PromoteMemoryToRegister.cpp revision 218893
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using iterated dominator frontiers to place PHI nodes, then
13// traversing the function in depth-first order to rewrite loads and stores as
14// appropriate.
15//
16// The algorithm used here is based on:
17//
18//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20//   Programming Languages
21//   POPL '95. ACM, New York, NY, 62-73.
22//
23// It has been modified to not explicitly use the DJ graph data structure and to
24// directly compute pruned SSA using per-variable liveness information.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "mem2reg"
29#include "llvm/Transforms/Utils/PromoteMemToReg.h"
30#include "llvm/Constants.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
33#include "llvm/Instructions.h"
34#include "llvm/IntrinsicInst.h"
35#include "llvm/Metadata.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/DebugInfo.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/InstructionSimplify.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/CFG.h"
46#include <algorithm>
47#include <map>
48#include <queue>
49using namespace llvm;
50
51STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
52STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
53STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
54STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
55
56namespace llvm {
57template<>
58struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
59  typedef std::pair<BasicBlock*, unsigned> EltTy;
60  static inline EltTy getEmptyKey() {
61    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
62  }
63  static inline EltTy getTombstoneKey() {
64    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
65  }
66  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
67    return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
68  }
69  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
70    return LHS == RHS;
71  }
72};
73}
74
75/// isAllocaPromotable - Return true if this alloca is legal for promotion.
76/// This is true if there are only loads and stores to the alloca.
77///
78bool llvm::isAllocaPromotable(const AllocaInst *AI) {
79  // FIXME: If the memory unit is of pointer or integer type, we can permit
80  // assignments to subsections of the memory unit.
81
82  // Only allow direct and non-volatile loads and stores...
83  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
84       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
85    const User *U = *UI;
86    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
87      if (LI->isVolatile())
88        return false;
89    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
90      if (SI->getOperand(0) == AI)
91        return false;   // Don't allow a store OF the AI, only INTO the AI.
92      if (SI->isVolatile())
93        return false;
94    } else {
95      return false;
96    }
97  }
98
99  return true;
100}
101
102/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
103/// alloca 'V', if any.
104static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) {
105  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1))
106    for (Value::use_iterator UI = DebugNode->use_begin(),
107         E = DebugNode->use_end(); UI != E; ++UI)
108      if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
109        return DDI;
110
111  return 0;
112}
113
114namespace {
115  struct AllocaInfo;
116
117  // Data package used by RenamePass()
118  class RenamePassData {
119  public:
120    typedef std::vector<Value *> ValVector;
121
122    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
123    RenamePassData(BasicBlock *B, BasicBlock *P,
124                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
125    BasicBlock *BB;
126    BasicBlock *Pred;
127    ValVector Values;
128
129    void swap(RenamePassData &RHS) {
130      std::swap(BB, RHS.BB);
131      std::swap(Pred, RHS.Pred);
132      Values.swap(RHS.Values);
133    }
134  };
135
136  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
137  /// load/store instructions in the block that directly load or store an alloca.
138  ///
139  /// This functionality is important because it avoids scanning large basic
140  /// blocks multiple times when promoting many allocas in the same block.
141  class LargeBlockInfo {
142    /// InstNumbers - For each instruction that we track, keep the index of the
143    /// instruction.  The index starts out as the number of the instruction from
144    /// the start of the block.
145    DenseMap<const Instruction *, unsigned> InstNumbers;
146  public:
147
148    /// isInterestingInstruction - This code only looks at accesses to allocas.
149    static bool isInterestingInstruction(const Instruction *I) {
150      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
151             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
152    }
153
154    /// getInstructionIndex - Get or calculate the index of the specified
155    /// instruction.
156    unsigned getInstructionIndex(const Instruction *I) {
157      assert(isInterestingInstruction(I) &&
158             "Not a load/store to/from an alloca?");
159
160      // If we already have this instruction number, return it.
161      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
162      if (It != InstNumbers.end()) return It->second;
163
164      // Scan the whole block to get the instruction.  This accumulates
165      // information for every interesting instruction in the block, in order to
166      // avoid gratuitus rescans.
167      const BasicBlock *BB = I->getParent();
168      unsigned InstNo = 0;
169      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
170           BBI != E; ++BBI)
171        if (isInterestingInstruction(BBI))
172          InstNumbers[BBI] = InstNo++;
173      It = InstNumbers.find(I);
174
175      assert(It != InstNumbers.end() && "Didn't insert instruction?");
176      return It->second;
177    }
178
179    void deleteValue(const Instruction *I) {
180      InstNumbers.erase(I);
181    }
182
183    void clear() {
184      InstNumbers.clear();
185    }
186  };
187
188  struct PromoteMem2Reg {
189    /// Allocas - The alloca instructions being promoted.
190    ///
191    std::vector<AllocaInst*> Allocas;
192    DominatorTree &DT;
193    DIFactory *DIF;
194
195    /// AST - An AliasSetTracker object to update.  If null, don't update it.
196    ///
197    AliasSetTracker *AST;
198
199    /// AllocaLookup - Reverse mapping of Allocas.
200    ///
201    DenseMap<AllocaInst*, unsigned>  AllocaLookup;
202
203    /// NewPhiNodes - The PhiNodes we're adding.
204    ///
205    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
206
207    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
208    /// it corresponds to.
209    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
210
211    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
212    /// each alloca that is of pointer type, we keep track of what to copyValue
213    /// to the inserted PHI nodes here.
214    ///
215    std::vector<Value*> PointerAllocaValues;
216
217    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
218    /// intrinsic that describes it, if any, so that we can convert it to a
219    /// dbg.value intrinsic if the alloca gets promoted.
220    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
221
222    /// Visited - The set of basic blocks the renamer has already visited.
223    ///
224    SmallPtrSet<BasicBlock*, 16> Visited;
225
226    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
227    /// non-determinstic behavior.
228    DenseMap<BasicBlock*, unsigned> BBNumbers;
229
230    /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
231    DenseMap<DomTreeNode*, unsigned> DomLevels;
232
233    /// BBNumPreds - Lazily compute the number of predecessors a block has.
234    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
235  public:
236    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
237                   AliasSetTracker *ast)
238      : Allocas(A), DT(dt), DIF(0), AST(ast) {}
239    ~PromoteMem2Reg() {
240      delete DIF;
241    }
242
243    void run();
244
245    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
246    ///
247    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
248      return DT.dominates(BB1, BB2);
249    }
250
251  private:
252    void RemoveFromAllocasList(unsigned &AllocaIdx) {
253      Allocas[AllocaIdx] = Allocas.back();
254      Allocas.pop_back();
255      --AllocaIdx;
256    }
257
258    unsigned getNumPreds(const BasicBlock *BB) {
259      unsigned &NP = BBNumPreds[BB];
260      if (NP == 0)
261        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
262      return NP-1;
263    }
264
265    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
266                                 AllocaInfo &Info);
267    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
268                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
269                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
270
271    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
272                                  LargeBlockInfo &LBI);
273    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
274                                  LargeBlockInfo &LBI);
275    void ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI);
276
277
278    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
279                    RenamePassData::ValVector &IncVals,
280                    std::vector<RenamePassData> &Worklist);
281    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
282  };
283
284  struct AllocaInfo {
285    SmallVector<BasicBlock*, 32> DefiningBlocks;
286    SmallVector<BasicBlock*, 32> UsingBlocks;
287
288    StoreInst  *OnlyStore;
289    BasicBlock *OnlyBlock;
290    bool OnlyUsedInOneBlock;
291
292    Value *AllocaPointerVal;
293    DbgDeclareInst *DbgDeclare;
294
295    void clear() {
296      DefiningBlocks.clear();
297      UsingBlocks.clear();
298      OnlyStore = 0;
299      OnlyBlock = 0;
300      OnlyUsedInOneBlock = true;
301      AllocaPointerVal = 0;
302      DbgDeclare = 0;
303    }
304
305    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
306    /// ivars.
307    void AnalyzeAlloca(AllocaInst *AI) {
308      clear();
309
310      // As we scan the uses of the alloca instruction, keep track of stores,
311      // and decide whether all of the loads and stores to the alloca are within
312      // the same basic block.
313      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
314           UI != E;)  {
315        Instruction *User = cast<Instruction>(*UI++);
316
317        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
318          // Remember the basic blocks which define new values for the alloca
319          DefiningBlocks.push_back(SI->getParent());
320          AllocaPointerVal = SI->getOperand(0);
321          OnlyStore = SI;
322        } else {
323          LoadInst *LI = cast<LoadInst>(User);
324          // Otherwise it must be a load instruction, keep track of variable
325          // reads.
326          UsingBlocks.push_back(LI->getParent());
327          AllocaPointerVal = LI;
328        }
329
330        if (OnlyUsedInOneBlock) {
331          if (OnlyBlock == 0)
332            OnlyBlock = User->getParent();
333          else if (OnlyBlock != User->getParent())
334            OnlyUsedInOneBlock = false;
335        }
336      }
337
338      DbgDeclare = FindAllocaDbgDeclare(AI);
339    }
340  };
341
342  typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
343
344  struct DomTreeNodeCompare {
345    bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
346      return LHS.second < RHS.second;
347    }
348  };
349}  // end of anonymous namespace
350
351
352void PromoteMem2Reg::run() {
353  Function &F = *DT.getRoot()->getParent();
354
355  if (AST) PointerAllocaValues.resize(Allocas.size());
356  AllocaDbgDeclares.resize(Allocas.size());
357
358  AllocaInfo Info;
359  LargeBlockInfo LBI;
360
361  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
362    AllocaInst *AI = Allocas[AllocaNum];
363
364    assert(isAllocaPromotable(AI) &&
365           "Cannot promote non-promotable alloca!");
366    assert(AI->getParent()->getParent() == &F &&
367           "All allocas should be in the same function, which is same as DF!");
368
369    if (AI->use_empty()) {
370      // If there are no uses of the alloca, just delete it now.
371      if (AST) AST->deleteValue(AI);
372      AI->eraseFromParent();
373
374      // Remove the alloca from the Allocas list, since it has been processed
375      RemoveFromAllocasList(AllocaNum);
376      ++NumDeadAlloca;
377      continue;
378    }
379
380    // Calculate the set of read and write-locations for each alloca.  This is
381    // analogous to finding the 'uses' and 'definitions' of each variable.
382    Info.AnalyzeAlloca(AI);
383
384    // If there is only a single store to this value, replace any loads of
385    // it that are directly dominated by the definition with the value stored.
386    if (Info.DefiningBlocks.size() == 1) {
387      RewriteSingleStoreAlloca(AI, Info, LBI);
388
389      // Finally, after the scan, check to see if the store is all that is left.
390      if (Info.UsingBlocks.empty()) {
391        // Record debuginfo for the store and remove the declaration's debuginfo.
392        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
393          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore);
394          DDI->eraseFromParent();
395        }
396        // Remove the (now dead) store and alloca.
397        Info.OnlyStore->eraseFromParent();
398        LBI.deleteValue(Info.OnlyStore);
399
400        if (AST) AST->deleteValue(AI);
401        AI->eraseFromParent();
402        LBI.deleteValue(AI);
403
404        // The alloca has been processed, move on.
405        RemoveFromAllocasList(AllocaNum);
406
407        ++NumSingleStore;
408        continue;
409      }
410    }
411
412    // If the alloca is only read and written in one basic block, just perform a
413    // linear sweep over the block to eliminate it.
414    if (Info.OnlyUsedInOneBlock) {
415      PromoteSingleBlockAlloca(AI, Info, LBI);
416
417      // Finally, after the scan, check to see if the stores are all that is
418      // left.
419      if (Info.UsingBlocks.empty()) {
420
421        // Remove the (now dead) stores and alloca.
422        while (!AI->use_empty()) {
423          StoreInst *SI = cast<StoreInst>(AI->use_back());
424          // Record debuginfo for the store before removing it.
425          if (DbgDeclareInst *DDI = Info.DbgDeclare)
426            ConvertDebugDeclareToDebugValue(DDI, SI);
427          SI->eraseFromParent();
428          LBI.deleteValue(SI);
429        }
430
431        if (AST) AST->deleteValue(AI);
432        AI->eraseFromParent();
433        LBI.deleteValue(AI);
434
435        // The alloca has been processed, move on.
436        RemoveFromAllocasList(AllocaNum);
437
438        // The alloca's debuginfo can be removed as well.
439        if (DbgDeclareInst *DDI = Info.DbgDeclare)
440          DDI->eraseFromParent();
441
442        ++NumLocalPromoted;
443        continue;
444      }
445    }
446
447    // If we haven't computed dominator tree levels, do so now.
448    if (DomLevels.empty()) {
449      SmallVector<DomTreeNode*, 32> Worklist;
450
451      DomTreeNode *Root = DT.getRootNode();
452      DomLevels[Root] = 0;
453      Worklist.push_back(Root);
454
455      while (!Worklist.empty()) {
456        DomTreeNode *Node = Worklist.pop_back_val();
457        unsigned ChildLevel = DomLevels[Node] + 1;
458        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
459             CI != CE; ++CI) {
460          DomLevels[*CI] = ChildLevel;
461          Worklist.push_back(*CI);
462        }
463      }
464    }
465
466    // If we haven't computed a numbering for the BB's in the function, do so
467    // now.
468    if (BBNumbers.empty()) {
469      unsigned ID = 0;
470      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
471        BBNumbers[I] = ID++;
472    }
473
474    // If we have an AST to keep updated, remember some pointer value that is
475    // stored into the alloca.
476    if (AST)
477      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
478
479    // Remember the dbg.declare intrinsic describing this alloca, if any.
480    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
481
482    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
483    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
484
485    // At this point, we're committed to promoting the alloca using IDF's, and
486    // the standard SSA construction algorithm.  Determine which blocks need PHI
487    // nodes and see if we can optimize out some work by avoiding insertion of
488    // dead phi nodes.
489    DetermineInsertionPoint(AI, AllocaNum, Info);
490  }
491
492  if (Allocas.empty())
493    return; // All of the allocas must have been trivial!
494
495  LBI.clear();
496
497
498  // Set the incoming values for the basic block to be null values for all of
499  // the alloca's.  We do this in case there is a load of a value that has not
500  // been stored yet.  In this case, it will get this null value.
501  //
502  RenamePassData::ValVector Values(Allocas.size());
503  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
504    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
505
506  // Walks all basic blocks in the function performing the SSA rename algorithm
507  // and inserting the phi nodes we marked as necessary
508  //
509  std::vector<RenamePassData> RenamePassWorkList;
510  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
511  do {
512    RenamePassData RPD;
513    RPD.swap(RenamePassWorkList.back());
514    RenamePassWorkList.pop_back();
515    // RenamePass may add new worklist entries.
516    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
517  } while (!RenamePassWorkList.empty());
518
519  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
520  Visited.clear();
521
522  // Remove the allocas themselves from the function.
523  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
524    Instruction *A = Allocas[i];
525
526    // If there are any uses of the alloca instructions left, they must be in
527    // unreachable basic blocks that were not processed by walking the dominator
528    // tree. Just delete the users now.
529    if (!A->use_empty())
530      A->replaceAllUsesWith(UndefValue::get(A->getType()));
531    if (AST) AST->deleteValue(A);
532    A->eraseFromParent();
533  }
534
535  // Remove alloca's dbg.declare instrinsics from the function.
536  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
537    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
538      DDI->eraseFromParent();
539
540  // Loop over all of the PHI nodes and see if there are any that we can get
541  // rid of because they merge all of the same incoming values.  This can
542  // happen due to undef values coming into the PHI nodes.  This process is
543  // iterative, because eliminating one PHI node can cause others to be removed.
544  bool EliminatedAPHI = true;
545  while (EliminatedAPHI) {
546    EliminatedAPHI = false;
547
548    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
549           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
550      PHINode *PN = I->second;
551
552      // If this PHI node merges one value and/or undefs, get the value.
553      if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
554        if (AST && PN->getType()->isPointerTy())
555          AST->deleteValue(PN);
556        PN->replaceAllUsesWith(V);
557        PN->eraseFromParent();
558        NewPhiNodes.erase(I++);
559        EliminatedAPHI = true;
560        continue;
561      }
562      ++I;
563    }
564  }
565
566  // At this point, the renamer has added entries to PHI nodes for all reachable
567  // code.  Unfortunately, there may be unreachable blocks which the renamer
568  // hasn't traversed.  If this is the case, the PHI nodes may not
569  // have incoming values for all predecessors.  Loop over all PHI nodes we have
570  // created, inserting undef values if they are missing any incoming values.
571  //
572  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
573         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
574    // We want to do this once per basic block.  As such, only process a block
575    // when we find the PHI that is the first entry in the block.
576    PHINode *SomePHI = I->second;
577    BasicBlock *BB = SomePHI->getParent();
578    if (&BB->front() != SomePHI)
579      continue;
580
581    // Only do work here if there the PHI nodes are missing incoming values.  We
582    // know that all PHI nodes that were inserted in a block will have the same
583    // number of incoming values, so we can just check any of them.
584    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
585      continue;
586
587    // Get the preds for BB.
588    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
589
590    // Ok, now we know that all of the PHI nodes are missing entries for some
591    // basic blocks.  Start by sorting the incoming predecessors for efficient
592    // access.
593    std::sort(Preds.begin(), Preds.end());
594
595    // Now we loop through all BB's which have entries in SomePHI and remove
596    // them from the Preds list.
597    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
598      // Do a log(n) search of the Preds list for the entry we want.
599      SmallVector<BasicBlock*, 16>::iterator EntIt =
600        std::lower_bound(Preds.begin(), Preds.end(),
601                         SomePHI->getIncomingBlock(i));
602      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
603             "PHI node has entry for a block which is not a predecessor!");
604
605      // Remove the entry
606      Preds.erase(EntIt);
607    }
608
609    // At this point, the blocks left in the preds list must have dummy
610    // entries inserted into every PHI nodes for the block.  Update all the phi
611    // nodes in this block that we are inserting (there could be phis before
612    // mem2reg runs).
613    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
614    BasicBlock::iterator BBI = BB->begin();
615    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
616           SomePHI->getNumIncomingValues() == NumBadPreds) {
617      Value *UndefVal = UndefValue::get(SomePHI->getType());
618      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
619        SomePHI->addIncoming(UndefVal, Preds[pred]);
620    }
621  }
622
623  NewPhiNodes.clear();
624}
625
626
627/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
628/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
629/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
630/// would be dead).
631void PromoteMem2Reg::
632ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
633                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
634                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
635
636  // To determine liveness, we must iterate through the predecessors of blocks
637  // where the def is live.  Blocks are added to the worklist if we need to
638  // check their predecessors.  Start with all the using blocks.
639  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
640                                                   Info.UsingBlocks.end());
641
642  // If any of the using blocks is also a definition block, check to see if the
643  // definition occurs before or after the use.  If it happens before the use,
644  // the value isn't really live-in.
645  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
646    BasicBlock *BB = LiveInBlockWorklist[i];
647    if (!DefBlocks.count(BB)) continue;
648
649    // Okay, this is a block that both uses and defines the value.  If the first
650    // reference to the alloca is a def (store), then we know it isn't live-in.
651    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
652      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
653        if (SI->getOperand(1) != AI) continue;
654
655        // We found a store to the alloca before a load.  The alloca is not
656        // actually live-in here.
657        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
658        LiveInBlockWorklist.pop_back();
659        --i, --e;
660        break;
661      }
662
663      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
664        if (LI->getOperand(0) != AI) continue;
665
666        // Okay, we found a load before a store to the alloca.  It is actually
667        // live into this block.
668        break;
669      }
670    }
671  }
672
673  // Now that we have a set of blocks where the phi is live-in, recursively add
674  // their predecessors until we find the full region the value is live.
675  while (!LiveInBlockWorklist.empty()) {
676    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
677
678    // The block really is live in here, insert it into the set.  If already in
679    // the set, then it has already been processed.
680    if (!LiveInBlocks.insert(BB))
681      continue;
682
683    // Since the value is live into BB, it is either defined in a predecessor or
684    // live into it to.  Add the preds to the worklist unless they are a
685    // defining block.
686    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
687      BasicBlock *P = *PI;
688
689      // The value is not live into a predecessor if it defines the value.
690      if (DefBlocks.count(P))
691        continue;
692
693      // Otherwise it is, add to the worklist.
694      LiveInBlockWorklist.push_back(P);
695    }
696  }
697}
698
699/// DetermineInsertionPoint - At this point, we're committed to promoting the
700/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
701/// which blocks need phi nodes and see if we can optimize out some work by
702/// avoiding insertion of dead phi nodes.
703void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
704                                             AllocaInfo &Info) {
705  // Unique the set of defining blocks for efficient lookup.
706  SmallPtrSet<BasicBlock*, 32> DefBlocks;
707  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
708
709  // Determine which blocks the value is live in.  These are blocks which lead
710  // to uses.
711  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
712  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
713
714  // Use a priority queue keyed on dominator tree level so that inserted nodes
715  // are handled from the bottom of the dominator tree upwards.
716  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
717                              DomTreeNodeCompare> IDFPriorityQueue;
718  IDFPriorityQueue PQ;
719
720  for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
721       E = DefBlocks.end(); I != E; ++I) {
722    if (DomTreeNode *Node = DT.getNode(*I))
723      PQ.push(std::make_pair(Node, DomLevels[Node]));
724  }
725
726  SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
727  SmallPtrSet<DomTreeNode*, 32> Visited;
728  SmallVector<DomTreeNode*, 32> Worklist;
729  while (!PQ.empty()) {
730    DomTreeNodePair RootPair = PQ.top();
731    PQ.pop();
732    DomTreeNode *Root = RootPair.first;
733    unsigned RootLevel = RootPair.second;
734
735    // Walk all dominator tree children of Root, inspecting their CFG edges with
736    // targets elsewhere on the dominator tree. Only targets whose level is at
737    // most Root's level are added to the iterated dominance frontier of the
738    // definition set.
739
740    Worklist.clear();
741    Worklist.push_back(Root);
742
743    while (!Worklist.empty()) {
744      DomTreeNode *Node = Worklist.pop_back_val();
745      BasicBlock *BB = Node->getBlock();
746
747      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
748           ++SI) {
749        DomTreeNode *SuccNode = DT.getNode(*SI);
750
751        // Quickly skip all CFG edges that are also dominator tree edges instead
752        // of catching them below.
753        if (SuccNode->getIDom() == Node)
754          continue;
755
756        unsigned SuccLevel = DomLevels[SuccNode];
757        if (SuccLevel > RootLevel)
758          continue;
759
760        if (!Visited.insert(SuccNode))
761          continue;
762
763        BasicBlock *SuccBB = SuccNode->getBlock();
764        if (!LiveInBlocks.count(SuccBB))
765          continue;
766
767        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
768        if (!DefBlocks.count(SuccBB))
769          PQ.push(std::make_pair(SuccNode, SuccLevel));
770      }
771
772      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
773           ++CI) {
774        if (!Visited.count(*CI))
775          Worklist.push_back(*CI);
776      }
777    }
778  }
779
780  if (DFBlocks.size() > 1)
781    std::sort(DFBlocks.begin(), DFBlocks.end());
782
783  unsigned CurrentVersion = 0;
784  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
785    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
786}
787
788/// RewriteSingleStoreAlloca - If there is only a single store to this value,
789/// replace any loads of it that are directly dominated by the definition with
790/// the value stored.
791void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
792                                              AllocaInfo &Info,
793                                              LargeBlockInfo &LBI) {
794  StoreInst *OnlyStore = Info.OnlyStore;
795  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
796  BasicBlock *StoreBB = OnlyStore->getParent();
797  int StoreIndex = -1;
798
799  // Clear out UsingBlocks.  We will reconstruct it here if needed.
800  Info.UsingBlocks.clear();
801
802  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
803    Instruction *UserInst = cast<Instruction>(*UI++);
804    if (!isa<LoadInst>(UserInst)) {
805      assert(UserInst == OnlyStore && "Should only have load/stores");
806      continue;
807    }
808    LoadInst *LI = cast<LoadInst>(UserInst);
809
810    // Okay, if we have a load from the alloca, we want to replace it with the
811    // only value stored to the alloca.  We can do this if the value is
812    // dominated by the store.  If not, we use the rest of the mem2reg machinery
813    // to insert the phi nodes as needed.
814    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
815      if (LI->getParent() == StoreBB) {
816        // If we have a use that is in the same block as the store, compare the
817        // indices of the two instructions to see which one came first.  If the
818        // load came before the store, we can't handle it.
819        if (StoreIndex == -1)
820          StoreIndex = LBI.getInstructionIndex(OnlyStore);
821
822        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
823          // Can't handle this load, bail out.
824          Info.UsingBlocks.push_back(StoreBB);
825          continue;
826        }
827
828      } else if (LI->getParent() != StoreBB &&
829                 !dominates(StoreBB, LI->getParent())) {
830        // If the load and store are in different blocks, use BB dominance to
831        // check their relationships.  If the store doesn't dom the use, bail
832        // out.
833        Info.UsingBlocks.push_back(LI->getParent());
834        continue;
835      }
836    }
837
838    // Otherwise, we *can* safely rewrite this load.
839    Value *ReplVal = OnlyStore->getOperand(0);
840    // If the replacement value is the load, this must occur in unreachable
841    // code.
842    if (ReplVal == LI)
843      ReplVal = UndefValue::get(LI->getType());
844    LI->replaceAllUsesWith(ReplVal);
845    if (AST && LI->getType()->isPointerTy())
846      AST->deleteValue(LI);
847    LI->eraseFromParent();
848    LBI.deleteValue(LI);
849  }
850}
851
852namespace {
853
854/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
855/// first element of a pair.
856struct StoreIndexSearchPredicate {
857  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
858                  const std::pair<unsigned, StoreInst*> &RHS) {
859    return LHS.first < RHS.first;
860  }
861};
862
863}
864
865/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
866/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
867/// potentially useless PHI nodes by just performing a single linear pass over
868/// the basic block using the Alloca.
869///
870/// If we cannot promote this alloca (because it is read before it is written),
871/// return true.  This is necessary in cases where, due to control flow, the
872/// alloca is potentially undefined on some control flow paths.  e.g. code like
873/// this is potentially correct:
874///
875///   for (...) { if (c) { A = undef; undef = B; } }
876///
877/// ... so long as A is not used before undef is set.
878///
879void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
880                                              LargeBlockInfo &LBI) {
881  // The trickiest case to handle is when we have large blocks. Because of this,
882  // this code is optimized assuming that large blocks happen.  This does not
883  // significantly pessimize the small block case.  This uses LargeBlockInfo to
884  // make it efficient to get the index of various operations in the block.
885
886  // Clear out UsingBlocks.  We will reconstruct it here if needed.
887  Info.UsingBlocks.clear();
888
889  // Walk the use-def list of the alloca, getting the locations of all stores.
890  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
891  StoresByIndexTy StoresByIndex;
892
893  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
894       UI != E; ++UI)
895    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
896      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
897
898  // If there are no stores to the alloca, just replace any loads with undef.
899  if (StoresByIndex.empty()) {
900    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
901      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
902        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
903        if (AST && LI->getType()->isPointerTy())
904          AST->deleteValue(LI);
905        LBI.deleteValue(LI);
906        LI->eraseFromParent();
907      }
908    return;
909  }
910
911  // Sort the stores by their index, making it efficient to do a lookup with a
912  // binary search.
913  std::sort(StoresByIndex.begin(), StoresByIndex.end());
914
915  // Walk all of the loads from this alloca, replacing them with the nearest
916  // store above them, if any.
917  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
918    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
919    if (!LI) continue;
920
921    unsigned LoadIdx = LBI.getInstructionIndex(LI);
922
923    // Find the nearest store that has a lower than this load.
924    StoresByIndexTy::iterator I =
925      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
926                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
927                       StoreIndexSearchPredicate());
928
929    // If there is no store before this load, then we can't promote this load.
930    if (I == StoresByIndex.begin()) {
931      // Can't handle this load, bail out.
932      Info.UsingBlocks.push_back(LI->getParent());
933      continue;
934    }
935
936    // Otherwise, there was a store before this load, the load takes its value.
937    --I;
938    LI->replaceAllUsesWith(I->second->getOperand(0));
939    if (AST && LI->getType()->isPointerTy())
940      AST->deleteValue(LI);
941    LI->eraseFromParent();
942    LBI.deleteValue(LI);
943  }
944}
945
946// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
947// that has an associated llvm.dbg.decl intrinsic.
948void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
949                                                     StoreInst *SI) {
950  DIVariable DIVar(DDI->getVariable());
951  if (!DIVar.Verify())
952    return;
953
954  if (!DIF)
955    DIF = new DIFactory(*SI->getParent()->getParent()->getParent());
956  Instruction *DbgVal = DIF->InsertDbgValueIntrinsic(SI->getOperand(0), 0,
957                                                     DIVar, SI);
958
959  // Propagate any debug metadata from the store onto the dbg.value.
960  DebugLoc SIDL = SI->getDebugLoc();
961  if (!SIDL.isUnknown())
962    DbgVal->setDebugLoc(SIDL);
963  // Otherwise propagate debug metadata from dbg.declare.
964  else
965    DbgVal->setDebugLoc(DDI->getDebugLoc());
966}
967
968// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
969// Alloca returns true if there wasn't already a phi-node for that variable
970//
971bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
972                                  unsigned &Version) {
973  // Look up the basic-block in question.
974  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
975
976  // If the BB already has a phi node added for the i'th alloca then we're done!
977  if (PN) return false;
978
979  // Create a PhiNode using the dereferenced type... and add the phi-node to the
980  // BasicBlock.
981  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(),
982                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
983                       BB->begin());
984  ++NumPHIInsert;
985  PhiToAllocaMap[PN] = AllocaNo;
986  PN->reserveOperandSpace(getNumPreds(BB));
987
988  if (AST && PN->getType()->isPointerTy())
989    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
990
991  return true;
992}
993
994// RenamePass - Recursively traverse the CFG of the function, renaming loads and
995// stores to the allocas which we are promoting.  IncomingVals indicates what
996// value each Alloca contains on exit from the predecessor block Pred.
997//
998void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
999                                RenamePassData::ValVector &IncomingVals,
1000                                std::vector<RenamePassData> &Worklist) {
1001NextIteration:
1002  // If we are inserting any phi nodes into this BB, they will already be in the
1003  // block.
1004  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1005    // If we have PHI nodes to update, compute the number of edges from Pred to
1006    // BB.
1007    if (PhiToAllocaMap.count(APN)) {
1008      // We want to be able to distinguish between PHI nodes being inserted by
1009      // this invocation of mem2reg from those phi nodes that already existed in
1010      // the IR before mem2reg was run.  We determine that APN is being inserted
1011      // because it is missing incoming edges.  All other PHI nodes being
1012      // inserted by this pass of mem2reg will have the same number of incoming
1013      // operands so far.  Remember this count.
1014      unsigned NewPHINumOperands = APN->getNumOperands();
1015
1016      unsigned NumEdges = 0;
1017      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1018        if (*I == BB)
1019          ++NumEdges;
1020      assert(NumEdges && "Must be at least one edge from Pred to BB!");
1021
1022      // Add entries for all the phis.
1023      BasicBlock::iterator PNI = BB->begin();
1024      do {
1025        unsigned AllocaNo = PhiToAllocaMap[APN];
1026
1027        // Add N incoming values to the PHI node.
1028        for (unsigned i = 0; i != NumEdges; ++i)
1029          APN->addIncoming(IncomingVals[AllocaNo], Pred);
1030
1031        // The currently active variable for this block is now the PHI.
1032        IncomingVals[AllocaNo] = APN;
1033
1034        // Get the next phi node.
1035        ++PNI;
1036        APN = dyn_cast<PHINode>(PNI);
1037        if (APN == 0) break;
1038
1039        // Verify that it is missing entries.  If not, it is not being inserted
1040        // by this mem2reg invocation so we want to ignore it.
1041      } while (APN->getNumOperands() == NewPHINumOperands);
1042    }
1043  }
1044
1045  // Don't revisit blocks.
1046  if (!Visited.insert(BB)) return;
1047
1048  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1049    Instruction *I = II++; // get the instruction, increment iterator
1050
1051    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1052      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1053      if (!Src) continue;
1054
1055      DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1056      if (AI == AllocaLookup.end()) continue;
1057
1058      Value *V = IncomingVals[AI->second];
1059
1060      // Anything using the load now uses the current value.
1061      LI->replaceAllUsesWith(V);
1062      if (AST && LI->getType()->isPointerTy())
1063        AST->deleteValue(LI);
1064      BB->getInstList().erase(LI);
1065    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1066      // Delete this instruction and mark the name as the current holder of the
1067      // value
1068      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1069      if (!Dest) continue;
1070
1071      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1072      if (ai == AllocaLookup.end())
1073        continue;
1074
1075      // what value were we writing?
1076      IncomingVals[ai->second] = SI->getOperand(0);
1077      // Record debuginfo for the store before removing it.
1078      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1079        ConvertDebugDeclareToDebugValue(DDI, SI);
1080      BB->getInstList().erase(SI);
1081    }
1082  }
1083
1084  // 'Recurse' to our successors.
1085  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1086  if (I == E) return;
1087
1088  // Keep track of the successors so we don't visit the same successor twice
1089  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1090
1091  // Handle the first successor without using the worklist.
1092  VisitedSuccs.insert(*I);
1093  Pred = BB;
1094  BB = *I;
1095  ++I;
1096
1097  for (; I != E; ++I)
1098    if (VisitedSuccs.insert(*I))
1099      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1100
1101  goto NextIteration;
1102}
1103
1104/// PromoteMemToReg - Promote the specified list of alloca instructions into
1105/// scalar registers, inserting PHI nodes as appropriate.  This function does
1106/// not modify the CFG of the function at all.  All allocas must be from the
1107/// same function.
1108///
1109/// If AST is specified, the specified tracker is updated to reflect changes
1110/// made to the IR.
1111///
1112void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1113                           DominatorTree &DT, AliasSetTracker *AST) {
1114  // If there is nothing to do, bail out...
1115  if (Allocas.empty()) return;
1116
1117  PromoteMem2Reg(Allocas, DT, AST).run();
1118}
1119