PromoteMemoryToRegister.cpp revision 226633
1198090Srdivacky//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10198090Srdivacky// This file promotes memory references to be register references.  It promotes
11193323Sed// alloca instructions which only have loads and stores as uses.  An alloca is
12198090Srdivacky// transformed by using iterated dominator frontiers to place PHI nodes, then
13198090Srdivacky// traversing the function in depth-first order to rewrite loads and stores as
14198090Srdivacky// appropriate.
15198090Srdivacky//
16198090Srdivacky// The algorithm used here is based on:
17193323Sed//
18193323Sed//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19193323Sed//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20193323Sed//   Programming Languages
21193323Sed//   POPL '95. ACM, New York, NY, 62-73.
22193323Sed//
23193323Sed// It has been modified to not explicitly use the DJ graph data structure and to
24193323Sed// directly compute pruned SSA using per-variable liveness information.
25193323Sed//
26198396Srdivacky//===----------------------------------------------------------------------===//
27198396Srdivacky
28193323Sed#define DEBUG_TYPE "mem2reg"
29193323Sed#include "llvm/Transforms/Utils/PromoteMemToReg.h"
30198090Srdivacky#include "llvm/Constants.h"
31193323Sed#include "llvm/DerivedTypes.h"
32193323Sed#include "llvm/Function.h"
33193323Sed#include "llvm/Instructions.h"
34193323Sed#include "llvm/IntrinsicInst.h"
35193323Sed#include "llvm/Metadata.h"
36193323Sed#include "llvm/Analysis/AliasSetTracker.h"
37193323Sed#include "llvm/Analysis/DebugInfo.h"
38193323Sed#include "llvm/Analysis/DIBuilder.h"
39193323Sed#include "llvm/Analysis/Dominators.h"
40193323Sed#include "llvm/Analysis/InstructionSimplify.h"
41198892Srdivacky#include "llvm/Analysis/ValueTracking.h"
42198892Srdivacky#include "llvm/Transforms/Utils/Local.h"
43198892Srdivacky#include "llvm/ADT/DenseMap.h"
44198892Srdivacky#include "llvm/ADT/SmallPtrSet.h"
45198892Srdivacky#include "llvm/ADT/SmallVector.h"
46198892Srdivacky#include "llvm/ADT/Statistic.h"
47198892Srdivacky#include "llvm/ADT/STLExtras.h"
48198892Srdivacky#include "llvm/Support/CFG.h"
49198892Srdivacky#include <algorithm>
50198892Srdivacky#include <queue>
51198892Srdivackyusing namespace llvm;
52198892Srdivacky
53198892SrdivackySTATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
54198892SrdivackySTATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
55198892SrdivackySTATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
56198892SrdivackySTATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
57198892Srdivacky
58198892Srdivackynamespace llvm {
59198892Srdivackytemplate<>
60198892Srdivackystruct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
61198892Srdivacky  typedef std::pair<BasicBlock*, unsigned> EltTy;
62198892Srdivacky  static inline EltTy getEmptyKey() {
63198892Srdivacky    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
64198892Srdivacky  }
65198892Srdivacky  static inline EltTy getTombstoneKey() {
66198892Srdivacky    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
67198892Srdivacky  }
68198892Srdivacky  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
69198892Srdivacky    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
70198892Srdivacky  }
71198892Srdivacky  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
72198892Srdivacky    return LHS == RHS;
73198892Srdivacky  }
74198892Srdivacky};
75198892Srdivacky}
76198892Srdivacky
77198892Srdivacky/// isAllocaPromotable - Return true if this alloca is legal for promotion.
78198892Srdivacky/// This is true if there are only loads and stores to the alloca.
79198892Srdivacky///
80198892Srdivackybool llvm::isAllocaPromotable(const AllocaInst *AI) {
81198892Srdivacky  // FIXME: If the memory unit is of pointer or integer type, we can permit
82198892Srdivacky  // assignments to subsections of the memory unit.
83203954Srdivacky
84198892Srdivacky  // Only allow direct and non-volatile loads and stores...
85198892Srdivacky  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
86198892Srdivacky       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
87198892Srdivacky    const User *U = *UI;
88198892Srdivacky    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
89198892Srdivacky      // Note that atomic loads can be transformed; atomic semantics do
90198892Srdivacky      // not have any meaning for a local alloca.
91198892Srdivacky      if (LI->isVolatile())
92198892Srdivacky        return false;
93198892Srdivacky    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
94198892Srdivacky      if (SI->getOperand(0) == AI)
95198892Srdivacky        return false;   // Don't allow a store OF the AI, only INTO the AI.
96198892Srdivacky      // Note that atomic stores can be transformed; atomic semantics do
97198892Srdivacky      // not have any meaning for a local alloca.
98203954Srdivacky      if (SI->isVolatile())
99198892Srdivacky        return false;
100198892Srdivacky    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
101198892Srdivacky      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
102198892Srdivacky          II->getIntrinsicID() != Intrinsic::lifetime_end)
103198892Srdivacky        return false;
104198892Srdivacky    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
105198892Srdivacky      if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
106198892Srdivacky        return false;
107198892Srdivacky      if (!onlyUsedByLifetimeMarkers(BCI))
108198892Srdivacky        return false;
109198892Srdivacky    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
110198892Srdivacky      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
111198892Srdivacky        return false;
112198892Srdivacky      if (!GEPI->hasAllZeroIndices())
113198892Srdivacky        return false;
114198892Srdivacky      if (!onlyUsedByLifetimeMarkers(GEPI))
115198892Srdivacky        return false;
116198892Srdivacky    } else {
117198892Srdivacky      return false;
118198892Srdivacky    }
119198892Srdivacky  }
120198892Srdivacky
121198892Srdivacky  return true;
122198892Srdivacky}
123198892Srdivacky
124198892Srdivackynamespace {
125198892Srdivacky  struct AllocaInfo;
126198892Srdivacky
127198892Srdivacky  // Data package used by RenamePass()
128198892Srdivacky  class RenamePassData {
129198892Srdivacky  public:
130198892Srdivacky    typedef std::vector<Value *> ValVector;
131198892Srdivacky
132198892Srdivacky    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
133198892Srdivacky    RenamePassData(BasicBlock *B, BasicBlock *P,
134198892Srdivacky                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
135198892Srdivacky    BasicBlock *BB;
136198892Srdivacky    BasicBlock *Pred;
137198892Srdivacky    ValVector Values;
138198892Srdivacky
139198892Srdivacky    void swap(RenamePassData &RHS) {
140198892Srdivacky      std::swap(BB, RHS.BB);
141198892Srdivacky      std::swap(Pred, RHS.Pred);
142198892Srdivacky      Values.swap(RHS.Values);
143198892Srdivacky    }
144198892Srdivacky  };
145198892Srdivacky
146198892Srdivacky  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
147198892Srdivacky  /// load/store instructions in the block that directly load or store an alloca.
148198892Srdivacky  ///
149198892Srdivacky  /// This functionality is important because it avoids scanning large basic
150198892Srdivacky  /// blocks multiple times when promoting many allocas in the same block.
151198892Srdivacky  class LargeBlockInfo {
152198892Srdivacky    /// InstNumbers - For each instruction that we track, keep the index of the
153198892Srdivacky    /// instruction.  The index starts out as the number of the instruction from
154198892Srdivacky    /// the start of the block.
155198892Srdivacky    DenseMap<const Instruction *, unsigned> InstNumbers;
156198892Srdivacky  public:
157198892Srdivacky
158198892Srdivacky    /// isInterestingInstruction - This code only looks at accesses to allocas.
159198892Srdivacky    static bool isInterestingInstruction(const Instruction *I) {
160198892Srdivacky      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
161198892Srdivacky             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
162198892Srdivacky    }
163198892Srdivacky
164198892Srdivacky    /// getInstructionIndex - Get or calculate the index of the specified
165198892Srdivacky    /// instruction.
166198892Srdivacky    unsigned getInstructionIndex(const Instruction *I) {
167198892Srdivacky      assert(isInterestingInstruction(I) &&
168198892Srdivacky             "Not a load/store to/from an alloca?");
169198892Srdivacky
170198892Srdivacky      // If we already have this instruction number, return it.
171198892Srdivacky      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
172198892Srdivacky      if (It != InstNumbers.end()) return It->second;
173193323Sed
174193323Sed      // Scan the whole block to get the instruction.  This accumulates
175193323Sed      // information for every interesting instruction in the block, in order to
176193323Sed      // avoid gratuitus rescans.
177193323Sed      const BasicBlock *BB = I->getParent();
178193323Sed      unsigned InstNo = 0;
179193323Sed      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
180193323Sed           BBI != E; ++BBI)
181193323Sed        if (isInterestingInstruction(BBI))
182193323Sed          InstNumbers[BBI] = InstNo++;
183193323Sed      It = InstNumbers.find(I);
184193323Sed
185193323Sed      assert(It != InstNumbers.end() && "Didn't insert instruction?");
186193323Sed      return It->second;
187193323Sed    }
188193323Sed
189193323Sed    void deleteValue(const Instruction *I) {
190193323Sed      InstNumbers.erase(I);
191193323Sed    }
192193323Sed
193193323Sed    void clear() {
194193323Sed      InstNumbers.clear();
195193323Sed    }
196193323Sed  };
197193323Sed
198193323Sed  struct PromoteMem2Reg {
199193323Sed    /// Allocas - The alloca instructions being promoted.
200193323Sed    ///
201193323Sed    std::vector<AllocaInst*> Allocas;
202193323Sed    DominatorTree &DT;
203193323Sed    DIBuilder *DIB;
204193323Sed
205193323Sed    /// AST - An AliasSetTracker object to update.  If null, don't update it.
206193323Sed    ///
207193323Sed    AliasSetTracker *AST;
208193323Sed
209193323Sed    /// AllocaLookup - Reverse mapping of Allocas.
210193323Sed    ///
211193323Sed    DenseMap<AllocaInst*, unsigned>  AllocaLookup;
212193323Sed
213193323Sed    /// NewPhiNodes - The PhiNodes we're adding.
214193323Sed    ///
215193323Sed    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
216193323Sed
217193323Sed    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
218193323Sed    /// it corresponds to.
219193323Sed    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
220193323Sed
221193323Sed    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
222193323Sed    /// each alloca that is of pointer type, we keep track of what to copyValue
223193323Sed    /// to the inserted PHI nodes here.
224193323Sed    ///
225193323Sed    std::vector<Value*> PointerAllocaValues;
226193323Sed
227198396Srdivacky    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
228198396Srdivacky    /// intrinsic that describes it, if any, so that we can convert it to a
229198396Srdivacky    /// dbg.value intrinsic if the alloca gets promoted.
230198396Srdivacky    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
231198396Srdivacky
232198396Srdivacky    /// Visited - The set of basic blocks the renamer has already visited.
233198396Srdivacky    ///
234198396Srdivacky    SmallPtrSet<BasicBlock*, 16> Visited;
235198396Srdivacky
236198396Srdivacky    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
237198892Srdivacky    /// non-determinstic behavior.
238198892Srdivacky    DenseMap<BasicBlock*, unsigned> BBNumbers;
239198396Srdivacky
240198396Srdivacky    /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
241198396Srdivacky    DenseMap<DomTreeNode*, unsigned> DomLevels;
242198396Srdivacky
243198396Srdivacky    /// BBNumPreds - Lazily compute the number of predecessors a block has.
244198396Srdivacky    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
245198396Srdivacky  public:
246198396Srdivacky    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
247198396Srdivacky                   AliasSetTracker *ast)
248198396Srdivacky      : Allocas(A), DT(dt), DIB(0), AST(ast) {}
249198396Srdivacky    ~PromoteMem2Reg() {
250198396Srdivacky      delete DIB;
251198892Srdivacky    }
252198396Srdivacky
253198396Srdivacky    void run();
254198396Srdivacky
255198396Srdivacky    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
256198396Srdivacky    ///
257198396Srdivacky    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
258198396Srdivacky      return DT.dominates(BB1, BB2);
259198892Srdivacky    }
260198396Srdivacky
261198396Srdivacky  private:
262198396Srdivacky    void RemoveFromAllocasList(unsigned &AllocaIdx) {
263198892Srdivacky      Allocas[AllocaIdx] = Allocas.back();
264198396Srdivacky      Allocas.pop_back();
265198396Srdivacky      --AllocaIdx;
266198892Srdivacky    }
267198396Srdivacky
268193323Sed    unsigned getNumPreds(const BasicBlock *BB) {
269198396Srdivacky      unsigned &NP = BBNumPreds[BB];
270198396Srdivacky      if (NP == 0)
271198396Srdivacky        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
272198396Srdivacky      return NP-1;
273198396Srdivacky    }
274198396Srdivacky
275198396Srdivacky    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
276198396Srdivacky                                 AllocaInfo &Info);
277198396Srdivacky    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
278198396Srdivacky                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
279198396Srdivacky                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
280198396Srdivacky
281198396Srdivacky    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
282198396Srdivacky                                  LargeBlockInfo &LBI);
283198396Srdivacky    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
284198396Srdivacky                                  LargeBlockInfo &LBI);
285198396Srdivacky
286198396Srdivacky    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
287198396Srdivacky                    RenamePassData::ValVector &IncVals,
288198396Srdivacky                    std::vector<RenamePassData> &Worklist);
289198396Srdivacky    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
290198396Srdivacky  };
291198396Srdivacky
292198396Srdivacky  struct AllocaInfo {
293198396Srdivacky    SmallVector<BasicBlock*, 32> DefiningBlocks;
294198396Srdivacky    SmallVector<BasicBlock*, 32> UsingBlocks;
295198396Srdivacky
296198396Srdivacky    StoreInst  *OnlyStore;
297198396Srdivacky    BasicBlock *OnlyBlock;
298198892Srdivacky    bool OnlyUsedInOneBlock;
299198396Srdivacky
300198396Srdivacky    Value *AllocaPointerVal;
301198396Srdivacky    DbgDeclareInst *DbgDeclare;
302198396Srdivacky
303198396Srdivacky    void clear() {
304198396Srdivacky      DefiningBlocks.clear();
305198396Srdivacky      UsingBlocks.clear();
306198396Srdivacky      OnlyStore = 0;
307198396Srdivacky      OnlyBlock = 0;
308198396Srdivacky      OnlyUsedInOneBlock = true;
309198396Srdivacky      AllocaPointerVal = 0;
310198396Srdivacky      DbgDeclare = 0;
311198396Srdivacky    }
312198396Srdivacky
313198396Srdivacky    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
314198396Srdivacky    /// ivars.
315198396Srdivacky    void AnalyzeAlloca(AllocaInst *AI) {
316198396Srdivacky      clear();
317198396Srdivacky
318198396Srdivacky      // As we scan the uses of the alloca instruction, keep track of stores,
319198396Srdivacky      // and decide whether all of the loads and stores to the alloca are within
320198396Srdivacky      // the same basic block.
321198396Srdivacky      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
322198396Srdivacky           UI != E;)  {
323198396Srdivacky        Instruction *User = cast<Instruction>(*UI++);
324198396Srdivacky
325198396Srdivacky        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
326198396Srdivacky          // Remember the basic blocks which define new values for the alloca
327198396Srdivacky          DefiningBlocks.push_back(SI->getParent());
328198396Srdivacky          AllocaPointerVal = SI->getOperand(0);
329198396Srdivacky          OnlyStore = SI;
330198396Srdivacky        } else {
331198396Srdivacky          LoadInst *LI = cast<LoadInst>(User);
332198396Srdivacky          // Otherwise it must be a load instruction, keep track of variable
333198396Srdivacky          // reads.
334198396Srdivacky          UsingBlocks.push_back(LI->getParent());
335198396Srdivacky          AllocaPointerVal = LI;
336198396Srdivacky        }
337198396Srdivacky
338198396Srdivacky        if (OnlyUsedInOneBlock) {
339198396Srdivacky          if (OnlyBlock == 0)
340198396Srdivacky            OnlyBlock = User->getParent();
341198396Srdivacky          else if (OnlyBlock != User->getParent())
342198396Srdivacky            OnlyUsedInOneBlock = false;
343198396Srdivacky        }
344198396Srdivacky      }
345198396Srdivacky
346198396Srdivacky      DbgDeclare = FindAllocaDbgDeclare(AI);
347198396Srdivacky    }
348198396Srdivacky  };
349198396Srdivacky
350198396Srdivacky  typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
351198396Srdivacky
352198396Srdivacky  struct DomTreeNodeCompare {
353198396Srdivacky    bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
354198396Srdivacky      return LHS.second < RHS.second;
355198396Srdivacky    }
356198396Srdivacky  };
357198396Srdivacky}  // end of anonymous namespace
358198396Srdivacky
359198396Srdivackystatic void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
360198396Srdivacky  // Knowing that this alloca is promotable, we know that it's safe to kill all
361198396Srdivacky  // instructions except for load and store.
362198396Srdivacky
363198396Srdivacky  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
364198396Srdivacky       UI != UE;) {
365198396Srdivacky    Instruction *I = cast<Instruction>(*UI);
366198396Srdivacky    ++UI;
367198396Srdivacky    if (isa<LoadInst>(I) || isa<StoreInst>(I))
368198396Srdivacky      continue;
369198892Srdivacky
370198396Srdivacky    if (!I->getType()->isVoidTy()) {
371198892Srdivacky      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
372198396Srdivacky      // Follow the use/def chain to erase them now instead of leaving it for
373198396Srdivacky      // dead code elimination later.
374198396Srdivacky      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
375198396Srdivacky           UI != UE;) {
376198396Srdivacky        Instruction *Inst = cast<Instruction>(*UI);
377198396Srdivacky        ++UI;
378198396Srdivacky        Inst->eraseFromParent();
379198396Srdivacky      }
380198396Srdivacky    }
381198396Srdivacky    I->eraseFromParent();
382198396Srdivacky  }
383198396Srdivacky}
384198892Srdivacky
385198396Srdivackyvoid PromoteMem2Reg::run() {
386198396Srdivacky  Function &F = *DT.getRoot()->getParent();
387198396Srdivacky
388198396Srdivacky  if (AST) PointerAllocaValues.resize(Allocas.size());
389198396Srdivacky  AllocaDbgDeclares.resize(Allocas.size());
390198396Srdivacky
391198396Srdivacky  AllocaInfo Info;
392198396Srdivacky  LargeBlockInfo LBI;
393198396Srdivacky
394198396Srdivacky  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
395198396Srdivacky    AllocaInst *AI = Allocas[AllocaNum];
396198396Srdivacky
397198396Srdivacky    assert(isAllocaPromotable(AI) &&
398198396Srdivacky           "Cannot promote non-promotable alloca!");
399198396Srdivacky    assert(AI->getParent()->getParent() == &F &&
400198396Srdivacky           "All allocas should be in the same function, which is same as DF!");
401202375Srdivacky
402202375Srdivacky    removeLifetimeIntrinsicUsers(AI);
403198396Srdivacky
404198396Srdivacky    if (AI->use_empty()) {
405198396Srdivacky      // If there are no uses of the alloca, just delete it now.
406198396Srdivacky      if (AST) AST->deleteValue(AI);
407198396Srdivacky      AI->eraseFromParent();
408198396Srdivacky
409198396Srdivacky      // Remove the alloca from the Allocas list, since it has been processed
410198396Srdivacky      RemoveFromAllocasList(AllocaNum);
411198396Srdivacky      ++NumDeadAlloca;
412198396Srdivacky      continue;
413198396Srdivacky    }
414198396Srdivacky
415198396Srdivacky    // Calculate the set of read and write-locations for each alloca.  This is
416198396Srdivacky    // analogous to finding the 'uses' and 'definitions' of each variable.
417198396Srdivacky    Info.AnalyzeAlloca(AI);
418198396Srdivacky
419198396Srdivacky    // If there is only a single store to this value, replace any loads of
420198396Srdivacky    // it that are directly dominated by the definition with the value stored.
421198396Srdivacky    if (Info.DefiningBlocks.size() == 1) {
422198396Srdivacky      RewriteSingleStoreAlloca(AI, Info, LBI);
423198396Srdivacky
424198396Srdivacky      // Finally, after the scan, check to see if the store is all that is left.
425198396Srdivacky      if (Info.UsingBlocks.empty()) {
426198396Srdivacky        // Record debuginfo for the store and remove the declaration's debuginfo.
427198396Srdivacky        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
428198396Srdivacky          if (!DIB)
429198396Srdivacky            DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
430198396Srdivacky          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
431198396Srdivacky          DDI->eraseFromParent();
432198396Srdivacky        }
433198396Srdivacky        // Remove the (now dead) store and alloca.
434198396Srdivacky        Info.OnlyStore->eraseFromParent();
435200581Srdivacky        LBI.deleteValue(Info.OnlyStore);
436198396Srdivacky
437198396Srdivacky        if (AST) AST->deleteValue(AI);
438198396Srdivacky        AI->eraseFromParent();
439198396Srdivacky        LBI.deleteValue(AI);
440198396Srdivacky
441198396Srdivacky        // The alloca has been processed, move on.
442198396Srdivacky        RemoveFromAllocasList(AllocaNum);
443198396Srdivacky
444198396Srdivacky        ++NumSingleStore;
445198396Srdivacky        continue;
446198396Srdivacky      }
447198396Srdivacky    }
448198396Srdivacky
449198396Srdivacky    // If the alloca is only read and written in one basic block, just perform a
450198396Srdivacky    // linear sweep over the block to eliminate it.
451198396Srdivacky    if (Info.OnlyUsedInOneBlock) {
452198396Srdivacky      PromoteSingleBlockAlloca(AI, Info, LBI);
453198396Srdivacky
454198396Srdivacky      // Finally, after the scan, check to see if the stores are all that is
455198396Srdivacky      // left.
456198396Srdivacky      if (Info.UsingBlocks.empty()) {
457198396Srdivacky
458198396Srdivacky        // Remove the (now dead) stores and alloca.
459198396Srdivacky        while (!AI->use_empty()) {
460198396Srdivacky          StoreInst *SI = cast<StoreInst>(AI->use_back());
461198396Srdivacky          // Record debuginfo for the store before removing it.
462198396Srdivacky          if (DbgDeclareInst *DDI = Info.DbgDeclare) {
463198396Srdivacky            if (!DIB)
464198396Srdivacky              DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
465198396Srdivacky            ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
466198396Srdivacky          }
467198396Srdivacky          SI->eraseFromParent();
468198396Srdivacky          LBI.deleteValue(SI);
469198396Srdivacky        }
470198396Srdivacky
471198396Srdivacky        if (AST) AST->deleteValue(AI);
472198396Srdivacky        AI->eraseFromParent();
473198396Srdivacky        LBI.deleteValue(AI);
474198396Srdivacky
475198396Srdivacky        // The alloca has been processed, move on.
476198396Srdivacky        RemoveFromAllocasList(AllocaNum);
477198396Srdivacky
478198396Srdivacky        // The alloca's debuginfo can be removed as well.
479198396Srdivacky        if (DbgDeclareInst *DDI = Info.DbgDeclare)
480198396Srdivacky          DDI->eraseFromParent();
481198396Srdivacky
482198396Srdivacky        ++NumLocalPromoted;
483198396Srdivacky        continue;
484198396Srdivacky      }
485198396Srdivacky    }
486198396Srdivacky
487198396Srdivacky    // If we haven't computed dominator tree levels, do so now.
488198396Srdivacky    if (DomLevels.empty()) {
489198396Srdivacky      SmallVector<DomTreeNode*, 32> Worklist;
490193323Sed
491193323Sed      DomTreeNode *Root = DT.getRootNode();
492193323Sed      DomLevels[Root] = 0;
493193323Sed      Worklist.push_back(Root);
494193323Sed
495199481Srdivacky      while (!Worklist.empty()) {
496193323Sed        DomTreeNode *Node = Worklist.pop_back_val();
497193323Sed        unsigned ChildLevel = DomLevels[Node] + 1;
498193323Sed        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
499193323Sed             CI != CE; ++CI) {
500193323Sed          DomLevels[*CI] = ChildLevel;
501193323Sed          Worklist.push_back(*CI);
502193323Sed        }
503193323Sed      }
504193323Sed    }
505193323Sed
506193323Sed    // If we haven't computed a numbering for the BB's in the function, do so
507193323Sed    // now.
508193323Sed    if (BBNumbers.empty()) {
509193323Sed      unsigned ID = 0;
510193323Sed      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
511193323Sed        BBNumbers[I] = ID++;
512193323Sed    }
513193323Sed
514193323Sed    // If we have an AST to keep updated, remember some pointer value that is
515193323Sed    // stored into the alloca.
516193323Sed    if (AST)
517193323Sed      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
518193323Sed
519193323Sed    // Remember the dbg.declare intrinsic describing this alloca, if any.
520203954Srdivacky    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
521203954Srdivacky
522203954Srdivacky    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
523203954Srdivacky    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
524203954Srdivacky
525203954Srdivacky    // At this point, we're committed to promoting the alloca using IDF's, and
526203954Srdivacky    // the standard SSA construction algorithm.  Determine which blocks need PHI
527203954Srdivacky    // nodes and see if we can optimize out some work by avoiding insertion of
528203954Srdivacky    // dead phi nodes.
529203954Srdivacky    DetermineInsertionPoint(AI, AllocaNum, Info);
530203954Srdivacky  }
531203954Srdivacky
532203954Srdivacky  if (Allocas.empty())
533203954Srdivacky    return; // All of the allocas must have been trivial!
534203954Srdivacky
535203954Srdivacky  LBI.clear();
536203954Srdivacky
537203954Srdivacky
538203954Srdivacky  // Set the incoming values for the basic block to be null values for all of
539203954Srdivacky  // the alloca's.  We do this in case there is a load of a value that has not
540203954Srdivacky  // been stored yet.  In this case, it will get this null value.
541203954Srdivacky  //
542203954Srdivacky  RenamePassData::ValVector Values(Allocas.size());
543203954Srdivacky  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
544203954Srdivacky    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
545203954Srdivacky
546203954Srdivacky  // Walks all basic blocks in the function performing the SSA rename algorithm
547203954Srdivacky  // and inserting the phi nodes we marked as necessary
548203954Srdivacky  //
549203954Srdivacky  std::vector<RenamePassData> RenamePassWorkList;
550203954Srdivacky  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
551203954Srdivacky  do {
552203954Srdivacky    RenamePassData RPD;
553203954Srdivacky    RPD.swap(RenamePassWorkList.back());
554203954Srdivacky    RenamePassWorkList.pop_back();
555203954Srdivacky    // RenamePass may add new worklist entries.
556193323Sed    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
557193323Sed  } while (!RenamePassWorkList.empty());
558199481Srdivacky
559193323Sed  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
560193323Sed  Visited.clear();
561193323Sed
562193323Sed  // Remove the allocas themselves from the function.
563193323Sed  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
564198090Srdivacky    Instruction *A = Allocas[i];
565199481Srdivacky
566199481Srdivacky    // If there are any uses of the alloca instructions left, they must be in
567198090Srdivacky    // unreachable basic blocks that were not processed by walking the dominator
568198090Srdivacky    // tree. Just delete the users now.
569193323Sed    if (!A->use_empty())
570193323Sed      A->replaceAllUsesWith(UndefValue::get(A->getType()));
571193323Sed    if (AST) AST->deleteValue(A);
572193323Sed    A->eraseFromParent();
573193323Sed  }
574198090Srdivacky
575198090Srdivacky  // Remove alloca's dbg.declare instrinsics from the function.
576198090Srdivacky  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
577198090Srdivacky    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
578193323Sed      DDI->eraseFromParent();
579193323Sed
580198090Srdivacky  // Loop over all of the PHI nodes and see if there are any that we can get
581193323Sed  // rid of because they merge all of the same incoming values.  This can
582193323Sed  // happen due to undef values coming into the PHI nodes.  This process is
583193323Sed  // iterative, because eliminating one PHI node can cause others to be removed.
584193323Sed  bool EliminatedAPHI = true;
585193323Sed  while (EliminatedAPHI) {
586193323Sed    EliminatedAPHI = false;
587198090Srdivacky
588193323Sed    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
589198090Srdivacky           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
590198090Srdivacky      PHINode *PN = I->second;
591198090Srdivacky
592198090Srdivacky      // If this PHI node merges one value and/or undefs, get the value.
593198090Srdivacky      if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
594198090Srdivacky        if (AST && PN->getType()->isPointerTy())
595199481Srdivacky          AST->deleteValue(PN);
596198090Srdivacky        PN->replaceAllUsesWith(V);
597198090Srdivacky        PN->eraseFromParent();
598198090Srdivacky        NewPhiNodes.erase(I++);
599198090Srdivacky        EliminatedAPHI = true;
600198090Srdivacky        continue;
601198090Srdivacky      }
602198090Srdivacky      ++I;
603199989Srdivacky    }
604198090Srdivacky  }
605198090Srdivacky
606198090Srdivacky  // At this point, the renamer has added entries to PHI nodes for all reachable
607198090Srdivacky  // code.  Unfortunately, there may be unreachable blocks which the renamer
608200581Srdivacky  // hasn't traversed.  If this is the case, the PHI nodes may not
609200581Srdivacky  // have incoming values for all predecessors.  Loop over all PHI nodes we have
610200581Srdivacky  // created, inserting undef values if they are missing any incoming values.
611200581Srdivacky  //
612200581Srdivacky  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
613200581Srdivacky         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
614200581Srdivacky    // We want to do this once per basic block.  As such, only process a block
615200581Srdivacky    // when we find the PHI that is the first entry in the block.
616200581Srdivacky    PHINode *SomePHI = I->second;
617200581Srdivacky    BasicBlock *BB = SomePHI->getParent();
618198090Srdivacky    if (&BB->front() != SomePHI)
619198090Srdivacky      continue;
620198090Srdivacky
621198090Srdivacky    // Only do work here if there the PHI nodes are missing incoming values.  We
622198090Srdivacky    // know that all PHI nodes that were inserted in a block will have the same
623198090Srdivacky    // number of incoming values, so we can just check any of them.
624199481Srdivacky    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
625199481Srdivacky      continue;
626198090Srdivacky
627198090Srdivacky    // Get the preds for BB.
628198090Srdivacky    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
629198090Srdivacky
630198090Srdivacky    // Ok, now we know that all of the PHI nodes are missing entries for some
631198090Srdivacky    // basic blocks.  Start by sorting the incoming predecessors for efficient
632198090Srdivacky    // access.
633199481Srdivacky    std::sort(Preds.begin(), Preds.end());
634199481Srdivacky
635198090Srdivacky    // Now we loop through all BB's which have entries in SomePHI and remove
636198090Srdivacky    // them from the Preds list.
637198090Srdivacky    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
638198090Srdivacky      // Do a log(n) search of the Preds list for the entry we want.
639198090Srdivacky      SmallVector<BasicBlock*, 16>::iterator EntIt =
640198090Srdivacky        std::lower_bound(Preds.begin(), Preds.end(),
641198090Srdivacky                         SomePHI->getIncomingBlock(i));
642198090Srdivacky      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
643198090Srdivacky             "PHI node has entry for a block which is not a predecessor!");
644198090Srdivacky
645198090Srdivacky      // Remove the entry
646198090Srdivacky      Preds.erase(EntIt);
647198090Srdivacky    }
648198090Srdivacky
649198090Srdivacky    // At this point, the blocks left in the preds list must have dummy
650198090Srdivacky    // entries inserted into every PHI nodes for the block.  Update all the phi
651198090Srdivacky    // nodes in this block that we are inserting (there could be phis before
652198090Srdivacky    // mem2reg runs).
653198090Srdivacky    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
654198090Srdivacky    BasicBlock::iterator BBI = BB->begin();
655198090Srdivacky    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
656198090Srdivacky           SomePHI->getNumIncomingValues() == NumBadPreds) {
657198090Srdivacky      Value *UndefVal = UndefValue::get(SomePHI->getType());
658198892Srdivacky      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
659198090Srdivacky        SomePHI->addIncoming(UndefVal, Preds[pred]);
660198090Srdivacky    }
661193323Sed  }
662193323Sed
663193323Sed  NewPhiNodes.clear();
664193323Sed}
665193323Sed
666193323Sed
667193323Sed/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
668193323Sed/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
669193323Sed/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
670193323Sed/// would be dead).
671193323Sedvoid PromoteMem2Reg::
672193323SedComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
673193323Sed                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
674193323Sed                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
675199481Srdivacky
676193323Sed  // To determine liveness, we must iterate through the predecessors of blocks
677193323Sed  // where the def is live.  Blocks are added to the worklist if we need to
678193323Sed  // check their predecessors.  Start with all the using blocks.
679193323Sed  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
680193323Sed                                                   Info.UsingBlocks.end());
681193323Sed
682193323Sed  // If any of the using blocks is also a definition block, check to see if the
683193323Sed  // definition occurs before or after the use.  If it happens before the use,
684193323Sed  // the value isn't really live-in.
685193323Sed  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
686193323Sed    BasicBlock *BB = LiveInBlockWorklist[i];
687193323Sed    if (!DefBlocks.count(BB)) continue;
688193323Sed
689193323Sed    // Okay, this is a block that both uses and defines the value.  If the first
690193323Sed    // reference to the alloca is a def (store), then we know it isn't live-in.
691193323Sed    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
692193323Sed      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693193323Sed        if (SI->getOperand(1) != AI) continue;
694193323Sed
695193323Sed        // We found a store to the alloca before a load.  The alloca is not
696193323Sed        // actually live-in here.
697193323Sed        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
698193323Sed        LiveInBlockWorklist.pop_back();
699193323Sed        --i, --e;
700193323Sed        break;
701193323Sed      }
702199481Srdivacky
703199481Srdivacky      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
704198090Srdivacky        if (LI->getOperand(0) != AI) continue;
705198396Srdivacky
706198396Srdivacky        // Okay, we found a load before a store to the alloca.  It is actually
707198396Srdivacky        // live into this block.
708198090Srdivacky        break;
709199481Srdivacky      }
710193323Sed    }
711193323Sed  }
712193323Sed
713193323Sed  // Now that we have a set of blocks where the phi is live-in, recursively add
714193323Sed  // their predecessors until we find the full region the value is live.
715203954Srdivacky  while (!LiveInBlockWorklist.empty()) {
716193323Sed    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
717193323Sed
718203954Srdivacky    // The block really is live in here, insert it into the set.  If already in
719199989Srdivacky    // the set, then it has already been processed.
720199989Srdivacky    if (!LiveInBlocks.insert(BB))
721199989Srdivacky      continue;
722199989Srdivacky
723199989Srdivacky    // Since the value is live into BB, it is either defined in a predecessor or
724199989Srdivacky    // live into it to.  Add the preds to the worklist unless they are a
725193323Sed    // defining block.
726193323Sed    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
727199481Srdivacky      BasicBlock *P = *PI;
728199481Srdivacky
729198090Srdivacky      // The value is not live into a predecessor if it defines the value.
730199481Srdivacky      if (DefBlocks.count(P))
731193323Sed        continue;
732193323Sed
733193323Sed      // Otherwise it is, add to the worklist.
734193323Sed      LiveInBlockWorklist.push_back(P);
735193323Sed    }
736193323Sed  }
737193323Sed}
738193323Sed
739199989Srdivacky/// DetermineInsertionPoint - At this point, we're committed to promoting the
740199989Srdivacky/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
741199989Srdivacky/// which blocks need phi nodes and see if we can optimize out some work by
742199989Srdivacky/// avoiding insertion of dead phi nodes.
743193323Sedvoid PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
744193323Sed                                             AllocaInfo &Info) {
745193323Sed  // Unique the set of defining blocks for efficient lookup.
746193323Sed  SmallPtrSet<BasicBlock*, 32> DefBlocks;
747193323Sed  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
748193323Sed
749199481Srdivacky  // Determine which blocks the value is live in.  These are blocks which lead
750193323Sed  // to uses.
751193323Sed  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
752193323Sed  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
753193323Sed
754193323Sed  // Use a priority queue keyed on dominator tree level so that inserted nodes
755193323Sed  // are handled from the bottom of the dominator tree upwards.
756193323Sed  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
757202375Srdivacky                              DomTreeNodeCompare> IDFPriorityQueue;
758202375Srdivacky  IDFPriorityQueue PQ;
759193323Sed
760193323Sed  for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
761193323Sed       E = DefBlocks.end(); I != E; ++I) {
762193323Sed    if (DomTreeNode *Node = DT.getNode(*I))
763193323Sed      PQ.push(std::make_pair(Node, DomLevels[Node]));
764193323Sed  }
765193323Sed
766193323Sed  SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
767193323Sed  SmallPtrSet<DomTreeNode*, 32> Visited;
768193323Sed  SmallVector<DomTreeNode*, 32> Worklist;
769193323Sed  while (!PQ.empty()) {
770194612Sed    DomTreeNodePair RootPair = PQ.top();
771193323Sed    PQ.pop();
772193323Sed    DomTreeNode *Root = RootPair.first;
773199481Srdivacky    unsigned RootLevel = RootPair.second;
774193323Sed
775193323Sed    // Walk all dominator tree children of Root, inspecting their CFG edges with
776193323Sed    // targets elsewhere on the dominator tree. Only targets whose level is at
777193323Sed    // most Root's level are added to the iterated dominance frontier of the
778193323Sed    // definition set.
779193323Sed
780193323Sed    Worklist.clear();
781193323Sed    Worklist.push_back(Root);
782193323Sed
783193323Sed    while (!Worklist.empty()) {
784193323Sed      DomTreeNode *Node = Worklist.pop_back_val();
785193323Sed      BasicBlock *BB = Node->getBlock();
786193323Sed
787193323Sed      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
788193323Sed           ++SI) {
789194612Sed        DomTreeNode *SuccNode = DT.getNode(*SI);
790198892Srdivacky
791198892Srdivacky        // Quickly skip all CFG edges that are also dominator tree edges instead
792198892Srdivacky        // of catching them below.
793193323Sed        if (SuccNode->getIDom() == Node)
794193323Sed          continue;
795193323Sed
796193323Sed        unsigned SuccLevel = DomLevels[SuccNode];
797193323Sed        if (SuccLevel > RootLevel)
798193323Sed          continue;
799193323Sed
800193323Sed        if (!Visited.insert(SuccNode))
801193323Sed          continue;
802193323Sed
803193323Sed        BasicBlock *SuccBB = SuccNode->getBlock();
804193323Sed        if (!LiveInBlocks.count(SuccBB))
805193323Sed          continue;
806193323Sed
807193323Sed        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
808193323Sed        if (!DefBlocks.count(SuccBB))
809193323Sed          PQ.push(std::make_pair(SuccNode, SuccLevel));
810193323Sed      }
811193323Sed
812193323Sed      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
813193323Sed           ++CI) {
814193323Sed        if (!Visited.count(*CI))
815199481Srdivacky          Worklist.push_back(*CI);
816193323Sed      }
817198090Srdivacky    }
818198090Srdivacky  }
819193323Sed
820193323Sed  if (DFBlocks.size() > 1)
821193323Sed    std::sort(DFBlocks.begin(), DFBlocks.end());
822193323Sed
823193323Sed  unsigned CurrentVersion = 0;
824193323Sed  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
825193323Sed    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
826193323Sed}
827193323Sed
828193323Sed/// RewriteSingleStoreAlloca - If there is only a single store to this value,
829193323Sed/// replace any loads of it that are directly dominated by the definition with
830193323Sed/// the value stored.
831193323Sedvoid PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
832193323Sed                                              AllocaInfo &Info,
833193323Sed                                              LargeBlockInfo &LBI) {
834193323Sed  StoreInst *OnlyStore = Info.OnlyStore;
835193323Sed  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
836193323Sed  BasicBlock *StoreBB = OnlyStore->getParent();
837193323Sed  int StoreIndex = -1;
838198892Srdivacky
839193323Sed  // Clear out UsingBlocks.  We will reconstruct it here if needed.
840193323Sed  Info.UsingBlocks.clear();
841193323Sed
842193323Sed  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
843193323Sed    Instruction *UserInst = cast<Instruction>(*UI++);
844193323Sed    if (!isa<LoadInst>(UserInst)) {
845193323Sed      assert(UserInst == OnlyStore && "Should only have load/stores");
846193323Sed      continue;
847193323Sed    }
848193323Sed    LoadInst *LI = cast<LoadInst>(UserInst);
849203954Srdivacky
850203954Srdivacky    // Okay, if we have a load from the alloca, we want to replace it with the
851199481Srdivacky    // only value stored to the alloca.  We can do this if the value is
852193323Sed    // dominated by the store.  If not, we use the rest of the mem2reg machinery
853193323Sed    // to insert the phi nodes as needed.
854193323Sed    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
855193323Sed      if (LI->getParent() == StoreBB) {
856193323Sed        // If we have a use that is in the same block as the store, compare the
857193323Sed        // indices of the two instructions to see which one came first.  If the
858193323Sed        // load came before the store, we can't handle it.
859193323Sed        if (StoreIndex == -1)
860193323Sed          StoreIndex = LBI.getInstructionIndex(OnlyStore);
861193323Sed
862193323Sed        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
863199481Srdivacky          // Can't handle this load, bail out.
864193323Sed          Info.UsingBlocks.push_back(StoreBB);
865193323Sed          continue;
866193323Sed        }
867193323Sed
868193323Sed      } else if (LI->getParent() != StoreBB &&
869193323Sed                 !dominates(StoreBB, LI->getParent())) {
870193323Sed        // If the load and store are in different blocks, use BB dominance to
871193323Sed        // check their relationships.  If the store doesn't dom the use, bail
872199481Srdivacky        // out.
873199481Srdivacky        Info.UsingBlocks.push_back(LI->getParent());
874199481Srdivacky        continue;
875193323Sed      }
876193323Sed    }
877193323Sed
878193323Sed    // Otherwise, we *can* safely rewrite this load.
879193323Sed    Value *ReplVal = OnlyStore->getOperand(0);
880199481Srdivacky    // If the replacement value is the load, this must occur in unreachable
881199481Srdivacky    // code.
882193323Sed    if (ReplVal == LI)
883193323Sed      ReplVal = UndefValue::get(LI->getType());
884193323Sed    LI->replaceAllUsesWith(ReplVal);
885193323Sed    if (AST && LI->getType()->isPointerTy())
886193323Sed      AST->deleteValue(LI);
887193323Sed    LI->eraseFromParent();
888193323Sed    LBI.deleteValue(LI);
889199481Srdivacky  }
890199481Srdivacky}
891193323Sed
892193323Sednamespace {
893193323Sed
894199481Srdivacky/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
895193323Sed/// first element of a pair.
896199481Srdivackystruct StoreIndexSearchPredicate {
897193323Sed  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
898193323Sed                  const std::pair<unsigned, StoreInst*> &RHS) {
899193323Sed    return LHS.first < RHS.first;
900193323Sed  }
901193323Sed};
902193323Sed
903193323Sed}
904193323Sed
905199481Srdivacky/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
906193323Sed/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
907193323Sed/// potentially useless PHI nodes by just performing a single linear pass over
908193323Sed/// the basic block using the Alloca.
909193323Sed///
910193323Sed/// If we cannot promote this alloca (because it is read before it is written),
911193323Sed/// return true.  This is necessary in cases where, due to control flow, the
912199481Srdivacky/// alloca is potentially undefined on some control flow paths.  e.g. code like
913199481Srdivacky/// this is potentially correct:
914199481Srdivacky///
915193323Sed///   for (...) { if (c) { A = undef; undef = B; } }
916193323Sed///
917202375Srdivacky/// ... so long as A is not used before undef is set.
918202375Srdivacky///
919202375Srdivackyvoid PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
920202375Srdivacky                                              LargeBlockInfo &LBI) {
921202375Srdivacky  // The trickiest case to handle is when we have large blocks. Because of this,
922202375Srdivacky  // this code is optimized assuming that large blocks happen.  This does not
923202375Srdivacky  // significantly pessimize the small block case.  This uses LargeBlockInfo to
924202375Srdivacky  // make it efficient to get the index of various operations in the block.
925202375Srdivacky
926202375Srdivacky  // Clear out UsingBlocks.  We will reconstruct it here if needed.
927202375Srdivacky  Info.UsingBlocks.clear();
928202375Srdivacky
929202375Srdivacky  // Walk the use-def list of the alloca, getting the locations of all stores.
930202375Srdivacky  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
931193323Sed  StoresByIndexTy StoresByIndex;
932199481Srdivacky
933199481Srdivacky  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
934193323Sed       UI != E; ++UI)
935193323Sed    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
936193323Sed      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
937193323Sed
938193323Sed  // If there are no stores to the alloca, just replace any loads with undef.
939193323Sed  if (StoresByIndex.empty()) {
940193323Sed    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
941193323Sed      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
942193323Sed        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
943193323Sed        if (AST && LI->getType()->isPointerTy())
944193323Sed          AST->deleteValue(LI);
945193323Sed        LBI.deleteValue(LI);
946193323Sed        LI->eraseFromParent();
947193323Sed      }
948193323Sed    return;
949193323Sed  }
950193323Sed
951193323Sed  // Sort the stores by their index, making it efficient to do a lookup with a
952193323Sed  // binary search.
953193323Sed  std::sort(StoresByIndex.begin(), StoresByIndex.end());
954193323Sed
955193323Sed  // Walk all of the loads from this alloca, replacing them with the nearest
956193323Sed  // store above them, if any.
957193323Sed  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
958193323Sed    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
959193323Sed    if (!LI) continue;
960193323Sed
961193323Sed    unsigned LoadIdx = LBI.getInstructionIndex(LI);
962193323Sed
963193323Sed    // Find the nearest store that has a lower than this load.
964193323Sed    StoresByIndexTy::iterator I =
965193323Sed      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
966193323Sed                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
967193323Sed                       StoreIndexSearchPredicate());
968193323Sed
969193323Sed    // If there is no store before this load, then we can't promote this load.
970193323Sed    if (I == StoresByIndex.begin()) {
971193323Sed      // Can't handle this load, bail out.
972193323Sed      Info.UsingBlocks.push_back(LI->getParent());
973193323Sed      continue;
974193323Sed    }
975198396Srdivacky
976198396Srdivacky    // Otherwise, there was a store before this load, the load takes its value.
977193323Sed    --I;
978193323Sed    LI->replaceAllUsesWith(I->second->getOperand(0));
979193323Sed    if (AST && LI->getType()->isPointerTy())
980193323Sed      AST->deleteValue(LI);
981198396Srdivacky    LI->eraseFromParent();
982193323Sed    LBI.deleteValue(LI);
983198396Srdivacky  }
984193323Sed}
985193323Sed
986193323Sed// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
987193323Sed// Alloca returns true if there wasn't already a phi-node for that variable
988193323Sed//
989193323Sedbool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
990193323Sed                                  unsigned &Version) {
991193323Sed  // Look up the basic-block in question.
992193323Sed  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
993193323Sed
994193323Sed  // If the BB already has a phi node added for the i'th alloca then we're done!
995193323Sed  if (PN) return false;
996193323Sed
997193323Sed  // Create a PhiNode using the dereferenced type... and add the phi-node to the
998193323Sed  // BasicBlock.
999193323Sed  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1000193323Sed                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
1001193323Sed                       BB->begin());
1002193323Sed  ++NumPHIInsert;
1003193323Sed  PhiToAllocaMap[PN] = AllocaNo;
1004193323Sed
1005193323Sed  if (AST && PN->getType()->isPointerTy())
1006193323Sed    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1007193323Sed
1008193323Sed  return true;
1009193323Sed}
1010193323Sed
1011198090Srdivacky// RenamePass - Recursively traverse the CFG of the function, renaming loads and
1012198090Srdivacky// stores to the allocas which we are promoting.  IncomingVals indicates what
1013198090Srdivacky// value each Alloca contains on exit from the predecessor block Pred.
1014198090Srdivacky//
1015193323Sedvoid PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1016198090Srdivacky                                RenamePassData::ValVector &IncomingVals,
1017198090Srdivacky                                std::vector<RenamePassData> &Worklist) {
1018198090SrdivackyNextIteration:
1019193323Sed  // If we are inserting any phi nodes into this BB, they will already be in the
1020193323Sed  // block.
1021193323Sed  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1022198090Srdivacky    // If we have PHI nodes to update, compute the number of edges from Pred to
1023193323Sed    // BB.
1024193323Sed    if (PhiToAllocaMap.count(APN)) {
1025193323Sed      // We want to be able to distinguish between PHI nodes being inserted by
1026193323Sed      // this invocation of mem2reg from those phi nodes that already existed in
1027198090Srdivacky      // the IR before mem2reg was run.  We determine that APN is being inserted
1028193323Sed      // because it is missing incoming edges.  All other PHI nodes being
1029193323Sed      // inserted by this pass of mem2reg will have the same number of incoming
1030198090Srdivacky      // operands so far.  Remember this count.
1031198090Srdivacky      unsigned NewPHINumOperands = APN->getNumOperands();
1032193323Sed
1033198090Srdivacky      unsigned NumEdges = 0;
1034193323Sed      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1035198090Srdivacky        if (*I == BB)
1036193323Sed          ++NumEdges;
1037198090Srdivacky      assert(NumEdges && "Must be at least one edge from Pred to BB!");
1038193323Sed
1039198090Srdivacky      // Add entries for all the phis.
1040193323Sed      BasicBlock::iterator PNI = BB->begin();
1041198090Srdivacky      do {
1042193323Sed        unsigned AllocaNo = PhiToAllocaMap[APN];
1043198090Srdivacky
1044198090Srdivacky        // Add N incoming values to the PHI node.
1045193323Sed        for (unsigned i = 0; i != NumEdges; ++i)
1046198090Srdivacky          APN->addIncoming(IncomingVals[AllocaNo], Pred);
1047193323Sed
1048193323Sed        // The currently active variable for this block is now the PHI.
1049193323Sed        IncomingVals[AllocaNo] = APN;
1050193323Sed
1051199481Srdivacky        // Get the next phi node.
1052193323Sed        ++PNI;
1053193323Sed        APN = dyn_cast<PHINode>(PNI);
1054193323Sed        if (APN == 0) break;
1055193323Sed
1056193323Sed        // Verify that it is missing entries.  If not, it is not being inserted
1057193323Sed        // by this mem2reg invocation so we want to ignore it.
1058193323Sed      } while (APN->getNumOperands() == NewPHINumOperands);
1059198090Srdivacky    }
1060199481Srdivacky  }
1061198090Srdivacky
1062199481Srdivacky  // Don't revisit blocks.
1063198090Srdivacky  if (!Visited.insert(BB)) return;
1064193323Sed
1065193323Sed  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1066193323Sed    Instruction *I = II++; // get the instruction, increment iterator
1067193323Sed
1068199481Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1069193323Sed      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1070193323Sed      if (!Src) continue;
1071193323Sed
1072193323Sed      DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1073193323Sed      if (AI == AllocaLookup.end()) continue;
1074193323Sed
1075193323Sed      Value *V = IncomingVals[AI->second];
1076198090Srdivacky
1077199481Srdivacky      // Anything using the load now uses the current value.
1078198090Srdivacky      LI->replaceAllUsesWith(V);
1079199481Srdivacky      if (AST && LI->getType()->isPointerTy())
1080198090Srdivacky        AST->deleteValue(LI);
1081193323Sed      BB->getInstList().erase(LI);
1082193323Sed    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1083193323Sed      // Delete this instruction and mark the name as the current holder of the
1084193323Sed      // value
1085193323Sed      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1086193323Sed      if (!Dest) continue;
1087193323Sed
1088198090Srdivacky      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1089193323Sed      if (ai == AllocaLookup.end())
1090198090Srdivacky        continue;
1091198090Srdivacky
1092193323Sed      // what value were we writing?
1093193323Sed      IncomingVals[ai->second] = SI->getOperand(0);
1094193323Sed      // Record debuginfo for the store before removing it.
1095198090Srdivacky      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1096193323Sed        if (!DIB)
1097193323Sed          DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1098193323Sed        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1099193323Sed      }
1100193323Sed      BB->getInstList().erase(SI);
1101198090Srdivacky    }
1102193323Sed  }
1103198090Srdivacky
1104193323Sed  // 'Recurse' to our successors.
1105198090Srdivacky  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1106199481Srdivacky  if (I == E) return;
1107198090Srdivacky
1108199481Srdivacky  // Keep track of the successors so we don't visit the same successor twice
1109198090Srdivacky  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1110199481Srdivacky
1111193323Sed  // Handle the first successor without using the worklist.
1112193323Sed  VisitedSuccs.insert(*I);
1113198090Srdivacky  Pred = BB;
1114199481Srdivacky  BB = *I;
1115198090Srdivacky  ++I;
1116199481Srdivacky
1117198090Srdivacky  for (; I != E; ++I)
1118199481Srdivacky    if (VisitedSuccs.insert(*I))
1119198090Srdivacky      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1120199481Srdivacky
1121193323Sed  goto NextIteration;
1122193323Sed}
1123198090Srdivacky
1124199481Srdivacky/// PromoteMemToReg - Promote the specified list of alloca instructions into
1125193323Sed/// scalar registers, inserting PHI nodes as appropriate.  This function does
1126193323Sed/// not modify the CFG of the function at all.  All allocas must be from the
1127198090Srdivacky/// same function.
1128199481Srdivacky///
1129198090Srdivacky/// If AST is specified, the specified tracker is updated to reflect changes
1130199481Srdivacky/// made to the IR.
1131193323Sed///
1132193323Sedvoid llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1133198090Srdivacky                           DominatorTree &DT, AliasSetTracker *AST) {
1134199481Srdivacky  // If there is nothing to do, bail out...
1135198090Srdivacky  if (Allocas.empty()) return;
1136199481Srdivacky
1137198090Srdivacky  PromoteMem2Reg(Allocas, DT, AST).run();
1138198090Srdivacky}
1139193323Sed