  // For all other declarations multiple declarators are used quite frequently,
139  // so we use the location of the identifier as the "declaration location".
140  SourceLocation DeclLoc;
141  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142      isa<ObjCPropertyDecl>(D) ||
143      isa<RedeclarableTemplateDecl>(D) ||
144      isa<ClassTemplateSpecializationDecl>(D))
145    DeclLoc = D->getLocStart();
146  else {
147    DeclLoc = D->getLocation();
148    if (DeclLoc.isMacroID()) {
149      if (isa<TypedefDecl>(D)) {
150        // If location of the typedef name is in a macro, it is because being
151        // declared via a macro. Try using declaration's starting location as
152        // the "declaration location".
153        DeclLoc = D->getLocStart();
154      } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155        // If location of the tag decl is inside a macro, but the spelling of
156        // the tag name comes from a macro argument, it looks like a special
157        // macro like NS_ENUM is being used to define the tag decl.  In that
158        // case, adjust the source location to the expansion loc so that we can
159        // attach the comment to the tag decl.
160        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161            TD->isCompleteDefinition())
162          DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163      }
164    }
165  }
166
167  // If the declaration doesn't map directly to a location in a file, we
168  // can't find the comment.
169  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170    return nullptr;
171
172  // Find the comment that occurs just after this declaration.
173  ArrayRef<RawComment *>::iterator Comment;
174  {
175    // When searching for comments during parsing, the comment we are looking
176    // for is usually among the last two comments we parsed -- check them
177    // first.
178    RawComment CommentAtDeclLoc(
179        SourceMgr, SourceRange(DeclLoc), false,
180        LangOpts.CommentOpts.ParseAllComments);
181    BeforeThanCompare<RawComment> Compare(SourceMgr);
182    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184    if (!Found && RawComments.size() >= 2) {
185      MaybeBeforeDecl--;
186      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187    }
188
189    if (Found) {
190      Comment = MaybeBeforeDecl + 1;
191      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192                                         &CommentAtDeclLoc, Compare));
193    } else {
194      // Slow path.
195      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196                                 &CommentAtDeclLoc, Compare);
197    }
198  }
199
200  // Decompose the location for the declaration and find the beginning of the
201  // file buffer.
202  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204  // First check whether we have a trailing comment.
205  if (Comment != RawComments.end() &&
206      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208       isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209    std::pair<FileID, unsigned> CommentBeginDecomp
210      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211    // Check that Doxygen trailing comment comes after the declaration, starts
212    // on the same line and in the same file as the declaration.
213    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216                                     CommentBeginDecomp.second)) {
217      return *Comment;
218    }
219  }
220
221  // The comment just after the declaration was not a trailing comment.
222  // Let's look at the previous comment.
223  if (Comment == RawComments.begin())
224    return nullptr;
225  --Comment;
226
227  // Check that we actually have a non-member Doxygen comment.
228  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229    return nullptr;
230
231  // Decompose the end of the comment.
232  std::pair<FileID, unsigned> CommentEndDecomp
233    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235  // If the comment and the declaration aren't in the same file, then they
236  // aren't related.
237  if (DeclLocDecomp.first != CommentEndDecomp.first)
238    return nullptr;
239
240  // Get the corresponding buffer.
241  bool Invalid = false;
242  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243                                               &Invalid).data();
244  if (Invalid)
245    return nullptr;
246
247  // Extract text between the comment and declaration.
248  StringRef Text(Buffer + CommentEndDecomp.second,
249                 DeclLocDecomp.second - CommentEndDecomp.second);
250
251  // There should be no other declarations or preprocessor directives between
252  // comment and declaration.
253  if (Text.find_first_of(";{}#@") != StringRef::npos)
254    return nullptr;
255
256  return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265    // Is this function declaration part of a function template?
266    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267      return FTD;
268
269    // Nothing to do if function is not an implicit instantiation.
270    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271      return D;
272
273    // Function is an implicit instantiation of a function template?
274    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275      return FTD;
276
277    // Function is instantiated from a member definition of a class template?
278    if (const FunctionDecl *MemberDecl =
279            FD->getInstantiatedFromMemberFunction())
280      return MemberDecl;
281
282    return D;
283  }
284  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285    // Static data member is instantiated from a member definition of a class
286    // template?
287    if (VD->isStaticDataMember())
288      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289        return MemberDecl;
290
291    return D;
292  }
293  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294    // Is this class declaration part of a class template?
295    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296      return CTD;
297
298    // Class is an implicit instantiation of a class template or partial
299    // specialization?
300    if (const ClassTemplateSpecializationDecl *CTSD =
301            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303        return D;
304      llvm::PointerUnion<ClassTemplateDecl *,
305                         ClassTemplatePartialSpecializationDecl *>
306          PU = CTSD->getSpecializedTemplateOrPartial();
307      return PU.is<ClassTemplateDecl*>() ?
308          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309          static_cast<const Decl*>(
310              PU.get<ClassTemplatePartialSpecializationDecl *>());
311    }
312
313    // Class is instantiated from a member definition of a class template?
314    if (const MemberSpecializationInfo *Info =
315                   CRD->getMemberSpecializationInfo())
316      return Info->getInstantiatedFrom();
317
318    return D;
319  }
320  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321    // Enum is instantiated from a member definition of a class template?
322    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323      return MemberDecl;
324
325    return D;
326  }
327  // FIXME: Adjust alias templates?
328  return D;
329}
330} // unnamed namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333                                                const Decl *D,
334                                                const Decl **OriginalDecl) const {
335  D = adjustDeclToTemplate(D);
336
337  // Check whether we have cached a comment for this declaration already.
338  {
339    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340        RedeclComments.find(D);
341    if (Pos != RedeclComments.end()) {
342      const RawCommentAndCacheFlags &Raw = Pos->second;
343      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344        if (OriginalDecl)
345          *OriginalDecl = Raw.getOriginalDecl();
346        return Raw.getRaw();
347      }
348    }
349  }
350
351  // Search for comments attached to declarations in the redeclaration chain.
352  const RawComment *RC = nullptr;
353  const Decl *OriginalDeclForRC = nullptr;
354  for (auto I : D->redecls()) {
355    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356        RedeclComments.find(I);
357    if (Pos != RedeclComments.end()) {
358      const RawCommentAndCacheFlags &Raw = Pos->second;
359      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360        RC = Raw.getRaw();
361        OriginalDeclForRC = Raw.getOriginalDecl();
362        break;
363      }
364    } else {
365      RC = getRawCommentForDeclNoCache(I);
366      OriginalDeclForRC = I;
367      RawCommentAndCacheFlags Raw;
368      if (RC) {
369        Raw.setRaw(RC);
370        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371      } else
372        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373      Raw.setOriginalDecl(I);
374      RedeclComments[I] = Raw;
375      if (RC)
376        break;
377    }
378  }
379
380  // If we found a comment, it should be a documentation comment.
381  assert(!RC || RC->isDocumentation());
382
383  if (OriginalDecl)
384    *OriginalDecl = OriginalDeclForRC;
385
386  // Update cache for every declaration in the redeclaration chain.
387  RawCommentAndCacheFlags Raw;
388  Raw.setRaw(RC);
389  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390  Raw.setOriginalDecl(OriginalDeclForRC);
391
392  for (auto I : D->redecls()) {
393    RawCommentAndCacheFlags &R = RedeclComments[I];
394    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395      R = Raw;
396  }
397
398  return RC;
399}
400
401static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
403  const DeclContext *DC = ObjCMethod->getDeclContext();
404  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406    if (!ID)
407      return;
408    // Add redeclared method here.
409    for (const auto *Ext : ID->known_extensions()) {
410      if (ObjCMethodDecl *RedeclaredMethod =
411            Ext->getMethod(ObjCMethod->getSelector(),
412                                  ObjCMethod->isInstanceMethod()))
413        Redeclared.push_back(RedeclaredMethod);
414    }
415  }
416}
417
418comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419                                                    const Decl *D) const {
420  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421  ThisDeclInfo->CommentDecl = D;
422  ThisDeclInfo->IsFilled = false;
423  ThisDeclInfo->fill();
424  ThisDeclInfo->CommentDecl = FC->getDecl();
425  if (!ThisDeclInfo->TemplateParameters)
426    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427  comments::FullComment *CFC =
428    new (*this) comments::FullComment(FC->getBlocks(),
429                                      ThisDeclInfo);
430  return CFC;
431
432}
433
434comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435  const RawComment *RC = getRawCommentForDeclNoCache(D);
436  return RC ? RC->parse(*this, nullptr, D) : nullptr;
437}
438
439comments::FullComment *ASTContext::getCommentForDecl(
440                                              const Decl *D,
441                                              const Preprocessor *PP) const {
442  if (D->isInvalidDecl())
443    return nullptr;
444  D = adjustDeclToTemplate(D);
445
446  const Decl *Canonical = D->getCanonicalDecl();
447  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448      ParsedComments.find(Canonical);
449
450  if (Pos != ParsedComments.end()) {
451    if (Canonical != D) {
452      comments::FullComment *FC = Pos->second;
453      comments::FullComment *CFC = cloneFullComment(FC, D);
454      return CFC;
455    }
456    return Pos->second;
457  }
458
459  const Decl *OriginalDecl;
460
461  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462  if (!RC) {
463    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464      SmallVector<const NamedDecl*, 8> Overridden;
465      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466      if (OMD && OMD->isPropertyAccessor())
467        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469            return cloneFullComment(FC, D);
470      if (OMD)
471        addRedeclaredMethods(OMD, Overridden);
472      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475          return cloneFullComment(FC, D);
476    }
477    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478      // Attach any tag type's documentation to its typedef if latter
479      // does not have one of its own.
480      QualType QT = TD->getUnderlyingType();
481      if (const TagType *TT = QT->getAs<TagType>())
482        if (const Decl *TD = TT->getDecl())
483          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484            return cloneFullComment(FC, D);
485    }
486    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487      while (IC->getSuperClass()) {
488        IC = IC->getSuperClass();
489        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490          return cloneFullComment(FC, D);
491      }
492    }
493    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496          return cloneFullComment(FC, D);
497    }
498    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499      if (!(RD = RD->getDefinition()))
500        return nullptr;
501      // Check non-virtual bases.
502      for (const auto &I : RD->bases()) {
503        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504          continue;
505        QualType Ty = I.getType();
506        if (Ty.isNull())
507          continue;
508        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510            continue;
511
512          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513            return cloneFullComment(FC, D);
514        }
515      }
516      // Check virtual bases.
517      for (const auto &I : RD->vbases()) {
518        if (I.getAccessSpecifier() != AS_public)
519          continue;
520        QualType Ty = I.getType();
521        if (Ty.isNull())
522          continue;
523        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524          if (!(VirtualBase= VirtualBase->getDefinition()))
525            continue;
526          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527            return cloneFullComment(FC, D);
528        }
529      }
530    }
531    return nullptr;
532  }
533
534  // If the RawComment was attached to other redeclaration of this Decl, we
535  // should parse the comment in context of that other Decl.  This is important
536  // because comments can contain references to parameter names which can be
537  // different across redeclarations.
538  if (D != OriginalDecl)
539    return getCommentForDecl(OriginalDecl, PP);
540
541  comments::FullComment *FC = RC->parse(*this, PP, D);
542  ParsedComments[Canonical] = FC;
543  return FC;
544}
545
546void
547ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548                                               TemplateTemplateParmDecl *Parm) {
549  ID.AddInteger(Parm->getDepth());
550  ID.AddInteger(Parm->getPosition());
551  ID.AddBoolean(Parm->isParameterPack());
552
553  TemplateParameterList *Params = Parm->getTemplateParameters();
554  ID.AddInteger(Params->size());
555  for (TemplateParameterList::const_iterator P = Params->begin(),
556                                          PEnd = Params->end();
557       P != PEnd; ++P) {
558    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559      ID.AddInteger(0);
560      ID.AddBoolean(TTP->isParameterPack());
561      continue;
562    }
563
564    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565      ID.AddInteger(1);
566      ID.AddBoolean(NTTP->isParameterPack());
567      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568      if (NTTP->isExpandedParameterPack()) {
569        ID.AddBoolean(true);
570        ID.AddInteger(NTTP->getNumExpansionTypes());
571        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572          QualType T = NTTP->getExpansionType(I);
573          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574        }
575      } else
576        ID.AddBoolean(false);
577      continue;
578    }
579
580    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581    ID.AddInteger(2);
582    Profile(ID, TTP);
583  }
584}
585
586TemplateTemplateParmDecl *
587ASTContext::getCanonicalTemplateTemplateParmDecl(
588                                          TemplateTemplateParmDecl *TTP) const {
589  // Check if we already have a canonical template template parameter.
590  llvm::FoldingSetNodeID ID;
591  CanonicalTemplateTemplateParm::Profile(ID, TTP);
592  void *InsertPos = nullptr;
593  CanonicalTemplateTemplateParm *Canonical
594    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595  if (Canonical)
596    return Canonical->getParam();
597
598  // Build a canonical template parameter list.
599  TemplateParameterList *Params = TTP->getTemplateParameters();
600  SmallVector<NamedDecl *, 4> CanonParams;
601  CanonParams.reserve(Params->size());
602  for (TemplateParameterList::const_iterator P = Params->begin(),
603                                          PEnd = Params->end();
604       P != PEnd; ++P) {
605    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606      CanonParams.push_back(
607                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608                                               SourceLocation(),
609                                               SourceLocation(),
610                                               TTP->getDepth(),
611                                               TTP->getIndex(), nullptr, false,
612                                               TTP->isParameterPack()));
613    else if (NonTypeTemplateParmDecl *NTTP
614             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615      QualType T = getCanonicalType(NTTP->getType());
616      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617      NonTypeTemplateParmDecl *Param;
618      if (NTTP->isExpandedParameterPack()) {
619        SmallVector<QualType, 2> ExpandedTypes;
620        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623          ExpandedTInfos.push_back(
624                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
625        }
626
627        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                                SourceLocation(),
629                                                SourceLocation(),
630                                                NTTP->getDepth(),
631                                                NTTP->getPosition(), nullptr,
632                                                T,
633                                                TInfo,
634                                                ExpandedTypes.data(),
635                                                ExpandedTypes.size(),
636                                                ExpandedTInfos.data());
637      } else {
638        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639                                                SourceLocation(),
640                                                SourceLocation(),
641                                                NTTP->getDepth(),
642                                                NTTP->getPosition(), nullptr,
643                                                T,
644                                                NTTP->isParameterPack(),
645                                                TInfo);
646      }
647      CanonParams.push_back(Param);
648
649    } else
650      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651                                           cast<TemplateTemplateParmDecl>(*P)));
652  }
653
654  TemplateTemplateParmDecl *CanonTTP
655    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656                                       SourceLocation(), TTP->getDepth(),
657                                       TTP->getPosition(),
658                                       TTP->isParameterPack(),
659                                       nullptr,
660                         TemplateParameterList::Create(*this, SourceLocation(),
661                                                       SourceLocation(),
662                                                       CanonParams.data(),
663                                                       CanonParams.size(),
664                                                       SourceLocation()));
665
666  // Get the new insert position for the node we care about.
667  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668  assert(!Canonical && "Shouldn't be in the map!");
669  (void)Canonical;
670
671  // Create the canonical template template parameter entry.
672  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674  return CanonTTP;
675}
676
677CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678  if (!LangOpts.CPlusPlus) return nullptr;
679
680  switch (T.getCXXABI().getKind()) {
681  case TargetCXXABI::GenericARM: // Same as Itanium at this level
682  case TargetCXXABI::iOS:
683  case TargetCXXABI::iOS64:
684  case TargetCXXABI::GenericAArch64:
685  case TargetCXXABI::GenericMIPS:
686  case TargetCXXABI::GenericItanium:
687    return CreateItaniumCXXABI(*this);
688  case TargetCXXABI::Microsoft:
689    return CreateMicrosoftCXXABI(*this);
690  }
691  llvm_unreachable("Invalid CXXABI type!");
692}
693
694static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
695                                             const LangOptions &LOpts) {
696  if (LOpts.FakeAddressSpaceMap) {
697    // The fake address space map must have a distinct entry for each
698    // language-specific address space.
699    static const unsigned FakeAddrSpaceMap[] = {
700      1, // opencl_global
701      2, // opencl_local
702      3, // opencl_constant
703      4, // opencl_generic
704      5, // cuda_device
705      6, // cuda_constant
706      7  // cuda_shared
707    };
708    return &FakeAddrSpaceMap;
709  } else {
710    return &T.getAddressSpaceMap();
711  }
712}
713
714static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
715                                          const LangOptions &LangOpts) {
716  switch (LangOpts.getAddressSpaceMapMangling()) {
717  case LangOptions::ASMM_Target:
718    return TI.useAddressSpaceMapMangling();
719  case LangOptions::ASMM_On:
720    return true;
721  case LangOptions::ASMM_Off:
722    return false;
723  }
724  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
725}
726
727ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
728                       IdentifierTable &idents, SelectorTable &sels,
729                       Builtin::Context &builtins)
730    : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
731      DependentTemplateSpecializationTypes(this_()),
732      SubstTemplateTemplateParmPacks(this_()),
733      GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
734      UInt128Decl(nullptr), Float128StubDecl(nullptr),
735      BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
736      ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737      CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738      FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
739      ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
740      BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
741      FirstLocalImport(), LastLocalImport(),
742      SourceMgr(SM), LangOpts(LOpts),
743      SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFile, SM)),
744      AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
745      Idents(idents), Selectors(sels), BuiltinInfo(builtins),
746      DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
747      Comments(SM), CommentsLoaded(false),
748      CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
749  TUDecl = TranslationUnitDecl::Create(*this);
750}
751
752ASTContext::~ASTContext() {
753  ReleaseParentMapEntries();
754
755  // Release the DenseMaps associated with DeclContext objects.
756  // FIXME: Is this the ideal solution?
757  ReleaseDeclContextMaps();
758
759  // Call all of the deallocation functions on all of their targets.
760  for (DeallocationMap::const_iterator I = Deallocations.begin(),
761           E = Deallocations.end(); I != E; ++I)
762    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
763      (I->first)((I->second)[J]);
764
765  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
766  // because they can contain DenseMaps.
767  for (llvm::DenseMap<const ObjCContainerDecl*,
768       const ASTRecordLayout*>::iterator
769       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
770    // Increment in loop to prevent using deallocated memory.
771    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
772      R->Destroy(*this);
773
774  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
775       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
776    // Increment in loop to prevent using deallocated memory.
777    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
778      R->Destroy(*this);
779  }
780
781  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
782                                                    AEnd = DeclAttrs.end();
783       A != AEnd; ++A)
784    A->second->~AttrVec();
785
786  llvm::DeleteContainerSeconds(MangleNumberingContexts);
787}
788
789void ASTContext::ReleaseParentMapEntries() {
790  if (!AllParents) return;
791  for (const auto &Entry : *AllParents) {
792    if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
793      delete Entry.second.get<ast_type_traits::DynTypedNode *>();
794    } else {
795      assert(Entry.second.is<ParentVector *>());
796      delete Entry.second.get<ParentVector *>();
797    }
798  }
799}
800
801void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
802  Deallocations[Callback].push_back(Data);
803}
804
805void
806ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
807  ExternalSource = Source;
808}
809
810void ASTContext::PrintStats() const {
811  llvm::errs() << "\n*** AST Context Stats:\n";
812  llvm::errs() << "  " << Types.size() << " types total.\n";
813
814  unsigned counts[] = {
815#define TYPE(Name, Parent) 0,
816#define ABSTRACT_TYPE(Name, Parent)
817#include "clang/AST/TypeNodes.def"
818    0 // Extra
819  };
820
821  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
822    Type *T = Types[i];
823    counts[(unsigned)T->getTypeClass()]++;
824  }
825
826  unsigned Idx = 0;
827  unsigned TotalBytes = 0;
828#define TYPE(Name, Parent)                                              \
829  if (counts[Idx])                                                      \
830    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
831                 << " types\n";                                         \
832  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
833  ++Idx;
834#define ABSTRACT_TYPE(Name, Parent)
835#include "clang/AST/TypeNodes.def"
836
837  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
838
839  // Implicit special member functions.
840  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
841               << NumImplicitDefaultConstructors
842               << " implicit default constructors created\n";
843  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
844               << NumImplicitCopyConstructors
845               << " implicit copy constructors created\n";
846  if (getLangOpts().CPlusPlus)
847    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
848                 << NumImplicitMoveConstructors
849                 << " implicit move constructors created\n";
850  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
851               << NumImplicitCopyAssignmentOperators
852               << " implicit copy assignment operators created\n";
853  if (getLangOpts().CPlusPlus)
854    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
855                 << NumImplicitMoveAssignmentOperators
856                 << " implicit move assignment operators created\n";
857  llvm::errs() << NumImplicitDestructorsDeclared << "/"
858               << NumImplicitDestructors
859               << " implicit destructors created\n";
860
861  if (ExternalSource) {
862    llvm::errs() << "\n";
863    ExternalSource->PrintStats();
864  }
865
866  BumpAlloc.PrintStats();
867}
868
869RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
870                                            RecordDecl::TagKind TK) const {
871  SourceLocation Loc;
872  RecordDecl *NewDecl;
873  if (getLangOpts().CPlusPlus)
874    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
875                                    Loc, &Idents.get(Name));
876  else
877    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
878                                 &Idents.get(Name));
879  NewDecl->setImplicit();
880  return NewDecl;
881}
882
883TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
884                                              StringRef Name) const {
885  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
886  TypedefDecl *NewDecl = TypedefDecl::Create(
887      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
888      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
889  NewDecl->setImplicit();
890  return NewDecl;
891}
892
893TypedefDecl *ASTContext::getInt128Decl() const {
894  if (!Int128Decl)
895    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
896  return Int128Decl;
897}
898
899TypedefDecl *ASTContext::getUInt128Decl() const {
900  if (!UInt128Decl)
901    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
902  return UInt128Decl;
903}
904
905TypeDecl *ASTContext::getFloat128StubType() const {
906  assert(LangOpts.CPlusPlus && "should only be called for c++");
907  if (!Float128StubDecl)
908    Float128StubDecl = buildImplicitRecord("__float128");
909
910  return Float128StubDecl;
911}
912
913void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
914  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
915  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
916  Types.push_back(Ty);
917}
918
919void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
920  assert((!this->Target || this->Target == &Target) &&
921         "Incorrect target reinitialization");
922  assert(VoidTy.isNull() && "Context reinitialized?");
923
924  this->Target = &Target;
925
926  ABI.reset(createCXXABI(Target));
927  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
928  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
929
930  // C99 6.2.5p19.
931  InitBuiltinType(VoidTy,              BuiltinType::Void);
932
933  // C99 6.2.5p2.
934  InitBuiltinType(BoolTy,              BuiltinType::Bool);
935  // C99 6.2.5p3.
936  if (LangOpts.CharIsSigned)
937    InitBuiltinType(CharTy,            BuiltinType::Char_S);
938  else
939    InitBuiltinType(CharTy,            BuiltinType::Char_U);
940  // C99 6.2.5p4.
941  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
942  InitBuiltinType(ShortTy,             BuiltinType::Short);
943  InitBuiltinType(IntTy,               BuiltinType::Int);
944  InitBuiltinType(LongTy,              BuiltinType::Long);
945  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
946
947  // C99 6.2.5p6.
948  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
949  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
950  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
951  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
952  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
953
954  // C99 6.2.5p10.
955  InitBuiltinType(FloatTy,             BuiltinType::Float);
956  InitBuiltinType(DoubleTy,            BuiltinType::Double);
957  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
958
959  // GNU extension, 128-bit integers.
960  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
961  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
962
963  // C++ 3.9.1p5
964  if (TargetInfo::isTypeSigned(Target.getWCharType()))
965    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
966  else  // -fshort-wchar makes wchar_t be unsigned.
967    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
968  if (LangOpts.CPlusPlus && LangOpts.WChar)
969    WideCharTy = WCharTy;
970  else {
971    // C99 (or C++ using -fno-wchar).
972    WideCharTy = getFromTargetType(Target.getWCharType());
973  }
974
975  WIntTy = getFromTargetType(Target.getWIntType());
976
977  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
978    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
979  else // C99
980    Char16Ty = getFromTargetType(Target.getChar16Type());
981
982  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
983    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
984  else // C99
985    Char32Ty = getFromTargetType(Target.getChar32Type());
986
987  // Placeholder type for type-dependent expressions whose type is
988  // completely unknown. No code should ever check a type against
989  // DependentTy and users should never see it; however, it is here to
990  // help diagnose failures to properly check for type-dependent
991  // expressions.
992  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
993
994  // Placeholder type for functions.
995  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
996
997  // Placeholder type for bound members.
998  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
999
1000  // Placeholder type for pseudo-objects.
1001  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1002
1003  // "any" type; useful for debugger-like clients.
1004  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1005
1006  // Placeholder type for unbridged ARC casts.
1007  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1008
1009  // Placeholder type for builtin functions.
1010  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1011
1012  // C99 6.2.5p11.
1013  FloatComplexTy      = getComplexType(FloatTy);
1014  DoubleComplexTy     = getComplexType(DoubleTy);
1015  LongDoubleComplexTy = getComplexType(LongDoubleTy);
1016
1017  // Builtin types for 'id', 'Class', and 'SEL'.
1018  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1019  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1020  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1021
1022  if (LangOpts.OpenCL) {
1023    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1024    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1025    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1026    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1027    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1028    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1029
1030    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1031    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1032  }
1033
1034  // Builtin type for __objc_yes and __objc_no
1035  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1036                       SignedCharTy : BoolTy);
1037
1038  ObjCConstantStringType = QualType();
1039
1040  ObjCSuperType = QualType();
1041
1042  // void * type
1043  VoidPtrTy = getPointerType(VoidTy);
1044
1045  // nullptr type (C++0x 2.14.7)
1046  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1047
1048  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1049  InitBuiltinType(HalfTy, BuiltinType::Half);
1050
1051  // Builtin type used to help define __builtin_va_list.
1052  VaListTagTy = QualType();
1053}
1054
1055DiagnosticsEngine &ASTContext::getDiagnostics() const {
1056  return SourceMgr.getDiagnostics();
1057}
1058
1059AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1060  AttrVec *&Result = DeclAttrs[D];
1061  if (!Result) {
1062    void *Mem = Allocate(sizeof(AttrVec));
1063    Result = new (Mem) AttrVec;
1064  }
1065
1066  return *Result;
1067}
1068
1069/// \brief Erase the attributes corresponding to the given declaration.
1070void ASTContext::eraseDeclAttrs(const Decl *D) {
1071  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1072  if (Pos != DeclAttrs.end()) {
1073    Pos->second->~AttrVec();
1074    DeclAttrs.erase(Pos);
1075  }
1076}
1077
1078// FIXME: Remove ?
1079MemberSpecializationInfo *
1080ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1081  assert(Var->isStaticDataMember() && "Not a static data member");
1082  return getTemplateOrSpecializationInfo(Var)
1083      .dyn_cast<MemberSpecializationInfo *>();
1084}
1085
1086ASTContext::TemplateOrSpecializationInfo
1087ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1088  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1089      TemplateOrInstantiation.find(Var);
1090  if (Pos == TemplateOrInstantiation.end())
1091    return TemplateOrSpecializationInfo();
1092
1093  return Pos->second;
1094}
1095
1096void
1097ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1098                                                TemplateSpecializationKind TSK,
1099                                          SourceLocation PointOfInstantiation) {
1100  assert(Inst->isStaticDataMember() && "Not a static data member");
1101  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1102  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1103                                            Tmpl, TSK, PointOfInstantiation));
1104}
1105
1106void
1107ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1108                                            TemplateOrSpecializationInfo TSI) {
1109  assert(!TemplateOrInstantiation[Inst] &&
1110         "Already noted what the variable was instantiated from");
1111  TemplateOrInstantiation[Inst] = TSI;
1112}
1113
1114FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1115                                                     const FunctionDecl *FD){
1116  assert(FD && "Specialization is 0");
1117  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1118    = ClassScopeSpecializationPattern.find(FD);
1119  if (Pos == ClassScopeSpecializationPattern.end())
1120    return nullptr;
1121
1122  return Pos->second;
1123}
1124
1125void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1126                                        FunctionDecl *Pattern) {
1127  assert(FD && "Specialization is 0");
1128  assert(Pattern && "Class scope specialization pattern is 0");
1129  ClassScopeSpecializationPattern[FD] = Pattern;
1130}
1131
1132NamedDecl *
1133ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1134  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1135    = InstantiatedFromUsingDecl.find(UUD);
1136  if (Pos == InstantiatedFromUsingDecl.end())
1137    return nullptr;
1138
1139  return Pos->second;
1140}
1141
1142void
1143ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1144  assert((isa<UsingDecl>(Pattern) ||
1145          isa<UnresolvedUsingValueDecl>(Pattern) ||
1146          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1147         "pattern decl is not a using decl");
1148  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1149  InstantiatedFromUsingDecl[Inst] = Pattern;
1150}
1151
1152UsingShadowDecl *
1153ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1154  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1155    = InstantiatedFromUsingShadowDecl.find(Inst);
1156  if (Pos == InstantiatedFromUsingShadowDecl.end())
1157    return nullptr;
1158
1159  return Pos->second;
1160}
1161
1162void
1163ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1164                                               UsingShadowDecl *Pattern) {
1165  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1166  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1167}
1168
1169FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1170  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1171    = InstantiatedFromUnnamedFieldDecl.find(Field);
1172  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1173    return nullptr;
1174
1175  return Pos->second;
1176}
1177
1178void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1179                                                     FieldDecl *Tmpl) {
1180  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1181  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1182  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1183         "Already noted what unnamed field was instantiated from");
1184
1185  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1186}
1187
1188ASTContext::overridden_cxx_method_iterator
1189ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1190  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1191    = OverriddenMethods.find(Method->getCanonicalDecl());
1192  if (Pos == OverriddenMethods.end())
1193    return nullptr;
1194
1195  return Pos->second.begin();
1196}
1197
1198ASTContext::overridden_cxx_method_iterator
1199ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1200  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1201    = OverriddenMethods.find(Method->getCanonicalDecl());
1202  if (Pos == OverriddenMethods.end())
1203    return nullptr;
1204
1205  return Pos->second.end();
1206}
1207
1208unsigned
1209ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1210  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1211    = OverriddenMethods.find(Method->getCanonicalDecl());
1212  if (Pos == OverriddenMethods.end())
1213    return 0;
1214
1215  return Pos->second.size();
1216}
1217
1218void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1219                                     const CXXMethodDecl *Overridden) {
1220  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1221  OverriddenMethods[Method].push_back(Overridden);
1222}
1223
1224void ASTContext::getOverriddenMethods(
1225                      const NamedDecl *D,
1226                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1227  assert(D);
1228
1229  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1230    Overridden.append(overridden_methods_begin(CXXMethod),
1231                      overridden_methods_end(CXXMethod));
1232    return;
1233  }
1234
1235  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1236  if (!Method)
1237    return;
1238
1239  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1240  Method->getOverriddenMethods(OverDecls);
1241  Overridden.append(OverDecls.begin(), OverDecls.end());
1242}
1243
1244void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1245  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1246  assert(!Import->isFromASTFile() && "Non-local import declaration");
1247  if (!FirstLocalImport) {
1248    FirstLocalImport = Import;
1249    LastLocalImport = Import;
1250    return;
1251  }
1252
1253  LastLocalImport->NextLocalImport = Import;
1254  LastLocalImport = Import;
1255}
1256
1257//===----------------------------------------------------------------------===//
1258//                         Type Sizing and Analysis
1259//===----------------------------------------------------------------------===//
1260
1261/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1262/// scalar floating point type.
1263const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1264  const BuiltinType *BT = T->getAs<BuiltinType>();
1265  assert(BT && "Not a floating point type!");
1266  switch (BT->getKind()) {
1267  default: llvm_unreachable("Not a floating point type!");
1268  case BuiltinType::Half:       return Target->getHalfFormat();
1269  case BuiltinType::Float:      return Target->getFloatFormat();
1270  case BuiltinType::Double:     return Target->getDoubleFormat();
1271  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1272  }
1273}
1274
1275CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1276  unsigned Align = Target->getCharWidth();
1277
1278  bool UseAlignAttrOnly = false;
1279  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1280    Align = AlignFromAttr;
1281
1282    // __attribute__((aligned)) can increase or decrease alignment
1283    // *except* on a struct or struct member, where it only increases
1284    // alignment unless 'packed' is also specified.
1285    //
1286    // It is an error for alignas to decrease alignment, so we can
1287    // ignore that possibility;  Sema should diagnose it.
1288    if (isa<FieldDecl>(D)) {
1289      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1290        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1291    } else {
1292      UseAlignAttrOnly = true;
1293    }
1294  }
1295  else if (isa<FieldDecl>(D))
1296      UseAlignAttrOnly =
1297        D->hasAttr<PackedAttr>() ||
1298        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1299
1300  // If we're using the align attribute only, just ignore everything
1301  // else about the declaration and its type.
1302  if (UseAlignAttrOnly) {
1303    // do nothing
1304
1305  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1306    QualType T = VD->getType();
1307    if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1308      if (ForAlignof)
1309        T = RT->getPointeeType();
1310      else
1311        T = getPointerType(RT->getPointeeType());
1312    }
1313    QualType BaseT = getBaseElementType(T);
1314    if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1315      // Adjust alignments of declarations with array type by the
1316      // large-array alignment on the target.
1317      if (const ArrayType *arrayType = getAsArrayType(T)) {
1318        unsigned MinWidth = Target->getLargeArrayMinWidth();
1319        if (!ForAlignof && MinWidth) {
1320          if (isa<VariableArrayType>(arrayType))
1321            Align = std::max(Align, Target->getLargeArrayAlign());
1322          else if (isa<ConstantArrayType>(arrayType) &&
1323                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1324            Align = std::max(Align, Target->getLargeArrayAlign());
1325        }
1326      }
1327      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1328      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1329        if (VD->hasGlobalStorage())
1330          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1331      }
1332    }
1333
1334    // Fields can be subject to extra alignment constraints, like if
1335    // the field is packed, the struct is packed, or the struct has a
1336    // a max-field-alignment constraint (#pragma pack).  So calculate
1337    // the actual alignment of the field within the struct, and then
1338    // (as we're expected to) constrain that by the alignment of the type.
1339    if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1340      const RecordDecl *Parent = Field->getParent();
1341      // We can only produce a sensible answer if the record is valid.
1342      if (!Parent->isInvalidDecl()) {
1343        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1344
1345        // Start with the record's overall alignment.
1346        unsigned FieldAlign = toBits(Layout.getAlignment());
1347
1348        // Use the GCD of that and the offset within the record.
1349        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1350        if (Offset > 0) {
1351          // Alignment is always a power of 2, so the GCD will be a power of 2,
1352          // which means we get to do this crazy thing instead of Euclid's.
1353          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1354          if (LowBitOfOffset < FieldAlign)
1355            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1356        }
1357
1358        Align = std::min(Align, FieldAlign);
1359      }
1360    }
1361  }
1362
1363  return toCharUnitsFromBits(Align);
1364}
1365
1366// getTypeInfoDataSizeInChars - Return the size of a type, in
1367// chars. If the type is a record, its data size is returned.  This is
1368// the size of the memcpy that's performed when assigning this type
1369// using a trivial copy/move assignment operator.
1370std::pair<CharUnits, CharUnits>
1371ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1372  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1373
1374  // In C++, objects can sometimes be allocated into the tail padding
1375  // of a base-class subobject.  We decide whether that's possible
1376  // during class layout, so here we can just trust the layout results.
1377  if (getLangOpts().CPlusPlus) {
1378    if (const RecordType *RT = T->getAs<RecordType>()) {
1379      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1380      sizeAndAlign.first = layout.getDataSize();
1381    }
1382  }
1383
1384  return sizeAndAlign;
1385}
1386
1387/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1388/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1389std::pair<CharUnits, CharUnits>
1390static getConstantArrayInfoInChars(const ASTContext &Context,
1391                                   const ConstantArrayType *CAT) {
1392  std::pair<CharUnits, CharUnits> EltInfo =
1393      Context.getTypeInfoInChars(CAT->getElementType());
1394  uint64_t Size = CAT->getSize().getZExtValue();
1395  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1396              (uint64_t)(-1)/Size) &&
1397         "Overflow in array type char size evaluation");
1398  uint64_t Width = EltInfo.first.getQuantity() * Size;
1399  unsigned Align = EltInfo.second.getQuantity();
1400  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1401      Context.getTargetInfo().getPointerWidth(0) == 64)
1402    Width = llvm::RoundUpToAlignment(Width, Align);
1403  return std::make_pair(CharUnits::fromQuantity(Width),
1404                        CharUnits::fromQuantity(Align));
1405}
1406
1407std::pair<CharUnits, CharUnits>
1408ASTContext::getTypeInfoInChars(const Type *T) const {
1409  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1410    return getConstantArrayInfoInChars(*this, CAT);
1411  TypeInfo Info = getTypeInfo(T);
1412  return std::make_pair(toCharUnitsFromBits(Info.Width),
1413                        toCharUnitsFromBits(Info.Align));
1414}
1415
1416std::pair<CharUnits, CharUnits>
1417ASTContext::getTypeInfoInChars(QualType T) const {
1418  return getTypeInfoInChars(T.getTypePtr());
1419}
1420
1421bool ASTContext::isAlignmentRequired(const Type *T) const {
1422  return getTypeInfo(T).AlignIsRequired;
1423}
1424
1425bool ASTContext::isAlignmentRequired(QualType T) const {
1426  return isAlignmentRequired(T.getTypePtr());
1427}
1428
1429TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1430  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1431  if (I != MemoizedTypeInfo.end())
1432    return I->second;
1433
1434  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1435  TypeInfo TI = getTypeInfoImpl(T);
1436  MemoizedTypeInfo[T] = TI;
1437  return TI;
1438}
1439
1440/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1441/// method does not work on incomplete types.
1442///
1443/// FIXME: Pointers into different addr spaces could have different sizes and
1444/// alignment requirements: getPointerInfo should take an AddrSpace, this
1445/// should take a QualType, &c.
1446TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1447  uint64_t Width = 0;
1448  unsigned Align = 8;
1449  bool AlignIsRequired = false;
1450  switch (T->getTypeClass()) {
1451#define TYPE(Class, Base)
1452#define ABSTRACT_TYPE(Class, Base)
1453#define NON_CANONICAL_TYPE(Class, Base)
1454#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1455#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1456  case Type::Class:                                                            \
1457  assert(!T->isDependentType() && "should not see dependent types here");      \
1458  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1459#include "clang/AST/TypeNodes.def"
1460    llvm_unreachable("Should not see dependent types");
1461
1462  case Type::FunctionNoProto:
1463  case Type::FunctionProto:
1464    // GCC extension: alignof(function) = 32 bits
1465    Width = 0;
1466    Align = 32;
1467    break;
1468
1469  case Type::IncompleteArray:
1470  case Type::VariableArray:
1471    Width = 0;
1472    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1473    break;
1474
1475  case Type::ConstantArray: {
1476    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1477
1478    TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1479    uint64_t Size = CAT->getSize().getZExtValue();
1480    assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1481           "Overflow in array type bit size evaluation");
1482    Width = EltInfo.Width * Size;
1483    Align = EltInfo.Align;
1484    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1485        getTargetInfo().getPointerWidth(0) == 64)
1486      Width = llvm::RoundUpToAlignment(Width, Align);
1487    break;
1488  }
1489  case Type::ExtVector:
1490  case Type::Vector: {
1491    const VectorType *VT = cast<VectorType>(T);
1492    TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1493    Width = EltInfo.Width * VT->getNumElements();
1494    Align = Width;
1495    // If the alignment is not a power of 2, round up to the next power of 2.
1496    // This happens for non-power-of-2 length vectors.
1497    if (Align & (Align-1)) {
1498      Align = llvm::NextPowerOf2(Align);
1499      Width = llvm::RoundUpToAlignment(Width, Align);
1500    }
1501    // Adjust the alignment based on the target max.
1502    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1503    if (TargetVectorAlign && TargetVectorAlign < Align)
1504      Align = TargetVectorAlign;
1505    break;
1506  }
1507
1508  case Type::Builtin:
1509    switch (cast<BuiltinType>(T)->getKind()) {
1510    default: llvm_unreachable("Unknown builtin type!");
1511    case BuiltinType::Void:
1512      // GCC extension: alignof(void) = 8 bits.
1513      Width = 0;
1514      Align = 8;
1515      break;
1516
1517    case BuiltinType::Bool:
1518      Width = Target->getBoolWidth();
1519      Align = Target->getBoolAlign();
1520      break;
1521    case BuiltinType::Char_S:
1522    case BuiltinType::Char_U:
1523    case BuiltinType::UChar:
1524    case BuiltinType::SChar:
1525      Width = Target->getCharWidth();
1526      Align = Target->getCharAlign();
1527      break;
1528    case BuiltinType::WChar_S:
1529    case BuiltinType::WChar_U:
1530      Width = Target->getWCharWidth();
1531      Align = Target->getWCharAlign();
1532      break;
1533    case BuiltinType::Char16:
1534      Width = Target->getChar16Width();
1535      Align = Target->getChar16Align();
1536      break;
1537    case BuiltinType::Char32:
1538      Width = Target->getChar32Width();
1539      Align = Target->getChar32Align();
1540      break;
1541    case BuiltinType::UShort:
1542    case BuiltinType::Short:
1543      Width = Target->getShortWidth();
1544      Align = Target->getShortAlign();
1545      break;
1546    case BuiltinType::UInt:
1547    case BuiltinType::Int:
1548      Width = Target->getIntWidth();
1549      Align = Target->getIntAlign();
1550      break;
1551    case BuiltinType::ULong:
1552    case BuiltinType::Long:
1553      Width = Target->getLongWidth();
1554      Align = Target->getLongAlign();
1555      break;
1556    case BuiltinType::ULongLong:
1557    case BuiltinType::LongLong:
1558      Width = Target->getLongLongWidth();
1559      Align = Target->getLongLongAlign();
1560      break;
1561    case BuiltinType::Int128:
1562    case BuiltinType::UInt128:
1563      Width = 128;
1564      Align = 128; // int128_t is 128-bit aligned on all targets.
1565      break;
1566    case BuiltinType::Half:
1567      Width = Target->getHalfWidth();
1568      Align = Target->getHalfAlign();
1569      break;
1570    case BuiltinType::Float:
1571      Width = Target->getFloatWidth();
1572      Align = Target->getFloatAlign();
1573      break;
1574    case BuiltinType::Double:
1575      Width = Target->getDoubleWidth();
1576      Align = Target->getDoubleAlign();
1577      break;
1578    case BuiltinType::LongDouble:
1579      Width = Target->getLongDoubleWidth();
1580      Align = Target->getLongDoubleAlign();
1581      break;
1582    case BuiltinType::NullPtr:
1583      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1584      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1585      break;
1586    case BuiltinType::ObjCId:
1587    case BuiltinType::ObjCClass:
1588    case BuiltinType::ObjCSel:
1589      Width = Target->getPointerWidth(0);
1590      Align = Target->getPointerAlign(0);
1591      break;
1592    case BuiltinType::OCLSampler:
1593      // Samplers are modeled as integers.
1594      Width = Target->getIntWidth();
1595      Align = Target->getIntAlign();
1596      break;
1597    case BuiltinType::OCLEvent:
1598    case BuiltinType::OCLImage1d:
1599    case BuiltinType::OCLImage1dArray:
1600    case BuiltinType::OCLImage1dBuffer:
1601    case BuiltinType::OCLImage2d:
1602    case BuiltinType::OCLImage2dArray:
1603    case BuiltinType::OCLImage3d:
1604      // Currently these types are pointers to opaque types.
1605      Width = Target->getPointerWidth(0);
1606      Align = Target->getPointerAlign(0);
1607      break;
1608    }
1609    break;
1610  case Type::ObjCObjectPointer:
1611    Width = Target->getPointerWidth(0);
1612    Align = Target->getPointerAlign(0);
1613    break;
1614  case Type::BlockPointer: {
1615    unsigned AS = getTargetAddressSpace(
1616        cast<BlockPointerType>(T)->getPointeeType());
1617    Width = Target->getPointerWidth(AS);
1618    Align = Target->getPointerAlign(AS);
1619    break;
1620  }
1621  case Type::LValueReference:
1622  case Type::RValueReference: {
1623    // alignof and sizeof should never enter this code path here, so we go
1624    // the pointer route.
1625    unsigned AS = getTargetAddressSpace(
1626        cast<ReferenceType>(T)->getPointeeType());
1627    Width = Target->getPointerWidth(AS);
1628    Align = Target->getPointerAlign(AS);
1629    break;
1630  }
1631  case Type::Pointer: {
1632    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1633    Width = Target->getPointerWidth(AS);
1634    Align = Target->getPointerAlign(AS);
1635    break;
1636  }
1637  case Type::MemberPointer: {
1638    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1639    std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1640    break;
1641  }
1642  case Type::Complex: {
1643    // Complex types have the same alignment as their elements, but twice the
1644    // size.
1645    TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1646    Width = EltInfo.Width * 2;
1647    Align = EltInfo.Align;
1648    break;
1649  }
1650  case Type::ObjCObject:
1651    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1652  case Type::Adjusted:
1653  case Type::Decayed:
1654    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1655  case Type::ObjCInterface: {
1656    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1657    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1658    Width = toBits(Layout.getSize());
1659    Align = toBits(Layout.getAlignment());
1660    break;
1661  }
1662  case Type::Record:
1663  case Type::Enum: {
1664    const TagType *TT = cast<TagType>(T);
1665
1666    if (TT->getDecl()->isInvalidDecl()) {
1667      Width = 8;
1668      Align = 8;
1669      break;
1670    }
1671
1672    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1673      return getTypeInfo(ET->getDecl()->getIntegerType());
1674
1675    const RecordType *RT = cast<RecordType>(TT);
1676    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1677    Width = toBits(Layout.getSize());
1678    Align = toBits(Layout.getAlignment());
1679    break;
1680  }
1681
1682  case Type::SubstTemplateTypeParm:
1683    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1684                       getReplacementType().getTypePtr());
1685
1686  case Type::Auto: {
1687    const AutoType *A = cast<AutoType>(T);
1688    assert(!A->getDeducedType().isNull() &&
1689           "cannot request the size of an undeduced or dependent auto type");
1690    return getTypeInfo(A->getDeducedType().getTypePtr());
1691  }
1692
1693  case Type::Paren:
1694    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1695
1696  case Type::Typedef: {
1697    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1698    TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1699    // If the typedef has an aligned attribute on it, it overrides any computed
1700    // alignment we have.  This violates the GCC documentation (which says that
1701    // attribute(aligned) can only round up) but matches its implementation.
1702    if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1703      Align = AttrAlign;
1704      AlignIsRequired = true;
1705    } else {
1706      Align = Info.Align;
1707      AlignIsRequired = Info.AlignIsRequired;
1708    }
1709    Width = Info.Width;
1710    break;
1711  }
1712
1713  case Type::Elaborated:
1714    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1715
1716  case Type::Attributed:
1717    return getTypeInfo(
1718                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1719
1720  case Type::Atomic: {
1721    // Start with the base type information.
1722    TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1723    Width = Info.Width;
1724    Align = Info.Align;
1725
1726    // If the size of the type doesn't exceed the platform's max
1727    // atomic promotion width, make the size and alignment more
1728    // favorable to atomic operations:
1729    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1730      // Round the size up to a power of 2.
1731      if (!llvm::isPowerOf2_64(Width))
1732        Width = llvm::NextPowerOf2(Width);
1733
1734      // Set the alignment equal to the size.
1735      Align = static_cast<unsigned>(Width);
1736    }
1737  }
1738
1739  }
1740
1741  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1742  return TypeInfo(Width, Align, AlignIsRequired);
1743}
1744
1745/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1746CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1747  return CharUnits::fromQuantity(BitSize / getCharWidth());
1748}
1749
1750/// toBits - Convert a size in characters to a size in characters.
1751int64_t ASTContext::toBits(CharUnits CharSize) const {
1752  return CharSize.getQuantity() * getCharWidth();
1753}
1754
1755/// getTypeSizeInChars - Return the size of the specified type, in characters.
1756/// This method does not work on incomplete types.
1757CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1758  return getTypeInfoInChars(T).first;
1759}
1760CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1761  return getTypeInfoInChars(T).first;
1762}
1763
1764/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1765/// characters. This method does not work on incomplete types.
1766CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1767  return toCharUnitsFromBits(getTypeAlign(T));
1768}
1769CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1770  return toCharUnitsFromBits(getTypeAlign(T));
1771}
1772
1773/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1774/// type for the current target in bits.  This can be different than the ABI
1775/// alignment in cases where it is beneficial for performance to overalign
1776/// a data type.
1777unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1778  TypeInfo TI = getTypeInfo(T);
1779  unsigned ABIAlign = TI.Align;
1780
1781  if (Target->getTriple().getArch() == llvm::Triple::xcore)
1782    return ABIAlign;  // Never overalign on XCore.
1783
1784  // Double and long long should be naturally aligned if possible.
1785  T = T->getBaseElementTypeUnsafe();
1786  if (const ComplexType *CT = T->getAs<ComplexType>())
1787    T = CT->getElementType().getTypePtr();
1788  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1789      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1790      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1791    // Don't increase the alignment if an alignment attribute was specified on a
1792    // typedef declaration.
1793    if (!TI.AlignIsRequired)
1794      return std::max(ABIAlign, (unsigned)getTypeSize(T));
1795
1796  return ABIAlign;
1797}
1798
1799/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1800/// to a global variable of the specified type.
1801unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1802  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1803}
1804
1805/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1806/// should be given to a global variable of the specified type.
1807CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1808  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1809}
1810
1811/// DeepCollectObjCIvars -
1812/// This routine first collects all declared, but not synthesized, ivars in
1813/// super class and then collects all ivars, including those synthesized for
1814/// current class. This routine is used for implementation of current class
1815/// when all ivars, declared and synthesized are known.
1816///
1817void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1818                                      bool leafClass,
1819                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1820  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1821    DeepCollectObjCIvars(SuperClass, false, Ivars);
1822  if (!leafClass) {
1823    for (const auto *I : OI->ivars())
1824      Ivars.push_back(I);
1825  } else {
1826    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1827    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1828         Iv= Iv->getNextIvar())
1829      Ivars.push_back(Iv);
1830  }
1831}
1832
1833/// CollectInheritedProtocols - Collect all protocols in current class and
1834/// those inherited by it.
1835void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1836                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1837  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1838    // We can use protocol_iterator here instead of
1839    // all_referenced_protocol_iterator since we are walking all categories.
1840    for (auto *Proto : OI->all_referenced_protocols()) {
1841      Protocols.insert(Proto->getCanonicalDecl());
1842      for (auto *P : Proto->protocols()) {
1843        Protocols.insert(P->getCanonicalDecl());
1844        CollectInheritedProtocols(P, Protocols);
1845      }
1846    }
1847
1848    // Categories of this Interface.
1849    for (const auto *Cat : OI->visible_categories())
1850      CollectInheritedProtocols(Cat, Protocols);
1851
1852    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1853      while (SD) {
1854        CollectInheritedProtocols(SD, Protocols);
1855        SD = SD->getSuperClass();
1856      }
1857  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1858    for (auto *Proto : OC->protocols()) {
1859      Protocols.insert(Proto->getCanonicalDecl());
1860      for (const auto *P : Proto->protocols())
1861        CollectInheritedProtocols(P, Protocols);
1862    }
1863  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1864    for (auto *Proto : OP->protocols()) {
1865      Protocols.insert(Proto->getCanonicalDecl());
1866      for (const auto *P : Proto->protocols())
1867        CollectInheritedProtocols(P, Protocols);
1868    }
1869  }
1870}
1871
1872unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1873  unsigned count = 0;
1874  // Count ivars declared in class extension.
1875  for (const auto *Ext : OI->known_extensions())
1876    count += Ext->ivar_size();
1877
1878  // Count ivar defined in this class's implementation.  This
1879  // includes synthesized ivars.
1880  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1881    count += ImplDecl->ivar_size();
1882
1883  return count;
1884}
1885
1886bool ASTContext::isSentinelNullExpr(const Expr *E) {
1887  if (!E)
1888    return false;
1889
1890  // nullptr_t is always treated as null.
1891  if (E->getType()->isNullPtrType()) return true;
1892
1893  if (E->getType()->isAnyPointerType() &&
1894      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1895                                                Expr::NPC_ValueDependentIsNull))
1896    return true;
1897
1898  // Unfortunately, __null has type 'int'.
1899  if (isa<GNUNullExpr>(E)) return true;
1900
1901  return false;
1902}
1903
1904/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1905ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1906  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1907    I = ObjCImpls.find(D);
1908  if (I != ObjCImpls.end())
1909    return cast<ObjCImplementationDecl>(I->second);
1910  return nullptr;
1911}
1912/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1913ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1914  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1915    I = ObjCImpls.find(D);
1916  if (I != ObjCImpls.end())
1917    return cast<ObjCCategoryImplDecl>(I->second);
1918  return nullptr;
1919}
1920
1921/// \brief Set the implementation of ObjCInterfaceDecl.
1922void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1923                           ObjCImplementationDecl *ImplD) {
1924  assert(IFaceD && ImplD && "Passed null params");
1925  ObjCImpls[IFaceD] = ImplD;
1926}
1927/// \brief Set the implementation of ObjCCategoryDecl.
1928void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1929                           ObjCCategoryImplDecl *ImplD) {
1930  assert(CatD && ImplD && "Passed null params");
1931  ObjCImpls[CatD] = ImplD;
1932}
1933
1934const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1935                                              const NamedDecl *ND) const {
1936  if (const ObjCInterfaceDecl *ID =
1937          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1938    return ID;
1939  if (const ObjCCategoryDecl *CD =
1940          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1941    return CD->getClassInterface();
1942  if (const ObjCImplDecl *IMD =
1943          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1944    return IMD->getClassInterface();
1945
1946  return nullptr;
1947}
1948
1949/// \brief Get the copy initialization expression of VarDecl,or NULL if
1950/// none exists.
1951Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1952  assert(VD && "Passed null params");
1953  assert(VD->hasAttr<BlocksAttr>() &&
1954         "getBlockVarCopyInits - not __block var");
1955  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1956    I = BlockVarCopyInits.find(VD);
1957  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1958}
1959
1960/// \brief Set the copy inialization expression of a block var decl.
1961void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1962  assert(VD && Init && "Passed null params");
1963  assert(VD->hasAttr<BlocksAttr>() &&
1964         "setBlockVarCopyInits - not __block var");
1965  BlockVarCopyInits[VD] = Init;
1966}
1967
1968TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1969                                                 unsigned DataSize) const {
1970  if (!DataSize)
1971    DataSize = TypeLoc::getFullDataSizeForType(T);
1972  else
1973    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1974           "incorrect data size provided to CreateTypeSourceInfo!");
1975
1976  TypeSourceInfo *TInfo =
1977    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1978  new (TInfo) TypeSourceInfo(T);
1979  return TInfo;
1980}
1981
1982TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1983                                                     SourceLocation L) const {
1984  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1985  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1986  return DI;
1987}
1988
1989const ASTRecordLayout &
1990ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1991  return getObjCLayout(D, nullptr);
1992}
1993
1994const ASTRecordLayout &
1995ASTContext::getASTObjCImplementationLayout(
1996                                        const ObjCImplementationDecl *D) const {
1997  return getObjCLayout(D->getClassInterface(), D);
1998}
1999
2000//===----------------------------------------------------------------------===//
2001//                   Type creation/memoization methods
2002//===----------------------------------------------------------------------===//
2003
2004QualType
2005ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2006  unsigned fastQuals = quals.getFastQualifiers();
2007  quals.removeFastQualifiers();
2008
2009  // Check if we've already instantiated this type.
2010  llvm::FoldingSetNodeID ID;
2011  ExtQuals::Profile(ID, baseType, quals);
2012  void *insertPos = nullptr;
2013  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2014    assert(eq->getQualifiers() == quals);
2015    return QualType(eq, fastQuals);
2016  }
2017
2018  // If the base type is not canonical, make the appropriate canonical type.
2019  QualType canon;
2020  if (!baseType->isCanonicalUnqualified()) {
2021    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2022    canonSplit.Quals.addConsistentQualifiers(quals);
2023    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2024
2025    // Re-find the insert position.
2026    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2027  }
2028
2029  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2030  ExtQualNodes.InsertNode(eq, insertPos);
2031  return QualType(eq, fastQuals);
2032}
2033
2034QualType
2035ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2036  QualType CanT = getCanonicalType(T);
2037  if (CanT.getAddressSpace() == AddressSpace)
2038    return T;
2039
2040  // If we are composing extended qualifiers together, merge together
2041  // into one ExtQuals node.
2042  QualifierCollector Quals;
2043  const Type *TypeNode = Quals.strip(T);
2044
2045  // If this type already has an address space specified, it cannot get
2046  // another one.
2047  assert(!Quals.hasAddressSpace() &&
2048         "Type cannot be in multiple addr spaces!");
2049  Quals.addAddressSpace(AddressSpace);
2050
2051  return getExtQualType(TypeNode, Quals);
2052}
2053
2054QualType ASTContext::getObjCGCQualType(QualType T,
2055                                       Qualifiers::GC GCAttr) const {
2056  QualType CanT = getCanonicalType(T);
2057  if (CanT.getObjCGCAttr() == GCAttr)
2058    return T;
2059
2060  if (const PointerType *ptr = T->getAs<PointerType>()) {
2061    QualType Pointee = ptr->getPointeeType();
2062    if (Pointee->isAnyPointerType()) {
2063      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2064      return getPointerType(ResultType);
2065    }
2066  }
2067
2068  // If we are composing extended qualifiers together, merge together
2069  // into one ExtQuals node.
2070  QualifierCollector Quals;
2071  const Type *TypeNode = Quals.strip(T);
2072
2073  // If this type already has an ObjCGC specified, it cannot get
2074  // another one.
2075  assert(!Quals.hasObjCGCAttr() &&
2076         "Type cannot have multiple ObjCGCs!");
2077  Quals.addObjCGCAttr(GCAttr);
2078
2079  return getExtQualType(TypeNode, Quals);
2080}
2081
2082const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2083                                                   FunctionType::ExtInfo Info) {
2084  if (T->getExtInfo() == Info)
2085    return T;
2086
2087  QualType Result;
2088  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2089    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2090  } else {
2091    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2092    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2093    EPI.ExtInfo = Info;
2094    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2095  }
2096
2097  return cast<FunctionType>(Result.getTypePtr());
2098}
2099
2100void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2101                                                 QualType ResultType) {
2102  FD = FD->getMostRecentDecl();
2103  while (true) {
2104    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2105    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2106    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2107    if (FunctionDecl *Next = FD->getPreviousDecl())
2108      FD = Next;
2109    else
2110      break;
2111  }
2112  if (ASTMutationListener *L = getASTMutationListener())
2113    L->DeducedReturnType(FD, ResultType);
2114}
2115
2116/// Get a function type and produce the equivalent function type with the
2117/// specified exception specification. Type sugar that can be present on a
2118/// declaration of a function with an exception specification is permitted
2119/// and preserved. Other type sugar (for instance, typedefs) is not.
2120static QualType getFunctionTypeWithExceptionSpec(
2121    ASTContext &Context, QualType Orig,
2122    const FunctionProtoType::ExceptionSpecInfo &ESI) {
2123  // Might have some parens.
2124  if (auto *PT = dyn_cast<ParenType>(Orig))
2125    return Context.getParenType(
2126        getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2127
2128  // Might have a calling-convention attribute.
2129  if (auto *AT = dyn_cast<AttributedType>(Orig))
2130    return Context.getAttributedType(
2131        AT->getAttrKind(),
2132        getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2133        getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2134                                         ESI));
2135
2136  // Anything else must be a function type. Rebuild it with the new exception
2137  // specification.
2138  const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2139  return Context.getFunctionType(
2140      Proto->getReturnType(), Proto->getParamTypes(),
2141      Proto->getExtProtoInfo().withExceptionSpec(ESI));
2142}
2143
2144void ASTContext::adjustExceptionSpec(
2145    FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2146    bool AsWritten) {
2147  // Update the type.
2148  QualType Updated =
2149      getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2150  FD->setType(Updated);
2151
2152  if (!AsWritten)
2153    return;
2154
2155  // Update the type in the type source information too.
2156  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2157    // If the type and the type-as-written differ, we may need to update
2158    // the type-as-written too.
2159    if (TSInfo->getType() != FD->getType())
2160      Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2161
2162    // FIXME: When we get proper type location information for exceptions,
2163    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2164    // up the TypeSourceInfo;
2165    assert(TypeLoc::getFullDataSizeForType(Updated) ==
2166               TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2167           "TypeLoc size mismatch from updating exception specification");
2168    TSInfo->overrideType(Updated);
2169  }
2170}
2171
2172/// getComplexType - Return the uniqued reference to the type for a complex
2173/// number with the specified element type.
2174QualType ASTContext::getComplexType(QualType T) const {
2175  // Unique pointers, to guarantee there is only one pointer of a particular
2176  // structure.
2177  llvm::FoldingSetNodeID ID;
2178  ComplexType::Profile(ID, T);
2179
2180  void *InsertPos = nullptr;
2181  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2182    return QualType(CT, 0);
2183
2184  // If the pointee type isn't canonical, this won't be a canonical type either,
2185  // so fill in the canonical type field.
2186  QualType Canonical;
2187  if (!T.isCanonical()) {
2188    Canonical = getComplexType(getCanonicalType(T));
2189
2190    // Get the new insert position for the node we care about.
2191    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2192    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2193  }
2194  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2195  Types.push_back(New);
2196  ComplexTypes.InsertNode(New, InsertPos);
2197  return QualType(New, 0);
2198}
2199
2200/// getPointerType - Return the uniqued reference to the type for a pointer to
2201/// the specified type.
2202QualType ASTContext::getPointerType(QualType T) const {
2203  // Unique pointers, to guarantee there is only one pointer of a particular
2204  // structure.
2205  llvm::FoldingSetNodeID ID;
2206  PointerType::Profile(ID, T);
2207
2208  void *InsertPos = nullptr;
2209  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2210    return QualType(PT, 0);
2211
2212  // If the pointee type isn't canonical, this won't be a canonical type either,
2213  // so fill in the canonical type field.
2214  QualType Canonical;
2215  if (!T.isCanonical()) {
2216    Canonical = getPointerType(getCanonicalType(T));
2217
2218    // Get the new insert position for the node we care about.
2219    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2220    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2221  }
2222  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2223  Types.push_back(New);
2224  PointerTypes.InsertNode(New, InsertPos);
2225  return QualType(New, 0);
2226}
2227
2228QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2229  llvm::FoldingSetNodeID ID;
2230  AdjustedType::Profile(ID, Orig, New);
2231  void *InsertPos = nullptr;
2232  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2233  if (AT)
2234    return QualType(AT, 0);
2235
2236  QualType Canonical = getCanonicalType(New);
2237
2238  // Get the new insert position for the node we care about.
2239  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2240  assert(!AT && "Shouldn't be in the map!");
2241
2242  AT = new (*this, TypeAlignment)
2243      AdjustedType(Type::Adjusted, Orig, New, Canonical);
2244  Types.push_back(AT);
2245  AdjustedTypes.InsertNode(AT, InsertPos);
2246  return QualType(AT, 0);
2247}
2248
2249QualType ASTContext::getDecayedType(QualType T) const {
2250  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2251
2252  QualType Decayed;
2253
2254  // C99 6.7.5.3p7:
2255  //   A declaration of a parameter as "array of type" shall be
2256  //   adjusted to "qualified pointer to type", where the type
2257  //   qualifiers (if any) are those specified within the [ and ] of
2258  //   the array type derivation.
2259  if (T->isArrayType())
2260    Decayed = getArrayDecayedType(T);
2261
2262  // C99 6.7.5.3p8:
2263  //   A declaration of a parameter as "function returning type"
2264  //   shall be adjusted to "pointer to function returning type", as
2265  //   in 6.3.2.1.
2266  if (T->isFunctionType())
2267    Decayed = getPointerType(T);
2268
2269  llvm::FoldingSetNodeID ID;
2270  AdjustedType::Profile(ID, T, Decayed);
2271  void *InsertPos = nullptr;
2272  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2273  if (AT)
2274    return QualType(AT, 0);
2275
2276  QualType Canonical = getCanonicalType(Decayed);
2277
2278  // Get the new insert position for the node we care about.
2279  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2280  assert(!AT && "Shouldn't be in the map!");
2281
2282  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2283  Types.push_back(AT);
2284  AdjustedTypes.InsertNode(AT, InsertPos);
2285  return QualType(AT, 0);
2286}
2287
2288/// getBlockPointerType - Return the uniqued reference to the type for
2289/// a pointer to the specified block.
2290QualType ASTContext::getBlockPointerType(QualType T) const {
2291  assert(T->isFunctionType() && "block of function types only");
2292  // Unique pointers, to guarantee there is only one block of a particular
2293  // structure.
2294  llvm::FoldingSetNodeID ID;
2295  BlockPointerType::Profile(ID, T);
2296
2297  void *InsertPos = nullptr;
2298  if (BlockPointerType *PT =
2299        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2300    return QualType(PT, 0);
2301
2302  // If the block pointee type isn't canonical, this won't be a canonical
2303  // type either so fill in the canonical type field.
2304  QualType Canonical;
2305  if (!T.isCanonical()) {
2306    Canonical = getBlockPointerType(getCanonicalType(T));
2307
2308    // Get the new insert position for the node we care about.
2309    BlockPointerType *NewIP =
2310      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2311    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2312  }
2313  BlockPointerType *New
2314    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2315  Types.push_back(New);
2316  BlockPointerTypes.InsertNode(New, InsertPos);
2317  return QualType(New, 0);
2318}
2319
2320/// getLValueReferenceType - Return the uniqued reference to the type for an
2321/// lvalue reference to the specified type.
2322QualType
2323ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2324  assert(getCanonicalType(T) != OverloadTy &&
2325         "Unresolved overloaded function type");
2326
2327  // Unique pointers, to guarantee there is only one pointer of a particular
2328  // structure.
2329  llvm::FoldingSetNodeID ID;
2330  ReferenceType::Profile(ID, T, SpelledAsLValue);
2331
2332  void *InsertPos = nullptr;
2333  if (LValueReferenceType *RT =
2334        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2335    return QualType(RT, 0);
2336
2337  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2338
2339  // If the referencee type isn't canonical, this won't be a canonical type
2340  // either, so fill in the canonical type field.
2341  QualType Canonical;
2342  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2343    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2344    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2345
2346    // Get the new insert position for the node we care about.
2347    LValueReferenceType *NewIP =
2348      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2349    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2350  }
2351
2352  LValueReferenceType *New
2353    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2354                                                     SpelledAsLValue);
2355  Types.push_back(New);
2356  LValueReferenceTypes.InsertNode(New, InsertPos);
2357
2358  return QualType(New, 0);
2359}
2360
2361/// getRValueReferenceType - Return the uniqued reference to the type for an
2362/// rvalue reference to the specified type.
2363QualType ASTContext::getRValueReferenceType(QualType T) const {
2364  // Unique pointers, to guarantee there is only one pointer of a particular
2365  // structure.
2366  llvm::FoldingSetNodeID ID;
2367  ReferenceType::Profile(ID, T, false);
2368
2369  void *InsertPos = nullptr;
2370  if (RValueReferenceType *RT =
2371        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2372    return QualType(RT, 0);
2373
2374  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2375
2376  // If the referencee type isn't canonical, this won't be a canonical type
2377  // either, so fill in the canonical type field.
2378  QualType Canonical;
2379  if (InnerRef || !T.isCanonical()) {
2380    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2381    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2382
2383    // Get the new insert position for the node we care about.
2384    RValueReferenceType *NewIP =
2385      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2386    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2387  }
2388
2389  RValueReferenceType *New
2390    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2391  Types.push_back(New);
2392  RValueReferenceTypes.InsertNode(New, InsertPos);
2393  return QualType(New, 0);
2394}
2395
2396/// getMemberPointerType - Return the uniqued reference to the type for a
2397/// member pointer to the specified type, in the specified class.
2398QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2399  // Unique pointers, to guarantee there is only one pointer of a particular
2400  // structure.
2401  llvm::FoldingSetNodeID ID;
2402  MemberPointerType::Profile(ID, T, Cls);
2403
2404  void *InsertPos = nullptr;
2405  if (MemberPointerType *PT =
2406      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2407    return QualType(PT, 0);
2408
2409  // If the pointee or class type isn't canonical, this won't be a canonical
2410  // type either, so fill in the canonical type field.
2411  QualType Canonical;
2412  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2413    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2414
2415    // Get the new insert position for the node we care about.
2416    MemberPointerType *NewIP =
2417      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2418    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2419  }
2420  MemberPointerType *New
2421    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2422  Types.push_back(New);
2423  MemberPointerTypes.InsertNode(New, InsertPos);
2424  return QualType(New, 0);
2425}
2426
2427/// getConstantArrayType - Return the unique reference to the type for an
2428/// array of the specified element type.
2429QualType ASTContext::getConstantArrayType(QualType EltTy,
2430                                          const llvm::APInt &ArySizeIn,
2431                                          ArrayType::ArraySizeModifier ASM,
2432                                          unsigned IndexTypeQuals) const {
2433  assert((EltTy->isDependentType() ||
2434          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2435         "Constant array of VLAs is illegal!");
2436
2437  // Convert the array size into a canonical width matching the pointer size for
2438  // the target.
2439  llvm::APInt ArySize(ArySizeIn);
2440  ArySize =
2441    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2442
2443  llvm::FoldingSetNodeID ID;
2444  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2445
2446  void *InsertPos = nullptr;
2447  if (ConstantArrayType *ATP =
2448      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2449    return QualType(ATP, 0);
2450
2451  // If the element type isn't canonical or has qualifiers, this won't
2452  // be a canonical type either, so fill in the canonical type field.
2453  QualType Canon;
2454  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2455    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2456    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2457                                 ASM, IndexTypeQuals);
2458    Canon = getQualifiedType(Canon, canonSplit.Quals);
2459
2460    // Get the new insert position for the node we care about.
2461    ConstantArrayType *NewIP =
2462      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2463    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2464  }
2465
2466  ConstantArrayType *New = new(*this,TypeAlignment)
2467    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2468  ConstantArrayTypes.InsertNode(New, InsertPos);
2469  Types.push_back(New);
2470  return QualType(New, 0);
2471}
2472
2473/// getVariableArrayDecayedType - Turns the given type, which may be
2474/// variably-modified, into the corresponding type with all the known
2475/// sizes replaced with [*].
2476QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2477  // Vastly most common case.
2478  if (!type->isVariablyModifiedType()) return type;
2479
2480  QualType result;
2481
2482  SplitQualType split = type.getSplitDesugaredType();
2483  const Type *ty = split.Ty;
2484  switch (ty->getTypeClass()) {
2485#define TYPE(Class, Base)
2486#define ABSTRACT_TYPE(Class, Base)
2487#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2488#include "clang/AST/TypeNodes.def"
2489    llvm_unreachable("didn't desugar past all non-canonical types?");
2490
2491  // These types should never be variably-modified.
2492  case Type::Builtin:
2493  case Type::Complex:
2494  case Type::Vector:
2495  case Type::ExtVector:
2496  case Type::DependentSizedExtVector:
2497  case Type::ObjCObject:
2498  case Type::ObjCInterface:
2499  case Type::ObjCObjectPointer:
2500  case Type::Record:
2501  case Type::Enum:
2502  case Type::UnresolvedUsing:
2503  case Type::TypeOfExpr:
2504  case Type::TypeOf:
2505  case Type::Decltype:
2506  case Type::UnaryTransform:
2507  case Type::DependentName:
2508  case Type::InjectedClassName:
2509  case Type::TemplateSpecialization:
2510  case Type::DependentTemplateSpecialization:
2511  case Type::TemplateTypeParm:
2512  case Type::SubstTemplateTypeParmPack:
2513  case Type::Auto:
2514  case Type::PackExpansion:
2515    llvm_unreachable("type should never be variably-modified");
2516
2517  // These types can be variably-modified but should never need to
2518  // further decay.
2519  case Type::FunctionNoProto:
2520  case Type::FunctionProto:
2521  case Type::BlockPointer:
2522  case Type::MemberPointer:
2523    return type;
2524
2525  // These types can be variably-modified.  All these modifications
2526  // preserve structure except as noted by comments.
2527  // TODO: if we ever care about optimizing VLAs, there are no-op
2528  // optimizations available here.
2529  case Type::Pointer:
2530    result = getPointerType(getVariableArrayDecayedType(
2531                              cast<PointerType>(ty)->getPointeeType()));
2532    break;
2533
2534  case Type::LValueReference: {
2535    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2536    result = getLValueReferenceType(
2537                 getVariableArrayDecayedType(lv->getPointeeType()),
2538                                    lv->isSpelledAsLValue());
2539    break;
2540  }
2541
2542  case Type::RValueReference: {
2543    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2544    result = getRValueReferenceType(
2545                 getVariableArrayDecayedType(lv->getPointeeType()));
2546    break;
2547  }
2548
2549  case Type::Atomic: {
2550    const AtomicType *at = cast<AtomicType>(ty);
2551    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2552    break;
2553  }
2554
2555  case Type::ConstantArray: {
2556    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2557    result = getConstantArrayType(
2558                 getVariableArrayDecayedType(cat->getElementType()),
2559                                  cat->getSize(),
2560                                  cat->getSizeModifier(),
2561                                  cat->getIndexTypeCVRQualifiers());
2562    break;
2563  }
2564
2565  case Type::DependentSizedArray: {
2566    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2567    result = getDependentSizedArrayType(
2568                 getVariableArrayDecayedType(dat->getElementType()),
2569                                        dat->getSizeExpr(),
2570                                        dat->getSizeModifier(),
2571                                        dat->getIndexTypeCVRQualifiers(),
2572                                        dat->getBracketsRange());
2573    break;
2574  }
2575
2576  // Turn incomplete types into [*] types.
2577  case Type::IncompleteArray: {
2578    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2579    result = getVariableArrayType(
2580                 getVariableArrayDecayedType(iat->getElementType()),
2581                                  /*size*/ nullptr,
2582                                  ArrayType::Normal,
2583                                  iat->getIndexTypeCVRQualifiers(),
2584                                  SourceRange());
2585    break;
2586  }
2587
2588  // Turn VLA types into [*] types.
2589  case Type::VariableArray: {
2590    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2591    result = getVariableArrayType(
2592                 getVariableArrayDecayedType(vat->getElementType()),
2593                                  /*size*/ nullptr,
2594                                  ArrayType::Star,
2595                                  vat->getIndexTypeCVRQualifiers(),
2596                                  vat->getBracketsRange());
2597    break;
2598  }
2599  }
2600
2601  // Apply the top-level qualifiers from the original.
2602  return getQualifiedType(result, split.Quals);
2603}
2604
2605/// getVariableArrayType - Returns a non-unique reference to the type for a
2606/// variable array of the specified element type.
2607QualType ASTContext::getVariableArrayType(QualType EltTy,
2608                                          Expr *NumElts,
2609                                          ArrayType::ArraySizeModifier ASM,
2610                                          unsigned IndexTypeQuals,
2611                                          SourceRange Brackets) const {
2612  // Since we don't unique expressions, it isn't possible to unique VLA's
2613  // that have an expression provided for their size.
2614  QualType Canon;
2615
2616  // Be sure to pull qualifiers off the element type.
2617  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2618    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2619    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2620                                 IndexTypeQuals, Brackets);
2621    Canon = getQualifiedType(Canon, canonSplit.Quals);
2622  }
2623
2624  VariableArrayType *New = new(*this, TypeAlignment)
2625    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2626
2627  VariableArrayTypes.push_back(New);
2628  Types.push_back(New);
2629  return QualType(New, 0);
2630}
2631
2632/// getDependentSizedArrayType - Returns a non-unique reference to
2633/// the type for a dependently-sized array of the specified element
2634/// type.
2635QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2636                                                Expr *numElements,
2637                                                ArrayType::ArraySizeModifier ASM,
2638                                                unsigned elementTypeQuals,
2639                                                SourceRange brackets) const {
2640  assert((!numElements || numElements->isTypeDependent() ||
2641          numElements->isValueDependent()) &&
2642         "Size must be type- or value-dependent!");
2643
2644  // Dependently-sized array types that do not have a specified number
2645  // of elements will have their sizes deduced from a dependent
2646  // initializer.  We do no canonicalization here at all, which is okay
2647  // because they can't be used in most locations.
2648  if (!numElements) {
2649    DependentSizedArrayType *newType
2650      = new (*this, TypeAlignment)
2651          DependentSizedArrayType(*this, elementType, QualType(),
2652                                  numElements, ASM, elementTypeQuals,
2653                                  brackets);
2654    Types.push_back(newType);
2655    return QualType(newType, 0);
2656  }
2657
2658  // Otherwise, we actually build a new type every time, but we
2659  // also build a canonical type.
2660
2661  SplitQualType canonElementType = getCanonicalType(elementType).split();
2662
2663  void *insertPos = nullptr;
2664  llvm::FoldingSetNodeID ID;
2665  DependentSizedArrayType::Profile(ID, *this,
2666                                   QualType(canonElementType.Ty, 0),
2667                                   ASM, elementTypeQuals, numElements);
2668
2669  // Look for an existing type with these properties.
2670  DependentSizedArrayType *canonTy =
2671    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2672
2673  // If we don't have one, build one.
2674  if (!canonTy) {
2675    canonTy = new (*this, TypeAlignment)
2676      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2677                              QualType(), numElements, ASM, elementTypeQuals,
2678                              brackets);
2679    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2680    Types.push_back(canonTy);
2681  }
2682
2683  // Apply qualifiers from the element type to the array.
2684  QualType canon = getQualifiedType(QualType(canonTy,0),
2685                                    canonElementType.Quals);
2686
2687  // If we didn't need extra canonicalization for the element type,
2688  // then just use that as our result.
2689  if (QualType(canonElementType.Ty, 0) == elementType)
2690    return canon;
2691
2692  // Otherwise, we need to build a type which follows the spelling
2693  // of the element type.
2694  DependentSizedArrayType *sugaredType
2695    = new (*this, TypeAlignment)
2696        DependentSizedArrayType(*this, elementType, canon, numElements,
2697                                ASM, elementTypeQuals, brackets);
2698  Types.push_back(sugaredType);
2699  return QualType(sugaredType, 0);
2700}
2701
2702QualType ASTContext::getIncompleteArrayType(QualType elementType,
2703                                            ArrayType::ArraySizeModifier ASM,
2704                                            unsigned elementTypeQuals) const {
2705  llvm::FoldingSetNodeID ID;
2706  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2707
2708  void *insertPos = nullptr;
2709  if (IncompleteArrayType *iat =
2710       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2711    return QualType(iat, 0);
2712
2713  // If the element type isn't canonical, this won't be a canonical type
2714  // either, so fill in the canonical type field.  We also have to pull
2715  // qualifiers off the element type.
2716  QualType canon;
2717
2718  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2719    SplitQualType canonSplit = getCanonicalType(elementType).split();
2720    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2721                                   ASM, elementTypeQuals);
2722    canon = getQualifiedType(canon, canonSplit.Quals);
2723
2724    // Get the new insert position for the node we care about.
2725    IncompleteArrayType *existing =
2726      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2727    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2728  }
2729
2730  IncompleteArrayType *newType = new (*this, TypeAlignment)
2731    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2732
2733  IncompleteArrayTypes.InsertNode(newType, insertPos);
2734  Types.push_back(newType);
2735  return QualType(newType, 0);
2736}
2737
2738/// getVectorType - Return the unique reference to a vector type of
2739/// the specified element type and size. VectorType must be a built-in type.
2740QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2741                                   VectorType::VectorKind VecKind) const {
2742  assert(vecType->isBuiltinType());
2743
2744  // Check if we've already instantiated a vector of this type.
2745  llvm::FoldingSetNodeID ID;
2746  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2747
2748  void *InsertPos = nullptr;
2749  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2750    return QualType(VTP, 0);
2751
2752  // If the element type isn't canonical, this won't be a canonical type either,
2753  // so fill in the canonical type field.
2754  QualType Canonical;
2755  if (!vecType.isCanonical()) {
2756    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2757
2758    // Get the new insert position for the node we care about.
2759    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2760    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2761  }
2762  VectorType *New = new (*this, TypeAlignment)
2763    VectorType(vecType, NumElts, Canonical, VecKind);
2764  VectorTypes.InsertNode(New, InsertPos);
2765  Types.push_back(New);
2766  return QualType(New, 0);
2767}
2768
2769/// getExtVectorType - Return the unique reference to an extended vector type of
2770/// the specified element type and size. VectorType must be a built-in type.
2771QualType
2772ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2773  assert(vecType->isBuiltinType() || vecType->isDependentType());
2774
2775  // Check if we've already instantiated a vector of this type.
2776  llvm::FoldingSetNodeID ID;
2777  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2778                      VectorType::GenericVector);
2779  void *InsertPos = nullptr;
2780  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2781    return QualType(VTP, 0);
2782
2783  // If the element type isn't canonical, this won't be a canonical type either,
2784  // so fill in the canonical type field.
2785  QualType Canonical;
2786  if (!vecType.isCanonical()) {
2787    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2788
2789    // Get the new insert position for the node we care about.
2790    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2791    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2792  }
2793  ExtVectorType *New = new (*this, TypeAlignment)
2794    ExtVectorType(vecType, NumElts, Canonical);
2795  VectorTypes.InsertNode(New, InsertPos);
2796  Types.push_back(New);
2797  return QualType(New, 0);
2798}
2799
2800QualType
2801ASTContext::getDependentSizedExtVectorType(QualType vecType,
2802                                           Expr *SizeExpr,
2803                                           SourceLocation AttrLoc) const {
2804  llvm::FoldingSetNodeID ID;
2805  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2806                                       SizeExpr);
2807
2808  void *InsertPos = nullptr;
2809  DependentSizedExtVectorType *Canon
2810    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2811  DependentSizedExtVectorType *New;
2812  if (Canon) {
2813    // We already have a canonical version of this array type; use it as
2814    // the canonical type for a newly-built type.
2815    New = new (*this, TypeAlignment)
2816      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2817                                  SizeExpr, AttrLoc);
2818  } else {
2819    QualType CanonVecTy = getCanonicalType(vecType);
2820    if (CanonVecTy == vecType) {
2821      New = new (*this, TypeAlignment)
2822        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2823                                    AttrLoc);
2824
2825      DependentSizedExtVectorType *CanonCheck
2826        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2827      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2828      (void)CanonCheck;
2829      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2830    } else {
2831      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2832                                                      SourceLocation());
2833      New = new (*this, TypeAlignment)
2834        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2835    }
2836  }
2837
2838  Types.push_back(New);
2839  return QualType(New, 0);
2840}
2841
2842/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2843///
2844QualType
2845ASTContext::getFunctionNoProtoType(QualType ResultTy,
2846                                   const FunctionType::ExtInfo &Info) const {
2847  const CallingConv CallConv = Info.getCC();
2848
2849  // Unique functions, to guarantee there is only one function of a particular
2850  // structure.
2851  llvm::FoldingSetNodeID ID;
2852  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2853
2854  void *InsertPos = nullptr;
2855  if (FunctionNoProtoType *FT =
2856        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2857    return QualType(FT, 0);
2858
2859  QualType Canonical;
2860  if (!ResultTy.isCanonical()) {
2861    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2862
2863    // Get the new insert position for the node we care about.
2864    FunctionNoProtoType *NewIP =
2865      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2866    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2867  }
2868
2869  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2870  FunctionNoProtoType *New = new (*this, TypeAlignment)
2871    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2872  Types.push_back(New);
2873  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2874  return QualType(New, 0);
2875}
2876
2877/// \brief Determine whether \p T is canonical as the result type of a function.
2878static bool isCanonicalResultType(QualType T) {
2879  return T.isCanonical() &&
2880         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2881          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2882}
2883
2884QualType
2885ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2886                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2887  size_t NumArgs = ArgArray.size();
2888
2889  // Unique functions, to guarantee there is only one function of a particular
2890  // structure.
2891  llvm::FoldingSetNodeID ID;
2892  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2893                             *this);
2894
2895  void *InsertPos = nullptr;
2896  if (FunctionProtoType *FTP =
2897        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2898    return QualType(FTP, 0);
2899
2900  // Determine whether the type being created is already canonical or not.
2901  bool isCanonical =
2902    EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2903    !EPI.HasTrailingReturn;
2904  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2905    if (!ArgArray[i].isCanonicalAsParam())
2906      isCanonical = false;
2907
2908  // If this type isn't canonical, get the canonical version of it.
2909  // The exception spec is not part of the canonical type.
2910  QualType Canonical;
2911  if (!isCanonical) {
2912    SmallVector<QualType, 16> CanonicalArgs;
2913    CanonicalArgs.reserve(NumArgs);
2914    for (unsigned i = 0; i != NumArgs; ++i)
2915      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2916
2917    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2918    CanonicalEPI.HasTrailingReturn = false;
2919    CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2920
2921    // Result types do not have ARC lifetime qualifiers.
2922    QualType CanResultTy = getCanonicalType(ResultTy);
2923    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2924      Qualifiers Qs = CanResultTy.getQualifiers();
2925      Qs.removeObjCLifetime();
2926      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2927    }
2928
2929    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2930
2931    // Get the new insert position for the node we care about.
2932    FunctionProtoType *NewIP =
2933      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2934    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2935  }
2936
2937  // FunctionProtoType objects are allocated with extra bytes after
2938  // them for three variable size arrays at the end:
2939  //  - parameter types
2940  //  - exception types
2941  //  - consumed-arguments flags
2942  // Instead of the exception types, there could be a noexcept
2943  // expression, or information used to resolve the exception
2944  // specification.
2945  size_t Size = sizeof(FunctionProtoType) +
2946                NumArgs * sizeof(QualType);
2947  if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2948    Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2949  } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2950    Size += sizeof(Expr*);
2951  } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2952    Size += 2 * sizeof(FunctionDecl*);
2953  } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2954    Size += sizeof(FunctionDecl*);
2955  }
2956  if (EPI.ConsumedParameters)
2957    Size += NumArgs * sizeof(bool);
2958
2959  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2960  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2961  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2962  Types.push_back(FTP);
2963  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2964  return QualType(FTP, 0);
2965}
2966
2967#ifndef NDEBUG
2968static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2969  if (!isa<CXXRecordDecl>(D)) return false;
2970  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2971  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2972    return true;
2973  if (RD->getDescribedClassTemplate() &&
2974      !isa<ClassTemplateSpecializationDecl>(RD))
2975    return true;
2976  return false;
2977}
2978#endif
2979
2980/// getInjectedClassNameType - Return the unique reference to the
2981/// injected class name type for the specified templated declaration.
2982QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2983                                              QualType TST) const {
2984  assert(NeedsInjectedClassNameType(Decl));
2985  if (Decl->TypeForDecl) {
2986    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2987  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2988    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2989    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2990    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2991  } else {
2992    Type *newType =
2993      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2994    Decl->TypeForDecl = newType;
2995    Types.push_back(newType);
2996  }
2997  return QualType(Decl->TypeForDecl, 0);
2998}
2999
3000/// getTypeDeclType - Return the unique reference to the type for the
3001/// specified type declaration.
3002QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3003  assert(Decl && "Passed null for Decl param");
3004  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3005
3006  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3007    return getTypedefType(Typedef);
3008
3009  assert(!isa<TemplateTypeParmDecl>(Decl) &&
3010         "Template type parameter types are always available.");
3011
3012  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3013    assert(Record->isFirstDecl() && "struct/union has previous declaration");
3014    assert(!NeedsInjectedClassNameType(Record));
3015    return getRecordType(Record);
3016  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3017    assert(Enum->isFirstDecl() && "enum has previous declaration");
3018    return getEnumType(Enum);
3019  } else if (const UnresolvedUsingTypenameDecl *Using =
3020               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3021    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3022    Decl->TypeForDecl = newType;
3023    Types.push_back(newType);
3024  } else
3025    llvm_unreachable("TypeDecl without a type?");
3026
3027  return QualType(Decl->TypeForDecl, 0);
3028}
3029
3030/// getTypedefType - Return the unique reference to the type for the
3031/// specified typedef name decl.
3032QualType
3033ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3034                           QualType Canonical) const {
3035  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3036
3037  if (Canonical.isNull())
3038    Canonical = getCanonicalType(Decl->getUnderlyingType());
3039  TypedefType *newType = new(*this, TypeAlignment)
3040    TypedefType(Type::Typedef, Decl, Canonical);
3041  Decl->TypeForDecl = newType;
3042  Types.push_back(newType);
3043  return QualType(newType, 0);
3044}
3045
3046QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3047  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3048
3049  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3050    if (PrevDecl->TypeForDecl)
3051      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3052
3053  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3054  Decl->TypeForDecl = newType;
3055  Types.push_back(newType);
3056  return QualType(newType, 0);
3057}
3058
3059QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3060  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3061
3062  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3063    if (PrevDecl->TypeForDecl)
3064      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3065
3066  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3067  Decl->TypeForDecl = newType;
3068  Types.push_back(newType);
3069  return QualType(newType, 0);
3070}
3071
3072QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3073                                       QualType modifiedType,
3074                                       QualType equivalentType) {
3075  llvm::FoldingSetNodeID id;
3076  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3077
3078  void *insertPos = nullptr;
3079  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3080  if (type) return QualType(type, 0);
3081
3082  QualType canon = getCanonicalType(equivalentType);
3083  type = new (*this, TypeAlignment)
3084           AttributedType(canon, attrKind, modifiedType, equivalentType);
3085
3086  Types.push_back(type);
3087  AttributedTypes.InsertNode(type, insertPos);
3088
3089  return QualType(type, 0);
3090}
3091
3092
3093/// \brief Retrieve a substitution-result type.
3094QualType
3095ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3096                                         QualType Replacement) const {
3097  assert(Replacement.isCanonical()
3098         && "replacement types must always be canonical");
3099
3100  llvm::FoldingSetNodeID ID;
3101  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3102  void *InsertPos = nullptr;
3103  SubstTemplateTypeParmType *SubstParm
3104    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3105
3106  if (!SubstParm) {
3107    SubstParm = new (*this, TypeAlignment)
3108      SubstTemplateTypeParmType(Parm, Replacement);
3109    Types.push_back(SubstParm);
3110    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3111  }
3112
3113  return QualType(SubstParm, 0);
3114}
3115
3116/// \brief Retrieve a
3117QualType ASTContext::getSubstTemplateTypeParmPackType(
3118                                          const TemplateTypeParmType *Parm,
3119                                              const TemplateArgument &ArgPack) {
3120#ifndef NDEBUG
3121  for (const auto &P : ArgPack.pack_elements()) {
3122    assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3123    assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3124  }
3125#endif
3126
3127  llvm::FoldingSetNodeID ID;
3128  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3129  void *InsertPos = nullptr;
3130  if (SubstTemplateTypeParmPackType *SubstParm
3131        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3132    return QualType(SubstParm, 0);
3133
3134  QualType Canon;
3135  if (!Parm->isCanonicalUnqualified()) {
3136    Canon = getCanonicalType(QualType(Parm, 0));
3137    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3138                                             ArgPack);
3139    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3140  }
3141
3142  SubstTemplateTypeParmPackType *SubstParm
3143    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3144                                                               ArgPack);
3145  Types.push_back(SubstParm);
3146  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3147  return QualType(SubstParm, 0);
3148}
3149
3150/// \brief Retrieve the template type parameter type for a template
3151/// parameter or parameter pack with the given depth, index, and (optionally)
3152/// name.
3153QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3154                                             bool ParameterPack,
3155                                             TemplateTypeParmDecl *TTPDecl) const {
3156  llvm::FoldingSetNodeID ID;
3157  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3158  void *InsertPos = nullptr;
3159  TemplateTypeParmType *TypeParm
3160    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3161
3162  if (TypeParm)
3163    return QualType(TypeParm, 0);
3164
3165  if (TTPDecl) {
3166    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3167    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3168
3169    TemplateTypeParmType *TypeCheck
3170      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3171    assert(!TypeCheck && "Template type parameter canonical type broken");
3172    (void)TypeCheck;
3173  } else
3174    TypeParm = new (*this, TypeAlignment)
3175      TemplateTypeParmType(Depth, Index, ParameterPack);
3176
3177  Types.push_back(TypeParm);
3178  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3179
3180  return QualType(TypeParm, 0);
3181}
3182
3183TypeSourceInfo *
3184ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3185                                              SourceLocation NameLoc,
3186                                        const TemplateArgumentListInfo &Args,
3187                                              QualType Underlying) const {
3188  assert(!Name.getAsDependentTemplateName() &&
3189         "No dependent template names here!");
3190  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3191
3192  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3193  TemplateSpecializationTypeLoc TL =
3194      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3195  TL.setTemplateKeywordLoc(SourceLocation());
3196  TL.setTemplateNameLoc(NameLoc);
3197  TL.setLAngleLoc(Args.getLAngleLoc());
3198  TL.setRAngleLoc(Args.getRAngleLoc());
3199  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3200    TL.setArgLocInfo(i, Args[i].getLocInfo());
3201  return DI;
3202}
3203
3204QualType
3205ASTContext::getTemplateSpecializationType(TemplateName Template,
3206                                          const TemplateArgumentListInfo &Args,
3207                                          QualType Underlying) const {
3208  assert(!Template.getAsDependentTemplateName() &&
3209         "No dependent template names here!");
3210
3211  unsigned NumArgs = Args.size();
3212
3213  SmallVector<TemplateArgument, 4> ArgVec;
3214  ArgVec.reserve(NumArgs);
3215  for (unsigned i = 0; i != NumArgs; ++i)
3216    ArgVec.push_back(Args[i].getArgument());
3217
3218  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3219                                       Underlying);
3220}
3221
3222#ifndef NDEBUG
3223static bool hasAnyPackExpansions(const TemplateArgument *Args,
3224                                 unsigned NumArgs) {
3225  for (unsigned I = 0; I != NumArgs; ++I)
3226    if (Args[I].isPackExpansion())
3227      return true;
3228
3229  return true;
3230}
3231#endif
3232
3233QualType
3234ASTContext::getTemplateSpecializationType(TemplateName Template,
3235                                          const TemplateArgument *Args,
3236                                          unsigned NumArgs,
3237                                          QualType Underlying) const {
3238  assert(!Template.getAsDependentTemplateName() &&
3239         "No dependent template names here!");
3240  // Look through qualified template names.
3241  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3242    Template = TemplateName(QTN->getTemplateDecl());
3243
3244  bool IsTypeAlias =
3245    Template.getAsTemplateDecl() &&
3246    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3247  QualType CanonType;
3248  if (!Underlying.isNull())
3249    CanonType = getCanonicalType(Underlying);
3250  else {
3251    // We can get here with an alias template when the specialization contains
3252    // a pack expansion that does not match up with a parameter pack.
3253    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3254           "Caller must compute aliased type");
3255    IsTypeAlias = false;
3256    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3257                                                       NumArgs);
3258  }
3259
3260  // Allocate the (non-canonical) template specialization type, but don't
3261  // try to unique it: these types typically have location information that
3262  // we don't unique and don't want to lose.
3263  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3264                       sizeof(TemplateArgument) * NumArgs +
3265                       (IsTypeAlias? sizeof(QualType) : 0),
3266                       TypeAlignment);
3267  TemplateSpecializationType *Spec
3268    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3269                                         IsTypeAlias ? Underlying : QualType());
3270
3271  Types.push_back(Spec);
3272  return QualType(Spec, 0);
3273}
3274
3275QualType
3276ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3277                                                   const TemplateArgument *Args,
3278                                                   unsigned NumArgs) const {
3279  assert(!Template.getAsDependentTemplateName() &&
3280         "No dependent template names here!");
3281
3282  // Look through qualified template names.
3283  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3284    Template = TemplateName(QTN->getTemplateDecl());
3285
3286  // Build the canonical template specialization type.
3287  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3288  SmallVector<TemplateArgument, 4> CanonArgs;
3289  CanonArgs.reserve(NumArgs);
3290  for (unsigned I = 0; I != NumArgs; ++I)
3291    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3292
3293  // Determine whether this canonical template specialization type already
3294  // exists.
3295  llvm::FoldingSetNodeID ID;
3296  TemplateSpecializationType::Profile(ID, CanonTemplate,
3297                                      CanonArgs.data(), NumArgs, *this);
3298
3299  void *InsertPos = nullptr;
3300  TemplateSpecializationType *Spec
3301    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3302
3303  if (!Spec) {
3304    // Allocate a new canonical template specialization type.
3305    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3306                          sizeof(TemplateArgument) * NumArgs),
3307                         TypeAlignment);
3308    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3309                                                CanonArgs.data(), NumArgs,
3310                                                QualType(), QualType());
3311    Types.push_back(Spec);
3312    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3313  }
3314
3315  assert(Spec->isDependentType() &&
3316         "Non-dependent template-id type must have a canonical type");
3317  return QualType(Spec, 0);
3318}
3319
3320QualType
3321ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3322                              NestedNameSpecifier *NNS,
3323                              QualType NamedType) const {
3324  llvm::FoldingSetNodeID ID;
3325  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3326
3327  void *InsertPos = nullptr;
3328  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3329  if (T)
3330    return QualType(T, 0);
3331
3332  QualType Canon = NamedType;
3333  if (!Canon.isCanonical()) {
3334    Canon = getCanonicalType(NamedType);
3335    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3336    assert(!CheckT && "Elaborated canonical type broken");
3337    (void)CheckT;
3338  }
3339
3340  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3341  Types.push_back(T);
3342  ElaboratedTypes.InsertNode(T, InsertPos);
3343  return QualType(T, 0);
3344}
3345
3346QualType
3347ASTContext::getParenType(QualType InnerType) const {
3348  llvm::FoldingSetNodeID ID;
3349  ParenType::Profile(ID, InnerType);
3350
3351  void *InsertPos = nullptr;
3352  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3353  if (T)
3354    return QualType(T, 0);
3355
3356  QualType Canon = InnerType;
3357  if (!Canon.isCanonical()) {
3358    Canon = getCanonicalType(InnerType);
3359    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3360    assert(!CheckT && "Paren canonical type broken");
3361    (void)CheckT;
3362  }
3363
3364  T = new (*this) ParenType(InnerType, Canon);
3365  Types.push_back(T);
3366  ParenTypes.InsertNode(T, InsertPos);
3367  return QualType(T, 0);
3368}
3369
3370QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3371                                          NestedNameSpecifier *NNS,
3372                                          const IdentifierInfo *Name,
3373                                          QualType Canon) const {
3374  if (Canon.isNull()) {
3375    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3376    ElaboratedTypeKeyword CanonKeyword = Keyword;
3377    if (Keyword == ETK_None)
3378      CanonKeyword = ETK_Typename;
3379
3380    if (CanonNNS != NNS || CanonKeyword != Keyword)
3381      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3382  }
3383
3384  llvm::FoldingSetNodeID ID;
3385  DependentNameType::Profile(ID, Keyword, NNS, Name);
3386
3387  void *InsertPos = nullptr;
3388  DependentNameType *T
3389    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3390  if (T)
3391    return QualType(T, 0);
3392
3393  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3394  Types.push_back(T);
3395  DependentNameTypes.InsertNode(T, InsertPos);
3396  return QualType(T, 0);
3397}
3398
3399QualType
3400ASTContext::getDependentTemplateSpecializationType(
3401                                 ElaboratedTypeKeyword Keyword,
3402                                 NestedNameSpecifier *NNS,
3403                                 const IdentifierInfo *Name,
3404                                 const TemplateArgumentListInfo &Args) const {
3405  // TODO: avoid this copy
3406  SmallVector<TemplateArgument, 16> ArgCopy;
3407  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3408    ArgCopy.push_back(Args[I].getArgument());
3409  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3410                                                ArgCopy.size(),
3411                                                ArgCopy.data());
3412}
3413
3414QualType
3415ASTContext::getDependentTemplateSpecializationType(
3416                                 ElaboratedTypeKeyword Keyword,
3417                                 NestedNameSpecifier *NNS,
3418                                 const IdentifierInfo *Name,
3419                                 unsigned NumArgs,
3420                                 const TemplateArgument *Args) const {
3421  assert((!NNS || NNS->isDependent()) &&
3422         "nested-name-specifier must be dependent");
3423
3424  llvm::FoldingSetNodeID ID;
3425  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3426                                               Name, NumArgs, Args);
3427
3428  void *InsertPos = nullptr;
3429  DependentTemplateSpecializationType *T
3430    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3431  if (T)
3432    return QualType(T, 0);
3433
3434  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3435
3436  ElaboratedTypeKeyword CanonKeyword = Keyword;
3437  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3438
3439  bool AnyNonCanonArgs = false;
3440  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3441  for (unsigned I = 0; I != NumArgs; ++I) {
3442    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3443    if (!CanonArgs[I].structurallyEquals(Args[I]))
3444      AnyNonCanonArgs = true;
3445  }
3446
3447  QualType Canon;
3448  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3449    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3450                                                   Name, NumArgs,
3451                                                   CanonArgs.data());
3452
3453    // Find the insert position again.
3454    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3455  }
3456
3457  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3458                        sizeof(TemplateArgument) * NumArgs),
3459                       TypeAlignment);
3460  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3461                                                    Name, NumArgs, Args, Canon);
3462  Types.push_back(T);
3463  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3464  return QualType(T, 0);
3465}
3466
3467QualType ASTContext::getPackExpansionType(QualType Pattern,
3468                                          Optional<unsigned> NumExpansions) {
3469  llvm::FoldingSetNodeID ID;
3470  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3471
3472  assert(Pattern->containsUnexpandedParameterPack() &&
3473         "Pack expansions must expand one or more parameter packs");
3474  void *InsertPos = nullptr;
3475  PackExpansionType *T
3476    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3477  if (T)
3478    return QualType(T, 0);
3479
3480  QualType Canon;
3481  if (!Pattern.isCanonical()) {
3482    Canon = getCanonicalType(Pattern);
3483    // The canonical type might not contain an unexpanded parameter pack, if it
3484    // contains an alias template specialization which ignores one of its
3485    // parameters.
3486    if (Canon->containsUnexpandedParameterPack()) {
3487      Canon = getPackExpansionType(Canon, NumExpansions);
3488
3489      // Find the insert position again, in case we inserted an element into
3490      // PackExpansionTypes and invalidated our insert position.
3491      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3492    }
3493  }
3494
3495  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3496  Types.push_back(T);
3497  PackExpansionTypes.InsertNode(T, InsertPos);
3498  return QualType(T, 0);
3499}
3500
3501/// CmpProtocolNames - Comparison predicate for sorting protocols
3502/// alphabetically.
3503static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3504                            const ObjCProtocolDecl *RHS) {
3505  return LHS->getDeclName() < RHS->getDeclName();
3506}
3507
3508static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3509                                unsigned NumProtocols) {
3510  if (NumProtocols == 0) return true;
3511
3512  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3513    return false;
3514
3515  for (unsigned i = 1; i != NumProtocols; ++i)
3516    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3517        Protocols[i]->getCanonicalDecl() != Protocols[i])
3518      return false;
3519  return true;
3520}
3521
3522static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3523                                   unsigned &NumProtocols) {
3524  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3525
3526  // Sort protocols, keyed by name.
3527  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3528
3529  // Canonicalize.
3530  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3531    Protocols[I] = Protocols[I]->getCanonicalDecl();
3532
3533  // Remove duplicates.
3534  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3535  NumProtocols = ProtocolsEnd-Protocols;
3536}
3537
3538QualType ASTContext::getObjCObjectType(QualType BaseType,
3539                                       ObjCProtocolDecl * const *Protocols,
3540                                       unsigned NumProtocols) const {
3541  // If the base type is an interface and there aren't any protocols
3542  // to add, then the interface type will do just fine.
3543  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3544    return BaseType;
3545
3546  // Look in the folding set for an existing type.
3547  llvm::FoldingSetNodeID ID;
3548  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3549  void *InsertPos = nullptr;
3550  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3551    return QualType(QT, 0);
3552
3553  // Build the canonical type, which has the canonical base type and
3554  // a sorted-and-uniqued list of protocols.
3555  QualType Canonical;
3556  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3557  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3558    if (!ProtocolsSorted) {
3559      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3560                                                     Protocols + NumProtocols);
3561      unsigned UniqueCount = NumProtocols;
3562
3563      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3564      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3565                                    &Sorted[0], UniqueCount);
3566    } else {
3567      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3568                                    Protocols, NumProtocols);
3569    }
3570
3571    // Regenerate InsertPos.
3572    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3573  }
3574
3575  unsigned Size = sizeof(ObjCObjectTypeImpl);
3576  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3577  void *Mem = Allocate(Size, TypeAlignment);
3578  ObjCObjectTypeImpl *T =
3579    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3580
3581  Types.push_back(T);
3582  ObjCObjectTypes.InsertNode(T, InsertPos);
3583  return QualType(T, 0);
3584}
3585
3586/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3587/// protocol list adopt all protocols in QT's qualified-id protocol
3588/// list.
3589bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3590                                                ObjCInterfaceDecl *IC) {
3591  if (!QT->isObjCQualifiedIdType())
3592    return false;
3593
3594  if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3595    // If both the right and left sides have qualifiers.
3596    for (auto *Proto : OPT->quals()) {
3597      if (!IC->ClassImplementsProtocol(Proto, false))
3598        return false;
3599    }
3600    return true;
3601  }
3602  return false;
3603}
3604
3605/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3606/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3607/// of protocols.
3608bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3609                                                ObjCInterfaceDecl *IDecl) {
3610  if (!QT->isObjCQualifiedIdType())
3611    return false;
3612  const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3613  if (!OPT)
3614    return false;
3615  if (!IDecl->hasDefinition())
3616    return false;
3617  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3618  CollectInheritedProtocols(IDecl, InheritedProtocols);
3619  if (InheritedProtocols.empty())
3620    return false;
3621  // Check that if every protocol in list of id<plist> conforms to a protcol
3622  // of IDecl's, then bridge casting is ok.
3623  bool Conforms = false;
3624  for (auto *Proto : OPT->quals()) {
3625    Conforms = false;
3626    for (auto *PI : InheritedProtocols) {
3627      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3628        Conforms = true;
3629        break;
3630      }
3631    }
3632    if (!Conforms)
3633      break;
3634  }
3635  if (Conforms)
3636    return true;
3637
3638  for (auto *PI : InheritedProtocols) {
3639    // If both the right and left sides have qualifiers.
3640    bool Adopts = false;
3641    for (auto *Proto : OPT->quals()) {
3642      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3643      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3644        break;
3645    }
3646    if (!Adopts)
3647      return false;
3648  }
3649  return true;
3650}
3651
3652/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3653/// the given object type.
3654QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3655  llvm::FoldingSetNodeID ID;
3656  ObjCObjectPointerType::Profile(ID, ObjectT);
3657
3658  void *InsertPos = nullptr;
3659  if (ObjCObjectPointerType *QT =
3660              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3661    return QualType(QT, 0);
3662
3663  // Find the canonical object type.
3664  QualType Canonical;
3665  if (!ObjectT.isCanonical()) {
3666    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3667
3668    // Regenerate InsertPos.
3669    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3670  }
3671
3672  // No match.
3673  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3674  ObjCObjectPointerType *QType =
3675    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3676
3677  Types.push_back(QType);
3678  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3679  return QualType(QType, 0);
3680}
3681
3682/// getObjCInterfaceType - Return the unique reference to the type for the
3683/// specified ObjC interface decl. The list of protocols is optional.
3684QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3685                                          ObjCInterfaceDecl *PrevDecl) const {
3686  if (Decl->TypeForDecl)
3687    return QualType(Decl->TypeForDecl, 0);
3688
3689  if (PrevDecl) {
3690    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3691    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3692    return QualType(PrevDecl->TypeForDecl, 0);
3693  }
3694
3695  // Prefer the definition, if there is one.
3696  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3697    Decl = Def;
3698
3699  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3700  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3701  Decl->TypeForDecl = T;
3702  Types.push_back(T);
3703  return QualType(T, 0);
3704}
3705
3706/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3707/// TypeOfExprType AST's (since expression's are never shared). For example,
3708/// multiple declarations that refer to "typeof(x)" all contain different
3709/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3710/// on canonical type's (which are always unique).
3711QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3712  TypeOfExprType *toe;
3713  if (tofExpr->isTypeDependent()) {
3714    llvm::FoldingSetNodeID ID;
3715    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3716
3717    void *InsertPos = nullptr;
3718    DependentTypeOfExprType *Canon
3719      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3720    if (Canon) {
3721      // We already have a "canonical" version of an identical, dependent
3722      // typeof(expr) type. Use that as our canonical type.
3723      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3724                                          QualType((TypeOfExprType*)Canon, 0));
3725    } else {
3726      // Build a new, canonical typeof(expr) type.
3727      Canon
3728        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3729      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3730      toe = Canon;
3731    }
3732  } else {
3733    QualType Canonical = getCanonicalType(tofExpr->getType());
3734    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3735  }
3736  Types.push_back(toe);
3737  return QualType(toe, 0);
3738}
3739
3740/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3741/// TypeOfType nodes. The only motivation to unique these nodes would be
3742/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3743/// an issue. This doesn't affect the type checker, since it operates
3744/// on canonical types (which are always unique).
3745QualType ASTContext::getTypeOfType(QualType tofType) const {
3746  QualType Canonical = getCanonicalType(tofType);
3747  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3748  Types.push_back(tot);
3749  return QualType(tot, 0);
3750}
3751
3752
3753/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3754/// nodes. This would never be helpful, since each such type has its own
3755/// expression, and would not give a significant memory saving, since there
3756/// is an Expr tree under each such type.
3757QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3758  DecltypeType *dt;
3759
3760  // C++11 [temp.type]p2:
3761  //   If an expression e involves a template parameter, decltype(e) denotes a
3762  //   unique dependent type. Two such decltype-specifiers refer to the same
3763  //   type only if their expressions are equivalent (14.5.6.1).
3764  if (e->isInstantiationDependent()) {
3765    llvm::FoldingSetNodeID ID;
3766    DependentDecltypeType::Profile(ID, *this, e);
3767
3768    void *InsertPos = nullptr;
3769    DependentDecltypeType *Canon
3770      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3771    if (!Canon) {
3772      // Build a new, canonical typeof(expr) type.
3773      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3774      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3775    }
3776    dt = new (*this, TypeAlignment)
3777        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3778  } else {
3779    dt = new (*this, TypeAlignment)
3780        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3781  }
3782  Types.push_back(dt);
3783  return QualType(dt, 0);
3784}
3785
3786/// getUnaryTransformationType - We don't unique these, since the memory
3787/// savings are minimal and these are rare.
3788QualType ASTContext::getUnaryTransformType(QualType BaseType,
3789                                           QualType UnderlyingType,
3790                                           UnaryTransformType::UTTKind Kind)
3791    const {
3792  UnaryTransformType *Ty =
3793    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3794                                                   Kind,
3795                                 UnderlyingType->isDependentType() ?
3796                                 QualType() : getCanonicalType(UnderlyingType));
3797  Types.push_back(Ty);
3798  return QualType(Ty, 0);
3799}
3800
3801/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3802/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3803/// canonical deduced-but-dependent 'auto' type.
3804QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3805                                 bool IsDependent) const {
3806  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3807    return getAutoDeductType();
3808
3809  // Look in the folding set for an existing type.
3810  void *InsertPos = nullptr;
3811  llvm::FoldingSetNodeID ID;
3812  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3813  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3814    return QualType(AT, 0);
3815
3816  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3817                                                     IsDecltypeAuto,
3818                                                     IsDependent);
3819  Types.push_back(AT);
3820  if (InsertPos)
3821    AutoTypes.InsertNode(AT, InsertPos);
3822  return QualType(AT, 0);
3823}
3824
3825/// getAtomicType - Return the uniqued reference to the atomic type for
3826/// the given value type.
3827QualType ASTContext::getAtomicType(QualType T) const {
3828  // Unique pointers, to guarantee there is only one pointer of a particular
3829  // structure.
3830  llvm::FoldingSetNodeID ID;
3831  AtomicType::Profile(ID, T);
3832
3833  void *InsertPos = nullptr;
3834  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3835    return QualType(AT, 0);
3836
3837  // If the atomic value type isn't canonical, this won't be a canonical type
3838  // either, so fill in the canonical type field.
3839  QualType Canonical;
3840  if (!T.isCanonical()) {
3841    Canonical = getAtomicType(getCanonicalType(T));
3842
3843    // Get the new insert position for the node we care about.
3844    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3845    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3846  }
3847  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3848  Types.push_back(New);
3849  AtomicTypes.InsertNode(New, InsertPos);
3850  return QualType(New, 0);
3851}
3852
3853/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3854QualType ASTContext::getAutoDeductType() const {
3855  if (AutoDeductTy.isNull())
3856    AutoDeductTy = QualType(
3857      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3858                                          /*dependent*/false),
3859      0);
3860  return AutoDeductTy;
3861}
3862
3863/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3864QualType ASTContext::getAutoRRefDeductType() const {
3865  if (AutoRRefDeductTy.isNull())
3866    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3867  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3868  return AutoRRefDeductTy;
3869}
3870
3871/// getTagDeclType - Return the unique reference to the type for the
3872/// specified TagDecl (struct/union/class/enum) decl.
3873QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3874  assert (Decl);
3875  // FIXME: What is the design on getTagDeclType when it requires casting
3876  // away const?  mutable?
3877  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3878}
3879
3880/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3881/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3882/// needs to agree with the definition in <stddef.h>.
3883CanQualType ASTContext::getSizeType() const {
3884  return getFromTargetType(Target->getSizeType());
3885}
3886
3887/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3888CanQualType ASTContext::getIntMaxType() const {
3889  return getFromTargetType(Target->getIntMaxType());
3890}
3891
3892/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3893CanQualType ASTContext::getUIntMaxType() const {
3894  return getFromTargetType(Target->getUIntMaxType());
3895}
3896
3897/// getSignedWCharType - Return the type of "signed wchar_t".
3898/// Used when in C++, as a GCC extension.
3899QualType ASTContext::getSignedWCharType() const {
3900  // FIXME: derive from "Target" ?
3901  return WCharTy;
3902}
3903
3904/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3905/// Used when in C++, as a GCC extension.
3906QualType ASTContext::getUnsignedWCharType() const {
3907  // FIXME: derive from "Target" ?
3908  return UnsignedIntTy;
3909}
3910
3911QualType ASTContext::getIntPtrType() const {
3912  return getFromTargetType(Target->getIntPtrType());
3913}
3914
3915QualType ASTContext::getUIntPtrType() const {
3916  return getCorrespondingUnsignedType(getIntPtrType());
3917}
3918
3919/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3920/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3921QualType ASTContext::getPointerDiffType() const {
3922  return getFromTargetType(Target->getPtrDiffType(0));
3923}
3924
3925/// \brief Return the unique type for "pid_t" defined in
3926/// <sys/types.h>. We need this to compute the correct type for vfork().
3927QualType ASTContext::getProcessIDType() const {
3928  return getFromTargetType(Target->getProcessIDType());
3929}
3930
3931//===----------------------------------------------------------------------===//
3932//                              Type Operators
3933//===----------------------------------------------------------------------===//
3934
3935CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3936  // Push qualifiers into arrays, and then discard any remaining
3937  // qualifiers.
3938  T = getCanonicalType(T);
3939  T = getVariableArrayDecayedType(T);
3940  const Type *Ty = T.getTypePtr();
3941  QualType Result;
3942  if (isa<ArrayType>(Ty)) {
3943    Result = getArrayDecayedType(QualType(Ty,0));
3944  } else if (isa<FunctionType>(Ty)) {
3945    Result = getPointerType(QualType(Ty, 0));
3946  } else {
3947    Result = QualType(Ty, 0);
3948  }
3949
3950  return CanQualType::CreateUnsafe(Result);
3951}
3952
3953QualType ASTContext::getUnqualifiedArrayType(QualType type,
3954                                             Qualifiers &quals) {
3955  SplitQualType splitType = type.getSplitUnqualifiedType();
3956
3957  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3958  // the unqualified desugared type and then drops it on the floor.
3959  // We then have to strip that sugar back off with
3960  // getUnqualifiedDesugaredType(), which is silly.
3961  const ArrayType *AT =
3962    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3963
3964  // If we don't have an array, just use the results in splitType.
3965  if (!AT) {
3966    quals = splitType.Quals;
3967    return QualType(splitType.Ty, 0);
3968  }
3969
3970  // Otherwise, recurse on the array's element type.
3971  QualType elementType = AT->getElementType();
3972  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3973
3974  // If that didn't change the element type, AT has no qualifiers, so we
3975  // can just use the results in splitType.
3976  if (elementType == unqualElementType) {
3977    assert(quals.empty()); // from the recursive call
3978    quals = splitType.Quals;
3979    return QualType(splitType.Ty, 0);
3980  }
3981
3982  // Otherwise, add in the qualifiers from the outermost type, then
3983  // build the type back up.
3984  quals.addConsistentQualifiers(splitType.Quals);
3985
3986  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3987    return getConstantArrayType(unqualElementType, CAT->getSize(),
3988                                CAT->getSizeModifier(), 0);
3989  }
3990
3991  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3992    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3993  }
3994
3995  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3996    return getVariableArrayType(unqualElementType,
3997                                VAT->getSizeExpr(),
3998                                VAT->getSizeModifier(),
3999                                VAT->getIndexTypeCVRQualifiers(),
4000                                VAT->getBracketsRange());
4001  }
4002
4003  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4004  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4005                                    DSAT->getSizeModifier(), 0,
4006                                    SourceRange());
4007}
4008
4009/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
4010/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4011/// they point to and return true. If T1 and T2 aren't pointer types
4012/// or pointer-to-member types, or if they are not similar at this
4013/// level, returns false and leaves T1 and T2 unchanged. Top-level
4014/// qualifiers on T1 and T2 are ignored. This function will typically
4015/// be called in a loop that successively "unwraps" pointer and
4016/// pointer-to-member types to compare them at each level.
4017bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4018  const PointerType *T1PtrType = T1->getAs<PointerType>(),
4019                    *T2PtrType = T2->getAs<PointerType>();
4020  if (T1PtrType && T2PtrType) {
4021    T1 = T1PtrType->getPointeeType();
4022    T2 = T2PtrType->getPointeeType();
4023    return true;
4024  }
4025
4026  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4027                          *T2MPType = T2->getAs<MemberPointerType>();
4028  if (T1MPType && T2MPType &&
4029      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4030                             QualType(T2MPType->getClass(), 0))) {
4031    T1 = T1MPType->getPointeeType();
4032    T2 = T2MPType->getPointeeType();
4033    return true;
4034  }
4035
4036  if (getLangOpts().ObjC1) {
4037    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4038                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
4039    if (T1OPType && T2OPType) {
4040      T1 = T1OPType->getPointeeType();
4041      T2 = T2OPType->getPointeeType();
4042      return true;
4043    }
4044  }
4045
4046  // FIXME: Block pointers, too?
4047
4048  return false;
4049}
4050
4051DeclarationNameInfo
4052ASTContext::getNameForTemplate(TemplateName Name,
4053                               SourceLocation NameLoc) const {
4054  switch (Name.getKind()) {
4055  case TemplateName::QualifiedTemplate:
4056  case TemplateName::Template:
4057    // DNInfo work in progress: CHECKME: what about DNLoc?
4058    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4059                               NameLoc);
4060
4061  case TemplateName::OverloadedTemplate: {
4062    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4063    // DNInfo work in progress: CHECKME: what about DNLoc?
4064    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4065  }
4066
4067  case TemplateName::DependentTemplate: {
4068    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4069    DeclarationName DName;
4070    if (DTN->isIdentifier()) {
4071      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4072      return DeclarationNameInfo(DName, NameLoc);
4073    } else {
4074      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4075      // DNInfo work in progress: FIXME: source locations?
4076      DeclarationNameLoc DNLoc;
4077      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4078      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4079      return DeclarationNameInfo(DName, NameLoc, DNLoc);
4080    }
4081  }
4082
4083  case TemplateName::SubstTemplateTemplateParm: {
4084    SubstTemplateTemplateParmStorage *subst
4085      = Name.getAsSubstTemplateTemplateParm();
4086    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4087                               NameLoc);
4088  }
4089
4090  case TemplateName::SubstTemplateTemplateParmPack: {
4091    SubstTemplateTemplateParmPackStorage *subst
4092      = Name.getAsSubstTemplateTemplateParmPack();
4093    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4094                               NameLoc);
4095  }
4096  }
4097
4098  llvm_unreachable("bad template name kind!");
4099}
4100
4101TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4102  switch (Name.getKind()) {
4103  case TemplateName::QualifiedTemplate:
4104  case TemplateName::Template: {
4105    TemplateDecl *Template = Name.getAsTemplateDecl();
4106    if (TemplateTemplateParmDecl *TTP
4107          = dyn_cast<TemplateTemplateParmDecl>(Template))
4108      Template = getCanonicalTemplateTemplateParmDecl(TTP);
4109
4110    // The canonical template name is the canonical template declaration.
4111    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4112  }
4113
4114  case TemplateName::OverloadedTemplate:
4115    llvm_unreachable("cannot canonicalize overloaded template");
4116
4117  case TemplateName::DependentTemplate: {
4118    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4119    assert(DTN && "Non-dependent template names must refer to template decls.");
4120    return DTN->CanonicalTemplateName;
4121  }
4122
4123  case TemplateName::SubstTemplateTemplateParm: {
4124    SubstTemplateTemplateParmStorage *subst
4125      = Name.getAsSubstTemplateTemplateParm();
4126    return getCanonicalTemplateName(subst->getReplacement());
4127  }
4128
4129  case TemplateName::SubstTemplateTemplateParmPack: {
4130    SubstTemplateTemplateParmPackStorage *subst
4131                                  = Name.getAsSubstTemplateTemplateParmPack();
4132    TemplateTemplateParmDecl *canonParameter
4133      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4134    TemplateArgument canonArgPack
4135      = getCanonicalTemplateArgument(subst->getArgumentPack());
4136    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4137  }
4138  }
4139
4140  llvm_unreachable("bad template name!");
4141}
4142
4143bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4144  X = getCanonicalTemplateName(X);
4145  Y = getCanonicalTemplateName(Y);
4146  return X.getAsVoidPointer() == Y.getAsVoidPointer();
4147}
4148
4149TemplateArgument
4150ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4151  switch (Arg.getKind()) {
4152    case TemplateArgument::Null:
4153      return Arg;
4154
4155    case TemplateArgument::Expression:
4156      return Arg;
4157
4158    case TemplateArgument::Declaration: {
4159      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4160      return TemplateArgument(D, Arg.getParamTypeForDecl());
4161    }
4162
4163    case TemplateArgument::NullPtr:
4164      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4165                              /*isNullPtr*/true);
4166
4167    case TemplateArgument::Template:
4168      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4169
4170    case TemplateArgument::TemplateExpansion:
4171      return TemplateArgument(getCanonicalTemplateName(
4172                                         Arg.getAsTemplateOrTemplatePattern()),
4173                              Arg.getNumTemplateExpansions());
4174
4175    case TemplateArgument::Integral:
4176      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4177
4178    case TemplateArgument::Type:
4179      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4180
4181    case TemplateArgument::Pack: {
4182      if (Arg.pack_size() == 0)
4183        return Arg;
4184
4185      TemplateArgument *CanonArgs
4186        = new (*this) TemplateArgument[Arg.pack_size()];
4187      unsigned Idx = 0;
4188      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4189                                        AEnd = Arg.pack_end();
4190           A != AEnd; (void)++A, ++Idx)
4191        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4192
4193      return TemplateArgument(CanonArgs, Arg.pack_size());
4194    }
4195  }
4196
4197  // Silence GCC warning
4198  llvm_unreachable("Unhandled template argument kind");
4199}
4200
4201NestedNameSpecifier *
4202ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4203  if (!NNS)
4204    return nullptr;
4205
4206  switch (NNS->getKind()) {
4207  case NestedNameSpecifier::Identifier:
4208    // Canonicalize the prefix but keep the identifier the same.
4209    return NestedNameSpecifier::Create(*this,
4210                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4211                                       NNS->getAsIdentifier());
4212
4213  case NestedNameSpecifier::Namespace:
4214    // A namespace is canonical; build a nested-name-specifier with
4215    // this namespace and no prefix.
4216    return NestedNameSpecifier::Create(*this, nullptr,
4217                                 NNS->getAsNamespace()->getOriginalNamespace());
4218
4219  case NestedNameSpecifier::NamespaceAlias:
4220    // A namespace is canonical; build a nested-name-specifier with
4221    // this namespace and no prefix.
4222    return NestedNameSpecifier::Create(*this, nullptr,
4223                                    NNS->getAsNamespaceAlias()->getNamespace()
4224                                                      ->getOriginalNamespace());
4225
4226  case NestedNameSpecifier::TypeSpec:
4227  case NestedNameSpecifier::TypeSpecWithTemplate: {
4228    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4229
4230    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4231    // break it apart into its prefix and identifier, then reconsititute those
4232    // as the canonical nested-name-specifier. This is required to canonicalize
4233    // a dependent nested-name-specifier involving typedefs of dependent-name
4234    // types, e.g.,
4235    //   typedef typename T::type T1;
4236    //   typedef typename T1::type T2;
4237    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4238      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4239                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4240
4241    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4242    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4243    // first place?
4244    return NestedNameSpecifier::Create(*this, nullptr, false,
4245                                       const_cast<Type *>(T.getTypePtr()));
4246  }
4247
4248  case NestedNameSpecifier::Global:
4249  case NestedNameSpecifier::Super:
4250    // The global specifier and __super specifer are canonical and unique.
4251    return NNS;
4252  }
4253
4254  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4255}
4256
4257
4258const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4259  // Handle the non-qualified case efficiently.
4260  if (!T.hasLocalQualifiers()) {
4261    // Handle the common positive case fast.
4262    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4263      return AT;
4264  }
4265
4266  // Handle the common negative case fast.
4267  if (!isa<ArrayType>(T.getCanonicalType()))
4268    return nullptr;
4269
4270  // Apply any qualifiers from the array type to the element type.  This
4271  // implements C99 6.7.3p8: "If the specification of an array type includes
4272  // any type qualifiers, the element type is so qualified, not the array type."
4273
4274  // If we get here, we either have type qualifiers on the type, or we have
4275  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4276  // we must propagate them down into the element type.
4277
4278  SplitQualType split = T.getSplitDesugaredType();
4279  Qualifiers qs = split.Quals;
4280
4281  // If we have a simple case, just return now.
4282  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4283  if (!ATy || qs.empty())
4284    return ATy;
4285
4286  // Otherwise, we have an array and we have qualifiers on it.  Push the
4287  // qualifiers into the array element type and return a new array type.
4288  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4289
4290  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4291    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4292                                                CAT->getSizeModifier(),
4293                                           CAT->getIndexTypeCVRQualifiers()));
4294  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4295    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4296                                                  IAT->getSizeModifier(),
4297                                           IAT->getIndexTypeCVRQualifiers()));
4298
4299  if (const DependentSizedArrayType *DSAT
4300        = dyn_cast<DependentSizedArrayType>(ATy))
4301    return cast<ArrayType>(
4302                     getDependentSizedArrayType(NewEltTy,
4303                                                DSAT->getSizeExpr(),
4304                                                DSAT->getSizeModifier(),
4305                                              DSAT->getIndexTypeCVRQualifiers(),
4306                                                DSAT->getBracketsRange()));
4307
4308  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4309  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4310                                              VAT->getSizeExpr(),
4311                                              VAT->getSizeModifier(),
4312                                              VAT->getIndexTypeCVRQualifiers(),
4313                                              VAT->getBracketsRange()));
4314}
4315
4316QualType ASTContext::getAdjustedParameterType(QualType T) const {
4317  if (T->isArrayType() || T->isFunctionType())
4318    return getDecayedType(T);
4319  return T;
4320}
4321
4322QualType ASTContext::getSignatureParameterType(QualType T) const {
4323  T = getVariableArrayDecayedType(T);
4324  T = getAdjustedParameterType(T);
4325  return T.getUnqualifiedType();
4326}
4327
4328/// getArrayDecayedType - Return the properly qualified result of decaying the
4329/// specified array type to a pointer.  This operation is non-trivial when
4330/// handling typedefs etc.  The canonical type of "T" must be an array type,
4331/// this returns a pointer to a properly qualified element of the array.
4332///
4333/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4334QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4335  // Get the element type with 'getAsArrayType' so that we don't lose any
4336  // typedefs in the element type of the array.  This also handles propagation
4337  // of type qualifiers from the array type into the element type if present
4338  // (C99 6.7.3p8).
4339  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4340  assert(PrettyArrayType && "Not an array type!");
4341
4342  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4343
4344  // int x[restrict 4] ->  int *restrict
4345  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4346}
4347
4348QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4349  return getBaseElementType(array->getElementType());
4350}
4351
4352QualType ASTContext::getBaseElementType(QualType type) const {
4353  Qualifiers qs;
4354  while (true) {
4355    SplitQualType split = type.getSplitDesugaredType();
4356    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4357    if (!array) break;
4358
4359    type = array->getElementType();
4360    qs.addConsistentQualifiers(split.Quals);
4361  }
4362
4363  return getQualifiedType(type, qs);
4364}
4365
4366/// getConstantArrayElementCount - Returns number of constant array elements.
4367uint64_t
4368ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4369  uint64_t ElementCount = 1;
4370  do {
4371    ElementCount *= CA->getSize().getZExtValue();
4372    CA = dyn_cast_or_null<ConstantArrayType>(
4373      CA->getElementType()->getAsArrayTypeUnsafe());
4374  } while (CA);
4375  return ElementCount;
4376}
4377
4378/// getFloatingRank - Return a relative rank for floating point types.
4379/// This routine will assert if passed a built-in type that isn't a float.
4380static FloatingRank getFloatingRank(QualType T) {
4381  if (const ComplexType *CT = T->getAs<ComplexType>())
4382    return getFloatingRank(CT->getElementType());
4383
4384  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4385  switch (T->getAs<BuiltinType>()->getKind()) {
4386  default: llvm_unreachable("getFloatingRank(): not a floating type");
4387  case BuiltinType::Half:       return HalfRank;
4388  case BuiltinType::Float:      return FloatRank;
4389  case BuiltinType::Double:     return DoubleRank;
4390  case BuiltinType::LongDouble: return LongDoubleRank;
4391  }
4392}
4393
4394/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4395/// point or a complex type (based on typeDomain/typeSize).
4396/// 'typeDomain' is a real floating point or complex type.
4397/// 'typeSize' is a real floating point or complex type.
4398QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4399                                                       QualType Domain) const {
4400  FloatingRank EltRank = getFloatingRank(Size);
4401  if (Domain->isComplexType()) {
4402    switch (EltRank) {
4403    case HalfRank: llvm_unreachable("Complex half is not supported");
4404    case FloatRank:      return FloatComplexTy;
4405    case DoubleRank:     return DoubleComplexTy;
4406    case LongDoubleRank: return LongDoubleComplexTy;
4407    }
4408  }
4409
4410  assert(Domain->isRealFloatingType() && "Unknown domain!");
4411  switch (EltRank) {
4412  case HalfRank:       return HalfTy;
4413  case FloatRank:      return FloatTy;
4414  case DoubleRank:     return DoubleTy;
4415  case LongDoubleRank: return LongDoubleTy;
4416  }
4417  llvm_unreachable("getFloatingRank(): illegal value for rank");
4418}
4419
4420/// getFloatingTypeOrder - Compare the rank of the two specified floating
4421/// point types, ignoring the domain of the type (i.e. 'double' ==
4422/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4423/// LHS < RHS, return -1.
4424int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4425  FloatingRank LHSR = getFloatingRank(LHS);
4426  FloatingRank RHSR = getFloatingRank(RHS);
4427
4428  if (LHSR == RHSR)
4429    return 0;
4430  if (LHSR > RHSR)
4431    return 1;
4432  return -1;
4433}
4434
4435/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4436/// routine will assert if passed a built-in type that isn't an integer or enum,
4437/// or if it is not canonicalized.
4438unsigned ASTContext::getIntegerRank(const Type *T) const {
4439  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4440
4441  switch (cast<BuiltinType>(T)->getKind()) {
4442  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4443  case BuiltinType::Bool:
4444    return 1 + (getIntWidth(BoolTy) << 3);
4445  case BuiltinType::Char_S:
4446  case BuiltinType::Char_U:
4447  case BuiltinType::SChar:
4448  case BuiltinType::UChar:
4449    return 2 + (getIntWidth(CharTy) << 3);
4450  case BuiltinType::Short:
4451  case BuiltinType::UShort:
4452    return 3 + (getIntWidth(ShortTy) << 3);
4453  case BuiltinType::Int:
4454  case BuiltinType::UInt:
4455    return 4 + (getIntWidth(IntTy) << 3);
4456  case BuiltinType::Long:
4457  case BuiltinType::ULong:
4458    return 5 + (getIntWidth(LongTy) << 3);
4459  case BuiltinType::LongLong:
4460  case BuiltinType::ULongLong:
4461    return 6 + (getIntWidth(LongLongTy) << 3);
4462  case BuiltinType::Int128:
4463  case BuiltinType::UInt128:
4464    return 7 + (getIntWidth(Int128Ty) << 3);
4465  }
4466}
4467
4468/// \brief Whether this is a promotable bitfield reference according
4469/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4470///
4471/// \returns the type this bit-field will promote to, or NULL if no
4472/// promotion occurs.
4473QualType ASTContext::isPromotableBitField(Expr *E) const {
4474  if (E->isTypeDependent() || E->isValueDependent())
4475    return QualType();
4476
4477  // FIXME: We should not do this unless E->refersToBitField() is true. This
4478  // matters in C where getSourceBitField() will find bit-fields for various
4479  // cases where the source expression is not a bit-field designator.
4480
4481  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4482  if (!Field)
4483    return QualType();
4484
4485  QualType FT = Field->getType();
4486
4487  uint64_t BitWidth = Field->getBitWidthValue(*this);
4488  uint64_t IntSize = getTypeSize(IntTy);
4489  // C++ [conv.prom]p5:
4490  //   A prvalue for an integral bit-field can be converted to a prvalue of type
4491  //   int if int can represent all the values of the bit-field; otherwise, it
4492  //   can be converted to unsigned int if unsigned int can represent all the
4493  //   values of the bit-field. If the bit-field is larger yet, no integral
4494  //   promotion applies to it.
4495  // C11 6.3.1.1/2:
4496  //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4497  //   If an int can represent all values of the original type (as restricted by
4498  //   the width, for a bit-field), the value is converted to an int; otherwise,
4499  //   it is converted to an unsigned int.
4500  //
4501  // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4502  //        We perform that promotion here to match GCC and C++.
4503  if (BitWidth < IntSize)
4504    return IntTy;
4505
4506  if (BitWidth == IntSize)
4507    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4508
4509  // Types bigger than int are not subject to promotions, and therefore act
4510  // like the base type. GCC has some weird bugs in this area that we
4511  // deliberately do not follow (GCC follows a pre-standard resolution to
4512  // C's DR315 which treats bit-width as being part of the type, and this leaks
4513  // into their semantics in some cases).
4514  return QualType();
4515}
4516
4517/// getPromotedIntegerType - Returns the type that Promotable will
4518/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4519/// integer type.
4520QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4521  assert(!Promotable.isNull());
4522  assert(Promotable->isPromotableIntegerType());
4523  if (const EnumType *ET = Promotable->getAs<EnumType>())
4524    return ET->getDecl()->getPromotionType();
4525
4526  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4527    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4528    // (3.9.1) can be converted to a prvalue of the first of the following
4529    // types that can represent all the values of its underlying type:
4530    // int, unsigned int, long int, unsigned long int, long long int, or
4531    // unsigned long long int [...]
4532    // FIXME: Is there some better way to compute this?
4533    if (BT->getKind() == BuiltinType::WChar_S ||
4534        BT->getKind() == BuiltinType::WChar_U ||
4535        BT->getKind() == BuiltinType::Char16 ||
4536        BT->getKind() == BuiltinType::Char32) {
4537      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4538      uint64_t FromSize = getTypeSize(BT);
4539      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4540                                  LongLongTy, UnsignedLongLongTy };
4541      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4542        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4543        if (FromSize < ToSize ||
4544            (FromSize == ToSize &&
4545             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4546          return PromoteTypes[Idx];
4547      }
4548      llvm_unreachable("char type should fit into long long");
4549    }
4550  }
4551
4552  // At this point, we should have a signed or unsigned integer type.
4553  if (Promotable->isSignedIntegerType())
4554    return IntTy;
4555  uint64_t PromotableSize = getIntWidth(Promotable);
4556  uint64_t IntSize = getIntWidth(IntTy);
4557  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4558  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4559}
4560
4561/// \brief Recurses in pointer/array types until it finds an objc retainable
4562/// type and returns its ownership.
4563Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4564  while (!T.isNull()) {
4565    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4566      return T.getObjCLifetime();
4567    if (T->isArrayType())
4568      T = getBaseElementType(T);
4569    else if (const PointerType *PT = T->getAs<PointerType>())
4570      T = PT->getPointeeType();
4571    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4572      T = RT->getPointeeType();
4573    else
4574      break;
4575  }
4576
4577  return Qualifiers::OCL_None;
4578}
4579
4580static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4581  // Incomplete enum types are not treated as integer types.
4582  // FIXME: In C++, enum types are never integer types.
4583  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4584    return ET->getDecl()->getIntegerType().getTypePtr();
4585  return nullptr;
4586}
4587
4588/// getIntegerTypeOrder - Returns the highest ranked integer type:
4589/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4590/// LHS < RHS, return -1.
4591int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4592  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4593  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4594
4595  // Unwrap enums to their underlying type.
4596  if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4597    LHSC = getIntegerTypeForEnum(ET);
4598  if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4599    RHSC = getIntegerTypeForEnum(ET);
4600
4601  if (LHSC == RHSC) return 0;
4602
4603  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4604  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4605
4606  unsigned LHSRank = getIntegerRank(LHSC);
4607  unsigned RHSRank = getIntegerRank(RHSC);
4608
4609  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4610    if (LHSRank == RHSRank) return 0;
4611    return LHSRank > RHSRank ? 1 : -1;
4612  }
4613
4614  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4615  if (LHSUnsigned) {
4616    // If the unsigned [LHS] type is larger, return it.
4617    if (LHSRank >= RHSRank)
4618      return 1;
4619
4620    // If the signed type can represent all values of the unsigned type, it
4621    // wins.  Because we are dealing with 2's complement and types that are
4622    // powers of two larger than each other, this is always safe.
4623    return -1;
4624  }
4625
4626  // If the unsigned [RHS] type is larger, return it.
4627  if (RHSRank >= LHSRank)
4628    return -1;
4629
4630  // If the signed type can represent all values of the unsigned type, it
4631  // wins.  Because we are dealing with 2's complement and types that are
4632  // powers of two larger than each other, this is always safe.
4633  return 1;
4634}
4635
4636// getCFConstantStringType - Return the type used for constant CFStrings.
4637QualType ASTContext::getCFConstantStringType() const {
4638  if (!CFConstantStringTypeDecl) {
4639    CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4640    CFConstantStringTypeDecl->startDefinition();
4641
4642    QualType FieldTypes[4];
4643
4644    // const int *isa;
4645    FieldTypes[0] = getPointerType(IntTy.withConst());
4646    // int flags;
4647    FieldTypes[1] = IntTy;
4648    // const char *str;
4649    FieldTypes[2] = getPointerType(CharTy.withConst());
4650    // long length;
4651    FieldTypes[3] = LongTy;
4652
4653    // Create fields
4654    for (unsigned i = 0; i < 4; ++i) {
4655      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4656                                           SourceLocation(),
4657                                           SourceLocation(), nullptr,
4658                                           FieldTypes[i], /*TInfo=*/nullptr,
4659                                           /*BitWidth=*/nullptr,
4660                                           /*Mutable=*/false,
4661                                           ICIS_NoInit);
4662      Field->setAccess(AS_public);
4663      CFConstantStringTypeDecl->addDecl(Field);
4664    }
4665
4666    CFConstantStringTypeDecl->completeDefinition();
4667  }
4668
4669  return getTagDeclType(CFConstantStringTypeDecl);
4670}
4671
4672QualType ASTContext::getObjCSuperType() const {
4673  if (ObjCSuperType.isNull()) {
4674    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4675    TUDecl->addDecl(ObjCSuperTypeDecl);
4676    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4677  }
4678  return ObjCSuperType;
4679}
4680
4681void ASTContext::setCFConstantStringType(QualType T) {
4682  const RecordType *Rec = T->getAs<RecordType>();
4683  assert(Rec && "Invalid CFConstantStringType");
4684  CFConstantStringTypeDecl = Rec->getDecl();
4685}
4686
4687QualType ASTContext::getBlockDescriptorType() const {
4688  if (BlockDescriptorType)
4689    return getTagDeclType(BlockDescriptorType);
4690
4691  RecordDecl *RD;
4692  // FIXME: Needs the FlagAppleBlock bit.
4693  RD = buildImplicitRecord("__block_descriptor");
4694  RD->startDefinition();
4695
4696  QualType FieldTypes[] = {
4697    UnsignedLongTy,
4698    UnsignedLongTy,
4699  };
4700
4701  static const char *const FieldNames[] = {
4702    "reserved",
4703    "Size"
4704  };
4705
4706  for (size_t i = 0; i < 2; ++i) {
4707    FieldDecl *Field = FieldDecl::Create(
4708        *this, RD, SourceLocation(), SourceLocation(),
4709        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4710        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4711    Field->setAccess(AS_public);
4712    RD->addDecl(Field);
4713  }
4714
4715  RD->completeDefinition();
4716
4717  BlockDescriptorType = RD;
4718
4719  return getTagDeclType(BlockDescriptorType);
4720}
4721
4722QualType ASTContext::getBlockDescriptorExtendedType() const {
4723  if (BlockDescriptorExtendedType)
4724    return getTagDeclType(BlockDescriptorExtendedType);
4725
4726  RecordDecl *RD;
4727  // FIXME: Needs the FlagAppleBlock bit.
4728  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4729  RD->startDefinition();
4730
4731  QualType FieldTypes[] = {
4732    UnsignedLongTy,
4733    UnsignedLongTy,
4734    getPointerType(VoidPtrTy),
4735    getPointerType(VoidPtrTy)
4736  };
4737
4738  static const char *const FieldNames[] = {
4739    "reserved",
4740    "Size",
4741    "CopyFuncPtr",
4742    "DestroyFuncPtr"
4743  };
4744
4745  for (size_t i = 0; i < 4; ++i) {
4746    FieldDecl *Field = FieldDecl::Create(
4747        *this, RD, SourceLocation(), SourceLocation(),
4748        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4749        /*BitWidth=*/nullptr,
4750        /*Mutable=*/false, ICIS_NoInit);
4751    Field->setAccess(AS_public);
4752    RD->addDecl(Field);
4753  }
4754
4755  RD->completeDefinition();
4756
4757  BlockDescriptorExtendedType = RD;
4758  return getTagDeclType(BlockDescriptorExtendedType);
4759}
4760
4761/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4762/// requires copy/dispose. Note that this must match the logic
4763/// in buildByrefHelpers.
4764bool ASTContext::BlockRequiresCopying(QualType Ty,
4765                                      const VarDecl *D) {
4766  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4767    const Expr *copyExpr = getBlockVarCopyInits(D);
4768    if (!copyExpr && record->hasTrivialDestructor()) return false;
4769
4770    return true;
4771  }
4772
4773  if (!Ty->isObjCRetainableType()) return false;
4774
4775  Qualifiers qs = Ty.getQualifiers();
4776
4777  // If we have lifetime, that dominates.
4778  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4779    assert(getLangOpts().ObjCAutoRefCount);
4780
4781    switch (lifetime) {
4782      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4783
4784      // These are just bits as far as the runtime is concerned.
4785      case Qualifiers::OCL_ExplicitNone:
4786      case Qualifiers::OCL_Autoreleasing:
4787        return false;
4788
4789      // Tell the runtime that this is ARC __weak, called by the
4790      // byref routines.
4791      case Qualifiers::OCL_Weak:
4792      // ARC __strong __block variables need to be retained.
4793      case Qualifiers::OCL_Strong:
4794        return true;
4795    }
4796    llvm_unreachable("fell out of lifetime switch!");
4797  }
4798  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4799          Ty->isObjCObjectPointerType());
4800}
4801
4802bool ASTContext::getByrefLifetime(QualType Ty,
4803                              Qualifiers::ObjCLifetime &LifeTime,
4804                              bool &HasByrefExtendedLayout) const {
4805
4806  if (!getLangOpts().ObjC1 ||
4807      getLangOpts().getGC() != LangOptions::NonGC)
4808    return false;
4809
4810  HasByrefExtendedLayout = false;
4811  if (Ty->isRecordType()) {
4812    HasByrefExtendedLayout = true;
4813    LifeTime = Qualifiers::OCL_None;
4814  }
4815  else if (getLangOpts().ObjCAutoRefCount)
4816    LifeTime = Ty.getObjCLifetime();
4817  // MRR.
4818  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4819    LifeTime = Qualifiers::OCL_ExplicitNone;
4820  else
4821    LifeTime = Qualifiers::OCL_None;
4822  return true;
4823}
4824
4825TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4826  if (!ObjCInstanceTypeDecl)
4827    ObjCInstanceTypeDecl =
4828        buildImplicitTypedef(getObjCIdType(), "instancetype");
4829  return ObjCInstanceTypeDecl;
4830}
4831
4832// This returns true if a type has been typedefed to BOOL:
4833// typedef <type> BOOL;
4834static bool isTypeTypedefedAsBOOL(QualType T) {
4835  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4836    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4837      return II->isStr("BOOL");
4838
4839  return false;
4840}
4841
4842/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4843/// purpose.
4844CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4845  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4846    return CharUnits::Zero();
4847
4848  CharUnits sz = getTypeSizeInChars(type);
4849
4850  // Make all integer and enum types at least as large as an int
4851  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4852    sz = std::max(sz, getTypeSizeInChars(IntTy));
4853  // Treat arrays as pointers, since that's how they're passed in.
4854  else if (type->isArrayType())
4855    sz = getTypeSizeInChars(VoidPtrTy);
4856  return sz;
4857}
4858
4859bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4860  return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4861         VD->getType()->isIntegralOrEnumerationType() &&
4862         !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4863}
4864
4865static inline
4866std::string charUnitsToString(const CharUnits &CU) {
4867  return llvm::itostr(CU.getQuantity());
4868}
4869
4870/// getObjCEncodingForBlock - Return the encoded type for this block
4871/// declaration.
4872std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4873  std::string S;
4874
4875  const BlockDecl *Decl = Expr->getBlockDecl();
4876  QualType BlockTy =
4877      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4878  // Encode result type.
4879  if (getLangOpts().EncodeExtendedBlockSig)
4880    getObjCEncodingForMethodParameter(
4881        Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4882        true /*Extended*/);
4883  else
4884    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4885  // Compute size of all parameters.
4886  // Start with computing size of a pointer in number of bytes.
4887  // FIXME: There might(should) be a better way of doing this computation!
4888  SourceLocation Loc;
4889  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4890  CharUnits ParmOffset = PtrSize;
4891  for (auto PI : Decl->params()) {
4892    QualType PType = PI->getType();
4893    CharUnits sz = getObjCEncodingTypeSize(PType);
4894    if (sz.isZero())
4895      continue;
4896    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4897    ParmOffset += sz;
4898  }
4899  // Size of the argument frame
4900  S += charUnitsToString(ParmOffset);
4901  // Block pointer and offset.
4902  S += "@?0";
4903
4904  // Argument types.
4905  ParmOffset = PtrSize;
4906  for (auto PVDecl : Decl->params()) {
4907    QualType PType = PVDecl->getOriginalType();
4908    if (const ArrayType *AT =
4909          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4910      // Use array's original type only if it has known number of
4911      // elements.
4912      if (!isa<ConstantArrayType>(AT))
4913        PType = PVDecl->getType();
4914    } else if (PType->isFunctionType())
4915      PType = PVDecl->getType();
4916    if (getLangOpts().EncodeExtendedBlockSig)
4917      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4918                                      S, true /*Extended*/);
4919    else
4920      getObjCEncodingForType(PType, S);
4921    S += charUnitsToString(ParmOffset);
4922    ParmOffset += getObjCEncodingTypeSize(PType);
4923  }
4924
4925  return S;
4926}
4927
4928bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4929                                                std::string& S) {
4930  // Encode result type.
4931  getObjCEncodingForType(Decl->getReturnType(), S);
4932  CharUnits ParmOffset;
4933  // Compute size of all parameters.
4934  for (auto PI : Decl->params()) {
4935    QualType PType = PI->getType();
4936    CharUnits sz = getObjCEncodingTypeSize(PType);
4937    if (sz.isZero())
4938      continue;
4939
4940    assert (sz.isPositive() &&
4941        "getObjCEncodingForFunctionDecl - Incomplete param type");
4942    ParmOffset += sz;
4943  }
4944  S += charUnitsToString(ParmOffset);
4945  ParmOffset = CharUnits::Zero();
4946
4947  // Argument types.
4948  for (auto PVDecl : Decl->params()) {
4949    QualType PType = PVDecl->getOriginalType();
4950    if (const ArrayType *AT =
4951          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4952      // Use array's original type only if it has known number of
4953      // elements.
4954      if (!isa<ConstantArrayType>(AT))
4955        PType = PVDecl->getType();
4956    } else if (PType->isFunctionType())
4957      PType = PVDecl->getType();
4958    getObjCEncodingForType(PType, S);
4959    S += charUnitsToString(ParmOffset);
4960    ParmOffset += getObjCEncodingTypeSize(PType);
4961  }
4962
4963  return false;
4964}
4965
4966/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4967/// method parameter or return type. If Extended, include class names and
4968/// block object types.
4969void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4970                                                   QualType T, std::string& S,
4971                                                   bool Extended) const {
4972  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4973  getObjCEncodingForTypeQualifier(QT, S);
4974  // Encode parameter type.
4975  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4976                             true     /*OutermostType*/,
4977                             false    /*EncodingProperty*/,
4978                             false    /*StructField*/,
4979                             Extended /*EncodeBlockParameters*/,
4980                             Extended /*EncodeClassNames*/);
4981}
4982
4983/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4984/// declaration.
4985bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4986                                              std::string& S,
4987                                              bool Extended) const {
4988  // FIXME: This is not very efficient.
4989  // Encode return type.
4990  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4991                                    Decl->getReturnType(), S, Extended);
4992  // Compute size of all parameters.
4993  // Start with computing size of a pointer in number of bytes.
4994  // FIXME: There might(should) be a better way of doing this computation!
4995  SourceLocation Loc;
4996  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4997  // The first two arguments (self and _cmd) are pointers; account for
4998  // their size.
4999  CharUnits ParmOffset = 2 * PtrSize;
5000  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5001       E = Decl->sel_param_end(); PI != E; ++PI) {
5002    QualType PType = (*PI)->getType();
5003    CharUnits sz = getObjCEncodingTypeSize(PType);
5004    if (sz.isZero())
5005      continue;
5006
5007    assert (sz.isPositive() &&
5008        "getObjCEncodingForMethodDecl - Incomplete param type");
5009    ParmOffset += sz;
5010  }
5011  S += charUnitsToString(ParmOffset);
5012  S += "@0:";
5013  S += charUnitsToString(PtrSize);
5014
5015  // Argument types.
5016  ParmOffset = 2 * PtrSize;
5017  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5018       E = Decl->sel_param_end(); PI != E; ++PI) {
5019    const ParmVarDecl *PVDecl = *PI;
5020    QualType PType = PVDecl->getOriginalType();
5021    if (const ArrayType *AT =
5022          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5023      // Use array's original type only if it has known number of
5024      // elements.
5025      if (!isa<ConstantArrayType>(AT))
5026        PType = PVDecl->getType();
5027    } else if (PType->isFunctionType())
5028      PType = PVDecl->getType();
5029    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5030                                      PType, S, Extended);
5031    S += charUnitsToString(ParmOffset);
5032    ParmOffset += getObjCEncodingTypeSize(PType);
5033  }
5034
5035  return false;
5036}
5037
5038ObjCPropertyImplDecl *
5039ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5040                                      const ObjCPropertyDecl *PD,
5041                                      const Decl *Container) const {
5042  if (!Container)
5043    return nullptr;
5044  if (const ObjCCategoryImplDecl *CID =
5045      dyn_cast<ObjCCategoryImplDecl>(Container)) {
5046    for (auto *PID : CID->property_impls())
5047      if (PID->getPropertyDecl() == PD)
5048        return PID;
5049  } else {
5050    const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5051    for (auto *PID : OID->property_impls())
5052      if (PID->getPropertyDecl() == PD)
5053        return PID;
5054  }
5055  return nullptr;
5056}
5057
5058/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5059/// property declaration. If non-NULL, Container must be either an
5060/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5061/// NULL when getting encodings for protocol properties.
5062/// Property attributes are stored as a comma-delimited C string. The simple
5063/// attributes readonly and bycopy are encoded as single characters. The
5064/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5065/// encoded as single characters, followed by an identifier. Property types
5066/// are also encoded as a parametrized attribute. The characters used to encode
5067/// these attributes are defined by the following enumeration:
5068/// @code
5069/// enum PropertyAttributes {
5070/// kPropertyReadOnly = 'R',   // property is read-only.
5071/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
5072/// kPropertyByref = '&',  // property is a reference to the value last assigned
5073/// kPropertyDynamic = 'D',    // property is dynamic
5074/// kPropertyGetter = 'G',     // followed by getter selector name
5075/// kPropertySetter = 'S',     // followed by setter selector name
5076/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
5077/// kPropertyType = 'T'              // followed by old-style type encoding.
5078/// kPropertyWeak = 'W'              // 'weak' property
5079/// kPropertyStrong = 'P'            // property GC'able
5080/// kPropertyNonAtomic = 'N'         // property non-atomic
5081/// };
5082/// @endcode
5083void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5084                                                const Decl *Container,
5085                                                std::string& S) const {
5086  // Collect information from the property implementation decl(s).
5087  bool Dynamic = false;
5088  ObjCPropertyImplDecl *SynthesizePID = nullptr;
5089
5090  if (ObjCPropertyImplDecl *PropertyImpDecl =
5091      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5092    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5093      Dynamic = true;
5094    else
5095      SynthesizePID = PropertyImpDecl;
5096  }
5097
5098  // FIXME: This is not very efficient.
5099  S = "T";
5100
5101  // Encode result type.
5102  // GCC has some special rules regarding encoding of properties which
5103  // closely resembles encoding of ivars.
5104  getObjCEncodingForPropertyType(PD->getType(), S);
5105
5106  if (PD->isReadOnly()) {
5107    S += ",R";
5108    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5109      S += ",C";
5110    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5111      S += ",&";
5112    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5113      S += ",W";
5114  } else {
5115    switch (PD->getSetterKind()) {
5116    case ObjCPropertyDecl::Assign: break;
5117    case ObjCPropertyDecl::Copy:   S += ",C"; break;
5118    case ObjCPropertyDecl::Retain: S += ",&"; break;
5119    case ObjCPropertyDecl::Weak:   S += ",W"; break;
5120    }
5121  }
5122
5123  // It really isn't clear at all what this means, since properties
5124  // are "dynamic by default".
5125  if (Dynamic)
5126    S += ",D";
5127
5128  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5129    S += ",N";
5130
5131  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5132    S += ",G";
5133    S += PD->getGetterName().getAsString();
5134  }
5135
5136  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5137    S += ",S";
5138    S += PD->getSetterName().getAsString();
5139  }
5140
5141  if (SynthesizePID) {
5142    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5143    S += ",V";
5144    S += OID->getNameAsString();
5145  }
5146
5147  // FIXME: OBJCGC: weak & strong
5148}
5149
5150/// getLegacyIntegralTypeEncoding -
5151/// Another legacy compatibility encoding: 32-bit longs are encoded as
5152/// 'l' or 'L' , but not always.  For typedefs, we need to use
5153/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5154///
5155void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5156  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5157    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5158      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5159        PointeeTy = UnsignedIntTy;
5160      else
5161        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5162          PointeeTy = IntTy;
5163    }
5164  }
5165}
5166
5167void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5168                                        const FieldDecl *Field,
5169                                        QualType *NotEncodedT) const {
5170  // We follow the behavior of gcc, expanding structures which are
5171  // directly pointed to, and expanding embedded structures. Note that
5172  // these rules are sufficient to prevent recursive encoding of the
5173  // same type.
5174  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5175                             true /* outermost type */, false, false,
5176                             false, false, false, NotEncodedT);
5177}
5178
5179void ASTContext::getObjCEncodingForPropertyType(QualType T,
5180                                                std::string& S) const {
5181  // Encode result type.
5182  // GCC has some special rules regarding encoding of properties which
5183  // closely resembles encoding of ivars.
5184  getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5185                             true /* outermost type */,
5186                             true /* encoding property */);
5187}
5188
5189static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5190                                            BuiltinType::Kind kind) {
5191    switch (kind) {
5192    case BuiltinType::Void:       return 'v';
5193    case BuiltinType::Bool:       return 'B';
5194    case BuiltinType::Char_U:
5195    case BuiltinType::UChar:      return 'C';
5196    case BuiltinType::Char16:
5197    case BuiltinType::UShort:     return 'S';
5198    case BuiltinType::Char32:
5199    case BuiltinType::UInt:       return 'I';
5200    case BuiltinType::ULong:
5201        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5202    case BuiltinType::UInt128:    return 'T';
5203    case BuiltinType::ULongLong:  return 'Q';
5204    case BuiltinType::Char_S:
5205    case BuiltinType::SChar:      return 'c';
5206    case BuiltinType::Short:      return 's';
5207    case BuiltinType::WChar_S:
5208    case BuiltinType::WChar_U:
5209    case BuiltinType::Int:        return 'i';
5210    case BuiltinType::Long:
5211      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5212    case BuiltinType::LongLong:   return 'q';
5213    case BuiltinType::Int128:     return 't';
5214    case BuiltinType::Float:      return 'f';
5215    case BuiltinType::Double:     return 'd';
5216    case BuiltinType::LongDouble: return 'D';
5217    case BuiltinType::NullPtr:    return '*'; // like char*
5218
5219    case BuiltinType::Half:
5220      // FIXME: potentially need @encodes for these!
5221      return ' ';
5222
5223    case BuiltinType::ObjCId:
5224    case BuiltinType::ObjCClass:
5225    case BuiltinType::ObjCSel:
5226      llvm_unreachable("@encoding ObjC primitive type");
5227
5228    // OpenCL and placeholder types don't need @encodings.
5229    case BuiltinType::OCLImage1d:
5230    case BuiltinType::OCLImage1dArray:
5231    case BuiltinType::OCLImage1dBuffer:
5232    case BuiltinType::OCLImage2d:
5233    case BuiltinType::OCLImage2dArray:
5234    case BuiltinType::OCLImage3d:
5235    case BuiltinType::OCLEvent:
5236    case BuiltinType::OCLSampler:
5237    case BuiltinType::Dependent:
5238#define BUILTIN_TYPE(KIND, ID)
5239#define PLACEHOLDER_TYPE(KIND, ID) \
5240    case BuiltinType::KIND:
5241#include "clang/AST/BuiltinTypes.def"
5242      llvm_unreachable("invalid builtin type for @encode");
5243    }
5244    llvm_unreachable("invalid BuiltinType::Kind value");
5245}
5246
5247static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5248  EnumDecl *Enum = ET->getDecl();
5249
5250  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5251  if (!Enum->isFixed())
5252    return 'i';
5253
5254  // The encoding of a fixed enum type matches its fixed underlying type.
5255  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5256  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5257}
5258
5259static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5260                           QualType T, const FieldDecl *FD) {
5261  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5262  S += 'b';
5263  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5264  // The GNU runtime requires more information; bitfields are encoded as b,
5265  // then the offset (in bits) of the first element, then the type of the
5266  // bitfield, then the size in bits.  For example, in this structure:
5267  //
5268  // struct
5269  // {
5270  //    int integer;
5271  //    int flags:2;
5272  // };
5273  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5274  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5275  // information is not especially sensible, but we're stuck with it for
5276  // compatibility with GCC, although providing it breaks anything that
5277  // actually uses runtime introspection and wants to work on both runtimes...
5278  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5279    const RecordDecl *RD = FD->getParent();
5280    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5281    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5282    if (const EnumType *ET = T->getAs<EnumType>())
5283      S += ObjCEncodingForEnumType(Ctx, ET);
5284    else {
5285      const BuiltinType *BT = T->castAs<BuiltinType>();
5286      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5287    }
5288  }
5289  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5290}
5291
5292// FIXME: Use SmallString for accumulating string.
5293void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5294                                            bool ExpandPointedToStructures,
5295                                            bool ExpandStructures,
5296                                            const FieldDecl *FD,
5297                                            bool OutermostType,
5298                                            bool EncodingProperty,
5299                                            bool StructField,
5300                                            bool EncodeBlockParameters,
5301                                            bool EncodeClassNames,
5302                                            bool EncodePointerToObjCTypedef,
5303                                            QualType *NotEncodedT) const {
5304  CanQualType CT = getCanonicalType(T);
5305  switch (CT->getTypeClass()) {
5306  case Type::Builtin:
5307  case Type::Enum:
5308    if (FD && FD->isBitField())
5309      return EncodeBitField(this, S, T, FD);
5310    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5311      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5312    else
5313      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5314    return;
5315
5316  case Type::Complex: {
5317    const ComplexType *CT = T->castAs<ComplexType>();
5318    S += 'j';
5319    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5320    return;
5321  }
5322
5323  case Type::Atomic: {
5324    const AtomicType *AT = T->castAs<AtomicType>();
5325    S += 'A';
5326    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5327    return;
5328  }
5329
5330  // encoding for pointer or reference types.
5331  case Type::Pointer:
5332  case Type::LValueReference:
5333  case Type::RValueReference: {
5334    QualType PointeeTy;
5335    if (isa<PointerType>(CT)) {
5336      const PointerType *PT = T->castAs<PointerType>();
5337      if (PT->isObjCSelType()) {
5338        S += ':';
5339        return;
5340      }
5341      PointeeTy = PT->getPointeeType();
5342    } else {
5343      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5344    }
5345
5346    bool isReadOnly = false;
5347    // For historical/compatibility reasons, the read-only qualifier of the
5348    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5349    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5350    // Also, do not emit the 'r' for anything but the outermost type!
5351    if (isa<TypedefType>(T.getTypePtr())) {
5352      if (OutermostType && T.isConstQualified()) {
5353        isReadOnly = true;
5354        S += 'r';
5355      }
5356    } else if (OutermostType) {
5357      QualType P = PointeeTy;
5358      while (P->getAs<PointerType>())
5359        P = P->getAs<PointerType>()->getPointeeType();
5360      if (P.isConstQualified()) {
5361        isReadOnly = true;
5362        S += 'r';
5363      }
5364    }
5365    if (isReadOnly) {
5366      // Another legacy compatibility encoding. Some ObjC qualifier and type
5367      // combinations need to be rearranged.
5368      // Rewrite "in const" from "nr" to "rn"
5369      if (StringRef(S).endswith("nr"))
5370        S.replace(S.end()-2, S.end(), "rn");
5371    }
5372
5373    if (PointeeTy->isCharType()) {
5374      // char pointer types should be encoded as '*' unless it is a
5375      // type that has been typedef'd to 'BOOL'.
5376      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5377        S += '*';
5378        return;
5379      }
5380    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5381      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5382      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5383        S += '#';
5384        return;
5385      }
5386      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5387      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5388        S += '@';
5389        return;
5390      }
5391      // fall through...
5392    }
5393    S += '^';
5394    getLegacyIntegralTypeEncoding(PointeeTy);
5395
5396    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5397                               nullptr, false, false, false, false, false, false,
5398                               NotEncodedT);
5399    return;
5400  }
5401
5402  case Type::ConstantArray:
5403  case Type::IncompleteArray:
5404  case Type::VariableArray: {
5405    const ArrayType *AT = cast<ArrayType>(CT);
5406
5407    if (isa<IncompleteArrayType>(AT) && !StructField) {
5408      // Incomplete arrays are encoded as a pointer to the array element.
5409      S += '^';
5410
5411      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5412                                 false, ExpandStructures, FD);
5413    } else {
5414      S += '[';
5415
5416      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5417        S += llvm::utostr(CAT->getSize().getZExtValue());
5418      else {
5419        //Variable length arrays are encoded as a regular array with 0 elements.
5420        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5421               "Unknown array type!");
5422        S += '0';
5423      }
5424
5425      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5426                                 false, ExpandStructures, FD,
5427                                 false, false, false, false, false, false,
5428                                 NotEncodedT);
5429      S += ']';
5430    }
5431    return;
5432  }
5433
5434  case Type::FunctionNoProto:
5435  case Type::FunctionProto:
5436    S += '?';
5437    return;
5438
5439  case Type::Record: {
5440    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5441    S += RDecl->isUnion() ? '(' : '{';
5442    // Anonymous structures print as '?'
5443    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5444      S += II->getName();
5445      if (ClassTemplateSpecializationDecl *Spec
5446          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5447        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5448        llvm::raw_string_ostream OS(S);
5449        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5450                                            TemplateArgs.data(),
5451                                            TemplateArgs.size(),
5452                                            (*this).getPrintingPolicy());
5453      }
5454    } else {
5455      S += '?';
5456    }
5457    if (ExpandStructures) {
5458      S += '=';
5459      if (!RDecl->isUnion()) {
5460        getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5461      } else {
5462        for (const auto *Field : RDecl->fields()) {
5463          if (FD) {
5464            S += '"';
5465            S += Field->getNameAsString();
5466            S += '"';
5467          }
5468
5469          // Special case bit-fields.
5470          if (Field->isBitField()) {
5471            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5472                                       Field);
5473          } else {
5474            QualType qt = Field->getType();
5475            getLegacyIntegralTypeEncoding(qt);
5476            getObjCEncodingForTypeImpl(qt, S, false, true,
5477                                       FD, /*OutermostType*/false,
5478                                       /*EncodingProperty*/false,
5479                                       /*StructField*/true,
5480                                       false, false, false, NotEncodedT);
5481          }
5482        }
5483      }
5484    }
5485    S += RDecl->isUnion() ? ')' : '}';
5486    return;
5487  }
5488
5489  case Type::BlockPointer: {
5490    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5491    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5492    if (EncodeBlockParameters) {
5493      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5494
5495      S += '<';
5496      // Block return type
5497      getObjCEncodingForTypeImpl(
5498          FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5499          FD, false /* OutermostType */, EncodingProperty,
5500          false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5501                                 NotEncodedT);
5502      // Block self
5503      S += "@?";
5504      // Block parameters
5505      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5506        for (const auto &I : FPT->param_types())
5507          getObjCEncodingForTypeImpl(
5508              I, S, ExpandPointedToStructures, ExpandStructures, FD,
5509              false /* OutermostType */, EncodingProperty,
5510              false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5511                                     false, NotEncodedT);
5512      }
5513      S += '>';
5514    }
5515    return;
5516  }
5517
5518  case Type::ObjCObject: {
5519    // hack to match legacy encoding of *id and *Class
5520    QualType Ty = getObjCObjectPointerType(CT);
5521    if (Ty->isObjCIdType()) {
5522      S += "{objc_object=}";
5523      return;
5524    }
5525    else if (Ty->isObjCClassType()) {
5526      S += "{objc_class=}";
5527      return;
5528    }
5529  }
5530
5531  case Type::ObjCInterface: {
5532    // Ignore protocol qualifiers when mangling at this level.
5533    T = T->castAs<ObjCObjectType>()->getBaseType();
5534
5535    // The assumption seems to be that this assert will succeed
5536    // because nested levels will have filtered out 'id' and 'Class'.
5537    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5538    // @encode(class_name)
5539    ObjCInterfaceDecl *OI = OIT->getDecl();
5540    S += '{';
5541    const IdentifierInfo *II = OI->getIdentifier();
5542    S += II->getName();
5543    S += '=';
5544    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5545    DeepCollectObjCIvars(OI, true, Ivars);
5546    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5547      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5548      if (Field->isBitField())
5549        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5550      else
5551        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5552                                   false, false, false, false, false,
5553                                   EncodePointerToObjCTypedef,
5554                                   NotEncodedT);
5555    }
5556    S += '}';
5557    return;
5558  }
5559
5560  case Type::ObjCObjectPointer: {
5561    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5562    if (OPT->isObjCIdType()) {
5563      S += '@';
5564      return;
5565    }
5566
5567    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5568      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5569      // Since this is a binary compatibility issue, need to consult with runtime
5570      // folks. Fortunately, this is a *very* obsure construct.
5571      S += '#';
5572      return;
5573    }
5574
5575    if (OPT->isObjCQualifiedIdType()) {
5576      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5577                                 ExpandPointedToStructures,
5578                                 ExpandStructures, FD);
5579      if (FD || EncodingProperty || EncodeClassNames) {
5580        // Note that we do extended encoding of protocol qualifer list
5581        // Only when doing ivar or property encoding.
5582        S += '"';
5583        for (const auto *I : OPT->quals()) {
5584          S += '<';
5585          S += I->getNameAsString();
5586          S += '>';
5587        }
5588        S += '"';
5589      }
5590      return;
5591    }
5592
5593    QualType PointeeTy = OPT->getPointeeType();
5594    if (!EncodingProperty &&
5595        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5596        !EncodePointerToObjCTypedef) {
5597      // Another historical/compatibility reason.
5598      // We encode the underlying type which comes out as
5599      // {...};
5600      S += '^';
5601      if (FD && OPT->getInterfaceDecl()) {
5602        // Prevent recursive encoding of fields in some rare cases.
5603        ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5604        SmallVector<const ObjCIvarDecl*, 32> Ivars;
5605        DeepCollectObjCIvars(OI, true, Ivars);
5606        for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5607          if (cast<FieldDecl>(Ivars[i]) == FD) {
5608            S += '{';
5609            S += OI->getIdentifier()->getName();
5610            S += '}';
5611            return;
5612          }
5613        }
5614      }
5615      getObjCEncodingForTypeImpl(PointeeTy, S,
5616                                 false, ExpandPointedToStructures,
5617                                 nullptr,
5618                                 false, false, false, false, false,
5619                                 /*EncodePointerToObjCTypedef*/true);
5620      return;
5621    }
5622
5623    S += '@';
5624    if (OPT->getInterfaceDecl() &&
5625        (FD || EncodingProperty || EncodeClassNames)) {
5626      S += '"';
5627      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5628      for (const auto *I : OPT->quals()) {
5629        S += '<';
5630        S += I->getNameAsString();
5631        S += '>';
5632      }
5633      S += '"';
5634    }
5635    return;
5636  }
5637
5638  // gcc just blithely ignores member pointers.
5639  // FIXME: we shoul do better than that.  'M' is available.
5640  case Type::MemberPointer:
5641  // This matches gcc's encoding, even though technically it is insufficient.
5642  //FIXME. We should do a better job than gcc.
5643  case Type::Vector:
5644  case Type::ExtVector:
5645  // Until we have a coherent encoding of these three types, issue warning.
5646    { if (NotEncodedT)
5647        *NotEncodedT = T;
5648      return;
5649    }
5650
5651  // We could see an undeduced auto type here during error recovery.
5652  // Just ignore it.
5653  case Type::Auto:
5654    return;
5655
5656
5657#define ABSTRACT_TYPE(KIND, BASE)
5658#define TYPE(KIND, BASE)
5659#define DEPENDENT_TYPE(KIND, BASE) \
5660  case Type::KIND:
5661#define NON_CANONICAL_TYPE(KIND, BASE) \
5662  case Type::KIND:
5663#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5664  case Type::KIND:
5665#include "clang/AST/TypeNodes.def"
5666    llvm_unreachable("@encode for dependent type!");
5667  }
5668  llvm_unreachable("bad type kind!");
5669}
5670
5671void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5672                                                 std::string &S,
5673                                                 const FieldDecl *FD,
5674                                                 bool includeVBases,
5675                                                 QualType *NotEncodedT) const {
5676  assert(RDecl && "Expected non-null RecordDecl");
5677  assert(!RDecl->isUnion() && "Should not be called for unions");
5678  if (!RDecl->getDefinition())
5679    return;
5680
5681  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5682  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5683  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5684
5685  if (CXXRec) {
5686    for (const auto &BI : CXXRec->bases()) {
5687      if (!BI.isVirtual()) {
5688        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5689        if (base->isEmpty())
5690          continue;
5691        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5692        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5693                                  std::make_pair(offs, base));
5694      }
5695    }
5696  }
5697
5698  unsigned i = 0;
5699  for (auto *Field : RDecl->fields()) {
5700    uint64_t offs = layout.getFieldOffset(i);
5701    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5702                              std::make_pair(offs, Field));
5703    ++i;
5704  }
5705
5706  if (CXXRec && includeVBases) {
5707    for (const auto &BI : CXXRec->vbases()) {
5708      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5709      if (base->isEmpty())
5710        continue;
5711      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5712      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5713          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5714        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5715                                  std::make_pair(offs, base));
5716    }
5717  }
5718
5719  CharUnits size;
5720  if (CXXRec) {
5721    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5722  } else {
5723    size = layout.getSize();
5724  }
5725
5726#ifndef NDEBUG
5727  uint64_t CurOffs = 0;
5728#endif
5729  std::multimap<uint64_t, NamedDecl *>::iterator
5730    CurLayObj = FieldOrBaseOffsets.begin();
5731
5732  if (CXXRec && CXXRec->isDynamicClass() &&
5733      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5734    if (FD) {
5735      S += "\"_vptr$";
5736      std::string recname = CXXRec->getNameAsString();
5737      if (recname.empty()) recname = "?";
5738      S += recname;
5739      S += '"';
5740    }
5741    S += "^^?";
5742#ifndef NDEBUG
5743    CurOffs += getTypeSize(VoidPtrTy);
5744#endif
5745  }
5746
5747  if (!RDecl->hasFlexibleArrayMember()) {
5748    // Mark the end of the structure.
5749    uint64_t offs = toBits(size);
5750    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5751                              std::make_pair(offs, nullptr));
5752  }
5753
5754  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5755#ifndef NDEBUG
5756    assert(CurOffs <= CurLayObj->first);
5757    if (CurOffs < CurLayObj->first) {
5758      uint64_t padding = CurLayObj->first - CurOffs;
5759      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5760      // packing/alignment of members is different that normal, in which case
5761      // the encoding will be out-of-sync with the real layout.
5762      // If the runtime switches to just consider the size of types without
5763      // taking into account alignment, we could make padding explicit in the
5764      // encoding (e.g. using arrays of chars). The encoding strings would be
5765      // longer then though.
5766      CurOffs += padding;
5767    }
5768#endif
5769
5770    NamedDecl *dcl = CurLayObj->second;
5771    if (!dcl)
5772      break; // reached end of structure.
5773
5774    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5775      // We expand the bases without their virtual bases since those are going
5776      // in the initial structure. Note that this differs from gcc which
5777      // expands virtual bases each time one is encountered in the hierarchy,
5778      // making the encoding type bigger than it really is.
5779      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5780                                      NotEncodedT);
5781      assert(!base->isEmpty());
5782#ifndef NDEBUG
5783      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5784#endif
5785    } else {
5786      FieldDecl *field = cast<FieldDecl>(dcl);
5787      if (FD) {
5788        S += '"';
5789        S += field->getNameAsString();
5790        S += '"';
5791      }
5792
5793      if (field->isBitField()) {
5794        EncodeBitField(this, S, field->getType(), field);
5795#ifndef NDEBUG
5796        CurOffs += field->getBitWidthValue(*this);
5797#endif
5798      } else {
5799        QualType qt = field->getType();
5800        getLegacyIntegralTypeEncoding(qt);
5801        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5802                                   /*OutermostType*/false,
5803                                   /*EncodingProperty*/false,
5804                                   /*StructField*/true,
5805                                   false, false, false, NotEncodedT);
5806#ifndef NDEBUG
5807        CurOffs += getTypeSize(field->getType());
5808#endif
5809      }
5810    }
5811  }
5812}
5813
5814void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5815                                                 std::string& S) const {
5816  if (QT & Decl::OBJC_TQ_In)
5817    S += 'n';
5818  if (QT & Decl::OBJC_TQ_Inout)
5819    S += 'N';
5820  if (QT & Decl::OBJC_TQ_Out)
5821    S += 'o';
5822  if (QT & Decl::OBJC_TQ_Bycopy)
5823    S += 'O';
5824  if (QT & Decl::OBJC_TQ_Byref)
5825    S += 'R';
5826  if (QT & Decl::OBJC_TQ_Oneway)
5827    S += 'V';
5828}
5829
5830TypedefDecl *ASTContext::getObjCIdDecl() const {
5831  if (!ObjCIdDecl) {
5832    QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5833    T = getObjCObjectPointerType(T);
5834    ObjCIdDecl = buildImplicitTypedef(T, "id");
5835  }
5836  return ObjCIdDecl;
5837}
5838
5839TypedefDecl *ASTContext::getObjCSelDecl() const {
5840  if (!ObjCSelDecl) {
5841    QualType T = getPointerType(ObjCBuiltinSelTy);
5842    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5843  }
5844  return ObjCSelDecl;
5845}
5846
5847TypedefDecl *ASTContext::getObjCClassDecl() const {
5848  if (!ObjCClassDecl) {
5849    QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5850    T = getObjCObjectPointerType(T);
5851    ObjCClassDecl = buildImplicitTypedef(T, "Class");
5852  }
5853  return ObjCClassDecl;
5854}
5855
5856ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5857  if (!ObjCProtocolClassDecl) {
5858    ObjCProtocolClassDecl
5859      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5860                                  SourceLocation(),
5861                                  &Idents.get("Protocol"),
5862                                  /*PrevDecl=*/nullptr,
5863                                  SourceLocation(), true);
5864  }
5865
5866  return ObjCProtocolClassDecl;
5867}
5868
5869//===----------------------------------------------------------------------===//
5870// __builtin_va_list Construction Functions
5871//===----------------------------------------------------------------------===//
5872
5873static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5874  // typedef char* __builtin_va_list;
5875  QualType T = Context->getPointerType(Context->CharTy);
5876  return Context->buildImplicitTypedef(T, "__builtin_va_list");
5877}
5878
5879static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5880  // typedef void* __builtin_va_list;
5881  QualType T = Context->getPointerType(Context->VoidTy);
5882  return Context->buildImplicitTypedef(T, "__builtin_va_list");
5883}
5884
5885static TypedefDecl *
5886CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5887  // struct __va_list
5888  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5889  if (Context->getLangOpts().CPlusPlus) {
5890    // namespace std { struct __va_list {
5891    NamespaceDecl *NS;
5892    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5893                               Context->getTranslationUnitDecl(),
5894                               /*Inline*/ false, SourceLocation(),
5895                               SourceLocation(), &Context->Idents.get("std"),
5896                               /*PrevDecl*/ nullptr);
5897    NS->setImplicit();
5898    VaListTagDecl->setDeclContext(NS);
5899  }
5900
5901  VaListTagDecl->startDefinition();
5902
5903  const size_t NumFields = 5;
5904  QualType FieldTypes[NumFields];
5905  const char *FieldNames[NumFields];
5906
5907  // void *__stack;
5908  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5909  FieldNames[0] = "__stack";
5910
5911  // void *__gr_top;
5912  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5913  FieldNames[1] = "__gr_top";
5914
5915  // void *__vr_top;
5916  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5917  FieldNames[2] = "__vr_top";
5918
5919  // int __gr_offs;
5920  FieldTypes[3] = Context->IntTy;
5921  FieldNames[3] = "__gr_offs";
5922
5923  // int __vr_offs;
5924  FieldTypes[4] = Context->IntTy;
5925  FieldNames[4] = "__vr_offs";
5926
5927  // Create fields
5928  for (unsigned i = 0; i < NumFields; ++i) {
5929    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5930                                         VaListTagDecl,
5931                                         SourceLocation(),
5932                                         SourceLocation(),
5933                                         &Context->Idents.get(FieldNames[i]),
5934                                         FieldTypes[i], /*TInfo=*/nullptr,
5935                                         /*BitWidth=*/nullptr,
5936                                         /*Mutable=*/false,
5937                                         ICIS_NoInit);
5938    Field->setAccess(AS_public);
5939    VaListTagDecl->addDecl(Field);
5940  }
5941  VaListTagDecl->completeDefinition();
5942  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5943  Context->VaListTagTy = VaListTagType;
5944
5945  // } __builtin_va_list;
5946  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5947}
5948
5949static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5950  // typedef struct __va_list_tag {
5951  RecordDecl *VaListTagDecl;
5952
5953  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5954  VaListTagDecl->startDefinition();
5955
5956  const size_t NumFields = 5;
5957  QualType FieldTypes[NumFields];
5958  const char *FieldNames[NumFields];
5959
5960  //   unsigned char gpr;
5961  FieldTypes[0] = Context->UnsignedCharTy;
5962  FieldNames[0] = "gpr";
5963
5964  //   unsigned char fpr;
5965  FieldTypes[1] = Context->UnsignedCharTy;
5966  FieldNames[1] = "fpr";
5967
5968  //   unsigned short reserved;
5969  FieldTypes[2] = Context->UnsignedShortTy;
5970  FieldNames[2] = "reserved";
5971
5972  //   void* overflow_arg_area;
5973  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5974  FieldNames[3] = "overflow_arg_area";
5975
5976  //   void* reg_save_area;
5977  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5978  FieldNames[4] = "reg_save_area";
5979
5980  // Create fields
5981  for (unsigned i = 0; i < NumFields; ++i) {
5982    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5983                                         SourceLocation(),
5984                                         SourceLocation(),
5985                                         &Context->Idents.get(FieldNames[i]),
5986                                         FieldTypes[i], /*TInfo=*/nullptr,
5987                                         /*BitWidth=*/nullptr,
5988                                         /*Mutable=*/false,
5989                                         ICIS_NoInit);
5990    Field->setAccess(AS_public);
5991    VaListTagDecl->addDecl(Field);
5992  }
5993  VaListTagDecl->completeDefinition();
5994  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5995  Context->VaListTagTy = VaListTagType;
5996
5997  // } __va_list_tag;
5998  TypedefDecl *VaListTagTypedefDecl =
5999      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6000
6001  QualType VaListTagTypedefType =
6002    Context->getTypedefType(VaListTagTypedefDecl);
6003
6004  // typedef __va_list_tag __builtin_va_list[1];
6005  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6006  QualType VaListTagArrayType
6007    = Context->getConstantArrayType(VaListTagTypedefType,
6008                                    Size, ArrayType::Normal, 0);
6009  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6010}
6011
6012static TypedefDecl *
6013CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6014  // typedef struct __va_list_tag {
6015  RecordDecl *VaListTagDecl;
6016  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6017  VaListTagDecl->startDefinition();
6018
6019  const size_t NumFields = 4;
6020  QualType FieldTypes[NumFields];
6021  const char *FieldNames[NumFields];
6022
6023  //   unsigned gp_offset;
6024  FieldTypes[0] = Context->UnsignedIntTy;
6025  FieldNames[0] = "gp_offset";
6026
6027  //   unsigned fp_offset;
6028  FieldTypes[1] = Context->UnsignedIntTy;
6029  FieldNames[1] = "fp_offset";
6030
6031  //   void* overflow_arg_area;
6032  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6033  FieldNames[2] = "overflow_arg_area";
6034
6035  //   void* reg_save_area;
6036  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6037  FieldNames[3] = "reg_save_area";
6038
6039  // Create fields
6040  for (unsigned i = 0; i < NumFields; ++i) {
6041    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6042                                         VaListTagDecl,
6043                                         SourceLocation(),
6044                                         SourceLocation(),
6045                                         &Context->Idents.get(FieldNames[i]),
6046                                         FieldTypes[i], /*TInfo=*/nullptr,
6047                                         /*BitWidth=*/nullptr,
6048                                         /*Mutable=*/false,
6049                                         ICIS_NoInit);
6050    Field->setAccess(AS_public);
6051    VaListTagDecl->addDecl(Field);
6052  }
6053  VaListTagDecl->completeDefinition();
6054  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6055  Context->VaListTagTy = VaListTagType;
6056
6057  // } __va_list_tag;
6058  TypedefDecl *VaListTagTypedefDecl =
6059      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6060
6061  QualType VaListTagTypedefType =
6062    Context->getTypedefType(VaListTagTypedefDecl);
6063
6064  // typedef __va_list_tag __builtin_va_list[1];
6065  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6066  QualType VaListTagArrayType
6067    = Context->getConstantArrayType(VaListTagTypedefType,
6068                                      Size, ArrayType::Normal,0);
6069  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6070}
6071
6072static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6073  // typedef int __builtin_va_list[4];
6074  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6075  QualType IntArrayType
6076    = Context->getConstantArrayType(Context->IntTy,
6077				    Size, ArrayType::Normal, 0);
6078  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6079}
6080
6081static TypedefDecl *
6082CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6083  // struct __va_list
6084  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6085  if (Context->getLangOpts().CPlusPlus) {
6086    // namespace std { struct __va_list {
6087    NamespaceDecl *NS;
6088    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6089                               Context->getTranslationUnitDecl(),
6090                               /*Inline*/false, SourceLocation(),
6091                               SourceLocation(), &Context->Idents.get("std"),
6092                               /*PrevDecl*/ nullptr);
6093    NS->setImplicit();
6094    VaListDecl->setDeclContext(NS);
6095  }
6096
6097  VaListDecl->startDefinition();
6098
6099  // void * __ap;
6100  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6101                                       VaListDecl,
6102                                       SourceLocation(),
6103                                       SourceLocation(),
6104                                       &Context->Idents.get("__ap"),
6105                                       Context->getPointerType(Context->VoidTy),
6106                                       /*TInfo=*/nullptr,
6107                                       /*BitWidth=*/nullptr,
6108                                       /*Mutable=*/false,
6109                                       ICIS_NoInit);
6110  Field->setAccess(AS_public);
6111  VaListDecl->addDecl(Field);
6112
6113  // };
6114  VaListDecl->completeDefinition();
6115
6116  // typedef struct __va_list __builtin_va_list;
6117  QualType T = Context->getRecordType(VaListDecl);
6118  return Context->buildImplicitTypedef(T, "__builtin_va_list");
6119}
6120
6121static TypedefDecl *
6122CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6123  // typedef struct __va_list_tag {
6124  RecordDecl *VaListTagDecl;
6125  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6126  VaListTagDecl->startDefinition();
6127
6128  const size_t NumFields = 4;
6129  QualType FieldTypes[NumFields];
6130  const char *FieldNames[NumFields];
6131
6132  //   long __gpr;
6133  FieldTypes[0] = Context->LongTy;
6134  FieldNames[0] = "__gpr";
6135
6136  //   long __fpr;
6137  FieldTypes[1] = Context->LongTy;
6138  FieldNames[1] = "__fpr";
6139
6140  //   void *__overflow_arg_area;
6141  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6142  FieldNames[2] = "__overflow_arg_area";
6143
6144  //   void *__reg_save_area;
6145  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6146  FieldNames[3] = "__reg_save_area";
6147
6148  // Create fields
6149  for (unsigned i = 0; i < NumFields; ++i) {
6150    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6151                                         VaListTagDecl,
6152                                         SourceLocation(),
6153                                         SourceLocation(),
6154                                         &Context->Idents.get(FieldNames[i]),
6155                                         FieldTypes[i], /*TInfo=*/nullptr,
6156                                         /*BitWidth=*/nullptr,
6157                                         /*Mutable=*/false,
6158                                         ICIS_NoInit);
6159    Field->setAccess(AS_public);
6160    VaListTagDecl->addDecl(Field);
6161  }
6162  VaListTagDecl->completeDefinition();
6163  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6164  Context->VaListTagTy = VaListTagType;
6165
6166  // } __va_list_tag;
6167  TypedefDecl *VaListTagTypedefDecl =
6168      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6169  QualType VaListTagTypedefType =
6170    Context->getTypedefType(VaListTagTypedefDecl);
6171
6172  // typedef __va_list_tag __builtin_va_list[1];
6173  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6174  QualType VaListTagArrayType
6175    = Context->getConstantArrayType(VaListTagTypedefType,
6176                                      Size, ArrayType::Normal,0);
6177
6178  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6179}
6180
6181static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6182                                     TargetInfo::BuiltinVaListKind Kind) {
6183  switch (Kind) {
6184  case TargetInfo::CharPtrBuiltinVaList:
6185    return CreateCharPtrBuiltinVaListDecl(Context);
6186  case TargetInfo::VoidPtrBuiltinVaList:
6187    return CreateVoidPtrBuiltinVaListDecl(Context);
6188  case TargetInfo::AArch64ABIBuiltinVaList:
6189    return CreateAArch64ABIBuiltinVaListDecl(Context);
6190  case TargetInfo::PowerABIBuiltinVaList:
6191    return CreatePowerABIBuiltinVaListDecl(Context);
6192  case TargetInfo::X86_64ABIBuiltinVaList:
6193    return CreateX86_64ABIBuiltinVaListDecl(Context);
6194  case TargetInfo::PNaClABIBuiltinVaList:
6195    return CreatePNaClABIBuiltinVaListDecl(Context);
6196  case TargetInfo::AAPCSABIBuiltinVaList:
6197    return CreateAAPCSABIBuiltinVaListDecl(Context);
6198  case TargetInfo::SystemZBuiltinVaList:
6199    return CreateSystemZBuiltinVaListDecl(Context);
6200  }
6201
6202  llvm_unreachable("Unhandled __builtin_va_list type kind");
6203}
6204
6205TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6206  if (!BuiltinVaListDecl) {
6207    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6208    assert(BuiltinVaListDecl->isImplicit());
6209  }
6210
6211  return BuiltinVaListDecl;
6212}
6213
6214QualType ASTContext::getVaListTagType() const {
6215  // Force the creation of VaListTagTy by building the __builtin_va_list
6216  // declaration.
6217  if (VaListTagTy.isNull())
6218    (void) getBuiltinVaListDecl();
6219
6220  return VaListTagTy;
6221}
6222
6223void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6224  assert(ObjCConstantStringType.isNull() &&
6225         "'NSConstantString' type already set!");
6226
6227  ObjCConstantStringType = getObjCInterfaceType(Decl);
6228}
6229
6230/// \brief Retrieve the template name that corresponds to a non-empty
6231/// lookup.
6232TemplateName
6233ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6234                                      UnresolvedSetIterator End) const {
6235  unsigned size = End - Begin;
6236  assert(size > 1 && "set is not overloaded!");
6237
6238  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6239                          size * sizeof(FunctionTemplateDecl*));
6240  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6241
6242  NamedDecl **Storage = OT->getStorage();
6243  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6244    NamedDecl *D = *I;
6245    assert(isa<FunctionTemplateDecl>(D) ||
6246           (isa<UsingShadowDecl>(D) &&
6247            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6248    *Storage++ = D;
6249  }
6250
6251  return TemplateName(OT);
6252}
6253
6254/// \brief Retrieve the template name that represents a qualified
6255/// template name such as \c std::vector.
6256TemplateName
6257ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6258                                     bool TemplateKeyword,
6259                                     TemplateDecl *Template) const {
6260  assert(NNS && "Missing nested-name-specifier in qualified template name");
6261
6262  // FIXME: Canonicalization?
6263  llvm::FoldingSetNodeID ID;
6264  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6265
6266  void *InsertPos = nullptr;
6267  QualifiedTemplateName *QTN =
6268    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6269  if (!QTN) {
6270    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6271        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6272    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6273  }
6274
6275  return TemplateName(QTN);
6276}
6277
6278/// \brief Retrieve the template name that represents a dependent
6279/// template name such as \c MetaFun::template apply.
6280TemplateName
6281ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6282                                     const IdentifierInfo *Name) const {
6283  assert((!NNS || NNS->isDependent()) &&
6284         "Nested name specifier must be dependent");
6285
6286  llvm::FoldingSetNodeID ID;
6287  DependentTemplateName::Profile(ID, NNS, Name);
6288
6289  void *InsertPos = nullptr;
6290  DependentTemplateName *QTN =
6291    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6292
6293  if (QTN)
6294    return TemplateName(QTN);
6295
6296  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6297  if (CanonNNS == NNS) {
6298    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6299        DependentTemplateName(NNS, Name);
6300  } else {
6301    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6302    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6303        DependentTemplateName(NNS, Name, Canon);
6304    DependentTemplateName *CheckQTN =
6305      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6306    assert(!CheckQTN && "Dependent type name canonicalization broken");
6307    (void)CheckQTN;
6308  }
6309
6310  DependentTemplateNames.InsertNode(QTN, InsertPos);
6311  return TemplateName(QTN);
6312}
6313
6314/// \brief Retrieve the template name that represents a dependent
6315/// template name such as \c MetaFun::template operator+.
6316TemplateName
6317ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6318                                     OverloadedOperatorKind Operator) const {
6319  assert((!NNS || NNS->isDependent()) &&
6320         "Nested name specifier must be dependent");
6321
6322  llvm::FoldingSetNodeID ID;
6323  DependentTemplateName::Profile(ID, NNS, Operator);
6324
6325  void *InsertPos = nullptr;
6326  DependentTemplateName *QTN
6327    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6328
6329  if (QTN)
6330    return TemplateName(QTN);
6331
6332  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6333  if (CanonNNS == NNS) {
6334    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6335        DependentTemplateName(NNS, Operator);
6336  } else {
6337    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6338    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6339        DependentTemplateName(NNS, Operator, Canon);
6340
6341    DependentTemplateName *CheckQTN
6342      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6343    assert(!CheckQTN && "Dependent template name canonicalization broken");
6344    (void)CheckQTN;
6345  }
6346
6347  DependentTemplateNames.InsertNode(QTN, InsertPos);
6348  return TemplateName(QTN);
6349}
6350
6351TemplateName
6352ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6353                                         TemplateName replacement) const {
6354  llvm::FoldingSetNodeID ID;
6355  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6356
6357  void *insertPos = nullptr;
6358  SubstTemplateTemplateParmStorage *subst
6359    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6360
6361  if (!subst) {
6362    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6363    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6364  }
6365
6366  return TemplateName(subst);
6367}
6368
6369TemplateName
6370ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6371                                       const TemplateArgument &ArgPack) const {
6372  ASTContext &Self = const_cast<ASTContext &>(*this);
6373  llvm::FoldingSetNodeID ID;
6374  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6375
6376  void *InsertPos = nullptr;
6377  SubstTemplateTemplateParmPackStorage *Subst
6378    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6379
6380  if (!Subst) {
6381    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6382                                                           ArgPack.pack_size(),
6383                                                         ArgPack.pack_begin());
6384    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6385  }
6386
6387  return TemplateName(Subst);
6388}
6389
6390/// getFromTargetType - Given one of the integer types provided by
6391/// TargetInfo, produce the corresponding type. The unsigned @p Type
6392/// is actually a value of type @c TargetInfo::IntType.
6393CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6394  switch (Type) {
6395  case TargetInfo::NoInt: return CanQualType();
6396  case TargetInfo::SignedChar: return SignedCharTy;
6397  case TargetInfo::UnsignedChar: return UnsignedCharTy;
6398  case TargetInfo::SignedShort: return ShortTy;
6399  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6400  case TargetInfo::SignedInt: return IntTy;
6401  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6402  case TargetInfo::SignedLong: return LongTy;
6403  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6404  case TargetInfo::SignedLongLong: return LongLongTy;
6405  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6406  }
6407
6408  llvm_unreachable("Unhandled TargetInfo::IntType value");
6409}
6410
6411//===----------------------------------------------------------------------===//
6412//                        Type Predicates.
6413//===----------------------------------------------------------------------===//
6414
6415/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6416/// garbage collection attribute.
6417///
6418Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6419  if (getLangOpts().getGC() == LangOptions::NonGC)
6420    return Qualifiers::GCNone;
6421
6422  assert(getLangOpts().ObjC1);
6423  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6424
6425  // Default behaviour under objective-C's gc is for ObjC pointers
6426  // (or pointers to them) be treated as though they were declared
6427  // as __strong.
6428  if (GCAttrs == Qualifiers::GCNone) {
6429    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6430      return Qualifiers::Strong;
6431    else if (Ty->isPointerType())
6432      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6433  } else {
6434    // It's not valid to set GC attributes on anything that isn't a
6435    // pointer.
6436#ifndef NDEBUG
6437    QualType CT = Ty->getCanonicalTypeInternal();
6438    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6439      CT = AT->getElementType();
6440    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6441#endif
6442  }
6443  return GCAttrs;
6444}
6445
6446//===----------------------------------------------------------------------===//
6447//                        Type Compatibility Testing
6448//===----------------------------------------------------------------------===//
6449
6450/// areCompatVectorTypes - Return true if the two specified vector types are
6451/// compatible.
6452static bool areCompatVectorTypes(const VectorType *LHS,
6453                                 const VectorType *RHS) {
6454  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6455  return LHS->getElementType() == RHS->getElementType() &&
6456         LHS->getNumElements() == RHS->getNumElements();
6457}
6458
6459bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6460                                          QualType SecondVec) {
6461  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6462  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6463
6464  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6465    return true;
6466
6467  // Treat Neon vector types and most AltiVec vector types as if they are the
6468  // equivalent GCC vector types.
6469  const VectorType *First = FirstVec->getAs<VectorType>();
6470  const VectorType *Second = SecondVec->getAs<VectorType>();
6471  if (First->getNumElements() == Second->getNumElements() &&
6472      hasSameType(First->getElementType(), Second->getElementType()) &&
6473      First->getVectorKind() != VectorType::AltiVecPixel &&
6474      First->getVectorKind() != VectorType::AltiVecBool &&
6475      Second->getVectorKind() != VectorType::AltiVecPixel &&
6476      Second->getVectorKind() != VectorType::AltiVecBool)
6477    return true;
6478
6479  return false;
6480}
6481
6482//===----------------------------------------------------------------------===//
6483// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6484//===----------------------------------------------------------------------===//
6485
6486/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6487/// inheritance hierarchy of 'rProto'.
6488bool
6489ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6490                                           ObjCProtocolDecl *rProto) const {
6491  if (declaresSameEntity(lProto, rProto))
6492    return true;
6493  for (auto *PI : rProto->protocols())
6494    if (ProtocolCompatibleWithProtocol(lProto, PI))
6495      return true;
6496  return false;
6497}
6498
6499/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6500/// Class<pr1, ...>.
6501bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6502                                                      QualType rhs) {
6503  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6504  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6505  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6506
6507  for (auto *lhsProto : lhsQID->quals()) {
6508    bool match = false;
6509    for (auto *rhsProto : rhsOPT->quals()) {
6510      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6511        match = true;
6512        break;
6513      }
6514    }
6515    if (!match)
6516      return false;
6517  }
6518  return true;
6519}
6520
6521/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6522/// ObjCQualifiedIDType.
6523bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6524                                                   bool compare) {
6525  // Allow id<P..> and an 'id' or void* type in all cases.
6526  if (lhs->isVoidPointerType() ||
6527      lhs->isObjCIdType() || lhs->isObjCClassType())
6528    return true;
6529  else if (rhs->isVoidPointerType() ||
6530           rhs->isObjCIdType() || rhs->isObjCClassType())
6531    return true;
6532
6533  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6534    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6535
6536    if (!rhsOPT) return false;
6537
6538    if (rhsOPT->qual_empty()) {
6539      // If the RHS is a unqualified interface pointer "NSString*",
6540      // make sure we check the class hierarchy.
6541      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6542        for (auto *I : lhsQID->quals()) {
6543          // when comparing an id<P> on lhs with a static type on rhs,
6544          // see if static class implements all of id's protocols, directly or
6545          // through its super class and categories.
6546          if (!rhsID->ClassImplementsProtocol(I, true))
6547            return false;
6548        }
6549      }
6550      // If there are no qualifiers and no interface, we have an 'id'.
6551      return true;
6552    }
6553    // Both the right and left sides have qualifiers.
6554    for (auto *lhsProto : lhsQID->quals()) {
6555      bool match = false;
6556
6557      // when comparing an id<P> on lhs with a static type on rhs,
6558      // see if static class implements all of id's protocols, directly or
6559      // through its super class and categories.
6560      for (auto *rhsProto : rhsOPT->quals()) {
6561        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6562            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6563          match = true;
6564          break;
6565        }
6566      }
6567      // If the RHS is a qualified interface pointer "NSString<P>*",
6568      // make sure we check the class hierarchy.
6569      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6570        for (auto *I : lhsQID->quals()) {
6571          // when comparing an id<P> on lhs with a static type on rhs,
6572          // see if static class implements all of id's protocols, directly or
6573          // through its super class and categories.
6574          if (rhsID->ClassImplementsProtocol(I, true)) {
6575            match = true;
6576            break;
6577          }
6578        }
6579      }
6580      if (!match)
6581        return false;
6582    }
6583
6584    return true;
6585  }
6586
6587  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6588  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6589
6590  if (const ObjCObjectPointerType *lhsOPT =
6591        lhs->getAsObjCInterfacePointerType()) {
6592    // If both the right and left sides have qualifiers.
6593    for (auto *lhsProto : lhsOPT->quals()) {
6594      bool match = false;
6595
6596      // when comparing an id<P> on rhs with a static type on lhs,
6597      // see if static class implements all of id's protocols, directly or
6598      // through its super class and categories.
6599      // First, lhs protocols in the qualifier list must be found, direct
6600      // or indirect in rhs's qualifier list or it is a mismatch.
6601      for (auto *rhsProto : rhsQID->quals()) {
6602        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6603            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6604          match = true;
6605          break;
6606        }
6607      }
6608      if (!match)
6609        return false;
6610    }
6611
6612    // Static class's protocols, or its super class or category protocols
6613    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6614    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6615      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6616      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6617      // This is rather dubious but matches gcc's behavior. If lhs has
6618      // no type qualifier and its class has no static protocol(s)
6619      // assume that it is mismatch.
6620      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6621        return false;
6622      for (auto *lhsProto : LHSInheritedProtocols) {
6623        bool match = false;
6624        for (auto *rhsProto : rhsQID->quals()) {
6625          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6626              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6627            match = true;
6628            break;
6629          }
6630        }
6631        if (!match)
6632          return false;
6633      }
6634    }
6635    return true;
6636  }
6637  return false;
6638}
6639
6640/// canAssignObjCInterfaces - Return true if the two interface types are
6641/// compatible for assignment from RHS to LHS.  This handles validation of any
6642/// protocol qualifiers on the LHS or RHS.
6643///
6644bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6645                                         const ObjCObjectPointerType *RHSOPT) {
6646  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6647  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6648
6649  // If either type represents the built-in 'id' or 'Class' types, return true.
6650  if (LHS->isObjCUnqualifiedIdOrClass() ||
6651      RHS->isObjCUnqualifiedIdOrClass())
6652    return true;
6653
6654  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6655    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6656                                             QualType(RHSOPT,0),
6657                                             false);
6658
6659  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6660    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6661                                                QualType(RHSOPT,0));
6662
6663  // If we have 2 user-defined types, fall into that path.
6664  if (LHS->getInterface() && RHS->getInterface())
6665    return canAssignObjCInterfaces(LHS, RHS);
6666
6667  return false;
6668}
6669
6670/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6671/// for providing type-safety for objective-c pointers used to pass/return
6672/// arguments in block literals. When passed as arguments, passing 'A*' where
6673/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6674/// not OK. For the return type, the opposite is not OK.
6675bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6676                                         const ObjCObjectPointerType *LHSOPT,
6677                                         const ObjCObjectPointerType *RHSOPT,
6678                                         bool BlockReturnType) {
6679  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6680    return true;
6681
6682  if (LHSOPT->isObjCBuiltinType()) {
6683    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6684  }
6685
6686  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6687    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6688                                             QualType(RHSOPT,0),
6689                                             false);
6690
6691  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6692  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6693  if (LHS && RHS)  { // We have 2 user-defined types.
6694    if (LHS != RHS) {
6695      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6696        return BlockReturnType;
6697      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6698        return !BlockReturnType;
6699    }
6700    else
6701      return true;
6702  }
6703  return false;
6704}
6705
6706/// getIntersectionOfProtocols - This routine finds the intersection of set
6707/// of protocols inherited from two distinct objective-c pointer objects.
6708/// It is used to build composite qualifier list of the composite type of
6709/// the conditional expression involving two objective-c pointer objects.
6710static
6711void getIntersectionOfProtocols(ASTContext &Context,
6712                                const ObjCObjectPointerType *LHSOPT,
6713                                const ObjCObjectPointerType *RHSOPT,
6714      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6715
6716  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6717  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6718  assert(LHS->getInterface() && "LHS must have an interface base");
6719  assert(RHS->getInterface() && "RHS must have an interface base");
6720
6721  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6722  unsigned LHSNumProtocols = LHS->getNumProtocols();
6723  if (LHSNumProtocols > 0)
6724    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6725  else {
6726    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6727    Context.CollectInheritedProtocols(LHS->getInterface(),
6728                                      LHSInheritedProtocols);
6729    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6730                                LHSInheritedProtocols.end());
6731  }
6732
6733  unsigned RHSNumProtocols = RHS->getNumProtocols();
6734  if (RHSNumProtocols > 0) {
6735    ObjCProtocolDecl **RHSProtocols =
6736      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6737    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6738      if (InheritedProtocolSet.count(RHSProtocols[i]))
6739        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6740  } else {
6741    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6742    Context.CollectInheritedProtocols(RHS->getInterface(),
6743                                      RHSInheritedProtocols);
6744    for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6745      if (InheritedProtocolSet.count(ProtDecl))
6746        IntersectionOfProtocols.push_back(ProtDecl);
6747  }
6748}
6749
6750/// areCommonBaseCompatible - Returns common base class of the two classes if
6751/// one found. Note that this is O'2 algorithm. But it will be called as the
6752/// last type comparison in a ?-exp of ObjC pointer types before a
6753/// warning is issued. So, its invokation is extremely rare.
6754QualType ASTContext::areCommonBaseCompatible(
6755                                          const ObjCObjectPointerType *Lptr,
6756                                          const ObjCObjectPointerType *Rptr) {
6757  const ObjCObjectType *LHS = Lptr->getObjectType();
6758  const ObjCObjectType *RHS = Rptr->getObjectType();
6759  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6760  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6761  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6762    return QualType();
6763
6764  do {
6765    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6766    if (canAssignObjCInterfaces(LHS, RHS)) {
6767      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6768      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6769
6770      QualType Result = QualType(LHS, 0);
6771      if (!Protocols.empty())
6772        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6773      Result = getObjCObjectPointerType(Result);
6774      return Result;
6775    }
6776  } while ((LDecl = LDecl->getSuperClass()));
6777
6778  return QualType();
6779}
6780
6781bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6782                                         const ObjCObjectType *RHS) {
6783  assert(LHS->getInterface() && "LHS is not an interface type");
6784  assert(RHS->getInterface() && "RHS is not an interface type");
6785
6786  // Verify that the base decls are compatible: the RHS must be a subclass of
6787  // the LHS.
6788  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6789    return false;
6790
6791  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6792  // protocol qualified at all, then we are good.
6793  if (LHS->getNumProtocols() == 0)
6794    return true;
6795
6796  // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6797  // More detailed analysis is required.
6798  // OK, if LHS is same or a superclass of RHS *and*
6799  // this LHS, or as RHS's super class is assignment compatible with LHS.
6800  bool IsSuperClass =
6801    LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6802  if (IsSuperClass) {
6803    // OK if conversion of LHS to SuperClass results in narrowing of types
6804    // ; i.e., SuperClass may implement at least one of the protocols
6805    // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6806    // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6807    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6808    CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6809    // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6810    // qualifiers.
6811    for (auto *RHSPI : RHS->quals())
6812      SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6813    // If there is no protocols associated with RHS, it is not a match.
6814    if (SuperClassInheritedProtocols.empty())
6815      return false;
6816
6817    for (const auto *LHSProto : LHS->quals()) {
6818      bool SuperImplementsProtocol = false;
6819      for (auto *SuperClassProto : SuperClassInheritedProtocols)
6820        if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6821          SuperImplementsProtocol = true;
6822          break;
6823        }
6824      if (!SuperImplementsProtocol)
6825        return false;
6826    }
6827    return true;
6828  }
6829  return false;
6830}
6831
6832bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6833  // get the "pointed to" types
6834  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6835  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6836
6837  if (!LHSOPT || !RHSOPT)
6838    return false;
6839
6840  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6841         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6842}
6843
6844bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6845  return canAssignObjCInterfaces(
6846                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6847                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6848}
6849
6850/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6851/// both shall have the identically qualified version of a compatible type.
6852/// C99 6.2.7p1: Two types have compatible types if their types are the
6853/// same. See 6.7.[2,3,5] for additional rules.
6854bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6855                                    bool CompareUnqualified) {
6856  if (getLangOpts().CPlusPlus)
6857    return hasSameType(LHS, RHS);
6858
6859  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6860}
6861
6862bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6863  return typesAreCompatible(LHS, RHS);
6864}
6865
6866bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6867  return !mergeTypes(LHS, RHS, true).isNull();
6868}
6869
6870/// mergeTransparentUnionType - if T is a transparent union type and a member
6871/// of T is compatible with SubType, return the merged type, else return
6872/// QualType()
6873QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6874                                               bool OfBlockPointer,
6875                                               bool Unqualified) {
6876  if (const RecordType *UT = T->getAsUnionType()) {
6877    RecordDecl *UD = UT->getDecl();
6878    if (UD->hasAttr<TransparentUnionAttr>()) {
6879      for (const auto *I : UD->fields()) {
6880        QualType ET = I->getType().getUnqualifiedType();
6881        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6882        if (!MT.isNull())
6883          return MT;
6884      }
6885    }
6886  }
6887
6888  return QualType();
6889}
6890
6891/// mergeFunctionParameterTypes - merge two types which appear as function
6892/// parameter types
6893QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6894                                                 bool OfBlockPointer,
6895                                                 bool Unqualified) {
6896  // GNU extension: two types are compatible if they appear as a function
6897  // argument, one of the types is a transparent union type and the other
6898  // type is compatible with a union member
6899  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6900                                              Unqualified);
6901  if (!lmerge.isNull())
6902    return lmerge;
6903
6904  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6905                                              Unqualified);
6906  if (!rmerge.isNull())
6907    return rmerge;
6908
6909  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6910}
6911
6912QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6913                                        bool OfBlockPointer,
6914                                        bool Unqualified) {
6915  const FunctionType *lbase = lhs->getAs<FunctionType>();
6916  const FunctionType *rbase = rhs->getAs<FunctionType>();
6917  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6918  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6919  bool allLTypes = true;
6920  bool allRTypes = true;
6921
6922  // Check return type
6923  QualType retType;
6924  if (OfBlockPointer) {
6925    QualType RHS = rbase->getReturnType();
6926    QualType LHS = lbase->getReturnType();
6927    bool UnqualifiedResult = Unqualified;
6928    if (!UnqualifiedResult)
6929      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6930    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6931  }
6932  else
6933    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6934                         Unqualified);
6935  if (retType.isNull()) return QualType();
6936
6937  if (Unqualified)
6938    retType = retType.getUnqualifiedType();
6939
6940  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6941  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6942  if (Unqualified) {
6943    LRetType = LRetType.getUnqualifiedType();
6944    RRetType = RRetType.getUnqualifiedType();
6945  }
6946
6947  if (getCanonicalType(retType) != LRetType)
6948    allLTypes = false;
6949  if (getCanonicalType(retType) != RRetType)
6950    allRTypes = false;
6951
6952  // FIXME: double check this
6953  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6954  //                           rbase->getRegParmAttr() != 0 &&
6955  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6956  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6957  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6958
6959  // Compatible functions must have compatible calling conventions
6960  if (lbaseInfo.getCC() != rbaseInfo.getCC())
6961    return QualType();
6962
6963  // Regparm is part of the calling convention.
6964  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6965    return QualType();
6966  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6967    return QualType();
6968
6969  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6970    return QualType();
6971
6972  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6973  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6974
6975  if (lbaseInfo.getNoReturn() != NoReturn)
6976    allLTypes = false;
6977  if (rbaseInfo.getNoReturn() != NoReturn)
6978    allRTypes = false;
6979
6980  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6981
6982  if (lproto && rproto) { // two C99 style function prototypes
6983    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6984           "C++ shouldn't be here");
6985    // Compatible functions must have the same number of parameters
6986    if (lproto->getNumParams() != rproto->getNumParams())
6987      return QualType();
6988
6989    // Variadic and non-variadic functions aren't compatible
6990    if (lproto->isVariadic() != rproto->isVariadic())
6991      return QualType();
6992
6993    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6994      return QualType();
6995
6996    if (LangOpts.ObjCAutoRefCount &&
6997        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6998      return QualType();
6999
7000    // Check parameter type compatibility
7001    SmallVector<QualType, 10> types;
7002    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7003      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7004      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7005      QualType paramType = mergeFunctionParameterTypes(
7006          lParamType, rParamType, OfBlockPointer, Unqualified);
7007      if (paramType.isNull())
7008        return QualType();
7009
7010      if (Unqualified)
7011        paramType = paramType.getUnqualifiedType();
7012
7013      types.push_back(paramType);
7014      if (Unqualified) {
7015        lParamType = lParamType.getUnqualifiedType();
7016        rParamType = rParamType.getUnqualifiedType();
7017      }
7018
7019      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7020        allLTypes = false;
7021      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7022        allRTypes = false;
7023    }
7024
7025    if (allLTypes) return lhs;
7026    if (allRTypes) return rhs;
7027
7028    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7029    EPI.ExtInfo = einfo;
7030    return getFunctionType(retType, types, EPI);
7031  }
7032
7033  if (lproto) allRTypes = false;
7034  if (rproto) allLTypes = false;
7035
7036  const FunctionProtoType *proto = lproto ? lproto : rproto;
7037  if (proto) {
7038    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7039    if (proto->isVariadic()) return QualType();
7040    // Check that the types are compatible with the types that
7041    // would result from default argument promotions (C99 6.7.5.3p15).
7042    // The only types actually affected are promotable integer
7043    // types and floats, which would be passed as a different
7044    // type depending on whether the prototype is visible.
7045    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7046      QualType paramTy = proto->getParamType(i);
7047
7048      // Look at the converted type of enum types, since that is the type used
7049      // to pass enum values.
7050      if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7051        paramTy = Enum->getDecl()->getIntegerType();
7052        if (paramTy.isNull())
7053          return QualType();
7054      }
7055
7056      if (paramTy->isPromotableIntegerType() ||
7057          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7058        return QualType();
7059    }
7060
7061    if (allLTypes) return lhs;
7062    if (allRTypes) return rhs;
7063
7064    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7065    EPI.ExtInfo = einfo;
7066    return getFunctionType(retType, proto->getParamTypes(), EPI);
7067  }
7068
7069  if (allLTypes) return lhs;
7070  if (allRTypes) return rhs;
7071  return getFunctionNoProtoType(retType, einfo);
7072}
7073
7074/// Given that we have an enum type and a non-enum type, try to merge them.
7075static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7076                                     QualType other, bool isBlockReturnType) {
7077  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7078  // a signed integer type, or an unsigned integer type.
7079  // Compatibility is based on the underlying type, not the promotion
7080  // type.
7081  QualType underlyingType = ET->getDecl()->getIntegerType();
7082  if (underlyingType.isNull()) return QualType();
7083  if (Context.hasSameType(underlyingType, other))
7084    return other;
7085
7086  // In block return types, we're more permissive and accept any
7087  // integral type of the same size.
7088  if (isBlockReturnType && other->isIntegerType() &&
7089      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7090    return other;
7091
7092  return QualType();
7093}
7094
7095QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7096                                bool OfBlockPointer,
7097                                bool Unqualified, bool BlockReturnType) {
7098  // C++ [expr]: If an expression initially has the type "reference to T", the
7099  // type is adjusted to "T" prior to any further analysis, the expression
7100  // designates the object or function denoted by the reference, and the
7101  // expression is an lvalue unless the reference is an rvalue reference and
7102  // the expression is a function call (possibly inside parentheses).
7103  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7104  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7105
7106  if (Unqualified) {
7107    LHS = LHS.getUnqualifiedType();
7108    RHS = RHS.getUnqualifiedType();
7109  }
7110
7111  QualType LHSCan = getCanonicalType(LHS),
7112           RHSCan = getCanonicalType(RHS);
7113
7114  // If two types are identical, they are compatible.
7115  if (LHSCan == RHSCan)
7116    return LHS;
7117
7118  // If the qualifiers are different, the types aren't compatible... mostly.
7119  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7120  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7121  if (LQuals != RQuals) {
7122    // If any of these qualifiers are different, we have a type
7123    // mismatch.
7124    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7125        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7126        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7127      return QualType();
7128
7129    // Exactly one GC qualifier difference is allowed: __strong is
7130    // okay if the other type has no GC qualifier but is an Objective
7131    // C object pointer (i.e. implicitly strong by default).  We fix
7132    // this by pretending that the unqualified type was actually
7133    // qualified __strong.
7134    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7135    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7136    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7137
7138    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7139      return QualType();
7140
7141    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7142      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7143    }
7144    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7145      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7146    }
7147    return QualType();
7148  }
7149
7150  // Okay, qualifiers are equal.
7151
7152  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7153  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7154
7155  // We want to consider the two function types to be the same for these
7156  // comparisons, just force one to the other.
7157  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7158  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7159
7160  // Same as above for arrays
7161  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7162    LHSClass = Type::ConstantArray;
7163  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7164    RHSClass = Type::ConstantArray;
7165
7166  // ObjCInterfaces are just specialized ObjCObjects.
7167  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7168  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7169
7170  // Canonicalize ExtVector -> Vector.
7171  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7172  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7173
7174  // If the canonical type classes don't match.
7175  if (LHSClass != RHSClass) {
7176    // Note that we only have special rules for turning block enum
7177    // returns into block int returns, not vice-versa.
7178    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7179      return mergeEnumWithInteger(*this, ETy, RHS, false);
7180    }
7181    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7182      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7183    }
7184    // allow block pointer type to match an 'id' type.
7185    if (OfBlockPointer && !BlockReturnType) {
7186       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7187         return LHS;
7188      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7189        return RHS;
7190    }
7191
7192    return QualType();
7193  }
7194
7195  // The canonical type classes match.
7196  switch (LHSClass) {
7197#define TYPE(Class, Base)
7198#define ABSTRACT_TYPE(Class, Base)
7199#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7200#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7201#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7202#include "clang/AST/TypeNodes.def"
7203    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7204
7205  case Type::Auto:
7206  case Type::LValueReference:
7207  case Type::RValueReference:
7208  case Type::MemberPointer:
7209    llvm_unreachable("C++ should never be in mergeTypes");
7210
7211  case Type::ObjCInterface:
7212  case Type::IncompleteArray:
7213  case Type::VariableArray:
7214  case Type::FunctionProto:
7215  case Type::ExtVector:
7216    llvm_unreachable("Types are eliminated above");
7217
7218  case Type::Pointer:
7219  {
7220    // Merge two pointer types, while trying to preserve typedef info
7221    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7222    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7223    if (Unqualified) {
7224      LHSPointee = LHSPointee.getUnqualifiedType();
7225      RHSPointee = RHSPointee.getUnqualifiedType();
7226    }
7227    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7228                                     Unqualified);
7229    if (ResultType.isNull()) return QualType();
7230    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7231      return LHS;
7232    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7233      return RHS;
7234    return getPointerType(ResultType);
7235  }
7236  case Type::BlockPointer:
7237  {
7238    // Merge two block pointer types, while trying to preserve typedef info
7239    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7240    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7241    if (Unqualified) {
7242      LHSPointee = LHSPointee.getUnqualifiedType();
7243      RHSPointee = RHSPointee.getUnqualifiedType();
7244    }
7245    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7246                                     Unqualified);
7247    if (ResultType.isNull()) return QualType();
7248    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7249      return LHS;
7250    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7251      return RHS;
7252    return getBlockPointerType(ResultType);
7253  }
7254  case Type::Atomic:
7255  {
7256    // Merge two pointer types, while trying to preserve typedef info
7257    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7258    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7259    if (Unqualified) {
7260      LHSValue = LHSValue.getUnqualifiedType();
7261      RHSValue = RHSValue.getUnqualifiedType();
7262    }
7263    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7264                                     Unqualified);
7265    if (ResultType.isNull()) return QualType();
7266    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7267      return LHS;
7268    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7269      return RHS;
7270    return getAtomicType(ResultType);
7271  }
7272  case Type::ConstantArray:
7273  {
7274    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7275    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7276    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7277      return QualType();
7278
7279    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7280    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7281    if (Unqualified) {
7282      LHSElem = LHSElem.getUnqualifiedType();
7283      RHSElem = RHSElem.getUnqualifiedType();
7284    }
7285
7286    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7287    if (ResultType.isNull()) return QualType();
7288    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7289      return LHS;
7290    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7291      return RHS;
7292    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7293                                          ArrayType::ArraySizeModifier(), 0);
7294    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7295                                          ArrayType::ArraySizeModifier(), 0);
7296    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7297    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7298    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7299      return LHS;
7300    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7301      return RHS;
7302    if (LVAT) {
7303      // FIXME: This isn't correct! But tricky to implement because
7304      // the array's size has to be the size of LHS, but the type
7305      // has to be different.
7306      return LHS;
7307    }
7308    if (RVAT) {
7309      // FIXME: This isn't correct! But tricky to implement because
7310      // the array's size has to be the size of RHS, but the type
7311      // has to be different.
7312      return RHS;
7313    }
7314    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7315    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7316    return getIncompleteArrayType(ResultType,
7317                                  ArrayType::ArraySizeModifier(), 0);
7318  }
7319  case Type::FunctionNoProto:
7320    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7321  case Type::Record:
7322  case Type::Enum:
7323    return QualType();
7324  case Type::Builtin:
7325    // Only exactly equal builtin types are compatible, which is tested above.
7326    return QualType();
7327  case Type::Complex:
7328    // Distinct complex types are incompatible.
7329    return QualType();
7330  case Type::Vector:
7331    // FIXME: The merged type should be an ExtVector!
7332    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7333                             RHSCan->getAs<VectorType>()))
7334      return LHS;
7335    return QualType();
7336  case Type::ObjCObject: {
7337    // Check if the types are assignment compatible.
7338    // FIXME: This should be type compatibility, e.g. whether
7339    // "LHS x; RHS x;" at global scope is legal.
7340    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7341    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7342    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7343      return LHS;
7344
7345    return QualType();
7346  }
7347  case Type::ObjCObjectPointer: {
7348    if (OfBlockPointer) {
7349      if (canAssignObjCInterfacesInBlockPointer(
7350                                          LHS->getAs<ObjCObjectPointerType>(),
7351                                          RHS->getAs<ObjCObjectPointerType>(),
7352                                          BlockReturnType))
7353        return LHS;
7354      return QualType();
7355    }
7356    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7357                                RHS->getAs<ObjCObjectPointerType>()))
7358      return LHS;
7359
7360    return QualType();
7361  }
7362  }
7363
7364  llvm_unreachable("Invalid Type::Class!");
7365}
7366
7367bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7368                   const FunctionProtoType *FromFunctionType,
7369                   const FunctionProtoType *ToFunctionType) {
7370  if (FromFunctionType->hasAnyConsumedParams() !=
7371      ToFunctionType->hasAnyConsumedParams())
7372    return false;
7373  FunctionProtoType::ExtProtoInfo FromEPI =
7374    FromFunctionType->getExtProtoInfo();
7375  FunctionProtoType::ExtProtoInfo ToEPI =
7376    ToFunctionType->getExtProtoInfo();
7377  if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7378    for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7379      if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7380        return false;
7381    }
7382  return true;
7383}
7384
7385/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7386/// 'RHS' attributes and returns the merged version; including for function
7387/// return types.
7388QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7389  QualType LHSCan = getCanonicalType(LHS),
7390  RHSCan = getCanonicalType(RHS);
7391  // If two types are identical, they are compatible.
7392  if (LHSCan == RHSCan)
7393    return LHS;
7394  if (RHSCan->isFunctionType()) {
7395    if (!LHSCan->isFunctionType())
7396      return QualType();
7397    QualType OldReturnType =
7398        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7399    QualType NewReturnType =
7400        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7401    QualType ResReturnType =
7402      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7403    if (ResReturnType.isNull())
7404      return QualType();
7405    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7406      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7407      // In either case, use OldReturnType to build the new function type.
7408      const FunctionType *F = LHS->getAs<FunctionType>();
7409      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7410        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7411        EPI.ExtInfo = getFunctionExtInfo(LHS);
7412        QualType ResultType =
7413            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7414        return ResultType;
7415      }
7416    }
7417    return QualType();
7418  }
7419
7420  // If the qualifiers are different, the types can still be merged.
7421  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7422  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7423  if (LQuals != RQuals) {
7424    // If any of these qualifiers are different, we have a type mismatch.
7425    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7426        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7427      return QualType();
7428
7429    // Exactly one GC qualifier difference is allowed: __strong is
7430    // okay if the other type has no GC qualifier but is an Objective
7431    // C object pointer (i.e. implicitly strong by default).  We fix
7432    // this by pretending that the unqualified type was actually
7433    // qualified __strong.
7434    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7435    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7436    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7437
7438    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7439      return QualType();
7440
7441    if (GC_L == Qualifiers::Strong)
7442      return LHS;
7443    if (GC_R == Qualifiers::Strong)
7444      return RHS;
7445    return QualType();
7446  }
7447
7448  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7449    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7450    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7451    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7452    if (ResQT == LHSBaseQT)
7453      return LHS;
7454    if (ResQT == RHSBaseQT)
7455      return RHS;
7456  }
7457  return QualType();
7458}
7459
7460//===----------------------------------------------------------------------===//
7461//                         Integer Predicates
7462//===----------------------------------------------------------------------===//
7463
7464unsigned ASTContext::getIntWidth(QualType T) const {
7465  if (const EnumType *ET = T->getAs<EnumType>())
7466    T = ET->getDecl()->getIntegerType();
7467  if (T->isBooleanType())
7468    return 1;
7469  // For builtin types, just use the standard type sizing method
7470  return (unsigned)getTypeSize(T);
7471}
7472
7473QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7474  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7475
7476  // Turn <4 x signed int> -> <4 x unsigned int>
7477  if (const VectorType *VTy = T->getAs<VectorType>())
7478    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7479                         VTy->getNumElements(), VTy->getVectorKind());
7480
7481  // For enums, we return the unsigned version of the base type.
7482  if (const EnumType *ETy = T->getAs<EnumType>())
7483    T = ETy->getDecl()->getIntegerType();
7484
7485  const BuiltinType *BTy = T->getAs<BuiltinType>();
7486  assert(BTy && "Unexpected signed integer type");
7487  switch (BTy->getKind()) {
7488  case BuiltinType::Char_S:
7489  case BuiltinType::SChar:
7490    return UnsignedCharTy;
7491  case BuiltinType::Short:
7492    return UnsignedShortTy;
7493  case BuiltinType::Int:
7494    return UnsignedIntTy;
7495  case BuiltinType::Long:
7496    return UnsignedLongTy;
7497  case BuiltinType::LongLong:
7498    return UnsignedLongLongTy;
7499  case BuiltinType::Int128:
7500    return UnsignedInt128Ty;
7501  default:
7502    llvm_unreachable("Unexpected signed integer type");
7503  }
7504}
7505
7506ASTMutationListener::~ASTMutationListener() { }
7507
7508void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7509                                            QualType ReturnType) {}
7510
7511//===----------------------------------------------------------------------===//
7512//                          Builtin Type Computation
7513//===----------------------------------------------------------------------===//
7514
7515/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7516/// pointer over the consumed characters.  This returns the resultant type.  If
7517/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7518/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7519/// a vector of "i*".
7520///
7521/// RequiresICE is filled in on return to indicate whether the value is required
7522/// to be an Integer Constant Expression.
7523static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7524                                  ASTContext::GetBuiltinTypeError &Error,
7525                                  bool &RequiresICE,
7526                                  bool AllowTypeModifiers) {
7527  // Modifiers.
7528  int HowLong = 0;
7529  bool Signed = false, Unsigned = false;
7530  RequiresICE = false;
7531
7532  // Read the prefixed modifiers first.
7533  bool Done = false;
7534  while (!Done) {
7535    switch (*Str++) {
7536    default: Done = true; --Str; break;
7537    case 'I':
7538      RequiresICE = true;
7539      break;
7540    case 'S':
7541      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7542      assert(!Signed && "Can't use 'S' modifier multiple times!");
7543      Signed = true;
7544      break;
7545    case 'U':
7546      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7547      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7548      Unsigned = true;
7549      break;
7550    case 'L':
7551      assert(HowLong <= 2 && "Can't have LLLL modifier");
7552      ++HowLong;
7553      break;
7554    case 'W':
7555      // This modifier represents int64 type.
7556      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7557      switch (Context.getTargetInfo().getInt64Type()) {
7558      default:
7559        llvm_unreachable("Unexpected integer type");
7560      case TargetInfo::SignedLong:
7561        HowLong = 1;
7562        break;
7563      case TargetInfo::SignedLongLong:
7564        HowLong = 2;
7565        break;
7566      }
7567    }
7568  }
7569
7570  QualType Type;
7571
7572  // Read the base type.
7573  switch (*Str++) {
7574  default: llvm_unreachable("Unknown builtin type letter!");
7575  case 'v':
7576    assert(HowLong == 0 && !Signed && !Unsigned &&
7577           "Bad modifiers used with 'v'!");
7578    Type = Context.VoidTy;
7579    break;
7580  case 'h':
7581    assert(HowLong == 0 && !Signed && !Unsigned &&
7582           "Bad modifiers used with 'f'!");
7583    Type = Context.HalfTy;
7584    break;
7585  case 'f':
7586    assert(HowLong == 0 && !Signed && !Unsigned &&
7587           "Bad modifiers used with 'f'!");
7588    Type = Context.FloatTy;
7589    break;
7590  case 'd':
7591    assert(HowLong < 2 && !Signed && !Unsigned &&
7592           "Bad modifiers used with 'd'!");
7593    if (HowLong)
7594      Type = Context.LongDoubleTy;
7595    else
7596      Type = Context.DoubleTy;
7597    break;
7598  case 's':
7599    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7600    if (Unsigned)
7601      Type = Context.UnsignedShortTy;
7602    else
7603      Type = Context.ShortTy;
7604    break;
7605  case 'i':
7606    if (HowLong == 3)
7607      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7608    else if (HowLong == 2)
7609      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7610    else if (HowLong == 1)
7611      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7612    else
7613      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7614    break;
7615  case 'c':
7616    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7617    if (Signed)
7618      Type = Context.SignedCharTy;
7619    else if (Unsigned)
7620      Type = Context.UnsignedCharTy;
7621    else
7622      Type = Context.CharTy;
7623    break;
7624  case 'b': // boolean
7625    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7626    Type = Context.BoolTy;
7627    break;
7628  case 'z':  // size_t.
7629    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7630    Type = Context.getSizeType();
7631    break;
7632  case 'F':
7633    Type = Context.getCFConstantStringType();
7634    break;
7635  case 'G':
7636    Type = Context.getObjCIdType();
7637    break;
7638  case 'H':
7639    Type = Context.getObjCSelType();
7640    break;
7641  case 'M':
7642    Type = Context.getObjCSuperType();
7643    break;
7644  case 'a':
7645    Type = Context.getBuiltinVaListType();
7646    assert(!Type.isNull() && "builtin va list type not initialized!");
7647    break;
7648  case 'A':
7649    // This is a "reference" to a va_list; however, what exactly
7650    // this means depends on how va_list is defined. There are two
7651    // different kinds of va_list: ones passed by value, and ones
7652    // passed by reference.  An example of a by-value va_list is
7653    // x86, where va_list is a char*. An example of by-ref va_list
7654    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7655    // we want this argument to be a char*&; for x86-64, we want
7656    // it to be a __va_list_tag*.
7657    Type = Context.getBuiltinVaListType();
7658    assert(!Type.isNull() && "builtin va list type not initialized!");
7659    if (Type->isArrayType())
7660      Type = Context.getArrayDecayedType(Type);
7661    else
7662      Type = Context.getLValueReferenceType(Type);
7663    break;
7664  case 'V': {
7665    char *End;
7666    unsigned NumElements = strtoul(Str, &End, 10);
7667    assert(End != Str && "Missing vector size");
7668    Str = End;
7669
7670    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7671                                             RequiresICE, false);
7672    assert(!RequiresICE && "Can't require vector ICE");
7673
7674    // TODO: No way to make AltiVec vectors in builtins yet.
7675    Type = Context.getVectorType(ElementType, NumElements,
7676                                 VectorType::GenericVector);
7677    break;
7678  }
7679  case 'E': {
7680    char *End;
7681
7682    unsigned NumElements = strtoul(Str, &End, 10);
7683    assert(End != Str && "Missing vector size");
7684
7685    Str = End;
7686
7687    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7688                                             false);
7689    Type = Context.getExtVectorType(ElementType, NumElements);
7690    break;
7691  }
7692  case 'X': {
7693    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7694                                             false);
7695    assert(!RequiresICE && "Can't require complex ICE");
7696    Type = Context.getComplexType(ElementType);
7697    break;
7698  }
7699  case 'Y' : {
7700    Type = Context.getPointerDiffType();
7701    break;
7702  }
7703  case 'P':
7704    Type = Context.getFILEType();
7705    if (Type.isNull()) {
7706      Error = ASTContext::GE_Missing_stdio;
7707      return QualType();
7708    }
7709    break;
7710  case 'J':
7711    if (Signed)
7712      Type = Context.getsigjmp_bufType();
7713    else
7714      Type = Context.getjmp_bufType();
7715
7716    if (Type.isNull()) {
7717      Error = ASTContext::GE_Missing_setjmp;
7718      return QualType();
7719    }
7720    break;
7721  case 'K':
7722    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7723    Type = Context.getucontext_tType();
7724
7725    if (Type.isNull()) {
7726      Error = ASTContext::GE_Missing_ucontext;
7727      return QualType();
7728    }
7729    break;
7730  case 'p':
7731    Type = Context.getProcessIDType();
7732    break;
7733  }
7734
7735  // If there are modifiers and if we're allowed to parse them, go for it.
7736  Done = !AllowTypeModifiers;
7737  while (!Done) {
7738    switch (char c = *Str++) {
7739    default: Done = true; --Str; break;
7740    case '*':
7741    case '&': {
7742      // Both pointers and references can have their pointee types
7743      // qualified with an address space.
7744      char *End;
7745      unsigned AddrSpace = strtoul(Str, &End, 10);
7746      if (End != Str && AddrSpace != 0) {
7747        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7748        Str = End;
7749      }
7750      if (c == '*')
7751        Type = Context.getPointerType(Type);
7752      else
7753        Type = Context.getLValueReferenceType(Type);
7754      break;
7755    }
7756    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7757    case 'C':
7758      Type = Type.withConst();
7759      break;
7760    case 'D':
7761      Type = Context.getVolatileType(Type);
7762      break;
7763    case 'R':
7764      Type = Type.withRestrict();
7765      break;
7766    }
7767  }
7768
7769  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7770         "Integer constant 'I' type must be an integer");
7771
7772  return Type;
7773}
7774
7775/// GetBuiltinType - Return the type for the specified builtin.
7776QualType ASTContext::GetBuiltinType(unsigned Id,
7777                                    GetBuiltinTypeError &Error,
7778                                    unsigned *IntegerConstantArgs) const {
7779  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7780
7781  SmallVector<QualType, 8> ArgTypes;
7782
7783  bool RequiresICE = false;
7784  Error = GE_None;
7785  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7786                                       RequiresICE, true);
7787  if (Error != GE_None)
7788    return QualType();
7789
7790  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7791
7792  while (TypeStr[0] && TypeStr[0] != '.') {
7793    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7794    if (Error != GE_None)
7795      return QualType();
7796
7797    // If this argument is required to be an IntegerConstantExpression and the
7798    // caller cares, fill in the bitmask we return.
7799    if (RequiresICE && IntegerConstantArgs)
7800      *IntegerConstantArgs |= 1 << ArgTypes.size();
7801
7802    // Do array -> pointer decay.  The builtin should use the decayed type.
7803    if (Ty->isArrayType())
7804      Ty = getArrayDecayedType(Ty);
7805
7806    ArgTypes.push_back(Ty);
7807  }
7808
7809  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7810         "'.' should only occur at end of builtin type list!");
7811
7812  FunctionType::ExtInfo EI(CC_C);
7813  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7814
7815  bool Variadic = (TypeStr[0] == '.');
7816
7817  // We really shouldn't be making a no-proto type here, especially in C++.
7818  if (ArgTypes.empty() && Variadic)
7819    return getFunctionNoProtoType(ResType, EI);
7820
7821  FunctionProtoType::ExtProtoInfo EPI;
7822  EPI.ExtInfo = EI;
7823  EPI.Variadic = Variadic;
7824
7825  return getFunctionType(ResType, ArgTypes, EPI);
7826}
7827
7828static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7829                                             const FunctionDecl *FD) {
7830  if (!FD->isExternallyVisible())
7831    return GVA_Internal;
7832
7833  GVALinkage External = GVA_StrongExternal;
7834  switch (FD->getTemplateSpecializationKind()) {
7835  case TSK_Undeclared:
7836  case TSK_ExplicitSpecialization:
7837    External = GVA_StrongExternal;
7838    break;
7839
7840  case TSK_ExplicitInstantiationDefinition:
7841    return GVA_StrongODR;
7842
7843  // C++11 [temp.explicit]p10:
7844  //   [ Note: The intent is that an inline function that is the subject of
7845  //   an explicit instantiation declaration will still be implicitly
7846  //   instantiated when used so that the body can be considered for
7847  //   inlining, but that no out-of-line copy of the inline function would be
7848  //   generated in the translation unit. -- end note ]
7849  case TSK_ExplicitInstantiationDeclaration:
7850    return GVA_AvailableExternally;
7851
7852  case TSK_ImplicitInstantiation:
7853    External = GVA_DiscardableODR;
7854    break;
7855  }
7856
7857  if (!FD->isInlined())
7858    return External;
7859
7860  if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7861       !FD->hasAttr<DLLExportAttr>()) ||
7862      FD->hasAttr<GNUInlineAttr>()) {
7863    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7864
7865    // GNU or C99 inline semantics. Determine whether this symbol should be
7866    // externally visible.
7867    if (FD->isInlineDefinitionExternallyVisible())
7868      return External;
7869
7870    // C99 inline semantics, where the symbol is not externally visible.
7871    return GVA_AvailableExternally;
7872  }
7873
7874  // Functions specified with extern and inline in -fms-compatibility mode
7875  // forcibly get emitted.  While the body of the function cannot be later
7876  // replaced, the function definition cannot be discarded.
7877  if (FD->isMSExternInline())
7878    return GVA_StrongODR;
7879
7880  return GVA_DiscardableODR;
7881}
7882
7883static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7884  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7885  // dllexport/dllimport on inline functions.
7886  if (D->hasAttr<DLLImportAttr>()) {
7887    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7888      return GVA_AvailableExternally;
7889  } else if (D->hasAttr<DLLExportAttr>()) {
7890    if (L == GVA_DiscardableODR)
7891      return GVA_StrongODR;
7892  }
7893  return L;
7894}
7895
7896GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7897  return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7898                                         FD);
7899}
7900
7901static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7902                                             const VarDecl *VD) {
7903  if (!VD->isExternallyVisible())
7904    return GVA_Internal;
7905
7906  if (VD->isStaticLocal()) {
7907    GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7908    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7909    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7910      LexicalContext = LexicalContext->getLexicalParent();
7911
7912    // Let the static local variable inherit it's linkage from the nearest
7913    // enclosing function.
7914    if (LexicalContext)
7915      StaticLocalLinkage =
7916          Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7917
7918    // GVA_StrongODR function linkage is stronger than what we need,
7919    // downgrade to GVA_DiscardableODR.
7920    // This allows us to discard the variable if we never end up needing it.
7921    return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7922                                               : StaticLocalLinkage;
7923  }
7924
7925  // MSVC treats in-class initialized static data members as definitions.
7926  // By giving them non-strong linkage, out-of-line definitions won't
7927  // cause link errors.
7928  if (Context.isMSStaticDataMemberInlineDefinition(VD))
7929    return GVA_DiscardableODR;
7930
7931  switch (VD->getTemplateSpecializationKind()) {
7932  case TSK_Undeclared:
7933  case TSK_ExplicitSpecialization:
7934    return GVA_StrongExternal;
7935
7936  case TSK_ExplicitInstantiationDefinition:
7937    return GVA_StrongODR;
7938
7939  case TSK_ExplicitInstantiationDeclaration:
7940    return GVA_AvailableExternally;
7941
7942  case TSK_ImplicitInstantiation:
7943    return GVA_DiscardableODR;
7944  }
7945
7946  llvm_unreachable("Invalid Linkage!");
7947}
7948
7949GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7950  return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7951                                         VD);
7952}
7953
7954bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7955  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7956    if (!VD->isFileVarDecl())
7957      return false;
7958    // Global named register variables (GNU extension) are never emitted.
7959    if (VD->getStorageClass() == SC_Register)
7960      return false;
7961  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7962    // We never need to emit an uninstantiated function template.
7963    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7964      return false;
7965  } else if (isa<OMPThreadPrivateDecl>(D))
7966    return true;
7967  else
7968    return false;
7969
7970  // If this is a member of a class template, we do not need to emit it.
7971  if (D->getDeclContext()->isDependentContext())
7972    return false;
7973
7974  // Weak references don't produce any output by themselves.
7975  if (D->hasAttr<WeakRefAttr>())
7976    return false;
7977
7978  // Aliases and used decls are required.
7979  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7980    return true;
7981
7982  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7983    // Forward declarations aren't required.
7984    if (!FD->doesThisDeclarationHaveABody())
7985      return FD->doesDeclarationForceExternallyVisibleDefinition();
7986
7987    // Constructors and destructors are required.
7988    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7989      return true;
7990
7991    // The key function for a class is required.  This rule only comes
7992    // into play when inline functions can be key functions, though.
7993    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7994      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7995        const CXXRecordDecl *RD = MD->getParent();
7996        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7997          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7998          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7999            return true;
8000        }
8001      }
8002    }
8003
8004    GVALinkage Linkage = GetGVALinkageForFunction(FD);
8005
8006    // static, static inline, always_inline, and extern inline functions can
8007    // always be deferred.  Normal inline functions can be deferred in C99/C++.
8008    // Implicit template instantiations can also be deferred in C++.
8009    if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8010        Linkage == GVA_DiscardableODR)
8011      return false;
8012    return true;
8013  }
8014
8015  const VarDecl *VD = cast<VarDecl>(D);
8016  assert(VD->isFileVarDecl() && "Expected file scoped var");
8017
8018  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8019      !isMSStaticDataMemberInlineDefinition(VD))
8020    return false;
8021
8022  // Variables that can be needed in other TUs are required.
8023  GVALinkage L = GetGVALinkageForVariable(VD);
8024  if (L != GVA_Internal && L != GVA_AvailableExternally &&
8025      L != GVA_DiscardableODR)
8026    return true;
8027
8028  // Variables that have destruction with side-effects are required.
8029  if (VD->getType().isDestructedType())
8030    return true;
8031
8032  // Variables that have initialization with side-effects are required.
8033  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8034    return true;
8035
8036  return false;
8037}
8038
8039CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8040                                                    bool IsCXXMethod) const {
8041  // Pass through to the C++ ABI object
8042  if (IsCXXMethod)
8043    return ABI->getDefaultMethodCallConv(IsVariadic);
8044
8045  return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
8046}
8047
8048bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8049  // Pass through to the C++ ABI object
8050  return ABI->isNearlyEmpty(RD);
8051}
8052
8053VTableContextBase *ASTContext::getVTableContext() {
8054  if (!VTContext.get()) {
8055    if (Target->getCXXABI().isMicrosoft())
8056      VTContext.reset(new MicrosoftVTableContext(*this));
8057    else
8058      VTContext.reset(new ItaniumVTableContext(*this));
8059  }
8060  return VTContext.get();
8061}
8062
8063MangleContext *ASTContext::createMangleContext() {
8064  switch (Target->getCXXABI().getKind()) {
8065  case TargetCXXABI::GenericAArch64:
8066  case TargetCXXABI::GenericItanium:
8067  case TargetCXXABI::GenericARM:
8068  case TargetCXXABI::GenericMIPS:
8069  case TargetCXXABI::iOS:
8070  case TargetCXXABI::iOS64:
8071    return ItaniumMangleContext::create(*this, getDiagnostics());
8072  case TargetCXXABI::Microsoft:
8073    return MicrosoftMangleContext::create(*this, getDiagnostics());
8074  }
8075  llvm_unreachable("Unsupported ABI");
8076}
8077
8078CXXABI::~CXXABI() {}
8079
8080size_t ASTContext::getSideTableAllocatedMemory() const {
8081  return ASTRecordLayouts.getMemorySize() +
8082         llvm::capacity_in_bytes(ObjCLayouts) +
8083         llvm::capacity_in_bytes(KeyFunctions) +
8084         llvm::capacity_in_bytes(ObjCImpls) +
8085         llvm::capacity_in_bytes(BlockVarCopyInits) +
8086         llvm::capacity_in_bytes(DeclAttrs) +
8087         llvm::capacity_in_bytes(TemplateOrInstantiation) +
8088         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8089         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8090         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8091         llvm::capacity_in_bytes(OverriddenMethods) +
8092         llvm::capacity_in_bytes(Types) +
8093         llvm::capacity_in_bytes(VariableArrayTypes) +
8094         llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8095}
8096
8097/// getIntTypeForBitwidth -
8098/// sets integer QualTy according to specified details:
8099/// bitwidth, signed/unsigned.
8100/// Returns empty type if there is no appropriate target types.
8101QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8102                                           unsigned Signed) const {
8103  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8104  CanQualType QualTy = getFromTargetType(Ty);
8105  if (!QualTy && DestWidth == 128)
8106    return Signed ? Int128Ty : UnsignedInt128Ty;
8107  return QualTy;
8108}
8109
8110/// getRealTypeForBitwidth -
8111/// sets floating point QualTy according to specified bitwidth.
8112/// Returns empty type if there is no appropriate target types.
8113QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8114  TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8115  switch (Ty) {
8116  case TargetInfo::Float:
8117    return FloatTy;
8118  case TargetInfo::Double:
8119    return DoubleTy;
8120  case TargetInfo::LongDouble:
8121    return LongDoubleTy;
8122  case TargetInfo::NoFloat:
8123    return QualType();
8124  }
8125
8126  llvm_unreachable("Unhandled TargetInfo::RealType value");
8127}
8128
8129void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8130  if (Number > 1)
8131    MangleNumbers[ND] = Number;
8132}
8133
8134unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8135  llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8136    MangleNumbers.find(ND);
8137  return I != MangleNumbers.end() ? I->second : 1;
8138}
8139
8140void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8141  if (Number > 1)
8142    StaticLocalNumbers[VD] = Number;
8143}
8144
8145unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8146  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8147      StaticLocalNumbers.find(VD);
8148  return I != StaticLocalNumbers.end() ? I->second : 1;
8149}
8150
8151MangleNumberingContext &
8152ASTContext::getManglingNumberContext(const DeclContext *DC) {
8153  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
8154  MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8155  if (!MCtx)
8156    MCtx = createMangleNumberingContext();
8157  return *MCtx;
8158}
8159
8160MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8161  return ABI->createMangleNumberingContext();
8162}
8163
8164void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8165  ParamIndices[D] = index;
8166}
8167
8168unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8169  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8170  assert(I != ParamIndices.end() &&
8171         "ParmIndices lacks entry set by ParmVarDecl");
8172  return I->second;
8173}
8174
8175APValue *
8176ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8177                                          bool MayCreate) {
8178  assert(E && E->getStorageDuration() == SD_Static &&
8179         "don't need to cache the computed value for this temporary");
8180  if (MayCreate)
8181    return &MaterializedTemporaryValues[E];
8182
8183  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8184      MaterializedTemporaryValues.find(E);
8185  return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8186}
8187
8188bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8189  const llvm::Triple &T = getTargetInfo().getTriple();
8190  if (!T.isOSDarwin())
8191    return false;
8192
8193  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8194      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8195    return false;
8196
8197  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8198  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8199  uint64_t Size = sizeChars.getQuantity();
8200  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8201  unsigned Align = alignChars.getQuantity();
8202  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8203  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8204}
8205
8206namespace {
8207
8208  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8209  /// parents as defined by the \c RecursiveASTVisitor.
8210  ///
8211  /// Note that the relationship described here is purely in terms of AST
8212  /// traversal - there are other relationships (for example declaration context)
8213  /// in the AST that are better modeled by special matchers.
8214  ///
8215  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8216  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8217
8218  public:
8219    /// \brief Builds and returns the translation unit's parent map.
8220    ///
8221    ///  The caller takes ownership of the returned \c ParentMap.
8222    static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8223      ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8224      Visitor.TraverseDecl(&TU);
8225      return Visitor.Parents;
8226    }
8227
8228  private:
8229    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8230
8231    ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8232    }
8233
8234    bool shouldVisitTemplateInstantiations() const {
8235      return true;
8236    }
8237    bool shouldVisitImplicitCode() const {
8238      return true;
8239    }
8240    // Disables data recursion. We intercept Traverse* methods in the RAV, which
8241    // are not triggered during data recursion.
8242    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8243      return false;
8244    }
8245
8246    template <typename T>
8247    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8248      if (!Node)
8249        return true;
8250      if (ParentStack.size() > 0) {
8251        // FIXME: Currently we add the same parent multiple times, but only
8252        // when no memoization data is available for the type.
8253        // For example when we visit all subexpressions of template
8254        // instantiations; this is suboptimal, but benign: the only way to
8255        // visit those is with hasAncestor / hasParent, and those do not create
8256        // new matches.
8257        // The plan is to enable DynTypedNode to be storable in a map or hash
8258        // map. The main problem there is to implement hash functions /
8259        // comparison operators for all types that DynTypedNode supports that
8260        // do not have pointer identity.
8261        auto &NodeOrVector = (*Parents)[Node];
8262        if (NodeOrVector.isNull()) {
8263          NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8264        } else {
8265          if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8266            auto *Node =
8267                NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8268            auto *Vector = new ASTContext::ParentVector(1, *Node);
8269            NodeOrVector = Vector;
8270            delete Node;
8271          }
8272          assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8273
8274          auto *Vector =
8275              NodeOrVector.template get<ASTContext::ParentVector *>();
8276          // Skip duplicates for types that have memoization data.
8277          // We must check that the type has memoization data before calling
8278          // std::find() because DynTypedNode::operator== can't compare all
8279          // types.
8280          bool Found = ParentStack.back().getMemoizationData() &&
8281                       std::find(Vector->begin(), Vector->end(),
8282                                 ParentStack.back()) != Vector->end();
8283          if (!Found)
8284            Vector->push_back(ParentStack.back());
8285        }
8286      }
8287      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8288      bool Result = (this ->* traverse) (Node);
8289      ParentStack.pop_back();
8290      return Result;
8291    }
8292
8293    bool TraverseDecl(Decl *DeclNode) {
8294      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8295    }
8296
8297    bool TraverseStmt(Stmt *StmtNode) {
8298      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8299    }
8300
8301    ASTContext::ParentMap *Parents;
8302    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8303
8304    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8305  };
8306
8307} // end namespace
8308
8309ArrayRef<ast_type_traits::DynTypedNode>
8310ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8311  assert(Node.getMemoizationData() &&
8312         "Invariant broken: only nodes that support memoization may be "
8313         "used in the parent map.");
8314  if (!AllParents) {
8315    // We always need to run over the whole translation unit, as
8316    // hasAncestor can escape any subtree.
8317    AllParents.reset(
8318        ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8319  }
8320  ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8321  if (I == AllParents->end()) {
8322    return None;
8323  }
8324  if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8325    return llvm::makeArrayRef(N, 1);
8326  }
8327  return *I->second.get<ParentVector *>();
8328}
8329
8330bool
8331ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8332                                const ObjCMethodDecl *MethodImpl) {
8333  // No point trying to match an unavailable/deprecated mothod.
8334  if (MethodDecl->hasAttr<UnavailableAttr>()
8335      || MethodDecl->hasAttr<DeprecatedAttr>())
8336    return false;
8337  if (MethodDecl->getObjCDeclQualifier() !=
8338      MethodImpl->getObjCDeclQualifier())
8339    return false;
8340  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8341    return false;
8342
8343  if (MethodDecl->param_size() != MethodImpl->param_size())
8344    return false;
8345
8346  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8347       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8348       EF = MethodDecl->param_end();
8349       IM != EM && IF != EF; ++IM, ++IF) {
8350    const ParmVarDecl *DeclVar = (*IF);
8351    const ParmVarDecl *ImplVar = (*IM);
8352    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8353      return false;
8354    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8355      return false;
8356  }
8357  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8358
8359}
8360
8361// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8362// doesn't include ASTContext.h
8363template
8364clang::LazyGenerationalUpdatePtr<
8365    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8366clang::LazyGenerationalUpdatePtr<
8367    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8368        const clang::ASTContext &Ctx, Decl *Value);
8369