ASTContext.cpp revision 212904
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "CXXABI.h"
32
33using namespace clang;
34
35unsigned ASTContext::NumImplicitDefaultConstructors;
36unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
37unsigned ASTContext::NumImplicitCopyConstructors;
38unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyAssignmentOperators;
40unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
41unsigned ASTContext::NumImplicitDestructors;
42unsigned ASTContext::NumImplicitDestructorsDeclared;
43
44enum FloatingRank {
45  FloatRank, DoubleRank, LongDoubleRank
46};
47
48void
49ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
50                                               TemplateTemplateParmDecl *Parm) {
51  ID.AddInteger(Parm->getDepth());
52  ID.AddInteger(Parm->getPosition());
53  // FIXME: Parameter pack
54
55  TemplateParameterList *Params = Parm->getTemplateParameters();
56  ID.AddInteger(Params->size());
57  for (TemplateParameterList::const_iterator P = Params->begin(),
58                                          PEnd = Params->end();
59       P != PEnd; ++P) {
60    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
61      ID.AddInteger(0);
62      ID.AddBoolean(TTP->isParameterPack());
63      continue;
64    }
65
66    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
67      ID.AddInteger(1);
68      // FIXME: Parameter pack
69      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
70      continue;
71    }
72
73    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
74    ID.AddInteger(2);
75    Profile(ID, TTP);
76  }
77}
78
79TemplateTemplateParmDecl *
80ASTContext::getCanonicalTemplateTemplateParmDecl(
81                                                 TemplateTemplateParmDecl *TTP) {
82  // Check if we already have a canonical template template parameter.
83  llvm::FoldingSetNodeID ID;
84  CanonicalTemplateTemplateParm::Profile(ID, TTP);
85  void *InsertPos = 0;
86  CanonicalTemplateTemplateParm *Canonical
87    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
88  if (Canonical)
89    return Canonical->getParam();
90
91  // Build a canonical template parameter list.
92  TemplateParameterList *Params = TTP->getTemplateParameters();
93  llvm::SmallVector<NamedDecl *, 4> CanonParams;
94  CanonParams.reserve(Params->size());
95  for (TemplateParameterList::const_iterator P = Params->begin(),
96                                          PEnd = Params->end();
97       P != PEnd; ++P) {
98    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
99      CanonParams.push_back(
100                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
101                                               SourceLocation(), TTP->getDepth(),
102                                               TTP->getIndex(), 0, false,
103                                               TTP->isParameterPack()));
104    else if (NonTypeTemplateParmDecl *NTTP
105             = dyn_cast<NonTypeTemplateParmDecl>(*P))
106      CanonParams.push_back(
107            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
108                                            SourceLocation(), NTTP->getDepth(),
109                                            NTTP->getPosition(), 0,
110                                            getCanonicalType(NTTP->getType()),
111                                            0));
112    else
113      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
114                                           cast<TemplateTemplateParmDecl>(*P)));
115  }
116
117  TemplateTemplateParmDecl *CanonTTP
118    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
119                                       SourceLocation(), TTP->getDepth(),
120                                       TTP->getPosition(), 0,
121                         TemplateParameterList::Create(*this, SourceLocation(),
122                                                       SourceLocation(),
123                                                       CanonParams.data(),
124                                                       CanonParams.size(),
125                                                       SourceLocation()));
126
127  // Get the new insert position for the node we care about.
128  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
129  assert(Canonical == 0 && "Shouldn't be in the map!");
130  (void)Canonical;
131
132  // Create the canonical template template parameter entry.
133  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
134  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
135  return CanonTTP;
136}
137
138CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
139  if (!LangOpts.CPlusPlus) return 0;
140
141  switch (T.getCXXABI()) {
142  case CXXABI_ARM:
143    return CreateARMCXXABI(*this);
144  case CXXABI_Itanium:
145    return CreateItaniumCXXABI(*this);
146  case CXXABI_Microsoft:
147    return CreateMicrosoftCXXABI(*this);
148  }
149  return 0;
150}
151
152ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
153                       const TargetInfo &t,
154                       IdentifierTable &idents, SelectorTable &sels,
155                       Builtin::Context &builtins,
156                       unsigned size_reserve) :
157  TemplateSpecializationTypes(this_()),
158  DependentTemplateSpecializationTypes(this_()),
159  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
160  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
161  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
162  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
163  NullTypeSourceInfo(QualType()),
164  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
165  Idents(idents), Selectors(sels),
166  BuiltinInfo(builtins),
167  DeclarationNames(*this),
168  ExternalSource(0), PrintingPolicy(LOpts),
169  LastSDM(0, 0),
170  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
171  ObjCIdRedefinitionType = QualType();
172  ObjCClassRedefinitionType = QualType();
173  ObjCSelRedefinitionType = QualType();
174  if (size_reserve > 0) Types.reserve(size_reserve);
175  TUDecl = TranslationUnitDecl::Create(*this);
176  InitBuiltinTypes();
177}
178
179ASTContext::~ASTContext() {
180  // Release the DenseMaps associated with DeclContext objects.
181  // FIXME: Is this the ideal solution?
182  ReleaseDeclContextMaps();
183
184  // Call all of the deallocation functions.
185  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
186    Deallocations[I].first(Deallocations[I].second);
187
188  // Release all of the memory associated with overridden C++ methods.
189  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
190         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
191       OM != OMEnd; ++OM)
192    OM->second.Destroy();
193
194  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
195  // because they can contain DenseMaps.
196  for (llvm::DenseMap<const ObjCContainerDecl*,
197       const ASTRecordLayout*>::iterator
198       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
199    // Increment in loop to prevent using deallocated memory.
200    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
201      R->Destroy(*this);
202
203  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
204       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
205    // Increment in loop to prevent using deallocated memory.
206    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
207      R->Destroy(*this);
208  }
209
210  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
211                                                    AEnd = DeclAttrs.end();
212       A != AEnd; ++A)
213    A->second->~AttrVec();
214}
215
216void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
217  Deallocations.push_back(std::make_pair(Callback, Data));
218}
219
220void
221ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
222  ExternalSource.reset(Source.take());
223}
224
225void ASTContext::PrintStats() const {
226  fprintf(stderr, "*** AST Context Stats:\n");
227  fprintf(stderr, "  %d types total.\n", (int)Types.size());
228
229  unsigned counts[] = {
230#define TYPE(Name, Parent) 0,
231#define ABSTRACT_TYPE(Name, Parent)
232#include "clang/AST/TypeNodes.def"
233    0 // Extra
234  };
235
236  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
237    Type *T = Types[i];
238    counts[(unsigned)T->getTypeClass()]++;
239  }
240
241  unsigned Idx = 0;
242  unsigned TotalBytes = 0;
243#define TYPE(Name, Parent)                                              \
244  if (counts[Idx])                                                      \
245    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
246  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
247  ++Idx;
248#define ABSTRACT_TYPE(Name, Parent)
249#include "clang/AST/TypeNodes.def"
250
251  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
252
253  // Implicit special member functions.
254  fprintf(stderr, "  %u/%u implicit default constructors created\n",
255          NumImplicitDefaultConstructorsDeclared,
256          NumImplicitDefaultConstructors);
257  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
258          NumImplicitCopyConstructorsDeclared,
259          NumImplicitCopyConstructors);
260  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
261          NumImplicitCopyAssignmentOperatorsDeclared,
262          NumImplicitCopyAssignmentOperators);
263  fprintf(stderr, "  %u/%u implicit destructors created\n",
264          NumImplicitDestructorsDeclared, NumImplicitDestructors);
265
266  if (ExternalSource.get()) {
267    fprintf(stderr, "\n");
268    ExternalSource->PrintStats();
269  }
270
271  BumpAlloc.PrintStats();
272}
273
274
275void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
276  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
277  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
278  Types.push_back(Ty);
279}
280
281void ASTContext::InitBuiltinTypes() {
282  assert(VoidTy.isNull() && "Context reinitialized?");
283
284  // C99 6.2.5p19.
285  InitBuiltinType(VoidTy,              BuiltinType::Void);
286
287  // C99 6.2.5p2.
288  InitBuiltinType(BoolTy,              BuiltinType::Bool);
289  // C99 6.2.5p3.
290  if (LangOpts.CharIsSigned)
291    InitBuiltinType(CharTy,            BuiltinType::Char_S);
292  else
293    InitBuiltinType(CharTy,            BuiltinType::Char_U);
294  // C99 6.2.5p4.
295  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
296  InitBuiltinType(ShortTy,             BuiltinType::Short);
297  InitBuiltinType(IntTy,               BuiltinType::Int);
298  InitBuiltinType(LongTy,              BuiltinType::Long);
299  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
300
301  // C99 6.2.5p6.
302  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
303  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
304  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
305  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
306  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
307
308  // C99 6.2.5p10.
309  InitBuiltinType(FloatTy,             BuiltinType::Float);
310  InitBuiltinType(DoubleTy,            BuiltinType::Double);
311  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
312
313  // GNU extension, 128-bit integers.
314  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
315  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
316
317  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
318    InitBuiltinType(WCharTy,           BuiltinType::WChar);
319  else // C99
320    WCharTy = getFromTargetType(Target.getWCharType());
321
322  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
323    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
324  else // C99
325    Char16Ty = getFromTargetType(Target.getChar16Type());
326
327  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
328    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
329  else // C99
330    Char32Ty = getFromTargetType(Target.getChar32Type());
331
332  // Placeholder type for functions.
333  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
334
335  // Placeholder type for type-dependent expressions whose type is
336  // completely unknown. No code should ever check a type against
337  // DependentTy and users should never see it; however, it is here to
338  // help diagnose failures to properly check for type-dependent
339  // expressions.
340  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
341
342  // Placeholder type for C++0x auto declarations whose real type has
343  // not yet been deduced.
344  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
345
346  // C99 6.2.5p11.
347  FloatComplexTy      = getComplexType(FloatTy);
348  DoubleComplexTy     = getComplexType(DoubleTy);
349  LongDoubleComplexTy = getComplexType(LongDoubleTy);
350
351  BuiltinVaListType = QualType();
352
353  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
354  ObjCIdTypedefType = QualType();
355  ObjCClassTypedefType = QualType();
356  ObjCSelTypedefType = QualType();
357
358  // Builtin types for 'id', 'Class', and 'SEL'.
359  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
360  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
361  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
362
363  ObjCConstantStringType = QualType();
364
365  // void * type
366  VoidPtrTy = getPointerType(VoidTy);
367
368  // nullptr type (C++0x 2.14.7)
369  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
370}
371
372AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
373  AttrVec *&Result = DeclAttrs[D];
374  if (!Result) {
375    void *Mem = Allocate(sizeof(AttrVec));
376    Result = new (Mem) AttrVec;
377  }
378
379  return *Result;
380}
381
382/// \brief Erase the attributes corresponding to the given declaration.
383void ASTContext::eraseDeclAttrs(const Decl *D) {
384  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
385  if (Pos != DeclAttrs.end()) {
386    Pos->second->~AttrVec();
387    DeclAttrs.erase(Pos);
388  }
389}
390
391
392MemberSpecializationInfo *
393ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
394  assert(Var->isStaticDataMember() && "Not a static data member");
395  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
396    = InstantiatedFromStaticDataMember.find(Var);
397  if (Pos == InstantiatedFromStaticDataMember.end())
398    return 0;
399
400  return Pos->second;
401}
402
403void
404ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
405                                                TemplateSpecializationKind TSK,
406                                          SourceLocation PointOfInstantiation) {
407  assert(Inst->isStaticDataMember() && "Not a static data member");
408  assert(Tmpl->isStaticDataMember() && "Not a static data member");
409  assert(!InstantiatedFromStaticDataMember[Inst] &&
410         "Already noted what static data member was instantiated from");
411  InstantiatedFromStaticDataMember[Inst]
412    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
413}
414
415NamedDecl *
416ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
417  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
418    = InstantiatedFromUsingDecl.find(UUD);
419  if (Pos == InstantiatedFromUsingDecl.end())
420    return 0;
421
422  return Pos->second;
423}
424
425void
426ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
427  assert((isa<UsingDecl>(Pattern) ||
428          isa<UnresolvedUsingValueDecl>(Pattern) ||
429          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
430         "pattern decl is not a using decl");
431  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
432  InstantiatedFromUsingDecl[Inst] = Pattern;
433}
434
435UsingShadowDecl *
436ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
437  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
438    = InstantiatedFromUsingShadowDecl.find(Inst);
439  if (Pos == InstantiatedFromUsingShadowDecl.end())
440    return 0;
441
442  return Pos->second;
443}
444
445void
446ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
447                                               UsingShadowDecl *Pattern) {
448  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
449  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
450}
451
452FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
453  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
454    = InstantiatedFromUnnamedFieldDecl.find(Field);
455  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
456    return 0;
457
458  return Pos->second;
459}
460
461void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
462                                                     FieldDecl *Tmpl) {
463  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
464  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
465  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
466         "Already noted what unnamed field was instantiated from");
467
468  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
469}
470
471ASTContext::overridden_cxx_method_iterator
472ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
473  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
474    = OverriddenMethods.find(Method);
475  if (Pos == OverriddenMethods.end())
476    return 0;
477
478  return Pos->second.begin();
479}
480
481ASTContext::overridden_cxx_method_iterator
482ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
483  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
484    = OverriddenMethods.find(Method);
485  if (Pos == OverriddenMethods.end())
486    return 0;
487
488  return Pos->second.end();
489}
490
491unsigned
492ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
493  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
494    = OverriddenMethods.find(Method);
495  if (Pos == OverriddenMethods.end())
496    return 0;
497
498  return Pos->second.size();
499}
500
501void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
502                                     const CXXMethodDecl *Overridden) {
503  OverriddenMethods[Method].push_back(Overridden);
504}
505
506//===----------------------------------------------------------------------===//
507//                         Type Sizing and Analysis
508//===----------------------------------------------------------------------===//
509
510/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
511/// scalar floating point type.
512const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
513  const BuiltinType *BT = T->getAs<BuiltinType>();
514  assert(BT && "Not a floating point type!");
515  switch (BT->getKind()) {
516  default: assert(0 && "Not a floating point type!");
517  case BuiltinType::Float:      return Target.getFloatFormat();
518  case BuiltinType::Double:     return Target.getDoubleFormat();
519  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
520  }
521}
522
523/// getDeclAlign - Return a conservative estimate of the alignment of the
524/// specified decl.  Note that bitfields do not have a valid alignment, so
525/// this method will assert on them.
526/// If @p RefAsPointee, references are treated like their underlying type
527/// (for alignof), else they're treated like pointers (for CodeGen).
528CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
529  unsigned Align = Target.getCharWidth();
530
531  Align = std::max(Align, D->getMaxAlignment());
532
533  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
534    QualType T = VD->getType();
535    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
536      if (RefAsPointee)
537        T = RT->getPointeeType();
538      else
539        T = getPointerType(RT->getPointeeType());
540    }
541    if (!T->isIncompleteType() && !T->isFunctionType()) {
542      unsigned MinWidth = Target.getLargeArrayMinWidth();
543      unsigned ArrayAlign = Target.getLargeArrayAlign();
544      if (isa<VariableArrayType>(T) && MinWidth != 0)
545        Align = std::max(Align, ArrayAlign);
546      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
547        unsigned Size = getTypeSize(CT);
548        if (MinWidth != 0 && MinWidth <= Size)
549          Align = std::max(Align, ArrayAlign);
550      }
551      // Incomplete or function types default to 1.
552      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
553        T = cast<ArrayType>(T)->getElementType();
554
555      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
556    }
557    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
558      // In the case of a field in a packed struct, we want the minimum
559      // of the alignment of the field and the alignment of the struct.
560      Align = std::min(Align,
561        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
562    }
563  }
564
565  return CharUnits::fromQuantity(Align / Target.getCharWidth());
566}
567
568std::pair<CharUnits, CharUnits>
569ASTContext::getTypeInfoInChars(const Type *T) {
570  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
571  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
572                        CharUnits::fromQuantity(Info.second / getCharWidth()));
573}
574
575std::pair<CharUnits, CharUnits>
576ASTContext::getTypeInfoInChars(QualType T) {
577  return getTypeInfoInChars(T.getTypePtr());
578}
579
580/// getTypeSize - Return the size of the specified type, in bits.  This method
581/// does not work on incomplete types.
582///
583/// FIXME: Pointers into different addr spaces could have different sizes and
584/// alignment requirements: getPointerInfo should take an AddrSpace, this
585/// should take a QualType, &c.
586std::pair<uint64_t, unsigned>
587ASTContext::getTypeInfo(const Type *T) {
588  uint64_t Width=0;
589  unsigned Align=8;
590  switch (T->getTypeClass()) {
591#define TYPE(Class, Base)
592#define ABSTRACT_TYPE(Class, Base)
593#define NON_CANONICAL_TYPE(Class, Base)
594#define DEPENDENT_TYPE(Class, Base) case Type::Class:
595#include "clang/AST/TypeNodes.def"
596    assert(false && "Should not see dependent types");
597    break;
598
599  case Type::FunctionNoProto:
600  case Type::FunctionProto:
601    // GCC extension: alignof(function) = 32 bits
602    Width = 0;
603    Align = 32;
604    break;
605
606  case Type::IncompleteArray:
607  case Type::VariableArray:
608    Width = 0;
609    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
610    break;
611
612  case Type::ConstantArray: {
613    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
614
615    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
616    Width = EltInfo.first*CAT->getSize().getZExtValue();
617    Align = EltInfo.second;
618    break;
619  }
620  case Type::ExtVector:
621  case Type::Vector: {
622    const VectorType *VT = cast<VectorType>(T);
623    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
624    Width = EltInfo.first*VT->getNumElements();
625    Align = Width;
626    // If the alignment is not a power of 2, round up to the next power of 2.
627    // This happens for non-power-of-2 length vectors.
628    if (Align & (Align-1)) {
629      Align = llvm::NextPowerOf2(Align);
630      Width = llvm::RoundUpToAlignment(Width, Align);
631    }
632    break;
633  }
634
635  case Type::Builtin:
636    switch (cast<BuiltinType>(T)->getKind()) {
637    default: assert(0 && "Unknown builtin type!");
638    case BuiltinType::Void:
639      // GCC extension: alignof(void) = 8 bits.
640      Width = 0;
641      Align = 8;
642      break;
643
644    case BuiltinType::Bool:
645      Width = Target.getBoolWidth();
646      Align = Target.getBoolAlign();
647      break;
648    case BuiltinType::Char_S:
649    case BuiltinType::Char_U:
650    case BuiltinType::UChar:
651    case BuiltinType::SChar:
652      Width = Target.getCharWidth();
653      Align = Target.getCharAlign();
654      break;
655    case BuiltinType::WChar:
656      Width = Target.getWCharWidth();
657      Align = Target.getWCharAlign();
658      break;
659    case BuiltinType::Char16:
660      Width = Target.getChar16Width();
661      Align = Target.getChar16Align();
662      break;
663    case BuiltinType::Char32:
664      Width = Target.getChar32Width();
665      Align = Target.getChar32Align();
666      break;
667    case BuiltinType::UShort:
668    case BuiltinType::Short:
669      Width = Target.getShortWidth();
670      Align = Target.getShortAlign();
671      break;
672    case BuiltinType::UInt:
673    case BuiltinType::Int:
674      Width = Target.getIntWidth();
675      Align = Target.getIntAlign();
676      break;
677    case BuiltinType::ULong:
678    case BuiltinType::Long:
679      Width = Target.getLongWidth();
680      Align = Target.getLongAlign();
681      break;
682    case BuiltinType::ULongLong:
683    case BuiltinType::LongLong:
684      Width = Target.getLongLongWidth();
685      Align = Target.getLongLongAlign();
686      break;
687    case BuiltinType::Int128:
688    case BuiltinType::UInt128:
689      Width = 128;
690      Align = 128; // int128_t is 128-bit aligned on all targets.
691      break;
692    case BuiltinType::Float:
693      Width = Target.getFloatWidth();
694      Align = Target.getFloatAlign();
695      break;
696    case BuiltinType::Double:
697      Width = Target.getDoubleWidth();
698      Align = Target.getDoubleAlign();
699      break;
700    case BuiltinType::LongDouble:
701      Width = Target.getLongDoubleWidth();
702      Align = Target.getLongDoubleAlign();
703      break;
704    case BuiltinType::NullPtr:
705      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
706      Align = Target.getPointerAlign(0); //   == sizeof(void*)
707      break;
708    case BuiltinType::ObjCId:
709    case BuiltinType::ObjCClass:
710    case BuiltinType::ObjCSel:
711      Width = Target.getPointerWidth(0);
712      Align = Target.getPointerAlign(0);
713      break;
714    }
715    break;
716  case Type::ObjCObjectPointer:
717    Width = Target.getPointerWidth(0);
718    Align = Target.getPointerAlign(0);
719    break;
720  case Type::BlockPointer: {
721    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
722    Width = Target.getPointerWidth(AS);
723    Align = Target.getPointerAlign(AS);
724    break;
725  }
726  case Type::LValueReference:
727  case Type::RValueReference: {
728    // alignof and sizeof should never enter this code path here, so we go
729    // the pointer route.
730    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
731    Width = Target.getPointerWidth(AS);
732    Align = Target.getPointerAlign(AS);
733    break;
734  }
735  case Type::Pointer: {
736    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
737    Width = Target.getPointerWidth(AS);
738    Align = Target.getPointerAlign(AS);
739    break;
740  }
741  case Type::MemberPointer: {
742    const MemberPointerType *MPT = cast<MemberPointerType>(T);
743    std::pair<uint64_t, unsigned> PtrDiffInfo =
744      getTypeInfo(getPointerDiffType());
745    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
746    Align = PtrDiffInfo.second;
747    break;
748  }
749  case Type::Complex: {
750    // Complex types have the same alignment as their elements, but twice the
751    // size.
752    std::pair<uint64_t, unsigned> EltInfo =
753      getTypeInfo(cast<ComplexType>(T)->getElementType());
754    Width = EltInfo.first*2;
755    Align = EltInfo.second;
756    break;
757  }
758  case Type::ObjCObject:
759    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
760  case Type::ObjCInterface: {
761    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
762    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
763    Width = Layout.getSize();
764    Align = Layout.getAlignment();
765    break;
766  }
767  case Type::Record:
768  case Type::Enum: {
769    const TagType *TT = cast<TagType>(T);
770
771    if (TT->getDecl()->isInvalidDecl()) {
772      Width = 1;
773      Align = 1;
774      break;
775    }
776
777    if (const EnumType *ET = dyn_cast<EnumType>(TT))
778      return getTypeInfo(ET->getDecl()->getIntegerType());
779
780    const RecordType *RT = cast<RecordType>(TT);
781    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
782    Width = Layout.getSize();
783    Align = Layout.getAlignment();
784    break;
785  }
786
787  case Type::SubstTemplateTypeParm:
788    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
789                       getReplacementType().getTypePtr());
790
791  case Type::Typedef: {
792    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
793    std::pair<uint64_t, unsigned> Info
794      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
795    Align = std::max(Typedef->getMaxAlignment(), Info.second);
796    Width = Info.first;
797    break;
798  }
799
800  case Type::TypeOfExpr:
801    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
802                         .getTypePtr());
803
804  case Type::TypeOf:
805    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
806
807  case Type::Decltype:
808    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
809                        .getTypePtr());
810
811  case Type::Elaborated:
812    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
813
814  case Type::TemplateSpecialization:
815    assert(getCanonicalType(T) != T &&
816           "Cannot request the size of a dependent type");
817    // FIXME: this is likely to be wrong once we support template
818    // aliases, since a template alias could refer to a typedef that
819    // has an __aligned__ attribute on it.
820    return getTypeInfo(getCanonicalType(T));
821  }
822
823  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
824  return std::make_pair(Width, Align);
825}
826
827/// getTypeSizeInChars - Return the size of the specified type, in characters.
828/// This method does not work on incomplete types.
829CharUnits ASTContext::getTypeSizeInChars(QualType T) {
830  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
831}
832CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
833  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
834}
835
836/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
837/// characters. This method does not work on incomplete types.
838CharUnits ASTContext::getTypeAlignInChars(QualType T) {
839  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
840}
841CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
842  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
843}
844
845/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
846/// type for the current target in bits.  This can be different than the ABI
847/// alignment in cases where it is beneficial for performance to overalign
848/// a data type.
849unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
850  unsigned ABIAlign = getTypeAlign(T);
851
852  // Double and long long should be naturally aligned if possible.
853  if (const ComplexType* CT = T->getAs<ComplexType>())
854    T = CT->getElementType().getTypePtr();
855  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
856      T->isSpecificBuiltinType(BuiltinType::LongLong))
857    return std::max(ABIAlign, (unsigned)getTypeSize(T));
858
859  return ABIAlign;
860}
861
862/// ShallowCollectObjCIvars -
863/// Collect all ivars, including those synthesized, in the current class.
864///
865void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
866                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
867  // FIXME. This need be removed but there are two many places which
868  // assume const-ness of ObjCInterfaceDecl
869  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
870  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
871        Iv= Iv->getNextIvar())
872    Ivars.push_back(Iv);
873}
874
875/// DeepCollectObjCIvars -
876/// This routine first collects all declared, but not synthesized, ivars in
877/// super class and then collects all ivars, including those synthesized for
878/// current class. This routine is used for implementation of current class
879/// when all ivars, declared and synthesized are known.
880///
881void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
882                                      bool leafClass,
883                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
884  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
885    DeepCollectObjCIvars(SuperClass, false, Ivars);
886  if (!leafClass) {
887    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
888         E = OI->ivar_end(); I != E; ++I)
889      Ivars.push_back(*I);
890  }
891  else
892    ShallowCollectObjCIvars(OI, Ivars);
893}
894
895/// CollectInheritedProtocols - Collect all protocols in current class and
896/// those inherited by it.
897void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
898                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
899  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
900    // We can use protocol_iterator here instead of
901    // all_referenced_protocol_iterator since we are walking all categories.
902    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
903         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
904      ObjCProtocolDecl *Proto = (*P);
905      Protocols.insert(Proto);
906      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
907           PE = Proto->protocol_end(); P != PE; ++P) {
908        Protocols.insert(*P);
909        CollectInheritedProtocols(*P, Protocols);
910      }
911    }
912
913    // Categories of this Interface.
914    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
915         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
916      CollectInheritedProtocols(CDeclChain, Protocols);
917    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
918      while (SD) {
919        CollectInheritedProtocols(SD, Protocols);
920        SD = SD->getSuperClass();
921      }
922  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
923    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
924         PE = OC->protocol_end(); P != PE; ++P) {
925      ObjCProtocolDecl *Proto = (*P);
926      Protocols.insert(Proto);
927      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
928           PE = Proto->protocol_end(); P != PE; ++P)
929        CollectInheritedProtocols(*P, Protocols);
930    }
931  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
932    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
933         PE = OP->protocol_end(); P != PE; ++P) {
934      ObjCProtocolDecl *Proto = (*P);
935      Protocols.insert(Proto);
936      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
937           PE = Proto->protocol_end(); P != PE; ++P)
938        CollectInheritedProtocols(*P, Protocols);
939    }
940  }
941}
942
943unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
944  unsigned count = 0;
945  // Count ivars declared in class extension.
946  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
947       CDecl = CDecl->getNextClassExtension())
948    count += CDecl->ivar_size();
949
950  // Count ivar defined in this class's implementation.  This
951  // includes synthesized ivars.
952  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
953    count += ImplDecl->ivar_size();
954
955  return count;
956}
957
958/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
959ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
960  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
961    I = ObjCImpls.find(D);
962  if (I != ObjCImpls.end())
963    return cast<ObjCImplementationDecl>(I->second);
964  return 0;
965}
966/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
967ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
968  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
969    I = ObjCImpls.find(D);
970  if (I != ObjCImpls.end())
971    return cast<ObjCCategoryImplDecl>(I->second);
972  return 0;
973}
974
975/// \brief Set the implementation of ObjCInterfaceDecl.
976void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
977                           ObjCImplementationDecl *ImplD) {
978  assert(IFaceD && ImplD && "Passed null params");
979  ObjCImpls[IFaceD] = ImplD;
980}
981/// \brief Set the implementation of ObjCCategoryDecl.
982void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
983                           ObjCCategoryImplDecl *ImplD) {
984  assert(CatD && ImplD && "Passed null params");
985  ObjCImpls[CatD] = ImplD;
986}
987
988/// \brief Allocate an uninitialized TypeSourceInfo.
989///
990/// The caller should initialize the memory held by TypeSourceInfo using
991/// the TypeLoc wrappers.
992///
993/// \param T the type that will be the basis for type source info. This type
994/// should refer to how the declarator was written in source code, not to
995/// what type semantic analysis resolved the declarator to.
996TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
997                                                 unsigned DataSize) {
998  if (!DataSize)
999    DataSize = TypeLoc::getFullDataSizeForType(T);
1000  else
1001    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1002           "incorrect data size provided to CreateTypeSourceInfo!");
1003
1004  TypeSourceInfo *TInfo =
1005    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1006  new (TInfo) TypeSourceInfo(T);
1007  return TInfo;
1008}
1009
1010TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1011                                                     SourceLocation L) {
1012  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1013  DI->getTypeLoc().initialize(L);
1014  return DI;
1015}
1016
1017const ASTRecordLayout &
1018ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1019  return getObjCLayout(D, 0);
1020}
1021
1022const ASTRecordLayout &
1023ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1024  return getObjCLayout(D->getClassInterface(), D);
1025}
1026
1027//===----------------------------------------------------------------------===//
1028//                   Type creation/memoization methods
1029//===----------------------------------------------------------------------===//
1030
1031QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1032  unsigned Fast = Quals.getFastQualifiers();
1033  Quals.removeFastQualifiers();
1034
1035  // Check if we've already instantiated this type.
1036  llvm::FoldingSetNodeID ID;
1037  ExtQuals::Profile(ID, TypeNode, Quals);
1038  void *InsertPos = 0;
1039  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1040    assert(EQ->getQualifiers() == Quals);
1041    QualType T = QualType(EQ, Fast);
1042    return T;
1043  }
1044
1045  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1046  ExtQualNodes.InsertNode(New, InsertPos);
1047  QualType T = QualType(New, Fast);
1048  return T;
1049}
1050
1051QualType ASTContext::getVolatileType(QualType T) {
1052  QualType CanT = getCanonicalType(T);
1053  if (CanT.isVolatileQualified()) return T;
1054
1055  QualifierCollector Quals;
1056  const Type *TypeNode = Quals.strip(T);
1057  Quals.addVolatile();
1058
1059  return getExtQualType(TypeNode, Quals);
1060}
1061
1062QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1063  QualType CanT = getCanonicalType(T);
1064  if (CanT.getAddressSpace() == AddressSpace)
1065    return T;
1066
1067  // If we are composing extended qualifiers together, merge together
1068  // into one ExtQuals node.
1069  QualifierCollector Quals;
1070  const Type *TypeNode = Quals.strip(T);
1071
1072  // If this type already has an address space specified, it cannot get
1073  // another one.
1074  assert(!Quals.hasAddressSpace() &&
1075         "Type cannot be in multiple addr spaces!");
1076  Quals.addAddressSpace(AddressSpace);
1077
1078  return getExtQualType(TypeNode, Quals);
1079}
1080
1081QualType ASTContext::getObjCGCQualType(QualType T,
1082                                       Qualifiers::GC GCAttr) {
1083  QualType CanT = getCanonicalType(T);
1084  if (CanT.getObjCGCAttr() == GCAttr)
1085    return T;
1086
1087  if (T->isPointerType()) {
1088    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1089    if (Pointee->isAnyPointerType()) {
1090      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1091      return getPointerType(ResultType);
1092    }
1093  }
1094
1095  // If we are composing extended qualifiers together, merge together
1096  // into one ExtQuals node.
1097  QualifierCollector Quals;
1098  const Type *TypeNode = Quals.strip(T);
1099
1100  // If this type already has an ObjCGC specified, it cannot get
1101  // another one.
1102  assert(!Quals.hasObjCGCAttr() &&
1103         "Type cannot have multiple ObjCGCs!");
1104  Quals.addObjCGCAttr(GCAttr);
1105
1106  return getExtQualType(TypeNode, Quals);
1107}
1108
1109static QualType getExtFunctionType(ASTContext& Context, QualType T,
1110                                        const FunctionType::ExtInfo &Info) {
1111  QualType ResultType;
1112  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1113    QualType Pointee = Pointer->getPointeeType();
1114    ResultType = getExtFunctionType(Context, Pointee, Info);
1115    if (ResultType == Pointee)
1116      return T;
1117
1118    ResultType = Context.getPointerType(ResultType);
1119  } else if (const BlockPointerType *BlockPointer
1120                                              = T->getAs<BlockPointerType>()) {
1121    QualType Pointee = BlockPointer->getPointeeType();
1122    ResultType = getExtFunctionType(Context, Pointee, Info);
1123    if (ResultType == Pointee)
1124      return T;
1125
1126    ResultType = Context.getBlockPointerType(ResultType);
1127  } else if (const MemberPointerType *MemberPointer
1128                                            = T->getAs<MemberPointerType>()) {
1129    QualType Pointee = MemberPointer->getPointeeType();
1130    ResultType = getExtFunctionType(Context, Pointee, Info);
1131    if (ResultType == Pointee)
1132      return T;
1133
1134    ResultType = Context.getMemberPointerType(ResultType,
1135                                              MemberPointer->getClass());
1136   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1137    if (F->getExtInfo() == Info)
1138      return T;
1139
1140    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1141      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1142                                                  Info);
1143    } else {
1144      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1145      ResultType
1146        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1147                                  FPT->getNumArgs(), FPT->isVariadic(),
1148                                  FPT->getTypeQuals(),
1149                                  FPT->hasExceptionSpec(),
1150                                  FPT->hasAnyExceptionSpec(),
1151                                  FPT->getNumExceptions(),
1152                                  FPT->exception_begin(),
1153                                  Info);
1154    }
1155  } else
1156    return T;
1157
1158  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1159}
1160
1161QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1162  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1163  return getExtFunctionType(*this, T,
1164                                 Info.withNoReturn(AddNoReturn));
1165}
1166
1167QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1168  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1169  return getExtFunctionType(*this, T,
1170                            Info.withCallingConv(CallConv));
1171}
1172
1173QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1174  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1175  return getExtFunctionType(*this, T,
1176                                 Info.withRegParm(RegParm));
1177}
1178
1179/// getComplexType - Return the uniqued reference to the type for a complex
1180/// number with the specified element type.
1181QualType ASTContext::getComplexType(QualType T) {
1182  // Unique pointers, to guarantee there is only one pointer of a particular
1183  // structure.
1184  llvm::FoldingSetNodeID ID;
1185  ComplexType::Profile(ID, T);
1186
1187  void *InsertPos = 0;
1188  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1189    return QualType(CT, 0);
1190
1191  // If the pointee type isn't canonical, this won't be a canonical type either,
1192  // so fill in the canonical type field.
1193  QualType Canonical;
1194  if (!T.isCanonical()) {
1195    Canonical = getComplexType(getCanonicalType(T));
1196
1197    // Get the new insert position for the node we care about.
1198    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1199    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1200  }
1201  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1202  Types.push_back(New);
1203  ComplexTypes.InsertNode(New, InsertPos);
1204  return QualType(New, 0);
1205}
1206
1207/// getPointerType - Return the uniqued reference to the type for a pointer to
1208/// the specified type.
1209QualType ASTContext::getPointerType(QualType T) {
1210  // Unique pointers, to guarantee there is only one pointer of a particular
1211  // structure.
1212  llvm::FoldingSetNodeID ID;
1213  PointerType::Profile(ID, T);
1214
1215  void *InsertPos = 0;
1216  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1217    return QualType(PT, 0);
1218
1219  // If the pointee type isn't canonical, this won't be a canonical type either,
1220  // so fill in the canonical type field.
1221  QualType Canonical;
1222  if (!T.isCanonical()) {
1223    Canonical = getPointerType(getCanonicalType(T));
1224
1225    // Get the new insert position for the node we care about.
1226    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1227    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1228  }
1229  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1230  Types.push_back(New);
1231  PointerTypes.InsertNode(New, InsertPos);
1232  return QualType(New, 0);
1233}
1234
1235/// getBlockPointerType - Return the uniqued reference to the type for
1236/// a pointer to the specified block.
1237QualType ASTContext::getBlockPointerType(QualType T) {
1238  assert(T->isFunctionType() && "block of function types only");
1239  // Unique pointers, to guarantee there is only one block of a particular
1240  // structure.
1241  llvm::FoldingSetNodeID ID;
1242  BlockPointerType::Profile(ID, T);
1243
1244  void *InsertPos = 0;
1245  if (BlockPointerType *PT =
1246        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1247    return QualType(PT, 0);
1248
1249  // If the block pointee type isn't canonical, this won't be a canonical
1250  // type either so fill in the canonical type field.
1251  QualType Canonical;
1252  if (!T.isCanonical()) {
1253    Canonical = getBlockPointerType(getCanonicalType(T));
1254
1255    // Get the new insert position for the node we care about.
1256    BlockPointerType *NewIP =
1257      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1258    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1259  }
1260  BlockPointerType *New
1261    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1262  Types.push_back(New);
1263  BlockPointerTypes.InsertNode(New, InsertPos);
1264  return QualType(New, 0);
1265}
1266
1267/// getLValueReferenceType - Return the uniqued reference to the type for an
1268/// lvalue reference to the specified type.
1269QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1270  // Unique pointers, to guarantee there is only one pointer of a particular
1271  // structure.
1272  llvm::FoldingSetNodeID ID;
1273  ReferenceType::Profile(ID, T, SpelledAsLValue);
1274
1275  void *InsertPos = 0;
1276  if (LValueReferenceType *RT =
1277        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1278    return QualType(RT, 0);
1279
1280  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1281
1282  // If the referencee type isn't canonical, this won't be a canonical type
1283  // either, so fill in the canonical type field.
1284  QualType Canonical;
1285  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1286    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1287    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1288
1289    // Get the new insert position for the node we care about.
1290    LValueReferenceType *NewIP =
1291      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1292    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1293  }
1294
1295  LValueReferenceType *New
1296    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1297                                                     SpelledAsLValue);
1298  Types.push_back(New);
1299  LValueReferenceTypes.InsertNode(New, InsertPos);
1300
1301  return QualType(New, 0);
1302}
1303
1304/// getRValueReferenceType - Return the uniqued reference to the type for an
1305/// rvalue reference to the specified type.
1306QualType ASTContext::getRValueReferenceType(QualType T) {
1307  // Unique pointers, to guarantee there is only one pointer of a particular
1308  // structure.
1309  llvm::FoldingSetNodeID ID;
1310  ReferenceType::Profile(ID, T, false);
1311
1312  void *InsertPos = 0;
1313  if (RValueReferenceType *RT =
1314        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1315    return QualType(RT, 0);
1316
1317  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1318
1319  // If the referencee type isn't canonical, this won't be a canonical type
1320  // either, so fill in the canonical type field.
1321  QualType Canonical;
1322  if (InnerRef || !T.isCanonical()) {
1323    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1324    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1325
1326    // Get the new insert position for the node we care about.
1327    RValueReferenceType *NewIP =
1328      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1329    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1330  }
1331
1332  RValueReferenceType *New
1333    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1334  Types.push_back(New);
1335  RValueReferenceTypes.InsertNode(New, InsertPos);
1336  return QualType(New, 0);
1337}
1338
1339/// getMemberPointerType - Return the uniqued reference to the type for a
1340/// member pointer to the specified type, in the specified class.
1341QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1342  // Unique pointers, to guarantee there is only one pointer of a particular
1343  // structure.
1344  llvm::FoldingSetNodeID ID;
1345  MemberPointerType::Profile(ID, T, Cls);
1346
1347  void *InsertPos = 0;
1348  if (MemberPointerType *PT =
1349      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1350    return QualType(PT, 0);
1351
1352  // If the pointee or class type isn't canonical, this won't be a canonical
1353  // type either, so fill in the canonical type field.
1354  QualType Canonical;
1355  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1356    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1357
1358    // Get the new insert position for the node we care about.
1359    MemberPointerType *NewIP =
1360      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1361    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1362  }
1363  MemberPointerType *New
1364    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1365  Types.push_back(New);
1366  MemberPointerTypes.InsertNode(New, InsertPos);
1367  return QualType(New, 0);
1368}
1369
1370/// getConstantArrayType - Return the unique reference to the type for an
1371/// array of the specified element type.
1372QualType ASTContext::getConstantArrayType(QualType EltTy,
1373                                          const llvm::APInt &ArySizeIn,
1374                                          ArrayType::ArraySizeModifier ASM,
1375                                          unsigned EltTypeQuals) {
1376  assert((EltTy->isDependentType() ||
1377          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1378         "Constant array of VLAs is illegal!");
1379
1380  // Convert the array size into a canonical width matching the pointer size for
1381  // the target.
1382  llvm::APInt ArySize(ArySizeIn);
1383  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1384
1385  llvm::FoldingSetNodeID ID;
1386  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1387
1388  void *InsertPos = 0;
1389  if (ConstantArrayType *ATP =
1390      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(ATP, 0);
1392
1393  // If the element type isn't canonical, this won't be a canonical type either,
1394  // so fill in the canonical type field.
1395  QualType Canonical;
1396  if (!EltTy.isCanonical()) {
1397    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1398                                     ASM, EltTypeQuals);
1399    // Get the new insert position for the node we care about.
1400    ConstantArrayType *NewIP =
1401      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1402    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1403  }
1404
1405  ConstantArrayType *New = new(*this,TypeAlignment)
1406    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1407  ConstantArrayTypes.InsertNode(New, InsertPos);
1408  Types.push_back(New);
1409  return QualType(New, 0);
1410}
1411
1412/// getVariableArrayType - Returns a non-unique reference to the type for a
1413/// variable array of the specified element type.
1414QualType ASTContext::getVariableArrayType(QualType EltTy,
1415                                          Expr *NumElts,
1416                                          ArrayType::ArraySizeModifier ASM,
1417                                          unsigned EltTypeQuals,
1418                                          SourceRange Brackets) {
1419  // Since we don't unique expressions, it isn't possible to unique VLA's
1420  // that have an expression provided for their size.
1421  QualType CanonType;
1422
1423  if (!EltTy.isCanonical()) {
1424    if (NumElts)
1425      NumElts->Retain();
1426    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1427                                     EltTypeQuals, Brackets);
1428  }
1429
1430  VariableArrayType *New = new(*this, TypeAlignment)
1431    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1432
1433  VariableArrayTypes.push_back(New);
1434  Types.push_back(New);
1435  return QualType(New, 0);
1436}
1437
1438/// getDependentSizedArrayType - Returns a non-unique reference to
1439/// the type for a dependently-sized array of the specified element
1440/// type.
1441QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1442                                                Expr *NumElts,
1443                                                ArrayType::ArraySizeModifier ASM,
1444                                                unsigned EltTypeQuals,
1445                                                SourceRange Brackets) {
1446  assert((!NumElts || NumElts->isTypeDependent() ||
1447          NumElts->isValueDependent()) &&
1448         "Size must be type- or value-dependent!");
1449
1450  void *InsertPos = 0;
1451  DependentSizedArrayType *Canon = 0;
1452  llvm::FoldingSetNodeID ID;
1453
1454  if (NumElts) {
1455    // Dependently-sized array types that do not have a specified
1456    // number of elements will have their sizes deduced from an
1457    // initializer.
1458    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1459                                     EltTypeQuals, NumElts);
1460
1461    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1462  }
1463
1464  DependentSizedArrayType *New;
1465  if (Canon) {
1466    // We already have a canonical version of this array type; use it as
1467    // the canonical type for a newly-built type.
1468    New = new (*this, TypeAlignment)
1469      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1470                              NumElts, ASM, EltTypeQuals, Brackets);
1471  } else {
1472    QualType CanonEltTy = getCanonicalType(EltTy);
1473    if (CanonEltTy == EltTy) {
1474      New = new (*this, TypeAlignment)
1475        DependentSizedArrayType(*this, EltTy, QualType(),
1476                                NumElts, ASM, EltTypeQuals, Brackets);
1477
1478      if (NumElts) {
1479        DependentSizedArrayType *CanonCheck
1480          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1481        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1482        (void)CanonCheck;
1483        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1484      }
1485    } else {
1486      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1487                                                  ASM, EltTypeQuals,
1488                                                  SourceRange());
1489      New = new (*this, TypeAlignment)
1490        DependentSizedArrayType(*this, EltTy, Canon,
1491                                NumElts, ASM, EltTypeQuals, Brackets);
1492    }
1493  }
1494
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1500                                            ArrayType::ArraySizeModifier ASM,
1501                                            unsigned EltTypeQuals) {
1502  llvm::FoldingSetNodeID ID;
1503  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1504
1505  void *InsertPos = 0;
1506  if (IncompleteArrayType *ATP =
1507       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1508    return QualType(ATP, 0);
1509
1510  // If the element type isn't canonical, this won't be a canonical type
1511  // either, so fill in the canonical type field.
1512  QualType Canonical;
1513
1514  if (!EltTy.isCanonical()) {
1515    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1516                                       ASM, EltTypeQuals);
1517
1518    // Get the new insert position for the node we care about.
1519    IncompleteArrayType *NewIP =
1520      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1521    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1522  }
1523
1524  IncompleteArrayType *New = new (*this, TypeAlignment)
1525    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1526
1527  IncompleteArrayTypes.InsertNode(New, InsertPos);
1528  Types.push_back(New);
1529  return QualType(New, 0);
1530}
1531
1532/// getVectorType - Return the unique reference to a vector type of
1533/// the specified element type and size. VectorType must be a built-in type.
1534QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1535    VectorType::AltiVecSpecific AltiVecSpec) {
1536  BuiltinType *baseType;
1537
1538  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1539  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1540
1541  // Check if we've already instantiated a vector of this type.
1542  llvm::FoldingSetNodeID ID;
1543  VectorType::Profile(ID, vecType, NumElts, Type::Vector, AltiVecSpec);
1544
1545  void *InsertPos = 0;
1546  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1547    return QualType(VTP, 0);
1548
1549  // If the element type isn't canonical, this won't be a canonical type either,
1550  // so fill in the canonical type field.
1551  QualType Canonical;
1552  if (!vecType.isCanonical()) {
1553    Canonical = getVectorType(getCanonicalType(vecType), NumElts,
1554      VectorType::NotAltiVec);
1555
1556    // Get the new insert position for the node we care about.
1557    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1558    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1559  }
1560  VectorType *New = new (*this, TypeAlignment)
1561    VectorType(vecType, NumElts, Canonical, AltiVecSpec);
1562  VectorTypes.InsertNode(New, InsertPos);
1563  Types.push_back(New);
1564  return QualType(New, 0);
1565}
1566
1567/// getExtVectorType - Return the unique reference to an extended vector type of
1568/// the specified element type and size. VectorType must be a built-in type.
1569QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1570  BuiltinType *baseType;
1571
1572  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1573  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1574
1575  // Check if we've already instantiated a vector of this type.
1576  llvm::FoldingSetNodeID ID;
1577  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1578                      VectorType::NotAltiVec);
1579  void *InsertPos = 0;
1580  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1581    return QualType(VTP, 0);
1582
1583  // If the element type isn't canonical, this won't be a canonical type either,
1584  // so fill in the canonical type field.
1585  QualType Canonical;
1586  if (!vecType.isCanonical()) {
1587    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1588
1589    // Get the new insert position for the node we care about.
1590    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1591    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1592  }
1593  ExtVectorType *New = new (*this, TypeAlignment)
1594    ExtVectorType(vecType, NumElts, Canonical);
1595  VectorTypes.InsertNode(New, InsertPos);
1596  Types.push_back(New);
1597  return QualType(New, 0);
1598}
1599
1600QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1601                                                    Expr *SizeExpr,
1602                                                    SourceLocation AttrLoc) {
1603  llvm::FoldingSetNodeID ID;
1604  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1605                                       SizeExpr);
1606
1607  void *InsertPos = 0;
1608  DependentSizedExtVectorType *Canon
1609    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1610  DependentSizedExtVectorType *New;
1611  if (Canon) {
1612    // We already have a canonical version of this array type; use it as
1613    // the canonical type for a newly-built type.
1614    New = new (*this, TypeAlignment)
1615      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1616                                  SizeExpr, AttrLoc);
1617  } else {
1618    QualType CanonVecTy = getCanonicalType(vecType);
1619    if (CanonVecTy == vecType) {
1620      New = new (*this, TypeAlignment)
1621        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1622                                    AttrLoc);
1623
1624      DependentSizedExtVectorType *CanonCheck
1625        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1626      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1627      (void)CanonCheck;
1628      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1629    } else {
1630      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1631                                                      SourceLocation());
1632      New = new (*this, TypeAlignment)
1633        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1634    }
1635  }
1636
1637  Types.push_back(New);
1638  return QualType(New, 0);
1639}
1640
1641/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1642///
1643QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1644                                            const FunctionType::ExtInfo &Info) {
1645  const CallingConv CallConv = Info.getCC();
1646  // Unique functions, to guarantee there is only one function of a particular
1647  // structure.
1648  llvm::FoldingSetNodeID ID;
1649  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1650
1651  void *InsertPos = 0;
1652  if (FunctionNoProtoType *FT =
1653        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1654    return QualType(FT, 0);
1655
1656  QualType Canonical;
1657  if (!ResultTy.isCanonical() ||
1658      getCanonicalCallConv(CallConv) != CallConv) {
1659    Canonical =
1660      getFunctionNoProtoType(getCanonicalType(ResultTy),
1661                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1662
1663    // Get the new insert position for the node we care about.
1664    FunctionNoProtoType *NewIP =
1665      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1666    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1667  }
1668
1669  FunctionNoProtoType *New = new (*this, TypeAlignment)
1670    FunctionNoProtoType(ResultTy, Canonical, Info);
1671  Types.push_back(New);
1672  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1673  return QualType(New, 0);
1674}
1675
1676/// getFunctionType - Return a normal function type with a typed argument
1677/// list.  isVariadic indicates whether the argument list includes '...'.
1678QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1679                                     unsigned NumArgs, bool isVariadic,
1680                                     unsigned TypeQuals, bool hasExceptionSpec,
1681                                     bool hasAnyExceptionSpec, unsigned NumExs,
1682                                     const QualType *ExArray,
1683                                     const FunctionType::ExtInfo &Info) {
1684  const CallingConv CallConv= Info.getCC();
1685  // Unique functions, to guarantee there is only one function of a particular
1686  // structure.
1687  llvm::FoldingSetNodeID ID;
1688  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1689                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1690                             NumExs, ExArray, Info);
1691
1692  void *InsertPos = 0;
1693  if (FunctionProtoType *FTP =
1694        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1695    return QualType(FTP, 0);
1696
1697  // Determine whether the type being created is already canonical or not.
1698  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1699  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1700    if (!ArgArray[i].isCanonicalAsParam())
1701      isCanonical = false;
1702
1703  // If this type isn't canonical, get the canonical version of it.
1704  // The exception spec is not part of the canonical type.
1705  QualType Canonical;
1706  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1707    llvm::SmallVector<QualType, 16> CanonicalArgs;
1708    CanonicalArgs.reserve(NumArgs);
1709    for (unsigned i = 0; i != NumArgs; ++i)
1710      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1711
1712    Canonical = getFunctionType(getCanonicalType(ResultTy),
1713                                CanonicalArgs.data(), NumArgs,
1714                                isVariadic, TypeQuals, false,
1715                                false, 0, 0,
1716                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1717
1718    // Get the new insert position for the node we care about.
1719    FunctionProtoType *NewIP =
1720      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1721    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1722  }
1723
1724  // FunctionProtoType objects are allocated with extra bytes after them
1725  // for two variable size arrays (for parameter and exception types) at the
1726  // end of them.
1727  FunctionProtoType *FTP =
1728    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1729                                 NumArgs*sizeof(QualType) +
1730                                 NumExs*sizeof(QualType), TypeAlignment);
1731  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1732                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1733                              ExArray, NumExs, Canonical, Info);
1734  Types.push_back(FTP);
1735  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1736  return QualType(FTP, 0);
1737}
1738
1739#ifndef NDEBUG
1740static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1741  if (!isa<CXXRecordDecl>(D)) return false;
1742  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1743  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1744    return true;
1745  if (RD->getDescribedClassTemplate() &&
1746      !isa<ClassTemplateSpecializationDecl>(RD))
1747    return true;
1748  return false;
1749}
1750#endif
1751
1752/// getInjectedClassNameType - Return the unique reference to the
1753/// injected class name type for the specified templated declaration.
1754QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1755                                              QualType TST) {
1756  assert(NeedsInjectedClassNameType(Decl));
1757  if (Decl->TypeForDecl) {
1758    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1759  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1760    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1761    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1762    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1763  } else {
1764    Decl->TypeForDecl =
1765      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1766    Types.push_back(Decl->TypeForDecl);
1767  }
1768  return QualType(Decl->TypeForDecl, 0);
1769}
1770
1771/// getTypeDeclType - Return the unique reference to the type for the
1772/// specified type declaration.
1773QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1774  assert(Decl && "Passed null for Decl param");
1775  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1776
1777  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1778    return getTypedefType(Typedef);
1779
1780  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1781         "Template type parameter types are always available.");
1782
1783  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1784    assert(!Record->getPreviousDeclaration() &&
1785           "struct/union has previous declaration");
1786    assert(!NeedsInjectedClassNameType(Record));
1787    return getRecordType(Record);
1788  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1789    assert(!Enum->getPreviousDeclaration() &&
1790           "enum has previous declaration");
1791    return getEnumType(Enum);
1792  } else if (const UnresolvedUsingTypenameDecl *Using =
1793               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1794    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1795  } else
1796    llvm_unreachable("TypeDecl without a type?");
1797
1798  Types.push_back(Decl->TypeForDecl);
1799  return QualType(Decl->TypeForDecl, 0);
1800}
1801
1802/// getTypedefType - Return the unique reference to the type for the
1803/// specified typename decl.
1804QualType
1805ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1806  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1807
1808  if (Canonical.isNull())
1809    Canonical = getCanonicalType(Decl->getUnderlyingType());
1810  Decl->TypeForDecl = new(*this, TypeAlignment)
1811    TypedefType(Type::Typedef, Decl, Canonical);
1812  Types.push_back(Decl->TypeForDecl);
1813  return QualType(Decl->TypeForDecl, 0);
1814}
1815
1816QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1817  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1818
1819  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1820    if (PrevDecl->TypeForDecl)
1821      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1822
1823  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1824  Types.push_back(Decl->TypeForDecl);
1825  return QualType(Decl->TypeForDecl, 0);
1826}
1827
1828QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1829  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1830
1831  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1832    if (PrevDecl->TypeForDecl)
1833      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1834
1835  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1836  Types.push_back(Decl->TypeForDecl);
1837  return QualType(Decl->TypeForDecl, 0);
1838}
1839
1840/// \brief Retrieve a substitution-result type.
1841QualType
1842ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1843                                         QualType Replacement) {
1844  assert(Replacement.isCanonical()
1845         && "replacement types must always be canonical");
1846
1847  llvm::FoldingSetNodeID ID;
1848  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1849  void *InsertPos = 0;
1850  SubstTemplateTypeParmType *SubstParm
1851    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1852
1853  if (!SubstParm) {
1854    SubstParm = new (*this, TypeAlignment)
1855      SubstTemplateTypeParmType(Parm, Replacement);
1856    Types.push_back(SubstParm);
1857    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1858  }
1859
1860  return QualType(SubstParm, 0);
1861}
1862
1863/// \brief Retrieve the template type parameter type for a template
1864/// parameter or parameter pack with the given depth, index, and (optionally)
1865/// name.
1866QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1867                                             bool ParameterPack,
1868                                             IdentifierInfo *Name) {
1869  llvm::FoldingSetNodeID ID;
1870  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1871  void *InsertPos = 0;
1872  TemplateTypeParmType *TypeParm
1873    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1874
1875  if (TypeParm)
1876    return QualType(TypeParm, 0);
1877
1878  if (Name) {
1879    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1880    TypeParm = new (*this, TypeAlignment)
1881      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1882
1883    TemplateTypeParmType *TypeCheck
1884      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1885    assert(!TypeCheck && "Template type parameter canonical type broken");
1886    (void)TypeCheck;
1887  } else
1888    TypeParm = new (*this, TypeAlignment)
1889      TemplateTypeParmType(Depth, Index, ParameterPack);
1890
1891  Types.push_back(TypeParm);
1892  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1893
1894  return QualType(TypeParm, 0);
1895}
1896
1897TypeSourceInfo *
1898ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1899                                              SourceLocation NameLoc,
1900                                        const TemplateArgumentListInfo &Args,
1901                                              QualType CanonType) {
1902  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1903
1904  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1905  TemplateSpecializationTypeLoc TL
1906    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1907  TL.setTemplateNameLoc(NameLoc);
1908  TL.setLAngleLoc(Args.getLAngleLoc());
1909  TL.setRAngleLoc(Args.getRAngleLoc());
1910  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1911    TL.setArgLocInfo(i, Args[i].getLocInfo());
1912  return DI;
1913}
1914
1915QualType
1916ASTContext::getTemplateSpecializationType(TemplateName Template,
1917                                          const TemplateArgumentListInfo &Args,
1918                                          QualType Canon) {
1919  unsigned NumArgs = Args.size();
1920
1921  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1922  ArgVec.reserve(NumArgs);
1923  for (unsigned i = 0; i != NumArgs; ++i)
1924    ArgVec.push_back(Args[i].getArgument());
1925
1926  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1927                                       Canon);
1928}
1929
1930QualType
1931ASTContext::getTemplateSpecializationType(TemplateName Template,
1932                                          const TemplateArgument *Args,
1933                                          unsigned NumArgs,
1934                                          QualType Canon) {
1935  if (!Canon.isNull())
1936    Canon = getCanonicalType(Canon);
1937  else
1938    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
1939
1940  // Allocate the (non-canonical) template specialization type, but don't
1941  // try to unique it: these types typically have location information that
1942  // we don't unique and don't want to lose.
1943  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1944                        sizeof(TemplateArgument) * NumArgs),
1945                       TypeAlignment);
1946  TemplateSpecializationType *Spec
1947    = new (Mem) TemplateSpecializationType(Template,
1948                                           Args, NumArgs,
1949                                           Canon);
1950
1951  Types.push_back(Spec);
1952  return QualType(Spec, 0);
1953}
1954
1955QualType
1956ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
1957                                                   const TemplateArgument *Args,
1958                                                   unsigned NumArgs) {
1959  // Build the canonical template specialization type.
1960  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1961  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1962  CanonArgs.reserve(NumArgs);
1963  for (unsigned I = 0; I != NumArgs; ++I)
1964    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1965
1966  // Determine whether this canonical template specialization type already
1967  // exists.
1968  llvm::FoldingSetNodeID ID;
1969  TemplateSpecializationType::Profile(ID, CanonTemplate,
1970                                      CanonArgs.data(), NumArgs, *this);
1971
1972  void *InsertPos = 0;
1973  TemplateSpecializationType *Spec
1974    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1975
1976  if (!Spec) {
1977    // Allocate a new canonical template specialization type.
1978    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1979                          sizeof(TemplateArgument) * NumArgs),
1980                         TypeAlignment);
1981    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
1982                                                CanonArgs.data(), NumArgs,
1983                                                QualType());
1984    Types.push_back(Spec);
1985    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1986  }
1987
1988  assert(Spec->isDependentType() &&
1989         "Non-dependent template-id type must have a canonical type");
1990  return QualType(Spec, 0);
1991}
1992
1993QualType
1994ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1995                              NestedNameSpecifier *NNS,
1996                              QualType NamedType) {
1997  llvm::FoldingSetNodeID ID;
1998  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1999
2000  void *InsertPos = 0;
2001  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2002  if (T)
2003    return QualType(T, 0);
2004
2005  QualType Canon = NamedType;
2006  if (!Canon.isCanonical()) {
2007    Canon = getCanonicalType(NamedType);
2008    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    assert(!CheckT && "Elaborated canonical type broken");
2010    (void)CheckT;
2011  }
2012
2013  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2014  Types.push_back(T);
2015  ElaboratedTypes.InsertNode(T, InsertPos);
2016  return QualType(T, 0);
2017}
2018
2019QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2020                                          NestedNameSpecifier *NNS,
2021                                          const IdentifierInfo *Name,
2022                                          QualType Canon) {
2023  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2024
2025  if (Canon.isNull()) {
2026    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2027    ElaboratedTypeKeyword CanonKeyword = Keyword;
2028    if (Keyword == ETK_None)
2029      CanonKeyword = ETK_Typename;
2030
2031    if (CanonNNS != NNS || CanonKeyword != Keyword)
2032      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2033  }
2034
2035  llvm::FoldingSetNodeID ID;
2036  DependentNameType::Profile(ID, Keyword, NNS, Name);
2037
2038  void *InsertPos = 0;
2039  DependentNameType *T
2040    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2041  if (T)
2042    return QualType(T, 0);
2043
2044  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2045  Types.push_back(T);
2046  DependentNameTypes.InsertNode(T, InsertPos);
2047  return QualType(T, 0);
2048}
2049
2050QualType
2051ASTContext::getDependentTemplateSpecializationType(
2052                                 ElaboratedTypeKeyword Keyword,
2053                                 NestedNameSpecifier *NNS,
2054                                 const IdentifierInfo *Name,
2055                                 const TemplateArgumentListInfo &Args) {
2056  // TODO: avoid this copy
2057  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2058  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2059    ArgCopy.push_back(Args[I].getArgument());
2060  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2061                                                ArgCopy.size(),
2062                                                ArgCopy.data());
2063}
2064
2065QualType
2066ASTContext::getDependentTemplateSpecializationType(
2067                                 ElaboratedTypeKeyword Keyword,
2068                                 NestedNameSpecifier *NNS,
2069                                 const IdentifierInfo *Name,
2070                                 unsigned NumArgs,
2071                                 const TemplateArgument *Args) {
2072  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2073
2074  llvm::FoldingSetNodeID ID;
2075  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2076                                               Name, NumArgs, Args);
2077
2078  void *InsertPos = 0;
2079  DependentTemplateSpecializationType *T
2080    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2081  if (T)
2082    return QualType(T, 0);
2083
2084  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2085
2086  ElaboratedTypeKeyword CanonKeyword = Keyword;
2087  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2088
2089  bool AnyNonCanonArgs = false;
2090  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2091  for (unsigned I = 0; I != NumArgs; ++I) {
2092    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2093    if (!CanonArgs[I].structurallyEquals(Args[I]))
2094      AnyNonCanonArgs = true;
2095  }
2096
2097  QualType Canon;
2098  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2099    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2100                                                   Name, NumArgs,
2101                                                   CanonArgs.data());
2102
2103    // Find the insert position again.
2104    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2105  }
2106
2107  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2108                        sizeof(TemplateArgument) * NumArgs),
2109                       TypeAlignment);
2110  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2111                                                    Name, NumArgs, Args, Canon);
2112  Types.push_back(T);
2113  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2114  return QualType(T, 0);
2115}
2116
2117/// CmpProtocolNames - Comparison predicate for sorting protocols
2118/// alphabetically.
2119static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2120                            const ObjCProtocolDecl *RHS) {
2121  return LHS->getDeclName() < RHS->getDeclName();
2122}
2123
2124static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2125                                unsigned NumProtocols) {
2126  if (NumProtocols == 0) return true;
2127
2128  for (unsigned i = 1; i != NumProtocols; ++i)
2129    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2130      return false;
2131  return true;
2132}
2133
2134static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2135                                   unsigned &NumProtocols) {
2136  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2137
2138  // Sort protocols, keyed by name.
2139  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2140
2141  // Remove duplicates.
2142  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2143  NumProtocols = ProtocolsEnd-Protocols;
2144}
2145
2146QualType ASTContext::getObjCObjectType(QualType BaseType,
2147                                       ObjCProtocolDecl * const *Protocols,
2148                                       unsigned NumProtocols) {
2149  // If the base type is an interface and there aren't any protocols
2150  // to add, then the interface type will do just fine.
2151  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2152    return BaseType;
2153
2154  // Look in the folding set for an existing type.
2155  llvm::FoldingSetNodeID ID;
2156  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2157  void *InsertPos = 0;
2158  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2159    return QualType(QT, 0);
2160
2161  // Build the canonical type, which has the canonical base type and
2162  // a sorted-and-uniqued list of protocols.
2163  QualType Canonical;
2164  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2165  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2166    if (!ProtocolsSorted) {
2167      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2168                                                     Protocols + NumProtocols);
2169      unsigned UniqueCount = NumProtocols;
2170
2171      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2172      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2173                                    &Sorted[0], UniqueCount);
2174    } else {
2175      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2176                                    Protocols, NumProtocols);
2177    }
2178
2179    // Regenerate InsertPos.
2180    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2181  }
2182
2183  unsigned Size = sizeof(ObjCObjectTypeImpl);
2184  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2185  void *Mem = Allocate(Size, TypeAlignment);
2186  ObjCObjectTypeImpl *T =
2187    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2188
2189  Types.push_back(T);
2190  ObjCObjectTypes.InsertNode(T, InsertPos);
2191  return QualType(T, 0);
2192}
2193
2194/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2195/// the given object type.
2196QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2197  llvm::FoldingSetNodeID ID;
2198  ObjCObjectPointerType::Profile(ID, ObjectT);
2199
2200  void *InsertPos = 0;
2201  if (ObjCObjectPointerType *QT =
2202              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2203    return QualType(QT, 0);
2204
2205  // Find the canonical object type.
2206  QualType Canonical;
2207  if (!ObjectT.isCanonical()) {
2208    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2209
2210    // Regenerate InsertPos.
2211    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2212  }
2213
2214  // No match.
2215  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2216  ObjCObjectPointerType *QType =
2217    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2218
2219  Types.push_back(QType);
2220  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2221  return QualType(QType, 0);
2222}
2223
2224/// getObjCInterfaceType - Return the unique reference to the type for the
2225/// specified ObjC interface decl. The list of protocols is optional.
2226QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2227  if (Decl->TypeForDecl)
2228    return QualType(Decl->TypeForDecl, 0);
2229
2230  // FIXME: redeclarations?
2231  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2232  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2233  Decl->TypeForDecl = T;
2234  Types.push_back(T);
2235  return QualType(T, 0);
2236}
2237
2238/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2239/// TypeOfExprType AST's (since expression's are never shared). For example,
2240/// multiple declarations that refer to "typeof(x)" all contain different
2241/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2242/// on canonical type's (which are always unique).
2243QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2244  TypeOfExprType *toe;
2245  if (tofExpr->isTypeDependent()) {
2246    llvm::FoldingSetNodeID ID;
2247    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2248
2249    void *InsertPos = 0;
2250    DependentTypeOfExprType *Canon
2251      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2252    if (Canon) {
2253      // We already have a "canonical" version of an identical, dependent
2254      // typeof(expr) type. Use that as our canonical type.
2255      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2256                                          QualType((TypeOfExprType*)Canon, 0));
2257    }
2258    else {
2259      // Build a new, canonical typeof(expr) type.
2260      Canon
2261        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2262      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2263      toe = Canon;
2264    }
2265  } else {
2266    QualType Canonical = getCanonicalType(tofExpr->getType());
2267    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2268  }
2269  Types.push_back(toe);
2270  return QualType(toe, 0);
2271}
2272
2273/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2274/// TypeOfType AST's. The only motivation to unique these nodes would be
2275/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2276/// an issue. This doesn't effect the type checker, since it operates
2277/// on canonical type's (which are always unique).
2278QualType ASTContext::getTypeOfType(QualType tofType) {
2279  QualType Canonical = getCanonicalType(tofType);
2280  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2281  Types.push_back(tot);
2282  return QualType(tot, 0);
2283}
2284
2285/// getDecltypeForExpr - Given an expr, will return the decltype for that
2286/// expression, according to the rules in C++0x [dcl.type.simple]p4
2287static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2288  if (e->isTypeDependent())
2289    return Context.DependentTy;
2290
2291  // If e is an id expression or a class member access, decltype(e) is defined
2292  // as the type of the entity named by e.
2293  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2294    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2295      return VD->getType();
2296  }
2297  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2298    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2299      return FD->getType();
2300  }
2301  // If e is a function call or an invocation of an overloaded operator,
2302  // (parentheses around e are ignored), decltype(e) is defined as the
2303  // return type of that function.
2304  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2305    return CE->getCallReturnType();
2306
2307  QualType T = e->getType();
2308
2309  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2310  // defined as T&, otherwise decltype(e) is defined as T.
2311  if (e->isLvalue(Context) == Expr::LV_Valid)
2312    T = Context.getLValueReferenceType(T);
2313
2314  return T;
2315}
2316
2317/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2318/// DecltypeType AST's. The only motivation to unique these nodes would be
2319/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2320/// an issue. This doesn't effect the type checker, since it operates
2321/// on canonical type's (which are always unique).
2322QualType ASTContext::getDecltypeType(Expr *e) {
2323  DecltypeType *dt;
2324  if (e->isTypeDependent()) {
2325    llvm::FoldingSetNodeID ID;
2326    DependentDecltypeType::Profile(ID, *this, e);
2327
2328    void *InsertPos = 0;
2329    DependentDecltypeType *Canon
2330      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2331    if (Canon) {
2332      // We already have a "canonical" version of an equivalent, dependent
2333      // decltype type. Use that as our canonical type.
2334      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2335                                       QualType((DecltypeType*)Canon, 0));
2336    }
2337    else {
2338      // Build a new, canonical typeof(expr) type.
2339      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2340      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2341      dt = Canon;
2342    }
2343  } else {
2344    QualType T = getDecltypeForExpr(e, *this);
2345    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2346  }
2347  Types.push_back(dt);
2348  return QualType(dt, 0);
2349}
2350
2351/// getTagDeclType - Return the unique reference to the type for the
2352/// specified TagDecl (struct/union/class/enum) decl.
2353QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2354  assert (Decl);
2355  // FIXME: What is the design on getTagDeclType when it requires casting
2356  // away const?  mutable?
2357  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2358}
2359
2360/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2361/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2362/// needs to agree with the definition in <stddef.h>.
2363CanQualType ASTContext::getSizeType() const {
2364  return getFromTargetType(Target.getSizeType());
2365}
2366
2367/// getSignedWCharType - Return the type of "signed wchar_t".
2368/// Used when in C++, as a GCC extension.
2369QualType ASTContext::getSignedWCharType() const {
2370  // FIXME: derive from "Target" ?
2371  return WCharTy;
2372}
2373
2374/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2375/// Used when in C++, as a GCC extension.
2376QualType ASTContext::getUnsignedWCharType() const {
2377  // FIXME: derive from "Target" ?
2378  return UnsignedIntTy;
2379}
2380
2381/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2382/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2383QualType ASTContext::getPointerDiffType() const {
2384  return getFromTargetType(Target.getPtrDiffType(0));
2385}
2386
2387//===----------------------------------------------------------------------===//
2388//                              Type Operators
2389//===----------------------------------------------------------------------===//
2390
2391CanQualType ASTContext::getCanonicalParamType(QualType T) {
2392  // Push qualifiers into arrays, and then discard any remaining
2393  // qualifiers.
2394  T = getCanonicalType(T);
2395  const Type *Ty = T.getTypePtr();
2396
2397  QualType Result;
2398  if (isa<ArrayType>(Ty)) {
2399    Result = getArrayDecayedType(QualType(Ty,0));
2400  } else if (isa<FunctionType>(Ty)) {
2401    Result = getPointerType(QualType(Ty, 0));
2402  } else {
2403    Result = QualType(Ty, 0);
2404  }
2405
2406  return CanQualType::CreateUnsafe(Result);
2407}
2408
2409/// getCanonicalType - Return the canonical (structural) type corresponding to
2410/// the specified potentially non-canonical type.  The non-canonical version
2411/// of a type may have many "decorated" versions of types.  Decorators can
2412/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2413/// to be free of any of these, allowing two canonical types to be compared
2414/// for exact equality with a simple pointer comparison.
2415CanQualType ASTContext::getCanonicalType(QualType T) {
2416  QualifierCollector Quals;
2417  const Type *Ptr = Quals.strip(T);
2418  QualType CanType = Ptr->getCanonicalTypeInternal();
2419
2420  // The canonical internal type will be the canonical type *except*
2421  // that we push type qualifiers down through array types.
2422
2423  // If there are no new qualifiers to push down, stop here.
2424  if (!Quals.hasQualifiers())
2425    return CanQualType::CreateUnsafe(CanType);
2426
2427  // If the type qualifiers are on an array type, get the canonical
2428  // type of the array with the qualifiers applied to the element
2429  // type.
2430  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2431  if (!AT)
2432    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2433
2434  // Get the canonical version of the element with the extra qualifiers on it.
2435  // This can recursively sink qualifiers through multiple levels of arrays.
2436  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2437  NewEltTy = getCanonicalType(NewEltTy);
2438
2439  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2440    return CanQualType::CreateUnsafe(
2441             getConstantArrayType(NewEltTy, CAT->getSize(),
2442                                  CAT->getSizeModifier(),
2443                                  CAT->getIndexTypeCVRQualifiers()));
2444  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2445    return CanQualType::CreateUnsafe(
2446             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2447                                    IAT->getIndexTypeCVRQualifiers()));
2448
2449  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2450    return CanQualType::CreateUnsafe(
2451             getDependentSizedArrayType(NewEltTy,
2452                                        DSAT->getSizeExpr() ?
2453                                          DSAT->getSizeExpr()->Retain() : 0,
2454                                        DSAT->getSizeModifier(),
2455                                        DSAT->getIndexTypeCVRQualifiers(),
2456                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2457
2458  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2459  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2460                                                        VAT->getSizeExpr() ?
2461                                              VAT->getSizeExpr()->Retain() : 0,
2462                                                        VAT->getSizeModifier(),
2463                                              VAT->getIndexTypeCVRQualifiers(),
2464                                                     VAT->getBracketsRange()));
2465}
2466
2467QualType ASTContext::getUnqualifiedArrayType(QualType T,
2468                                             Qualifiers &Quals) {
2469  Quals = T.getQualifiers();
2470  const ArrayType *AT = getAsArrayType(T);
2471  if (!AT) {
2472    return T.getUnqualifiedType();
2473  }
2474
2475  QualType Elt = AT->getElementType();
2476  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2477  if (Elt == UnqualElt)
2478    return T;
2479
2480  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2481    return getConstantArrayType(UnqualElt, CAT->getSize(),
2482                                CAT->getSizeModifier(), 0);
2483  }
2484
2485  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2486    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2487  }
2488
2489  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2490    return getVariableArrayType(UnqualElt,
2491                                VAT->getSizeExpr() ?
2492                                VAT->getSizeExpr()->Retain() : 0,
2493                                VAT->getSizeModifier(),
2494                                VAT->getIndexTypeCVRQualifiers(),
2495                                VAT->getBracketsRange());
2496  }
2497
2498  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2499  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2500                                    DSAT->getSizeModifier(), 0,
2501                                    SourceRange());
2502}
2503
2504/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2505/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2506/// they point to and return true. If T1 and T2 aren't pointer types
2507/// or pointer-to-member types, or if they are not similar at this
2508/// level, returns false and leaves T1 and T2 unchanged. Top-level
2509/// qualifiers on T1 and T2 are ignored. This function will typically
2510/// be called in a loop that successively "unwraps" pointer and
2511/// pointer-to-member types to compare them at each level.
2512bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2513  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2514                    *T2PtrType = T2->getAs<PointerType>();
2515  if (T1PtrType && T2PtrType) {
2516    T1 = T1PtrType->getPointeeType();
2517    T2 = T2PtrType->getPointeeType();
2518    return true;
2519  }
2520
2521  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2522                          *T2MPType = T2->getAs<MemberPointerType>();
2523  if (T1MPType && T2MPType &&
2524      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2525                             QualType(T2MPType->getClass(), 0))) {
2526    T1 = T1MPType->getPointeeType();
2527    T2 = T2MPType->getPointeeType();
2528    return true;
2529  }
2530
2531  if (getLangOptions().ObjC1) {
2532    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2533                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2534    if (T1OPType && T2OPType) {
2535      T1 = T1OPType->getPointeeType();
2536      T2 = T2OPType->getPointeeType();
2537      return true;
2538    }
2539  }
2540
2541  // FIXME: Block pointers, too?
2542
2543  return false;
2544}
2545
2546DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2547                                                   SourceLocation NameLoc) {
2548  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2549    // DNInfo work in progress: CHECKME: what about DNLoc?
2550    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2551
2552  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2553    DeclarationName DName;
2554    if (DTN->isIdentifier()) {
2555      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2556      return DeclarationNameInfo(DName, NameLoc);
2557    } else {
2558      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2559      // DNInfo work in progress: FIXME: source locations?
2560      DeclarationNameLoc DNLoc;
2561      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2562      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2563      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2564    }
2565  }
2566
2567  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2568  assert(Storage);
2569  // DNInfo work in progress: CHECKME: what about DNLoc?
2570  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2571}
2572
2573TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2574  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2575    if (TemplateTemplateParmDecl *TTP
2576                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2577      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2578
2579    // The canonical template name is the canonical template declaration.
2580    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2581  }
2582
2583  assert(!Name.getAsOverloadedTemplate());
2584
2585  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2586  assert(DTN && "Non-dependent template names must refer to template decls.");
2587  return DTN->CanonicalTemplateName;
2588}
2589
2590bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2591  X = getCanonicalTemplateName(X);
2592  Y = getCanonicalTemplateName(Y);
2593  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2594}
2595
2596TemplateArgument
2597ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2598  switch (Arg.getKind()) {
2599    case TemplateArgument::Null:
2600      return Arg;
2601
2602    case TemplateArgument::Expression:
2603      return Arg;
2604
2605    case TemplateArgument::Declaration:
2606      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2607
2608    case TemplateArgument::Template:
2609      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2610
2611    case TemplateArgument::Integral:
2612      return TemplateArgument(*Arg.getAsIntegral(),
2613                              getCanonicalType(Arg.getIntegralType()));
2614
2615    case TemplateArgument::Type:
2616      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2617
2618    case TemplateArgument::Pack: {
2619      // FIXME: Allocate in ASTContext
2620      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2621      unsigned Idx = 0;
2622      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2623                                        AEnd = Arg.pack_end();
2624           A != AEnd; (void)++A, ++Idx)
2625        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2626
2627      TemplateArgument Result;
2628      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2629      return Result;
2630    }
2631  }
2632
2633  // Silence GCC warning
2634  assert(false && "Unhandled template argument kind");
2635  return TemplateArgument();
2636}
2637
2638NestedNameSpecifier *
2639ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2640  if (!NNS)
2641    return 0;
2642
2643  switch (NNS->getKind()) {
2644  case NestedNameSpecifier::Identifier:
2645    // Canonicalize the prefix but keep the identifier the same.
2646    return NestedNameSpecifier::Create(*this,
2647                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2648                                       NNS->getAsIdentifier());
2649
2650  case NestedNameSpecifier::Namespace:
2651    // A namespace is canonical; build a nested-name-specifier with
2652    // this namespace and no prefix.
2653    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2654
2655  case NestedNameSpecifier::TypeSpec:
2656  case NestedNameSpecifier::TypeSpecWithTemplate: {
2657    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2658    return NestedNameSpecifier::Create(*this, 0,
2659                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2660                                       T.getTypePtr());
2661  }
2662
2663  case NestedNameSpecifier::Global:
2664    // The global specifier is canonical and unique.
2665    return NNS;
2666  }
2667
2668  // Required to silence a GCC warning
2669  return 0;
2670}
2671
2672
2673const ArrayType *ASTContext::getAsArrayType(QualType T) {
2674  // Handle the non-qualified case efficiently.
2675  if (!T.hasLocalQualifiers()) {
2676    // Handle the common positive case fast.
2677    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2678      return AT;
2679  }
2680
2681  // Handle the common negative case fast.
2682  QualType CType = T->getCanonicalTypeInternal();
2683  if (!isa<ArrayType>(CType))
2684    return 0;
2685
2686  // Apply any qualifiers from the array type to the element type.  This
2687  // implements C99 6.7.3p8: "If the specification of an array type includes
2688  // any type qualifiers, the element type is so qualified, not the array type."
2689
2690  // If we get here, we either have type qualifiers on the type, or we have
2691  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2692  // we must propagate them down into the element type.
2693
2694  QualifierCollector Qs;
2695  const Type *Ty = Qs.strip(T.getDesugaredType());
2696
2697  // If we have a simple case, just return now.
2698  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2699  if (ATy == 0 || Qs.empty())
2700    return ATy;
2701
2702  // Otherwise, we have an array and we have qualifiers on it.  Push the
2703  // qualifiers into the array element type and return a new array type.
2704  // Get the canonical version of the element with the extra qualifiers on it.
2705  // This can recursively sink qualifiers through multiple levels of arrays.
2706  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2707
2708  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2709    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2710                                                CAT->getSizeModifier(),
2711                                           CAT->getIndexTypeCVRQualifiers()));
2712  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2713    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2714                                                  IAT->getSizeModifier(),
2715                                           IAT->getIndexTypeCVRQualifiers()));
2716
2717  if (const DependentSizedArrayType *DSAT
2718        = dyn_cast<DependentSizedArrayType>(ATy))
2719    return cast<ArrayType>(
2720                     getDependentSizedArrayType(NewEltTy,
2721                                                DSAT->getSizeExpr() ?
2722                                              DSAT->getSizeExpr()->Retain() : 0,
2723                                                DSAT->getSizeModifier(),
2724                                              DSAT->getIndexTypeCVRQualifiers(),
2725                                                DSAT->getBracketsRange()));
2726
2727  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2728  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2729                                              VAT->getSizeExpr() ?
2730                                              VAT->getSizeExpr()->Retain() : 0,
2731                                              VAT->getSizeModifier(),
2732                                              VAT->getIndexTypeCVRQualifiers(),
2733                                              VAT->getBracketsRange()));
2734}
2735
2736
2737/// getArrayDecayedType - Return the properly qualified result of decaying the
2738/// specified array type to a pointer.  This operation is non-trivial when
2739/// handling typedefs etc.  The canonical type of "T" must be an array type,
2740/// this returns a pointer to a properly qualified element of the array.
2741///
2742/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2743QualType ASTContext::getArrayDecayedType(QualType Ty) {
2744  // Get the element type with 'getAsArrayType' so that we don't lose any
2745  // typedefs in the element type of the array.  This also handles propagation
2746  // of type qualifiers from the array type into the element type if present
2747  // (C99 6.7.3p8).
2748  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2749  assert(PrettyArrayType && "Not an array type!");
2750
2751  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2752
2753  // int x[restrict 4] ->  int *restrict
2754  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2755}
2756
2757QualType ASTContext::getBaseElementType(QualType QT) {
2758  QualifierCollector Qs;
2759  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2760    QT = AT->getElementType();
2761  return Qs.apply(QT);
2762}
2763
2764QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2765  QualType ElemTy = AT->getElementType();
2766
2767  if (const ArrayType *AT = getAsArrayType(ElemTy))
2768    return getBaseElementType(AT);
2769
2770  return ElemTy;
2771}
2772
2773/// getConstantArrayElementCount - Returns number of constant array elements.
2774uint64_t
2775ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2776  uint64_t ElementCount = 1;
2777  do {
2778    ElementCount *= CA->getSize().getZExtValue();
2779    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2780  } while (CA);
2781  return ElementCount;
2782}
2783
2784/// getFloatingRank - Return a relative rank for floating point types.
2785/// This routine will assert if passed a built-in type that isn't a float.
2786static FloatingRank getFloatingRank(QualType T) {
2787  if (const ComplexType *CT = T->getAs<ComplexType>())
2788    return getFloatingRank(CT->getElementType());
2789
2790  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2791  switch (T->getAs<BuiltinType>()->getKind()) {
2792  default: assert(0 && "getFloatingRank(): not a floating type");
2793  case BuiltinType::Float:      return FloatRank;
2794  case BuiltinType::Double:     return DoubleRank;
2795  case BuiltinType::LongDouble: return LongDoubleRank;
2796  }
2797}
2798
2799/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2800/// point or a complex type (based on typeDomain/typeSize).
2801/// 'typeDomain' is a real floating point or complex type.
2802/// 'typeSize' is a real floating point or complex type.
2803QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2804                                                       QualType Domain) const {
2805  FloatingRank EltRank = getFloatingRank(Size);
2806  if (Domain->isComplexType()) {
2807    switch (EltRank) {
2808    default: assert(0 && "getFloatingRank(): illegal value for rank");
2809    case FloatRank:      return FloatComplexTy;
2810    case DoubleRank:     return DoubleComplexTy;
2811    case LongDoubleRank: return LongDoubleComplexTy;
2812    }
2813  }
2814
2815  assert(Domain->isRealFloatingType() && "Unknown domain!");
2816  switch (EltRank) {
2817  default: assert(0 && "getFloatingRank(): illegal value for rank");
2818  case FloatRank:      return FloatTy;
2819  case DoubleRank:     return DoubleTy;
2820  case LongDoubleRank: return LongDoubleTy;
2821  }
2822}
2823
2824/// getFloatingTypeOrder - Compare the rank of the two specified floating
2825/// point types, ignoring the domain of the type (i.e. 'double' ==
2826/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2827/// LHS < RHS, return -1.
2828int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2829  FloatingRank LHSR = getFloatingRank(LHS);
2830  FloatingRank RHSR = getFloatingRank(RHS);
2831
2832  if (LHSR == RHSR)
2833    return 0;
2834  if (LHSR > RHSR)
2835    return 1;
2836  return -1;
2837}
2838
2839/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2840/// routine will assert if passed a built-in type that isn't an integer or enum,
2841/// or if it is not canonicalized.
2842unsigned ASTContext::getIntegerRank(Type *T) {
2843  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2844  if (EnumType* ET = dyn_cast<EnumType>(T))
2845    T = ET->getDecl()->getPromotionType().getTypePtr();
2846
2847  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2848    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2849
2850  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2851    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2852
2853  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2854    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2855
2856  switch (cast<BuiltinType>(T)->getKind()) {
2857  default: assert(0 && "getIntegerRank(): not a built-in integer");
2858  case BuiltinType::Bool:
2859    return 1 + (getIntWidth(BoolTy) << 3);
2860  case BuiltinType::Char_S:
2861  case BuiltinType::Char_U:
2862  case BuiltinType::SChar:
2863  case BuiltinType::UChar:
2864    return 2 + (getIntWidth(CharTy) << 3);
2865  case BuiltinType::Short:
2866  case BuiltinType::UShort:
2867    return 3 + (getIntWidth(ShortTy) << 3);
2868  case BuiltinType::Int:
2869  case BuiltinType::UInt:
2870    return 4 + (getIntWidth(IntTy) << 3);
2871  case BuiltinType::Long:
2872  case BuiltinType::ULong:
2873    return 5 + (getIntWidth(LongTy) << 3);
2874  case BuiltinType::LongLong:
2875  case BuiltinType::ULongLong:
2876    return 6 + (getIntWidth(LongLongTy) << 3);
2877  case BuiltinType::Int128:
2878  case BuiltinType::UInt128:
2879    return 7 + (getIntWidth(Int128Ty) << 3);
2880  }
2881}
2882
2883/// \brief Whether this is a promotable bitfield reference according
2884/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2885///
2886/// \returns the type this bit-field will promote to, or NULL if no
2887/// promotion occurs.
2888QualType ASTContext::isPromotableBitField(Expr *E) {
2889  if (E->isTypeDependent() || E->isValueDependent())
2890    return QualType();
2891
2892  FieldDecl *Field = E->getBitField();
2893  if (!Field)
2894    return QualType();
2895
2896  QualType FT = Field->getType();
2897
2898  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2899  uint64_t BitWidth = BitWidthAP.getZExtValue();
2900  uint64_t IntSize = getTypeSize(IntTy);
2901  // GCC extension compatibility: if the bit-field size is less than or equal
2902  // to the size of int, it gets promoted no matter what its type is.
2903  // For instance, unsigned long bf : 4 gets promoted to signed int.
2904  if (BitWidth < IntSize)
2905    return IntTy;
2906
2907  if (BitWidth == IntSize)
2908    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2909
2910  // Types bigger than int are not subject to promotions, and therefore act
2911  // like the base type.
2912  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2913  // is ridiculous.
2914  return QualType();
2915}
2916
2917/// getPromotedIntegerType - Returns the type that Promotable will
2918/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2919/// integer type.
2920QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2921  assert(!Promotable.isNull());
2922  assert(Promotable->isPromotableIntegerType());
2923  if (const EnumType *ET = Promotable->getAs<EnumType>())
2924    return ET->getDecl()->getPromotionType();
2925  if (Promotable->isSignedIntegerType())
2926    return IntTy;
2927  uint64_t PromotableSize = getTypeSize(Promotable);
2928  uint64_t IntSize = getTypeSize(IntTy);
2929  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2930  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2931}
2932
2933/// getIntegerTypeOrder - Returns the highest ranked integer type:
2934/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2935/// LHS < RHS, return -1.
2936int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2937  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2938  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2939  if (LHSC == RHSC) return 0;
2940
2941  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2942  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2943
2944  unsigned LHSRank = getIntegerRank(LHSC);
2945  unsigned RHSRank = getIntegerRank(RHSC);
2946
2947  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2948    if (LHSRank == RHSRank) return 0;
2949    return LHSRank > RHSRank ? 1 : -1;
2950  }
2951
2952  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2953  if (LHSUnsigned) {
2954    // If the unsigned [LHS] type is larger, return it.
2955    if (LHSRank >= RHSRank)
2956      return 1;
2957
2958    // If the signed type can represent all values of the unsigned type, it
2959    // wins.  Because we are dealing with 2's complement and types that are
2960    // powers of two larger than each other, this is always safe.
2961    return -1;
2962  }
2963
2964  // If the unsigned [RHS] type is larger, return it.
2965  if (RHSRank >= LHSRank)
2966    return -1;
2967
2968  // If the signed type can represent all values of the unsigned type, it
2969  // wins.  Because we are dealing with 2's complement and types that are
2970  // powers of two larger than each other, this is always safe.
2971  return 1;
2972}
2973
2974static RecordDecl *
2975CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2976                 SourceLocation L, IdentifierInfo *Id) {
2977  if (Ctx.getLangOptions().CPlusPlus)
2978    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2979  else
2980    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2981}
2982
2983// getCFConstantStringType - Return the type used for constant CFStrings.
2984QualType ASTContext::getCFConstantStringType() {
2985  if (!CFConstantStringTypeDecl) {
2986    CFConstantStringTypeDecl =
2987      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2988                       &Idents.get("NSConstantString"));
2989    CFConstantStringTypeDecl->startDefinition();
2990
2991    QualType FieldTypes[4];
2992
2993    // const int *isa;
2994    FieldTypes[0] = getPointerType(IntTy.withConst());
2995    // int flags;
2996    FieldTypes[1] = IntTy;
2997    // const char *str;
2998    FieldTypes[2] = getPointerType(CharTy.withConst());
2999    // long length;
3000    FieldTypes[3] = LongTy;
3001
3002    // Create fields
3003    for (unsigned i = 0; i < 4; ++i) {
3004      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3005                                           SourceLocation(), 0,
3006                                           FieldTypes[i], /*TInfo=*/0,
3007                                           /*BitWidth=*/0,
3008                                           /*Mutable=*/false);
3009      Field->setAccess(AS_public);
3010      CFConstantStringTypeDecl->addDecl(Field);
3011    }
3012
3013    CFConstantStringTypeDecl->completeDefinition();
3014  }
3015
3016  return getTagDeclType(CFConstantStringTypeDecl);
3017}
3018
3019void ASTContext::setCFConstantStringType(QualType T) {
3020  const RecordType *Rec = T->getAs<RecordType>();
3021  assert(Rec && "Invalid CFConstantStringType");
3022  CFConstantStringTypeDecl = Rec->getDecl();
3023}
3024
3025// getNSConstantStringType - Return the type used for constant NSStrings.
3026QualType ASTContext::getNSConstantStringType() {
3027  if (!NSConstantStringTypeDecl) {
3028    NSConstantStringTypeDecl =
3029    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3030                     &Idents.get("__builtin_NSString"));
3031    NSConstantStringTypeDecl->startDefinition();
3032
3033    QualType FieldTypes[3];
3034
3035    // const int *isa;
3036    FieldTypes[0] = getPointerType(IntTy.withConst());
3037    // const char *str;
3038    FieldTypes[1] = getPointerType(CharTy.withConst());
3039    // unsigned int length;
3040    FieldTypes[2] = UnsignedIntTy;
3041
3042    // Create fields
3043    for (unsigned i = 0; i < 3; ++i) {
3044      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3045                                           SourceLocation(), 0,
3046                                           FieldTypes[i], /*TInfo=*/0,
3047                                           /*BitWidth=*/0,
3048                                           /*Mutable=*/false);
3049      Field->setAccess(AS_public);
3050      NSConstantStringTypeDecl->addDecl(Field);
3051    }
3052
3053    NSConstantStringTypeDecl->completeDefinition();
3054  }
3055
3056  return getTagDeclType(NSConstantStringTypeDecl);
3057}
3058
3059void ASTContext::setNSConstantStringType(QualType T) {
3060  const RecordType *Rec = T->getAs<RecordType>();
3061  assert(Rec && "Invalid NSConstantStringType");
3062  NSConstantStringTypeDecl = Rec->getDecl();
3063}
3064
3065QualType ASTContext::getObjCFastEnumerationStateType() {
3066  if (!ObjCFastEnumerationStateTypeDecl) {
3067    ObjCFastEnumerationStateTypeDecl =
3068      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3069                       &Idents.get("__objcFastEnumerationState"));
3070    ObjCFastEnumerationStateTypeDecl->startDefinition();
3071
3072    QualType FieldTypes[] = {
3073      UnsignedLongTy,
3074      getPointerType(ObjCIdTypedefType),
3075      getPointerType(UnsignedLongTy),
3076      getConstantArrayType(UnsignedLongTy,
3077                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3078    };
3079
3080    for (size_t i = 0; i < 4; ++i) {
3081      FieldDecl *Field = FieldDecl::Create(*this,
3082                                           ObjCFastEnumerationStateTypeDecl,
3083                                           SourceLocation(), 0,
3084                                           FieldTypes[i], /*TInfo=*/0,
3085                                           /*BitWidth=*/0,
3086                                           /*Mutable=*/false);
3087      Field->setAccess(AS_public);
3088      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3089    }
3090    if (getLangOptions().CPlusPlus)
3091      if (CXXRecordDecl *CXXRD =
3092            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
3093        CXXRD->setEmpty(false);
3094
3095    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3096  }
3097
3098  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3099}
3100
3101QualType ASTContext::getBlockDescriptorType() {
3102  if (BlockDescriptorType)
3103    return getTagDeclType(BlockDescriptorType);
3104
3105  RecordDecl *T;
3106  // FIXME: Needs the FlagAppleBlock bit.
3107  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3108                       &Idents.get("__block_descriptor"));
3109  T->startDefinition();
3110
3111  QualType FieldTypes[] = {
3112    UnsignedLongTy,
3113    UnsignedLongTy,
3114  };
3115
3116  const char *FieldNames[] = {
3117    "reserved",
3118    "Size"
3119  };
3120
3121  for (size_t i = 0; i < 2; ++i) {
3122    FieldDecl *Field = FieldDecl::Create(*this,
3123                                         T,
3124                                         SourceLocation(),
3125                                         &Idents.get(FieldNames[i]),
3126                                         FieldTypes[i], /*TInfo=*/0,
3127                                         /*BitWidth=*/0,
3128                                         /*Mutable=*/false);
3129    Field->setAccess(AS_public);
3130    T->addDecl(Field);
3131  }
3132
3133  T->completeDefinition();
3134
3135  BlockDescriptorType = T;
3136
3137  return getTagDeclType(BlockDescriptorType);
3138}
3139
3140void ASTContext::setBlockDescriptorType(QualType T) {
3141  const RecordType *Rec = T->getAs<RecordType>();
3142  assert(Rec && "Invalid BlockDescriptorType");
3143  BlockDescriptorType = Rec->getDecl();
3144}
3145
3146QualType ASTContext::getBlockDescriptorExtendedType() {
3147  if (BlockDescriptorExtendedType)
3148    return getTagDeclType(BlockDescriptorExtendedType);
3149
3150  RecordDecl *T;
3151  // FIXME: Needs the FlagAppleBlock bit.
3152  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3153                       &Idents.get("__block_descriptor_withcopydispose"));
3154  T->startDefinition();
3155
3156  QualType FieldTypes[] = {
3157    UnsignedLongTy,
3158    UnsignedLongTy,
3159    getPointerType(VoidPtrTy),
3160    getPointerType(VoidPtrTy)
3161  };
3162
3163  const char *FieldNames[] = {
3164    "reserved",
3165    "Size",
3166    "CopyFuncPtr",
3167    "DestroyFuncPtr"
3168  };
3169
3170  for (size_t i = 0; i < 4; ++i) {
3171    FieldDecl *Field = FieldDecl::Create(*this,
3172                                         T,
3173                                         SourceLocation(),
3174                                         &Idents.get(FieldNames[i]),
3175                                         FieldTypes[i], /*TInfo=*/0,
3176                                         /*BitWidth=*/0,
3177                                         /*Mutable=*/false);
3178    Field->setAccess(AS_public);
3179    T->addDecl(Field);
3180  }
3181
3182  T->completeDefinition();
3183
3184  BlockDescriptorExtendedType = T;
3185
3186  return getTagDeclType(BlockDescriptorExtendedType);
3187}
3188
3189void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3190  const RecordType *Rec = T->getAs<RecordType>();
3191  assert(Rec && "Invalid BlockDescriptorType");
3192  BlockDescriptorExtendedType = Rec->getDecl();
3193}
3194
3195bool ASTContext::BlockRequiresCopying(QualType Ty) {
3196  if (Ty->isBlockPointerType())
3197    return true;
3198  if (isObjCNSObjectType(Ty))
3199    return true;
3200  if (Ty->isObjCObjectPointerType())
3201    return true;
3202  return false;
3203}
3204
3205QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
3206  //  type = struct __Block_byref_1_X {
3207  //    void *__isa;
3208  //    struct __Block_byref_1_X *__forwarding;
3209  //    unsigned int __flags;
3210  //    unsigned int __size;
3211  //    void *__copy_helper;            // as needed
3212  //    void *__destroy_help            // as needed
3213  //    int X;
3214  //  } *
3215
3216  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3217
3218  // FIXME: Move up
3219  llvm::SmallString<36> Name;
3220  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3221                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3222  RecordDecl *T;
3223  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3224                       &Idents.get(Name.str()));
3225  T->startDefinition();
3226  QualType Int32Ty = IntTy;
3227  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3228  QualType FieldTypes[] = {
3229    getPointerType(VoidPtrTy),
3230    getPointerType(getTagDeclType(T)),
3231    Int32Ty,
3232    Int32Ty,
3233    getPointerType(VoidPtrTy),
3234    getPointerType(VoidPtrTy),
3235    Ty
3236  };
3237
3238  llvm::StringRef FieldNames[] = {
3239    "__isa",
3240    "__forwarding",
3241    "__flags",
3242    "__size",
3243    "__copy_helper",
3244    "__destroy_helper",
3245    DeclName,
3246  };
3247
3248  for (size_t i = 0; i < 7; ++i) {
3249    if (!HasCopyAndDispose && i >=4 && i <= 5)
3250      continue;
3251    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3252                                         &Idents.get(FieldNames[i]),
3253                                         FieldTypes[i], /*TInfo=*/0,
3254                                         /*BitWidth=*/0, /*Mutable=*/false);
3255    Field->setAccess(AS_public);
3256    T->addDecl(Field);
3257  }
3258
3259  T->completeDefinition();
3260
3261  return getPointerType(getTagDeclType(T));
3262}
3263
3264
3265QualType ASTContext::getBlockParmType(
3266  bool BlockHasCopyDispose,
3267  llvm::SmallVectorImpl<const Expr *> &Layout) {
3268
3269  // FIXME: Move up
3270  llvm::SmallString<36> Name;
3271  llvm::raw_svector_ostream(Name) << "__block_literal_"
3272                                  << ++UniqueBlockParmTypeID;
3273  RecordDecl *T;
3274  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3275                       &Idents.get(Name.str()));
3276  T->startDefinition();
3277  QualType FieldTypes[] = {
3278    getPointerType(VoidPtrTy),
3279    IntTy,
3280    IntTy,
3281    getPointerType(VoidPtrTy),
3282    (BlockHasCopyDispose ?
3283     getPointerType(getBlockDescriptorExtendedType()) :
3284     getPointerType(getBlockDescriptorType()))
3285  };
3286
3287  const char *FieldNames[] = {
3288    "__isa",
3289    "__flags",
3290    "__reserved",
3291    "__FuncPtr",
3292    "__descriptor"
3293  };
3294
3295  for (size_t i = 0; i < 5; ++i) {
3296    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3297                                         &Idents.get(FieldNames[i]),
3298                                         FieldTypes[i], /*TInfo=*/0,
3299                                         /*BitWidth=*/0, /*Mutable=*/false);
3300    Field->setAccess(AS_public);
3301    T->addDecl(Field);
3302  }
3303
3304  for (unsigned i = 0; i < Layout.size(); ++i) {
3305    const Expr *E = Layout[i];
3306
3307    QualType FieldType = E->getType();
3308    IdentifierInfo *FieldName = 0;
3309    if (isa<CXXThisExpr>(E)) {
3310      FieldName = &Idents.get("this");
3311    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3312      const ValueDecl *D = BDRE->getDecl();
3313      FieldName = D->getIdentifier();
3314      if (BDRE->isByRef())
3315        FieldType = BuildByRefType(D->getName(), FieldType);
3316    } else {
3317      // Padding.
3318      assert(isa<ConstantArrayType>(FieldType) &&
3319             isa<DeclRefExpr>(E) &&
3320             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3321             "doesn't match characteristics of padding decl");
3322    }
3323
3324    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3325                                         FieldName, FieldType, /*TInfo=*/0,
3326                                         /*BitWidth=*/0, /*Mutable=*/false);
3327    Field->setAccess(AS_public);
3328    T->addDecl(Field);
3329  }
3330
3331  T->completeDefinition();
3332
3333  return getPointerType(getTagDeclType(T));
3334}
3335
3336void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3337  const RecordType *Rec = T->getAs<RecordType>();
3338  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3339  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3340}
3341
3342// This returns true if a type has been typedefed to BOOL:
3343// typedef <type> BOOL;
3344static bool isTypeTypedefedAsBOOL(QualType T) {
3345  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3346    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3347      return II->isStr("BOOL");
3348
3349  return false;
3350}
3351
3352/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3353/// purpose.
3354CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3355  CharUnits sz = getTypeSizeInChars(type);
3356
3357  // Make all integer and enum types at least as large as an int
3358  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3359    sz = std::max(sz, getTypeSizeInChars(IntTy));
3360  // Treat arrays as pointers, since that's how they're passed in.
3361  else if (type->isArrayType())
3362    sz = getTypeSizeInChars(VoidPtrTy);
3363  return sz;
3364}
3365
3366static inline
3367std::string charUnitsToString(const CharUnits &CU) {
3368  return llvm::itostr(CU.getQuantity());
3369}
3370
3371/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3372/// declaration.
3373void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3374                                             std::string& S) {
3375  const BlockDecl *Decl = Expr->getBlockDecl();
3376  QualType BlockTy =
3377      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3378  // Encode result type.
3379  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3380  // Compute size of all parameters.
3381  // Start with computing size of a pointer in number of bytes.
3382  // FIXME: There might(should) be a better way of doing this computation!
3383  SourceLocation Loc;
3384  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3385  CharUnits ParmOffset = PtrSize;
3386  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3387       E = Decl->param_end(); PI != E; ++PI) {
3388    QualType PType = (*PI)->getType();
3389    CharUnits sz = getObjCEncodingTypeSize(PType);
3390    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3391    ParmOffset += sz;
3392  }
3393  // Size of the argument frame
3394  S += charUnitsToString(ParmOffset);
3395  // Block pointer and offset.
3396  S += "@?0";
3397  ParmOffset = PtrSize;
3398
3399  // Argument types.
3400  ParmOffset = PtrSize;
3401  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3402       Decl->param_end(); PI != E; ++PI) {
3403    ParmVarDecl *PVDecl = *PI;
3404    QualType PType = PVDecl->getOriginalType();
3405    if (const ArrayType *AT =
3406          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3407      // Use array's original type only if it has known number of
3408      // elements.
3409      if (!isa<ConstantArrayType>(AT))
3410        PType = PVDecl->getType();
3411    } else if (PType->isFunctionType())
3412      PType = PVDecl->getType();
3413    getObjCEncodingForType(PType, S);
3414    S += charUnitsToString(ParmOffset);
3415    ParmOffset += getObjCEncodingTypeSize(PType);
3416  }
3417}
3418
3419/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3420/// declaration.
3421void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3422                                              std::string& S) {
3423  // FIXME: This is not very efficient.
3424  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3425  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3426  // Encode result type.
3427  getObjCEncodingForType(Decl->getResultType(), S);
3428  // Compute size of all parameters.
3429  // Start with computing size of a pointer in number of bytes.
3430  // FIXME: There might(should) be a better way of doing this computation!
3431  SourceLocation Loc;
3432  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3433  // The first two arguments (self and _cmd) are pointers; account for
3434  // their size.
3435  CharUnits ParmOffset = 2 * PtrSize;
3436  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3437       E = Decl->sel_param_end(); PI != E; ++PI) {
3438    QualType PType = (*PI)->getType();
3439    CharUnits sz = getObjCEncodingTypeSize(PType);
3440    assert (sz.isPositive() &&
3441        "getObjCEncodingForMethodDecl - Incomplete param type");
3442    ParmOffset += sz;
3443  }
3444  S += charUnitsToString(ParmOffset);
3445  S += "@0:";
3446  S += charUnitsToString(PtrSize);
3447
3448  // Argument types.
3449  ParmOffset = 2 * PtrSize;
3450  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3451       E = Decl->sel_param_end(); PI != E; ++PI) {
3452    ParmVarDecl *PVDecl = *PI;
3453    QualType PType = PVDecl->getOriginalType();
3454    if (const ArrayType *AT =
3455          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3456      // Use array's original type only if it has known number of
3457      // elements.
3458      if (!isa<ConstantArrayType>(AT))
3459        PType = PVDecl->getType();
3460    } else if (PType->isFunctionType())
3461      PType = PVDecl->getType();
3462    // Process argument qualifiers for user supplied arguments; such as,
3463    // 'in', 'inout', etc.
3464    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3465    getObjCEncodingForType(PType, S);
3466    S += charUnitsToString(ParmOffset);
3467    ParmOffset += getObjCEncodingTypeSize(PType);
3468  }
3469}
3470
3471/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3472/// property declaration. If non-NULL, Container must be either an
3473/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3474/// NULL when getting encodings for protocol properties.
3475/// Property attributes are stored as a comma-delimited C string. The simple
3476/// attributes readonly and bycopy are encoded as single characters. The
3477/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3478/// encoded as single characters, followed by an identifier. Property types
3479/// are also encoded as a parametrized attribute. The characters used to encode
3480/// these attributes are defined by the following enumeration:
3481/// @code
3482/// enum PropertyAttributes {
3483/// kPropertyReadOnly = 'R',   // property is read-only.
3484/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3485/// kPropertyByref = '&',  // property is a reference to the value last assigned
3486/// kPropertyDynamic = 'D',    // property is dynamic
3487/// kPropertyGetter = 'G',     // followed by getter selector name
3488/// kPropertySetter = 'S',     // followed by setter selector name
3489/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3490/// kPropertyType = 't'              // followed by old-style type encoding.
3491/// kPropertyWeak = 'W'              // 'weak' property
3492/// kPropertyStrong = 'P'            // property GC'able
3493/// kPropertyNonAtomic = 'N'         // property non-atomic
3494/// };
3495/// @endcode
3496void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3497                                                const Decl *Container,
3498                                                std::string& S) {
3499  // Collect information from the property implementation decl(s).
3500  bool Dynamic = false;
3501  ObjCPropertyImplDecl *SynthesizePID = 0;
3502
3503  // FIXME: Duplicated code due to poor abstraction.
3504  if (Container) {
3505    if (const ObjCCategoryImplDecl *CID =
3506        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3507      for (ObjCCategoryImplDecl::propimpl_iterator
3508             i = CID->propimpl_begin(), e = CID->propimpl_end();
3509           i != e; ++i) {
3510        ObjCPropertyImplDecl *PID = *i;
3511        if (PID->getPropertyDecl() == PD) {
3512          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3513            Dynamic = true;
3514          } else {
3515            SynthesizePID = PID;
3516          }
3517        }
3518      }
3519    } else {
3520      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3521      for (ObjCCategoryImplDecl::propimpl_iterator
3522             i = OID->propimpl_begin(), e = OID->propimpl_end();
3523           i != e; ++i) {
3524        ObjCPropertyImplDecl *PID = *i;
3525        if (PID->getPropertyDecl() == PD) {
3526          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3527            Dynamic = true;
3528          } else {
3529            SynthesizePID = PID;
3530          }
3531        }
3532      }
3533    }
3534  }
3535
3536  // FIXME: This is not very efficient.
3537  S = "T";
3538
3539  // Encode result type.
3540  // GCC has some special rules regarding encoding of properties which
3541  // closely resembles encoding of ivars.
3542  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3543                             true /* outermost type */,
3544                             true /* encoding for property */);
3545
3546  if (PD->isReadOnly()) {
3547    S += ",R";
3548  } else {
3549    switch (PD->getSetterKind()) {
3550    case ObjCPropertyDecl::Assign: break;
3551    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3552    case ObjCPropertyDecl::Retain: S += ",&"; break;
3553    }
3554  }
3555
3556  // It really isn't clear at all what this means, since properties
3557  // are "dynamic by default".
3558  if (Dynamic)
3559    S += ",D";
3560
3561  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3562    S += ",N";
3563
3564  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3565    S += ",G";
3566    S += PD->getGetterName().getAsString();
3567  }
3568
3569  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3570    S += ",S";
3571    S += PD->getSetterName().getAsString();
3572  }
3573
3574  if (SynthesizePID) {
3575    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3576    S += ",V";
3577    S += OID->getNameAsString();
3578  }
3579
3580  // FIXME: OBJCGC: weak & strong
3581}
3582
3583/// getLegacyIntegralTypeEncoding -
3584/// Another legacy compatibility encoding: 32-bit longs are encoded as
3585/// 'l' or 'L' , but not always.  For typedefs, we need to use
3586/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3587///
3588void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3589  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3590    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3591      if (BT->getKind() == BuiltinType::ULong &&
3592          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3593        PointeeTy = UnsignedIntTy;
3594      else
3595        if (BT->getKind() == BuiltinType::Long &&
3596            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3597          PointeeTy = IntTy;
3598    }
3599  }
3600}
3601
3602void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3603                                        const FieldDecl *Field) {
3604  // We follow the behavior of gcc, expanding structures which are
3605  // directly pointed to, and expanding embedded structures. Note that
3606  // these rules are sufficient to prevent recursive encoding of the
3607  // same type.
3608  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3609                             true /* outermost type */);
3610}
3611
3612static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3613    switch (T->getAs<BuiltinType>()->getKind()) {
3614    default: assert(0 && "Unhandled builtin type kind");
3615    case BuiltinType::Void:       return 'v';
3616    case BuiltinType::Bool:       return 'B';
3617    case BuiltinType::Char_U:
3618    case BuiltinType::UChar:      return 'C';
3619    case BuiltinType::UShort:     return 'S';
3620    case BuiltinType::UInt:       return 'I';
3621    case BuiltinType::ULong:
3622        return
3623          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3624    case BuiltinType::UInt128:    return 'T';
3625    case BuiltinType::ULongLong:  return 'Q';
3626    case BuiltinType::Char_S:
3627    case BuiltinType::SChar:      return 'c';
3628    case BuiltinType::Short:      return 's';
3629    case BuiltinType::WChar:
3630    case BuiltinType::Int:        return 'i';
3631    case BuiltinType::Long:
3632      return
3633        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3634    case BuiltinType::LongLong:   return 'q';
3635    case BuiltinType::Int128:     return 't';
3636    case BuiltinType::Float:      return 'f';
3637    case BuiltinType::Double:     return 'd';
3638    case BuiltinType::LongDouble: return 'd';
3639    }
3640}
3641
3642static void EncodeBitField(const ASTContext *Context, std::string& S,
3643                           QualType T, const FieldDecl *FD) {
3644  const Expr *E = FD->getBitWidth();
3645  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3646  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3647  S += 'b';
3648  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3649  // The GNU runtime requires more information; bitfields are encoded as b,
3650  // then the offset (in bits) of the first element, then the type of the
3651  // bitfield, then the size in bits.  For example, in this structure:
3652  //
3653  // struct
3654  // {
3655  //    int integer;
3656  //    int flags:2;
3657  // };
3658  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3659  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3660  // information is not especially sensible, but we're stuck with it for
3661  // compatibility with GCC, although providing it breaks anything that
3662  // actually uses runtime introspection and wants to work on both runtimes...
3663  if (!Ctx->getLangOptions().NeXTRuntime) {
3664    const RecordDecl *RD = FD->getParent();
3665    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3666    // FIXME: This same linear search is also used in ExprConstant - it might
3667    // be better if the FieldDecl stored its offset.  We'd be increasing the
3668    // size of the object slightly, but saving some time every time it is used.
3669    unsigned i = 0;
3670    for (RecordDecl::field_iterator Field = RD->field_begin(),
3671                                 FieldEnd = RD->field_end();
3672         Field != FieldEnd; (void)++Field, ++i) {
3673      if (*Field == FD)
3674        break;
3675    }
3676    S += llvm::utostr(RL.getFieldOffset(i));
3677    S += ObjCEncodingForPrimitiveKind(Context, T);
3678  }
3679  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3680  S += llvm::utostr(N);
3681}
3682
3683// FIXME: Use SmallString for accumulating string.
3684void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3685                                            bool ExpandPointedToStructures,
3686                                            bool ExpandStructures,
3687                                            const FieldDecl *FD,
3688                                            bool OutermostType,
3689                                            bool EncodingProperty) {
3690  if (T->getAs<BuiltinType>()) {
3691    if (FD && FD->isBitField())
3692      return EncodeBitField(this, S, T, FD);
3693    S += ObjCEncodingForPrimitiveKind(this, T);
3694    return;
3695  }
3696
3697  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3698    S += 'j';
3699    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3700                               false);
3701    return;
3702  }
3703
3704  // encoding for pointer or r3eference types.
3705  QualType PointeeTy;
3706  if (const PointerType *PT = T->getAs<PointerType>()) {
3707    if (PT->isObjCSelType()) {
3708      S += ':';
3709      return;
3710    }
3711    PointeeTy = PT->getPointeeType();
3712  }
3713  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3714    PointeeTy = RT->getPointeeType();
3715  if (!PointeeTy.isNull()) {
3716    bool isReadOnly = false;
3717    // For historical/compatibility reasons, the read-only qualifier of the
3718    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3719    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3720    // Also, do not emit the 'r' for anything but the outermost type!
3721    if (isa<TypedefType>(T.getTypePtr())) {
3722      if (OutermostType && T.isConstQualified()) {
3723        isReadOnly = true;
3724        S += 'r';
3725      }
3726    } else if (OutermostType) {
3727      QualType P = PointeeTy;
3728      while (P->getAs<PointerType>())
3729        P = P->getAs<PointerType>()->getPointeeType();
3730      if (P.isConstQualified()) {
3731        isReadOnly = true;
3732        S += 'r';
3733      }
3734    }
3735    if (isReadOnly) {
3736      // Another legacy compatibility encoding. Some ObjC qualifier and type
3737      // combinations need to be rearranged.
3738      // Rewrite "in const" from "nr" to "rn"
3739      if (llvm::StringRef(S).endswith("nr"))
3740        S.replace(S.end()-2, S.end(), "rn");
3741    }
3742
3743    if (PointeeTy->isCharType()) {
3744      // char pointer types should be encoded as '*' unless it is a
3745      // type that has been typedef'd to 'BOOL'.
3746      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3747        S += '*';
3748        return;
3749      }
3750    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3751      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3752      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3753        S += '#';
3754        return;
3755      }
3756      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3757      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3758        S += '@';
3759        return;
3760      }
3761      // fall through...
3762    }
3763    S += '^';
3764    getLegacyIntegralTypeEncoding(PointeeTy);
3765
3766    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3767                               NULL);
3768    return;
3769  }
3770
3771  if (const ArrayType *AT =
3772      // Ignore type qualifiers etc.
3773        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3774    if (isa<IncompleteArrayType>(AT)) {
3775      // Incomplete arrays are encoded as a pointer to the array element.
3776      S += '^';
3777
3778      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3779                                 false, ExpandStructures, FD);
3780    } else {
3781      S += '[';
3782
3783      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3784        S += llvm::utostr(CAT->getSize().getZExtValue());
3785      else {
3786        //Variable length arrays are encoded as a regular array with 0 elements.
3787        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3788        S += '0';
3789      }
3790
3791      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3792                                 false, ExpandStructures, FD);
3793      S += ']';
3794    }
3795    return;
3796  }
3797
3798  if (T->getAs<FunctionType>()) {
3799    S += '?';
3800    return;
3801  }
3802
3803  if (const RecordType *RTy = T->getAs<RecordType>()) {
3804    RecordDecl *RDecl = RTy->getDecl();
3805    S += RDecl->isUnion() ? '(' : '{';
3806    // Anonymous structures print as '?'
3807    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3808      S += II->getName();
3809      if (ClassTemplateSpecializationDecl *Spec
3810          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3811        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3812        std::string TemplateArgsStr
3813          = TemplateSpecializationType::PrintTemplateArgumentList(
3814                                            TemplateArgs.getFlatArgumentList(),
3815                                            TemplateArgs.flat_size(),
3816                                            (*this).PrintingPolicy);
3817
3818        S += TemplateArgsStr;
3819      }
3820    } else {
3821      S += '?';
3822    }
3823    if (ExpandStructures) {
3824      S += '=';
3825      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3826                                   FieldEnd = RDecl->field_end();
3827           Field != FieldEnd; ++Field) {
3828        if (FD) {
3829          S += '"';
3830          S += Field->getNameAsString();
3831          S += '"';
3832        }
3833
3834        // Special case bit-fields.
3835        if (Field->isBitField()) {
3836          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3837                                     (*Field));
3838        } else {
3839          QualType qt = Field->getType();
3840          getLegacyIntegralTypeEncoding(qt);
3841          getObjCEncodingForTypeImpl(qt, S, false, true,
3842                                     FD);
3843        }
3844      }
3845    }
3846    S += RDecl->isUnion() ? ')' : '}';
3847    return;
3848  }
3849
3850  if (T->isEnumeralType()) {
3851    if (FD && FD->isBitField())
3852      EncodeBitField(this, S, T, FD);
3853    else
3854      S += 'i';
3855    return;
3856  }
3857
3858  if (T->isBlockPointerType()) {
3859    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3860    return;
3861  }
3862
3863  // Ignore protocol qualifiers when mangling at this level.
3864  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3865    T = OT->getBaseType();
3866
3867  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3868    // @encode(class_name)
3869    ObjCInterfaceDecl *OI = OIT->getDecl();
3870    S += '{';
3871    const IdentifierInfo *II = OI->getIdentifier();
3872    S += II->getName();
3873    S += '=';
3874    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
3875    DeepCollectObjCIvars(OI, true, Ivars);
3876    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
3877      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
3878      if (Field->isBitField())
3879        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
3880      else
3881        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
3882    }
3883    S += '}';
3884    return;
3885  }
3886
3887  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3888    if (OPT->isObjCIdType()) {
3889      S += '@';
3890      return;
3891    }
3892
3893    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3894      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3895      // Since this is a binary compatibility issue, need to consult with runtime
3896      // folks. Fortunately, this is a *very* obsure construct.
3897      S += '#';
3898      return;
3899    }
3900
3901    if (OPT->isObjCQualifiedIdType()) {
3902      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3903                                 ExpandPointedToStructures,
3904                                 ExpandStructures, FD);
3905      if (FD || EncodingProperty) {
3906        // Note that we do extended encoding of protocol qualifer list
3907        // Only when doing ivar or property encoding.
3908        S += '"';
3909        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3910             E = OPT->qual_end(); I != E; ++I) {
3911          S += '<';
3912          S += (*I)->getNameAsString();
3913          S += '>';
3914        }
3915        S += '"';
3916      }
3917      return;
3918    }
3919
3920    QualType PointeeTy = OPT->getPointeeType();
3921    if (!EncodingProperty &&
3922        isa<TypedefType>(PointeeTy.getTypePtr())) {
3923      // Another historical/compatibility reason.
3924      // We encode the underlying type which comes out as
3925      // {...};
3926      S += '^';
3927      getObjCEncodingForTypeImpl(PointeeTy, S,
3928                                 false, ExpandPointedToStructures,
3929                                 NULL);
3930      return;
3931    }
3932
3933    S += '@';
3934    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3935      S += '"';
3936      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3937      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3938           E = OPT->qual_end(); I != E; ++I) {
3939        S += '<';
3940        S += (*I)->getNameAsString();
3941        S += '>';
3942      }
3943      S += '"';
3944    }
3945    return;
3946  }
3947
3948  // gcc just blithely ignores member pointers.
3949  // TODO: maybe there should be a mangling for these
3950  if (T->getAs<MemberPointerType>())
3951    return;
3952
3953  assert(0 && "@encode for type not implemented!");
3954}
3955
3956void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3957                                                 std::string& S) const {
3958  if (QT & Decl::OBJC_TQ_In)
3959    S += 'n';
3960  if (QT & Decl::OBJC_TQ_Inout)
3961    S += 'N';
3962  if (QT & Decl::OBJC_TQ_Out)
3963    S += 'o';
3964  if (QT & Decl::OBJC_TQ_Bycopy)
3965    S += 'O';
3966  if (QT & Decl::OBJC_TQ_Byref)
3967    S += 'R';
3968  if (QT & Decl::OBJC_TQ_Oneway)
3969    S += 'V';
3970}
3971
3972void ASTContext::setBuiltinVaListType(QualType T) {
3973  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3974
3975  BuiltinVaListType = T;
3976}
3977
3978void ASTContext::setObjCIdType(QualType T) {
3979  ObjCIdTypedefType = T;
3980}
3981
3982void ASTContext::setObjCSelType(QualType T) {
3983  ObjCSelTypedefType = T;
3984}
3985
3986void ASTContext::setObjCProtoType(QualType QT) {
3987  ObjCProtoType = QT;
3988}
3989
3990void ASTContext::setObjCClassType(QualType T) {
3991  ObjCClassTypedefType = T;
3992}
3993
3994void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3995  assert(ObjCConstantStringType.isNull() &&
3996         "'NSConstantString' type already set!");
3997
3998  ObjCConstantStringType = getObjCInterfaceType(Decl);
3999}
4000
4001/// \brief Retrieve the template name that corresponds to a non-empty
4002/// lookup.
4003TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4004                                                   UnresolvedSetIterator End) {
4005  unsigned size = End - Begin;
4006  assert(size > 1 && "set is not overloaded!");
4007
4008  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4009                          size * sizeof(FunctionTemplateDecl*));
4010  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4011
4012  NamedDecl **Storage = OT->getStorage();
4013  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4014    NamedDecl *D = *I;
4015    assert(isa<FunctionTemplateDecl>(D) ||
4016           (isa<UsingShadowDecl>(D) &&
4017            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4018    *Storage++ = D;
4019  }
4020
4021  return TemplateName(OT);
4022}
4023
4024/// \brief Retrieve the template name that represents a qualified
4025/// template name such as \c std::vector.
4026TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4027                                                  bool TemplateKeyword,
4028                                                  TemplateDecl *Template) {
4029  // FIXME: Canonicalization?
4030  llvm::FoldingSetNodeID ID;
4031  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4032
4033  void *InsertPos = 0;
4034  QualifiedTemplateName *QTN =
4035    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4036  if (!QTN) {
4037    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4038    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4039  }
4040
4041  return TemplateName(QTN);
4042}
4043
4044/// \brief Retrieve the template name that represents a dependent
4045/// template name such as \c MetaFun::template apply.
4046TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4047                                                  const IdentifierInfo *Name) {
4048  assert((!NNS || NNS->isDependent()) &&
4049         "Nested name specifier must be dependent");
4050
4051  llvm::FoldingSetNodeID ID;
4052  DependentTemplateName::Profile(ID, NNS, Name);
4053
4054  void *InsertPos = 0;
4055  DependentTemplateName *QTN =
4056    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4057
4058  if (QTN)
4059    return TemplateName(QTN);
4060
4061  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4062  if (CanonNNS == NNS) {
4063    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4064  } else {
4065    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4066    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4067    DependentTemplateName *CheckQTN =
4068      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4069    assert(!CheckQTN && "Dependent type name canonicalization broken");
4070    (void)CheckQTN;
4071  }
4072
4073  DependentTemplateNames.InsertNode(QTN, InsertPos);
4074  return TemplateName(QTN);
4075}
4076
4077/// \brief Retrieve the template name that represents a dependent
4078/// template name such as \c MetaFun::template operator+.
4079TemplateName
4080ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4081                                     OverloadedOperatorKind Operator) {
4082  assert((!NNS || NNS->isDependent()) &&
4083         "Nested name specifier must be dependent");
4084
4085  llvm::FoldingSetNodeID ID;
4086  DependentTemplateName::Profile(ID, NNS, Operator);
4087
4088  void *InsertPos = 0;
4089  DependentTemplateName *QTN
4090    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4091
4092  if (QTN)
4093    return TemplateName(QTN);
4094
4095  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4096  if (CanonNNS == NNS) {
4097    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4098  } else {
4099    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4100    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4101
4102    DependentTemplateName *CheckQTN
4103      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4104    assert(!CheckQTN && "Dependent template name canonicalization broken");
4105    (void)CheckQTN;
4106  }
4107
4108  DependentTemplateNames.InsertNode(QTN, InsertPos);
4109  return TemplateName(QTN);
4110}
4111
4112/// getFromTargetType - Given one of the integer types provided by
4113/// TargetInfo, produce the corresponding type. The unsigned @p Type
4114/// is actually a value of type @c TargetInfo::IntType.
4115CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4116  switch (Type) {
4117  case TargetInfo::NoInt: return CanQualType();
4118  case TargetInfo::SignedShort: return ShortTy;
4119  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4120  case TargetInfo::SignedInt: return IntTy;
4121  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4122  case TargetInfo::SignedLong: return LongTy;
4123  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4124  case TargetInfo::SignedLongLong: return LongLongTy;
4125  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4126  }
4127
4128  assert(false && "Unhandled TargetInfo::IntType value");
4129  return CanQualType();
4130}
4131
4132//===----------------------------------------------------------------------===//
4133//                        Type Predicates.
4134//===----------------------------------------------------------------------===//
4135
4136/// isObjCNSObjectType - Return true if this is an NSObject object using
4137/// NSObject attribute on a c-style pointer type.
4138/// FIXME - Make it work directly on types.
4139/// FIXME: Move to Type.
4140///
4141bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4142  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4143    if (TypedefDecl *TD = TDT->getDecl())
4144      if (TD->getAttr<ObjCNSObjectAttr>())
4145        return true;
4146  }
4147  return false;
4148}
4149
4150/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4151/// garbage collection attribute.
4152///
4153Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4154  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4155  if (getLangOptions().ObjC1 &&
4156      getLangOptions().getGCMode() != LangOptions::NonGC) {
4157    GCAttrs = Ty.getObjCGCAttr();
4158    // Default behavious under objective-c's gc is for objective-c pointers
4159    // (or pointers to them) be treated as though they were declared
4160    // as __strong.
4161    if (GCAttrs == Qualifiers::GCNone) {
4162      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4163        GCAttrs = Qualifiers::Strong;
4164      else if (Ty->isPointerType())
4165        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4166    }
4167    // Non-pointers have none gc'able attribute regardless of the attribute
4168    // set on them.
4169    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4170      return Qualifiers::GCNone;
4171  }
4172  return GCAttrs;
4173}
4174
4175//===----------------------------------------------------------------------===//
4176//                        Type Compatibility Testing
4177//===----------------------------------------------------------------------===//
4178
4179/// areCompatVectorTypes - Return true if the two specified vector types are
4180/// compatible.
4181static bool areCompatVectorTypes(const VectorType *LHS,
4182                                 const VectorType *RHS) {
4183  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4184  return LHS->getElementType() == RHS->getElementType() &&
4185         LHS->getNumElements() == RHS->getNumElements();
4186}
4187
4188bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4189                                          QualType SecondVec) {
4190  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4191  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4192
4193  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4194    return true;
4195
4196  // AltiVec vectors types are identical to equivalent GCC vector types
4197  const VectorType *First = FirstVec->getAs<VectorType>();
4198  const VectorType *Second = SecondVec->getAs<VectorType>();
4199  if ((((First->getAltiVecSpecific() == VectorType::AltiVec) &&
4200        (Second->getAltiVecSpecific() == VectorType::NotAltiVec)) ||
4201       ((First->getAltiVecSpecific() == VectorType::NotAltiVec) &&
4202        (Second->getAltiVecSpecific() == VectorType::AltiVec))) &&
4203      hasSameType(First->getElementType(), Second->getElementType()) &&
4204      (First->getNumElements() == Second->getNumElements()))
4205    return true;
4206
4207  return false;
4208}
4209
4210//===----------------------------------------------------------------------===//
4211// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4212//===----------------------------------------------------------------------===//
4213
4214/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4215/// inheritance hierarchy of 'rProto'.
4216bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4217                                                ObjCProtocolDecl *rProto) {
4218  if (lProto == rProto)
4219    return true;
4220  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4221       E = rProto->protocol_end(); PI != E; ++PI)
4222    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4223      return true;
4224  return false;
4225}
4226
4227/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4228/// return true if lhs's protocols conform to rhs's protocol; false
4229/// otherwise.
4230bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4231  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4232    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4233  return false;
4234}
4235
4236/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4237/// Class<p1, ...>.
4238bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4239                                                      QualType rhs) {
4240  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4241  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4242  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4243
4244  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4245       E = lhsQID->qual_end(); I != E; ++I) {
4246    bool match = false;
4247    ObjCProtocolDecl *lhsProto = *I;
4248    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4249         E = rhsOPT->qual_end(); J != E; ++J) {
4250      ObjCProtocolDecl *rhsProto = *J;
4251      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4252        match = true;
4253        break;
4254      }
4255    }
4256    if (!match)
4257      return false;
4258  }
4259  return true;
4260}
4261
4262/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4263/// ObjCQualifiedIDType.
4264bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4265                                                   bool compare) {
4266  // Allow id<P..> and an 'id' or void* type in all cases.
4267  if (lhs->isVoidPointerType() ||
4268      lhs->isObjCIdType() || lhs->isObjCClassType())
4269    return true;
4270  else if (rhs->isVoidPointerType() ||
4271           rhs->isObjCIdType() || rhs->isObjCClassType())
4272    return true;
4273
4274  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4275    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4276
4277    if (!rhsOPT) return false;
4278
4279    if (rhsOPT->qual_empty()) {
4280      // If the RHS is a unqualified interface pointer "NSString*",
4281      // make sure we check the class hierarchy.
4282      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4283        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4284             E = lhsQID->qual_end(); I != E; ++I) {
4285          // when comparing an id<P> on lhs with a static type on rhs,
4286          // see if static class implements all of id's protocols, directly or
4287          // through its super class and categories.
4288          if (!rhsID->ClassImplementsProtocol(*I, true))
4289            return false;
4290        }
4291      }
4292      // If there are no qualifiers and no interface, we have an 'id'.
4293      return true;
4294    }
4295    // Both the right and left sides have qualifiers.
4296    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4297         E = lhsQID->qual_end(); I != E; ++I) {
4298      ObjCProtocolDecl *lhsProto = *I;
4299      bool match = false;
4300
4301      // when comparing an id<P> on lhs with a static type on rhs,
4302      // see if static class implements all of id's protocols, directly or
4303      // through its super class and categories.
4304      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4305           E = rhsOPT->qual_end(); J != E; ++J) {
4306        ObjCProtocolDecl *rhsProto = *J;
4307        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4308            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4309          match = true;
4310          break;
4311        }
4312      }
4313      // If the RHS is a qualified interface pointer "NSString<P>*",
4314      // make sure we check the class hierarchy.
4315      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4316        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4317             E = lhsQID->qual_end(); I != E; ++I) {
4318          // when comparing an id<P> on lhs with a static type on rhs,
4319          // see if static class implements all of id's protocols, directly or
4320          // through its super class and categories.
4321          if (rhsID->ClassImplementsProtocol(*I, true)) {
4322            match = true;
4323            break;
4324          }
4325        }
4326      }
4327      if (!match)
4328        return false;
4329    }
4330
4331    return true;
4332  }
4333
4334  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4335  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4336
4337  if (const ObjCObjectPointerType *lhsOPT =
4338        lhs->getAsObjCInterfacePointerType()) {
4339    if (lhsOPT->qual_empty()) {
4340      bool match = false;
4341      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4342        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4343             E = rhsQID->qual_end(); I != E; ++I) {
4344          // when comparing an id<P> on rhs with a static type on lhs,
4345          // static class must implement all of id's protocols directly or
4346          // indirectly through its super class.
4347          if (lhsID->ClassImplementsProtocol(*I, true)) {
4348            match = true;
4349            break;
4350          }
4351        }
4352        if (!match)
4353          return false;
4354      }
4355      return true;
4356    }
4357    // Both the right and left sides have qualifiers.
4358    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4359         E = lhsOPT->qual_end(); I != E; ++I) {
4360      ObjCProtocolDecl *lhsProto = *I;
4361      bool match = false;
4362
4363      // when comparing an id<P> on lhs with a static type on rhs,
4364      // see if static class implements all of id's protocols, directly or
4365      // through its super class and categories.
4366      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4367           E = rhsQID->qual_end(); J != E; ++J) {
4368        ObjCProtocolDecl *rhsProto = *J;
4369        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4370            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4371          match = true;
4372          break;
4373        }
4374      }
4375      if (!match)
4376        return false;
4377    }
4378    return true;
4379  }
4380  return false;
4381}
4382
4383/// canAssignObjCInterfaces - Return true if the two interface types are
4384/// compatible for assignment from RHS to LHS.  This handles validation of any
4385/// protocol qualifiers on the LHS or RHS.
4386///
4387bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4388                                         const ObjCObjectPointerType *RHSOPT) {
4389  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4390  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4391
4392  // If either type represents the built-in 'id' or 'Class' types, return true.
4393  if (LHS->isObjCUnqualifiedIdOrClass() ||
4394      RHS->isObjCUnqualifiedIdOrClass())
4395    return true;
4396
4397  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4398    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4399                                             QualType(RHSOPT,0),
4400                                             false);
4401
4402  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4403    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4404                                                QualType(RHSOPT,0));
4405
4406  // If we have 2 user-defined types, fall into that path.
4407  if (LHS->getInterface() && RHS->getInterface())
4408    return canAssignObjCInterfaces(LHS, RHS);
4409
4410  return false;
4411}
4412
4413/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4414/// for providing type-safty for objective-c pointers used to pass/return
4415/// arguments in block literals. When passed as arguments, passing 'A*' where
4416/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4417/// not OK. For the return type, the opposite is not OK.
4418bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4419                                         const ObjCObjectPointerType *LHSOPT,
4420                                         const ObjCObjectPointerType *RHSOPT) {
4421  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4422    return true;
4423
4424  if (LHSOPT->isObjCBuiltinType()) {
4425    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4426  }
4427
4428  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4429    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4430                                             QualType(RHSOPT,0),
4431                                             false);
4432
4433  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4434  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4435  if (LHS && RHS)  { // We have 2 user-defined types.
4436    if (LHS != RHS) {
4437      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4438        return false;
4439      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4440        return true;
4441    }
4442    else
4443      return true;
4444  }
4445  return false;
4446}
4447
4448/// getIntersectionOfProtocols - This routine finds the intersection of set
4449/// of protocols inherited from two distinct objective-c pointer objects.
4450/// It is used to build composite qualifier list of the composite type of
4451/// the conditional expression involving two objective-c pointer objects.
4452static
4453void getIntersectionOfProtocols(ASTContext &Context,
4454                                const ObjCObjectPointerType *LHSOPT,
4455                                const ObjCObjectPointerType *RHSOPT,
4456      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4457
4458  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4459  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4460  assert(LHS->getInterface() && "LHS must have an interface base");
4461  assert(RHS->getInterface() && "RHS must have an interface base");
4462
4463  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4464  unsigned LHSNumProtocols = LHS->getNumProtocols();
4465  if (LHSNumProtocols > 0)
4466    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4467  else {
4468    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4469    Context.CollectInheritedProtocols(LHS->getInterface(),
4470                                      LHSInheritedProtocols);
4471    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4472                                LHSInheritedProtocols.end());
4473  }
4474
4475  unsigned RHSNumProtocols = RHS->getNumProtocols();
4476  if (RHSNumProtocols > 0) {
4477    ObjCProtocolDecl **RHSProtocols =
4478      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4479    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4480      if (InheritedProtocolSet.count(RHSProtocols[i]))
4481        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4482  }
4483  else {
4484    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4485    Context.CollectInheritedProtocols(RHS->getInterface(),
4486                                      RHSInheritedProtocols);
4487    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4488         RHSInheritedProtocols.begin(),
4489         E = RHSInheritedProtocols.end(); I != E; ++I)
4490      if (InheritedProtocolSet.count((*I)))
4491        IntersectionOfProtocols.push_back((*I));
4492  }
4493}
4494
4495/// areCommonBaseCompatible - Returns common base class of the two classes if
4496/// one found. Note that this is O'2 algorithm. But it will be called as the
4497/// last type comparison in a ?-exp of ObjC pointer types before a
4498/// warning is issued. So, its invokation is extremely rare.
4499QualType ASTContext::areCommonBaseCompatible(
4500                                          const ObjCObjectPointerType *Lptr,
4501                                          const ObjCObjectPointerType *Rptr) {
4502  const ObjCObjectType *LHS = Lptr->getObjectType();
4503  const ObjCObjectType *RHS = Rptr->getObjectType();
4504  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4505  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4506  if (!LDecl || !RDecl)
4507    return QualType();
4508
4509  while ((LDecl = LDecl->getSuperClass())) {
4510    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4511    if (canAssignObjCInterfaces(LHS, RHS)) {
4512      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4513      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4514
4515      QualType Result = QualType(LHS, 0);
4516      if (!Protocols.empty())
4517        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4518      Result = getObjCObjectPointerType(Result);
4519      return Result;
4520    }
4521  }
4522
4523  return QualType();
4524}
4525
4526bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4527                                         const ObjCObjectType *RHS) {
4528  assert(LHS->getInterface() && "LHS is not an interface type");
4529  assert(RHS->getInterface() && "RHS is not an interface type");
4530
4531  // Verify that the base decls are compatible: the RHS must be a subclass of
4532  // the LHS.
4533  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4534    return false;
4535
4536  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4537  // protocol qualified at all, then we are good.
4538  if (LHS->getNumProtocols() == 0)
4539    return true;
4540
4541  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4542  // isn't a superset.
4543  if (RHS->getNumProtocols() == 0)
4544    return true;  // FIXME: should return false!
4545
4546  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4547                                     LHSPE = LHS->qual_end();
4548       LHSPI != LHSPE; LHSPI++) {
4549    bool RHSImplementsProtocol = false;
4550
4551    // If the RHS doesn't implement the protocol on the left, the types
4552    // are incompatible.
4553    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4554                                       RHSPE = RHS->qual_end();
4555         RHSPI != RHSPE; RHSPI++) {
4556      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4557        RHSImplementsProtocol = true;
4558        break;
4559      }
4560    }
4561    // FIXME: For better diagnostics, consider passing back the protocol name.
4562    if (!RHSImplementsProtocol)
4563      return false;
4564  }
4565  // The RHS implements all protocols listed on the LHS.
4566  return true;
4567}
4568
4569bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4570  // get the "pointed to" types
4571  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4572  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4573
4574  if (!LHSOPT || !RHSOPT)
4575    return false;
4576
4577  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4578         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4579}
4580
4581bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4582  return canAssignObjCInterfaces(
4583                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4584                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4585}
4586
4587/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4588/// both shall have the identically qualified version of a compatible type.
4589/// C99 6.2.7p1: Two types have compatible types if their types are the
4590/// same. See 6.7.[2,3,5] for additional rules.
4591bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4592                                    bool CompareUnqualified) {
4593  if (getLangOptions().CPlusPlus)
4594    return hasSameType(LHS, RHS);
4595
4596  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4597}
4598
4599bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4600  return !mergeTypes(LHS, RHS, true).isNull();
4601}
4602
4603QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4604                                        bool OfBlockPointer,
4605                                        bool Unqualified) {
4606  const FunctionType *lbase = lhs->getAs<FunctionType>();
4607  const FunctionType *rbase = rhs->getAs<FunctionType>();
4608  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4609  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4610  bool allLTypes = true;
4611  bool allRTypes = true;
4612
4613  // Check return type
4614  QualType retType;
4615  if (OfBlockPointer)
4616    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4617                         Unqualified);
4618  else
4619   retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
4620                        false, Unqualified);
4621  if (retType.isNull()) return QualType();
4622
4623  if (Unqualified)
4624    retType = retType.getUnqualifiedType();
4625
4626  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4627  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4628  if (Unqualified) {
4629    LRetType = LRetType.getUnqualifiedType();
4630    RRetType = RRetType.getUnqualifiedType();
4631  }
4632
4633  if (getCanonicalType(retType) != LRetType)
4634    allLTypes = false;
4635  if (getCanonicalType(retType) != RRetType)
4636    allRTypes = false;
4637  // FIXME: double check this
4638  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4639  //                           rbase->getRegParmAttr() != 0 &&
4640  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4641  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4642  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4643  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4644      lbaseInfo.getRegParm();
4645  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4646  if (NoReturn != lbaseInfo.getNoReturn() ||
4647      RegParm != lbaseInfo.getRegParm())
4648    allLTypes = false;
4649  if (NoReturn != rbaseInfo.getNoReturn() ||
4650      RegParm != rbaseInfo.getRegParm())
4651    allRTypes = false;
4652  CallingConv lcc = lbaseInfo.getCC();
4653  CallingConv rcc = rbaseInfo.getCC();
4654  // Compatible functions must have compatible calling conventions
4655  if (!isSameCallConv(lcc, rcc))
4656    return QualType();
4657
4658  if (lproto && rproto) { // two C99 style function prototypes
4659    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4660           "C++ shouldn't be here");
4661    unsigned lproto_nargs = lproto->getNumArgs();
4662    unsigned rproto_nargs = rproto->getNumArgs();
4663
4664    // Compatible functions must have the same number of arguments
4665    if (lproto_nargs != rproto_nargs)
4666      return QualType();
4667
4668    // Variadic and non-variadic functions aren't compatible
4669    if (lproto->isVariadic() != rproto->isVariadic())
4670      return QualType();
4671
4672    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4673      return QualType();
4674
4675    // Check argument compatibility
4676    llvm::SmallVector<QualType, 10> types;
4677    for (unsigned i = 0; i < lproto_nargs; i++) {
4678      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4679      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4680      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer,
4681                                    Unqualified);
4682      if (argtype.isNull()) return QualType();
4683
4684      if (Unqualified)
4685        argtype = argtype.getUnqualifiedType();
4686
4687      types.push_back(argtype);
4688      if (Unqualified) {
4689        largtype = largtype.getUnqualifiedType();
4690        rargtype = rargtype.getUnqualifiedType();
4691      }
4692
4693      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4694        allLTypes = false;
4695      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4696        allRTypes = false;
4697    }
4698    if (allLTypes) return lhs;
4699    if (allRTypes) return rhs;
4700    return getFunctionType(retType, types.begin(), types.size(),
4701                           lproto->isVariadic(), lproto->getTypeQuals(),
4702                           false, false, 0, 0,
4703                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4704  }
4705
4706  if (lproto) allRTypes = false;
4707  if (rproto) allLTypes = false;
4708
4709  const FunctionProtoType *proto = lproto ? lproto : rproto;
4710  if (proto) {
4711    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4712    if (proto->isVariadic()) return QualType();
4713    // Check that the types are compatible with the types that
4714    // would result from default argument promotions (C99 6.7.5.3p15).
4715    // The only types actually affected are promotable integer
4716    // types and floats, which would be passed as a different
4717    // type depending on whether the prototype is visible.
4718    unsigned proto_nargs = proto->getNumArgs();
4719    for (unsigned i = 0; i < proto_nargs; ++i) {
4720      QualType argTy = proto->getArgType(i);
4721
4722      // Look at the promotion type of enum types, since that is the type used
4723      // to pass enum values.
4724      if (const EnumType *Enum = argTy->getAs<EnumType>())
4725        argTy = Enum->getDecl()->getPromotionType();
4726
4727      if (argTy->isPromotableIntegerType() ||
4728          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4729        return QualType();
4730    }
4731
4732    if (allLTypes) return lhs;
4733    if (allRTypes) return rhs;
4734    return getFunctionType(retType, proto->arg_type_begin(),
4735                           proto->getNumArgs(), proto->isVariadic(),
4736                           proto->getTypeQuals(),
4737                           false, false, 0, 0,
4738                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4739  }
4740
4741  if (allLTypes) return lhs;
4742  if (allRTypes) return rhs;
4743  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4744  return getFunctionNoProtoType(retType, Info);
4745}
4746
4747QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4748                                bool OfBlockPointer,
4749                                bool Unqualified) {
4750  // C++ [expr]: If an expression initially has the type "reference to T", the
4751  // type is adjusted to "T" prior to any further analysis, the expression
4752  // designates the object or function denoted by the reference, and the
4753  // expression is an lvalue unless the reference is an rvalue reference and
4754  // the expression is a function call (possibly inside parentheses).
4755  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4756  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4757
4758  if (Unqualified) {
4759    LHS = LHS.getUnqualifiedType();
4760    RHS = RHS.getUnqualifiedType();
4761  }
4762
4763  QualType LHSCan = getCanonicalType(LHS),
4764           RHSCan = getCanonicalType(RHS);
4765
4766  // If two types are identical, they are compatible.
4767  if (LHSCan == RHSCan)
4768    return LHS;
4769
4770  // If the qualifiers are different, the types aren't compatible... mostly.
4771  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4772  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4773  if (LQuals != RQuals) {
4774    // If any of these qualifiers are different, we have a type
4775    // mismatch.
4776    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4777        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4778      return QualType();
4779
4780    // Exactly one GC qualifier difference is allowed: __strong is
4781    // okay if the other type has no GC qualifier but is an Objective
4782    // C object pointer (i.e. implicitly strong by default).  We fix
4783    // this by pretending that the unqualified type was actually
4784    // qualified __strong.
4785    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4786    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4787    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4788
4789    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4790      return QualType();
4791
4792    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4793      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4794    }
4795    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4796      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4797    }
4798    return QualType();
4799  }
4800
4801  // Okay, qualifiers are equal.
4802
4803  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4804  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4805
4806  // We want to consider the two function types to be the same for these
4807  // comparisons, just force one to the other.
4808  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4809  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4810
4811  // Same as above for arrays
4812  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4813    LHSClass = Type::ConstantArray;
4814  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4815    RHSClass = Type::ConstantArray;
4816
4817  // ObjCInterfaces are just specialized ObjCObjects.
4818  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4819  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4820
4821  // Canonicalize ExtVector -> Vector.
4822  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4823  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4824
4825  // If the canonical type classes don't match.
4826  if (LHSClass != RHSClass) {
4827    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4828    // a signed integer type, or an unsigned integer type.
4829    // Compatibility is based on the underlying type, not the promotion
4830    // type.
4831    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4832      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4833        return RHS;
4834    }
4835    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4836      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4837        return LHS;
4838    }
4839
4840    return QualType();
4841  }
4842
4843  // The canonical type classes match.
4844  switch (LHSClass) {
4845#define TYPE(Class, Base)
4846#define ABSTRACT_TYPE(Class, Base)
4847#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4848#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4849#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4850#include "clang/AST/TypeNodes.def"
4851    assert(false && "Non-canonical and dependent types shouldn't get here");
4852    return QualType();
4853
4854  case Type::LValueReference:
4855  case Type::RValueReference:
4856  case Type::MemberPointer:
4857    assert(false && "C++ should never be in mergeTypes");
4858    return QualType();
4859
4860  case Type::ObjCInterface:
4861  case Type::IncompleteArray:
4862  case Type::VariableArray:
4863  case Type::FunctionProto:
4864  case Type::ExtVector:
4865    assert(false && "Types are eliminated above");
4866    return QualType();
4867
4868  case Type::Pointer:
4869  {
4870    // Merge two pointer types, while trying to preserve typedef info
4871    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4872    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4873    if (Unqualified) {
4874      LHSPointee = LHSPointee.getUnqualifiedType();
4875      RHSPointee = RHSPointee.getUnqualifiedType();
4876    }
4877    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
4878                                     Unqualified);
4879    if (ResultType.isNull()) return QualType();
4880    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4881      return LHS;
4882    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4883      return RHS;
4884    return getPointerType(ResultType);
4885  }
4886  case Type::BlockPointer:
4887  {
4888    // Merge two block pointer types, while trying to preserve typedef info
4889    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4890    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4891    if (Unqualified) {
4892      LHSPointee = LHSPointee.getUnqualifiedType();
4893      RHSPointee = RHSPointee.getUnqualifiedType();
4894    }
4895    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
4896                                     Unqualified);
4897    if (ResultType.isNull()) return QualType();
4898    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4899      return LHS;
4900    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4901      return RHS;
4902    return getBlockPointerType(ResultType);
4903  }
4904  case Type::ConstantArray:
4905  {
4906    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4907    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4908    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4909      return QualType();
4910
4911    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4912    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4913    if (Unqualified) {
4914      LHSElem = LHSElem.getUnqualifiedType();
4915      RHSElem = RHSElem.getUnqualifiedType();
4916    }
4917
4918    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
4919    if (ResultType.isNull()) return QualType();
4920    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4921      return LHS;
4922    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4923      return RHS;
4924    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4925                                          ArrayType::ArraySizeModifier(), 0);
4926    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4927                                          ArrayType::ArraySizeModifier(), 0);
4928    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4929    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4930    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4931      return LHS;
4932    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4933      return RHS;
4934    if (LVAT) {
4935      // FIXME: This isn't correct! But tricky to implement because
4936      // the array's size has to be the size of LHS, but the type
4937      // has to be different.
4938      return LHS;
4939    }
4940    if (RVAT) {
4941      // FIXME: This isn't correct! But tricky to implement because
4942      // the array's size has to be the size of RHS, but the type
4943      // has to be different.
4944      return RHS;
4945    }
4946    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4947    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4948    return getIncompleteArrayType(ResultType,
4949                                  ArrayType::ArraySizeModifier(), 0);
4950  }
4951  case Type::FunctionNoProto:
4952    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
4953  case Type::Record:
4954  case Type::Enum:
4955    return QualType();
4956  case Type::Builtin:
4957    // Only exactly equal builtin types are compatible, which is tested above.
4958    return QualType();
4959  case Type::Complex:
4960    // Distinct complex types are incompatible.
4961    return QualType();
4962  case Type::Vector:
4963    // FIXME: The merged type should be an ExtVector!
4964    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4965                             RHSCan->getAs<VectorType>()))
4966      return LHS;
4967    return QualType();
4968  case Type::ObjCObject: {
4969    // Check if the types are assignment compatible.
4970    // FIXME: This should be type compatibility, e.g. whether
4971    // "LHS x; RHS x;" at global scope is legal.
4972    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4973    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4974    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4975      return LHS;
4976
4977    return QualType();
4978  }
4979  case Type::ObjCObjectPointer: {
4980    if (OfBlockPointer) {
4981      if (canAssignObjCInterfacesInBlockPointer(
4982                                          LHS->getAs<ObjCObjectPointerType>(),
4983                                          RHS->getAs<ObjCObjectPointerType>()))
4984      return LHS;
4985      return QualType();
4986    }
4987    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4988                                RHS->getAs<ObjCObjectPointerType>()))
4989      return LHS;
4990
4991    return QualType();
4992    }
4993  }
4994
4995  return QualType();
4996}
4997
4998/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4999/// 'RHS' attributes and returns the merged version; including for function
5000/// return types.
5001QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5002  QualType LHSCan = getCanonicalType(LHS),
5003  RHSCan = getCanonicalType(RHS);
5004  // If two types are identical, they are compatible.
5005  if (LHSCan == RHSCan)
5006    return LHS;
5007  if (RHSCan->isFunctionType()) {
5008    if (!LHSCan->isFunctionType())
5009      return QualType();
5010    QualType OldReturnType =
5011      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5012    QualType NewReturnType =
5013      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5014    QualType ResReturnType =
5015      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5016    if (ResReturnType.isNull())
5017      return QualType();
5018    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5019      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5020      // In either case, use OldReturnType to build the new function type.
5021      const FunctionType *F = LHS->getAs<FunctionType>();
5022      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5023        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
5024        QualType ResultType
5025          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5026                                  FPT->getNumArgs(), FPT->isVariadic(),
5027                                  FPT->getTypeQuals(),
5028                                  FPT->hasExceptionSpec(),
5029                                  FPT->hasAnyExceptionSpec(),
5030                                  FPT->getNumExceptions(),
5031                                  FPT->exception_begin(),
5032                                  Info);
5033        return ResultType;
5034      }
5035    }
5036    return QualType();
5037  }
5038
5039  // If the qualifiers are different, the types can still be merged.
5040  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5041  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5042  if (LQuals != RQuals) {
5043    // If any of these qualifiers are different, we have a type mismatch.
5044    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5045        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5046      return QualType();
5047
5048    // Exactly one GC qualifier difference is allowed: __strong is
5049    // okay if the other type has no GC qualifier but is an Objective
5050    // C object pointer (i.e. implicitly strong by default).  We fix
5051    // this by pretending that the unqualified type was actually
5052    // qualified __strong.
5053    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5054    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5055    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5056
5057    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5058      return QualType();
5059
5060    if (GC_L == Qualifiers::Strong)
5061      return LHS;
5062    if (GC_R == Qualifiers::Strong)
5063      return RHS;
5064    return QualType();
5065  }
5066
5067  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5068    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5069    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5070    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5071    if (ResQT == LHSBaseQT)
5072      return LHS;
5073    if (ResQT == RHSBaseQT)
5074      return RHS;
5075  }
5076  return QualType();
5077}
5078
5079//===----------------------------------------------------------------------===//
5080//                         Integer Predicates
5081//===----------------------------------------------------------------------===//
5082
5083unsigned ASTContext::getIntWidth(QualType T) {
5084  if (T->isBooleanType())
5085    return 1;
5086  if (EnumType *ET = dyn_cast<EnumType>(T))
5087    T = ET->getDecl()->getIntegerType();
5088  // For builtin types, just use the standard type sizing method
5089  return (unsigned)getTypeSize(T);
5090}
5091
5092QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5093  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5094
5095  // Turn <4 x signed int> -> <4 x unsigned int>
5096  if (const VectorType *VTy = T->getAs<VectorType>())
5097    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5098             VTy->getNumElements(), VTy->getAltiVecSpecific());
5099
5100  // For enums, we return the unsigned version of the base type.
5101  if (const EnumType *ETy = T->getAs<EnumType>())
5102    T = ETy->getDecl()->getIntegerType();
5103
5104  const BuiltinType *BTy = T->getAs<BuiltinType>();
5105  assert(BTy && "Unexpected signed integer type");
5106  switch (BTy->getKind()) {
5107  case BuiltinType::Char_S:
5108  case BuiltinType::SChar:
5109    return UnsignedCharTy;
5110  case BuiltinType::Short:
5111    return UnsignedShortTy;
5112  case BuiltinType::Int:
5113    return UnsignedIntTy;
5114  case BuiltinType::Long:
5115    return UnsignedLongTy;
5116  case BuiltinType::LongLong:
5117    return UnsignedLongLongTy;
5118  case BuiltinType::Int128:
5119    return UnsignedInt128Ty;
5120  default:
5121    assert(0 && "Unexpected signed integer type");
5122    return QualType();
5123  }
5124}
5125
5126ExternalASTSource::~ExternalASTSource() { }
5127
5128void ExternalASTSource::PrintStats() { }
5129
5130
5131//===----------------------------------------------------------------------===//
5132//                          Builtin Type Computation
5133//===----------------------------------------------------------------------===//
5134
5135/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5136/// pointer over the consumed characters.  This returns the resultant type.
5137static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5138                                  ASTContext::GetBuiltinTypeError &Error,
5139                                  bool AllowTypeModifiers = true) {
5140  // Modifiers.
5141  int HowLong = 0;
5142  bool Signed = false, Unsigned = false;
5143
5144  // Read the modifiers first.
5145  bool Done = false;
5146  while (!Done) {
5147    switch (*Str++) {
5148    default: Done = true; --Str; break;
5149    case 'S':
5150      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5151      assert(!Signed && "Can't use 'S' modifier multiple times!");
5152      Signed = true;
5153      break;
5154    case 'U':
5155      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5156      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5157      Unsigned = true;
5158      break;
5159    case 'L':
5160      assert(HowLong <= 2 && "Can't have LLLL modifier");
5161      ++HowLong;
5162      break;
5163    }
5164  }
5165
5166  QualType Type;
5167
5168  // Read the base type.
5169  switch (*Str++) {
5170  default: assert(0 && "Unknown builtin type letter!");
5171  case 'v':
5172    assert(HowLong == 0 && !Signed && !Unsigned &&
5173           "Bad modifiers used with 'v'!");
5174    Type = Context.VoidTy;
5175    break;
5176  case 'f':
5177    assert(HowLong == 0 && !Signed && !Unsigned &&
5178           "Bad modifiers used with 'f'!");
5179    Type = Context.FloatTy;
5180    break;
5181  case 'd':
5182    assert(HowLong < 2 && !Signed && !Unsigned &&
5183           "Bad modifiers used with 'd'!");
5184    if (HowLong)
5185      Type = Context.LongDoubleTy;
5186    else
5187      Type = Context.DoubleTy;
5188    break;
5189  case 's':
5190    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5191    if (Unsigned)
5192      Type = Context.UnsignedShortTy;
5193    else
5194      Type = Context.ShortTy;
5195    break;
5196  case 'i':
5197    if (HowLong == 3)
5198      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5199    else if (HowLong == 2)
5200      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5201    else if (HowLong == 1)
5202      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5203    else
5204      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5205    break;
5206  case 'c':
5207    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5208    if (Signed)
5209      Type = Context.SignedCharTy;
5210    else if (Unsigned)
5211      Type = Context.UnsignedCharTy;
5212    else
5213      Type = Context.CharTy;
5214    break;
5215  case 'b': // boolean
5216    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5217    Type = Context.BoolTy;
5218    break;
5219  case 'z':  // size_t.
5220    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5221    Type = Context.getSizeType();
5222    break;
5223  case 'F':
5224    Type = Context.getCFConstantStringType();
5225    break;
5226  case 'a':
5227    Type = Context.getBuiltinVaListType();
5228    assert(!Type.isNull() && "builtin va list type not initialized!");
5229    break;
5230  case 'A':
5231    // This is a "reference" to a va_list; however, what exactly
5232    // this means depends on how va_list is defined. There are two
5233    // different kinds of va_list: ones passed by value, and ones
5234    // passed by reference.  An example of a by-value va_list is
5235    // x86, where va_list is a char*. An example of by-ref va_list
5236    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5237    // we want this argument to be a char*&; for x86-64, we want
5238    // it to be a __va_list_tag*.
5239    Type = Context.getBuiltinVaListType();
5240    assert(!Type.isNull() && "builtin va list type not initialized!");
5241    if (Type->isArrayType()) {
5242      Type = Context.getArrayDecayedType(Type);
5243    } else {
5244      Type = Context.getLValueReferenceType(Type);
5245    }
5246    break;
5247  case 'V': {
5248    char *End;
5249    unsigned NumElements = strtoul(Str, &End, 10);
5250    assert(End != Str && "Missing vector size");
5251
5252    Str = End;
5253
5254    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5255    // FIXME: Don't know what to do about AltiVec.
5256    Type = Context.getVectorType(ElementType, NumElements,
5257                                 VectorType::NotAltiVec);
5258    break;
5259  }
5260  case 'X': {
5261    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5262    Type = Context.getComplexType(ElementType);
5263    break;
5264  }
5265  case 'P':
5266    Type = Context.getFILEType();
5267    if (Type.isNull()) {
5268      Error = ASTContext::GE_Missing_stdio;
5269      return QualType();
5270    }
5271    break;
5272  case 'J':
5273    if (Signed)
5274      Type = Context.getsigjmp_bufType();
5275    else
5276      Type = Context.getjmp_bufType();
5277
5278    if (Type.isNull()) {
5279      Error = ASTContext::GE_Missing_setjmp;
5280      return QualType();
5281    }
5282    break;
5283  }
5284
5285  if (!AllowTypeModifiers)
5286    return Type;
5287
5288  Done = false;
5289  while (!Done) {
5290    switch (char c = *Str++) {
5291      default: Done = true; --Str; break;
5292      case '*':
5293      case '&':
5294        {
5295          // Both pointers and references can have their pointee types
5296          // qualified with an address space.
5297          char *End;
5298          unsigned AddrSpace = strtoul(Str, &End, 10);
5299          if (End != Str && AddrSpace != 0) {
5300            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5301            Str = End;
5302          }
5303        }
5304        if (c == '*')
5305          Type = Context.getPointerType(Type);
5306        else
5307          Type = Context.getLValueReferenceType(Type);
5308        break;
5309      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5310      case 'C':
5311        Type = Type.withConst();
5312        break;
5313      case 'D':
5314        Type = Context.getVolatileType(Type);
5315        break;
5316    }
5317  }
5318
5319  return Type;
5320}
5321
5322/// GetBuiltinType - Return the type for the specified builtin.
5323QualType ASTContext::GetBuiltinType(unsigned id,
5324                                    GetBuiltinTypeError &Error) {
5325  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5326
5327  llvm::SmallVector<QualType, 8> ArgTypes;
5328
5329  Error = GE_None;
5330  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5331  if (Error != GE_None)
5332    return QualType();
5333  while (TypeStr[0] && TypeStr[0] != '.') {
5334    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5335    if (Error != GE_None)
5336      return QualType();
5337
5338    // Do array -> pointer decay.  The builtin should use the decayed type.
5339    if (Ty->isArrayType())
5340      Ty = getArrayDecayedType(Ty);
5341
5342    ArgTypes.push_back(Ty);
5343  }
5344
5345  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5346         "'.' should only occur at end of builtin type list!");
5347
5348  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5349  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5350    return getFunctionNoProtoType(ResType);
5351
5352  // FIXME: Should we create noreturn types?
5353  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5354                         TypeStr[0] == '.', 0, false, false, 0, 0,
5355                         FunctionType::ExtInfo());
5356}
5357
5358QualType
5359ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5360  // Perform the usual unary conversions. We do this early so that
5361  // integral promotions to "int" can allow us to exit early, in the
5362  // lhs == rhs check. Also, for conversion purposes, we ignore any
5363  // qualifiers.  For example, "const float" and "float" are
5364  // equivalent.
5365  if (lhs->isPromotableIntegerType())
5366    lhs = getPromotedIntegerType(lhs);
5367  else
5368    lhs = lhs.getUnqualifiedType();
5369  if (rhs->isPromotableIntegerType())
5370    rhs = getPromotedIntegerType(rhs);
5371  else
5372    rhs = rhs.getUnqualifiedType();
5373
5374  // If both types are identical, no conversion is needed.
5375  if (lhs == rhs)
5376    return lhs;
5377
5378  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5379  // The caller can deal with this (e.g. pointer + int).
5380  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5381    return lhs;
5382
5383  // At this point, we have two different arithmetic types.
5384
5385  // Handle complex types first (C99 6.3.1.8p1).
5386  if (lhs->isComplexType() || rhs->isComplexType()) {
5387    // if we have an integer operand, the result is the complex type.
5388    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5389      // convert the rhs to the lhs complex type.
5390      return lhs;
5391    }
5392    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5393      // convert the lhs to the rhs complex type.
5394      return rhs;
5395    }
5396    // This handles complex/complex, complex/float, or float/complex.
5397    // When both operands are complex, the shorter operand is converted to the
5398    // type of the longer, and that is the type of the result. This corresponds
5399    // to what is done when combining two real floating-point operands.
5400    // The fun begins when size promotion occur across type domains.
5401    // From H&S 6.3.4: When one operand is complex and the other is a real
5402    // floating-point type, the less precise type is converted, within it's
5403    // real or complex domain, to the precision of the other type. For example,
5404    // when combining a "long double" with a "double _Complex", the
5405    // "double _Complex" is promoted to "long double _Complex".
5406    int result = getFloatingTypeOrder(lhs, rhs);
5407
5408    if (result > 0) { // The left side is bigger, convert rhs.
5409      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5410    } else if (result < 0) { // The right side is bigger, convert lhs.
5411      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5412    }
5413    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5414    // domains match. This is a requirement for our implementation, C99
5415    // does not require this promotion.
5416    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5417      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5418        return rhs;
5419      } else { // handle "_Complex double, double".
5420        return lhs;
5421      }
5422    }
5423    return lhs; // The domain/size match exactly.
5424  }
5425  // Now handle "real" floating types (i.e. float, double, long double).
5426  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5427    // if we have an integer operand, the result is the real floating type.
5428    if (rhs->isIntegerType()) {
5429      // convert rhs to the lhs floating point type.
5430      return lhs;
5431    }
5432    if (rhs->isComplexIntegerType()) {
5433      // convert rhs to the complex floating point type.
5434      return getComplexType(lhs);
5435    }
5436    if (lhs->isIntegerType()) {
5437      // convert lhs to the rhs floating point type.
5438      return rhs;
5439    }
5440    if (lhs->isComplexIntegerType()) {
5441      // convert lhs to the complex floating point type.
5442      return getComplexType(rhs);
5443    }
5444    // We have two real floating types, float/complex combos were handled above.
5445    // Convert the smaller operand to the bigger result.
5446    int result = getFloatingTypeOrder(lhs, rhs);
5447    if (result > 0) // convert the rhs
5448      return lhs;
5449    assert(result < 0 && "illegal float comparison");
5450    return rhs;   // convert the lhs
5451  }
5452  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5453    // Handle GCC complex int extension.
5454    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5455    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5456
5457    if (lhsComplexInt && rhsComplexInt) {
5458      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5459                              rhsComplexInt->getElementType()) >= 0)
5460        return lhs; // convert the rhs
5461      return rhs;
5462    } else if (lhsComplexInt && rhs->isIntegerType()) {
5463      // convert the rhs to the lhs complex type.
5464      return lhs;
5465    } else if (rhsComplexInt && lhs->isIntegerType()) {
5466      // convert the lhs to the rhs complex type.
5467      return rhs;
5468    }
5469  }
5470  // Finally, we have two differing integer types.
5471  // The rules for this case are in C99 6.3.1.8
5472  int compare = getIntegerTypeOrder(lhs, rhs);
5473  bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
5474       rhsSigned = rhs->hasSignedIntegerRepresentation();
5475  QualType destType;
5476  if (lhsSigned == rhsSigned) {
5477    // Same signedness; use the higher-ranked type
5478    destType = compare >= 0 ? lhs : rhs;
5479  } else if (compare != (lhsSigned ? 1 : -1)) {
5480    // The unsigned type has greater than or equal rank to the
5481    // signed type, so use the unsigned type
5482    destType = lhsSigned ? rhs : lhs;
5483  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5484    // The two types are different widths; if we are here, that
5485    // means the signed type is larger than the unsigned type, so
5486    // use the signed type.
5487    destType = lhsSigned ? lhs : rhs;
5488  } else {
5489    // The signed type is higher-ranked than the unsigned type,
5490    // but isn't actually any bigger (like unsigned int and long
5491    // on most 32-bit systems).  Use the unsigned type corresponding
5492    // to the signed type.
5493    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5494  }
5495  return destType;
5496}
5497
5498GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5499  GVALinkage External = GVA_StrongExternal;
5500
5501  Linkage L = FD->getLinkage();
5502  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5503      FD->getType()->getLinkage() == UniqueExternalLinkage)
5504    L = UniqueExternalLinkage;
5505
5506  switch (L) {
5507  case NoLinkage:
5508  case InternalLinkage:
5509  case UniqueExternalLinkage:
5510    return GVA_Internal;
5511
5512  case ExternalLinkage:
5513    switch (FD->getTemplateSpecializationKind()) {
5514    case TSK_Undeclared:
5515    case TSK_ExplicitSpecialization:
5516      External = GVA_StrongExternal;
5517      break;
5518
5519    case TSK_ExplicitInstantiationDefinition:
5520      return GVA_ExplicitTemplateInstantiation;
5521
5522    case TSK_ExplicitInstantiationDeclaration:
5523    case TSK_ImplicitInstantiation:
5524      External = GVA_TemplateInstantiation;
5525      break;
5526    }
5527  }
5528
5529  if (!FD->isInlined())
5530    return External;
5531
5532  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5533    // GNU or C99 inline semantics. Determine whether this symbol should be
5534    // externally visible.
5535    if (FD->isInlineDefinitionExternallyVisible())
5536      return External;
5537
5538    // C99 inline semantics, where the symbol is not externally visible.
5539    return GVA_C99Inline;
5540  }
5541
5542  // C++0x [temp.explicit]p9:
5543  //   [ Note: The intent is that an inline function that is the subject of
5544  //   an explicit instantiation declaration will still be implicitly
5545  //   instantiated when used so that the body can be considered for
5546  //   inlining, but that no out-of-line copy of the inline function would be
5547  //   generated in the translation unit. -- end note ]
5548  if (FD->getTemplateSpecializationKind()
5549                                       == TSK_ExplicitInstantiationDeclaration)
5550    return GVA_C99Inline;
5551
5552  return GVA_CXXInline;
5553}
5554
5555GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5556  // If this is a static data member, compute the kind of template
5557  // specialization. Otherwise, this variable is not part of a
5558  // template.
5559  TemplateSpecializationKind TSK = TSK_Undeclared;
5560  if (VD->isStaticDataMember())
5561    TSK = VD->getTemplateSpecializationKind();
5562
5563  Linkage L = VD->getLinkage();
5564  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5565      VD->getType()->getLinkage() == UniqueExternalLinkage)
5566    L = UniqueExternalLinkage;
5567
5568  switch (L) {
5569  case NoLinkage:
5570  case InternalLinkage:
5571  case UniqueExternalLinkage:
5572    return GVA_Internal;
5573
5574  case ExternalLinkage:
5575    switch (TSK) {
5576    case TSK_Undeclared:
5577    case TSK_ExplicitSpecialization:
5578      return GVA_StrongExternal;
5579
5580    case TSK_ExplicitInstantiationDeclaration:
5581      llvm_unreachable("Variable should not be instantiated");
5582      // Fall through to treat this like any other instantiation.
5583
5584    case TSK_ExplicitInstantiationDefinition:
5585      return GVA_ExplicitTemplateInstantiation;
5586
5587    case TSK_ImplicitInstantiation:
5588      return GVA_TemplateInstantiation;
5589    }
5590  }
5591
5592  return GVA_StrongExternal;
5593}
5594
5595bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5596  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5597    if (!VD->isFileVarDecl())
5598      return false;
5599  } else if (!isa<FunctionDecl>(D))
5600    return false;
5601
5602  // Weak references don't produce any output by themselves.
5603  if (D->hasAttr<WeakRefAttr>())
5604    return false;
5605
5606  // Aliases and used decls are required.
5607  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5608    return true;
5609
5610  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5611    // Forward declarations aren't required.
5612    if (!FD->isThisDeclarationADefinition())
5613      return false;
5614
5615    // Constructors and destructors are required.
5616    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5617      return true;
5618
5619    // The key function for a class is required.
5620    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5621      const CXXRecordDecl *RD = MD->getParent();
5622      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5623        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5624        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5625          return true;
5626      }
5627    }
5628
5629    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5630
5631    // static, static inline, always_inline, and extern inline functions can
5632    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5633    // Implicit template instantiations can also be deferred in C++.
5634    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5635        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5636      return false;
5637    return true;
5638  }
5639
5640  const VarDecl *VD = cast<VarDecl>(D);
5641  assert(VD->isFileVarDecl() && "Expected file scoped var");
5642
5643  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5644    return false;
5645
5646  // Structs that have non-trivial constructors or destructors are required.
5647
5648  // FIXME: Handle references.
5649  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5650    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5651      if (RD->hasDefinition() &&
5652          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5653        return true;
5654    }
5655  }
5656
5657  GVALinkage L = GetGVALinkageForVariable(VD);
5658  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5659    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5660      return false;
5661  }
5662
5663  return true;
5664}
5665
5666CXXABI::~CXXABI() {}
5667