LoopUnroll.cpp revision 199481
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// It works best when loops have been canonicalized by the -indvars pass,
15// allowing it to determine the trip counts of loops easily.
16//
17// The process of unrolling can produce extraneous basic blocks linked with
18// unconditional branches.  This will be corrected in the future.
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "loop-unroll"
22#include "llvm/Transforms/Utils/UnrollLoop.h"
23#include "llvm/BasicBlock.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Cloning.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include <cstdio>
33
34using namespace llvm;
35
36// TODO: Should these be here or in LoopUnroll?
37STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
38STATISTIC(NumUnrolled,    "Number of loops unrolled (completely or otherwise)");
39
40/// RemapInstruction - Convert the instruction operands from referencing the
41/// current values into those specified by ValueMap.
42static inline void RemapInstruction(Instruction *I,
43                                    DenseMap<const Value *, Value*> &ValueMap) {
44  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
45    Value *Op = I->getOperand(op);
46    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
47    if (It != ValueMap.end())
48      I->setOperand(op, It->second);
49  }
50}
51
52/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
53/// only has one predecessor, and that predecessor only has one successor.
54/// The LoopInfo Analysis that is passed will be kept consistent.
55/// Returns the new combined block.
56static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
57  // Merge basic blocks into their predecessor if there is only one distinct
58  // pred, and if there is only one distinct successor of the predecessor, and
59  // if there are no PHI nodes.
60  BasicBlock *OnlyPred = BB->getSinglePredecessor();
61  if (!OnlyPred) return 0;
62
63  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
64    return 0;
65
66  DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
67
68  // Resolve any PHI nodes at the start of the block.  They are all
69  // guaranteed to have exactly one entry if they exist, unless there are
70  // multiple duplicate (but guaranteed to be equal) entries for the
71  // incoming edges.  This occurs when there are multiple edges from
72  // OnlyPred to OnlySucc.
73  FoldSingleEntryPHINodes(BB);
74
75  // Delete the unconditional branch from the predecessor...
76  OnlyPred->getInstList().pop_back();
77
78  // Move all definitions in the successor to the predecessor...
79  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
80
81  // Make all PHI nodes that referred to BB now refer to Pred as their
82  // source...
83  BB->replaceAllUsesWith(OnlyPred);
84
85  std::string OldName = BB->getName();
86
87  // Erase basic block from the function...
88  LI->removeBlock(BB);
89  BB->eraseFromParent();
90
91  // Inherit predecessor's name if it exists...
92  if (!OldName.empty() && !OnlyPred->hasName())
93    OnlyPred->setName(OldName);
94
95  return OnlyPred;
96}
97
98/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
99/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
100/// can only fail when the loop's latch block is not terminated by a conditional
101/// branch instruction. However, if the trip count (and multiple) are not known,
102/// loop unrolling will mostly produce more code that is no faster.
103///
104/// The LoopInfo Analysis that is passed will be kept consistent.
105///
106/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
107/// removed from the LoopPassManager as well. LPM can also be NULL.
108bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
109  assert(L->isLCSSAForm());
110
111  BasicBlock *Preheader = L->getLoopPreheader();
112  if (!Preheader) {
113    DEBUG(errs() << "  Can't unroll; loop preheader-insertion failed.\n");
114    return false;
115  }
116
117  BasicBlock *LatchBlock = L->getLoopLatch();
118  if (!LatchBlock) {
119    DEBUG(errs() << "  Can't unroll; loop exit-block-insertion failed.\n");
120    return false;
121  }
122
123  BasicBlock *Header = L->getHeader();
124  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
125
126  if (!BI || BI->isUnconditional()) {
127    // The loop-rotate pass can be helpful to avoid this in many cases.
128    DEBUG(errs() <<
129             "  Can't unroll; loop not terminated by a conditional branch.\n");
130    return false;
131  }
132
133  // Find trip count
134  unsigned TripCount = L->getSmallConstantTripCount();
135  // Find trip multiple if count is not available
136  unsigned TripMultiple = 1;
137  if (TripCount == 0)
138    TripMultiple = L->getSmallConstantTripMultiple();
139
140  if (TripCount != 0)
141    DEBUG(errs() << "  Trip Count = " << TripCount << "\n");
142  if (TripMultiple != 1)
143    DEBUG(errs() << "  Trip Multiple = " << TripMultiple << "\n");
144
145  // Effectively "DCE" unrolled iterations that are beyond the tripcount
146  // and will never be executed.
147  if (TripCount != 0 && Count > TripCount)
148    Count = TripCount;
149
150  assert(Count > 0);
151  assert(TripMultiple > 0);
152  assert(TripCount == 0 || TripCount % TripMultiple == 0);
153
154  // Are we eliminating the loop control altogether?
155  bool CompletelyUnroll = Count == TripCount;
156
157  // If we know the trip count, we know the multiple...
158  unsigned BreakoutTrip = 0;
159  if (TripCount != 0) {
160    BreakoutTrip = TripCount % Count;
161    TripMultiple = 0;
162  } else {
163    // Figure out what multiple to use.
164    BreakoutTrip = TripMultiple =
165      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
166  }
167
168  if (CompletelyUnroll) {
169    DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
170          << " with trip count " << TripCount << "!\n");
171  } else {
172    DEBUG(errs() << "UNROLLING loop %" << Header->getName()
173          << " by " << Count);
174    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
175      DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
176    } else if (TripMultiple != 1) {
177      DEBUG(errs() << " with " << TripMultiple << " trips per branch");
178    }
179    DEBUG(errs() << "!\n");
180  }
181
182  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
183
184  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
185  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
186
187  // For the first iteration of the loop, we should use the precloned values for
188  // PHI nodes.  Insert associations now.
189  typedef DenseMap<const Value*, Value*> ValueMapTy;
190  ValueMapTy LastValueMap;
191  std::vector<PHINode*> OrigPHINode;
192  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
193    PHINode *PN = cast<PHINode>(I);
194    OrigPHINode.push_back(PN);
195    if (Instruction *I =
196                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
197      if (L->contains(I->getParent()))
198        LastValueMap[I] = I;
199  }
200
201  std::vector<BasicBlock*> Headers;
202  std::vector<BasicBlock*> Latches;
203  Headers.push_back(Header);
204  Latches.push_back(LatchBlock);
205
206  for (unsigned It = 1; It != Count; ++It) {
207    char SuffixBuffer[100];
208    sprintf(SuffixBuffer, ".%d", It);
209
210    std::vector<BasicBlock*> NewBlocks;
211
212    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
213         E = LoopBlocks.end(); BB != E; ++BB) {
214      ValueMapTy ValueMap;
215      BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
216      Header->getParent()->getBasicBlockList().push_back(New);
217
218      // Loop over all of the PHI nodes in the block, changing them to use the
219      // incoming values from the previous block.
220      if (*BB == Header)
221        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
222          PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
223          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
224          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
225            if (It > 1 && L->contains(InValI->getParent()))
226              InVal = LastValueMap[InValI];
227          ValueMap[OrigPHINode[i]] = InVal;
228          New->getInstList().erase(NewPHI);
229        }
230
231      // Update our running map of newest clones
232      LastValueMap[*BB] = New;
233      for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
234           VI != VE; ++VI)
235        LastValueMap[VI->first] = VI->second;
236
237      L->addBasicBlockToLoop(New, LI->getBase());
238
239      // Add phi entries for newly created values to all exit blocks except
240      // the successor of the latch block.  The successor of the exit block will
241      // be updated specially after unrolling all the way.
242      if (*BB != LatchBlock)
243        for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
244             UI != UE;) {
245          Instruction *UseInst = cast<Instruction>(*UI);
246          ++UI;
247          if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
248            PHINode *phi = cast<PHINode>(UseInst);
249            Value *Incoming = phi->getIncomingValueForBlock(*BB);
250            phi->addIncoming(Incoming, New);
251          }
252        }
253
254      // Keep track of new headers and latches as we create them, so that
255      // we can insert the proper branches later.
256      if (*BB == Header)
257        Headers.push_back(New);
258      if (*BB == LatchBlock) {
259        Latches.push_back(New);
260
261        // Also, clear out the new latch's back edge so that it doesn't look
262        // like a new loop, so that it's amenable to being merged with adjacent
263        // blocks later on.
264        TerminatorInst *Term = New->getTerminator();
265        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
266        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
267        Term->setSuccessor(!ContinueOnTrue, NULL);
268      }
269
270      NewBlocks.push_back(New);
271    }
272
273    // Remap all instructions in the most recent iteration
274    for (unsigned i = 0; i < NewBlocks.size(); ++i)
275      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
276           E = NewBlocks[i]->end(); I != E; ++I)
277        RemapInstruction(I, LastValueMap);
278  }
279
280  // The latch block exits the loop.  If there are any PHI nodes in the
281  // successor blocks, update them to use the appropriate values computed as the
282  // last iteration of the loop.
283  if (Count != 1) {
284    SmallPtrSet<PHINode*, 8> Users;
285    for (Value::use_iterator UI = LatchBlock->use_begin(),
286         UE = LatchBlock->use_end(); UI != UE; ++UI)
287      if (PHINode *phi = dyn_cast<PHINode>(*UI))
288        Users.insert(phi);
289
290    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
291    for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
292         SI != SE; ++SI) {
293      PHINode *PN = *SI;
294      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
295      // If this value was defined in the loop, take the value defined by the
296      // last iteration of the loop.
297      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
298        if (L->contains(InValI->getParent()))
299          InVal = LastValueMap[InVal];
300      }
301      PN->addIncoming(InVal, LastIterationBB);
302    }
303  }
304
305  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
306  // original block, setting them to their incoming values.
307  if (CompletelyUnroll) {
308    BasicBlock *Preheader = L->getLoopPreheader();
309    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
310      PHINode *PN = OrigPHINode[i];
311      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
312      Header->getInstList().erase(PN);
313    }
314  }
315
316  // Now that all the basic blocks for the unrolled iterations are in place,
317  // set up the branches to connect them.
318  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
319    // The original branch was replicated in each unrolled iteration.
320    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
321
322    // The branch destination.
323    unsigned j = (i + 1) % e;
324    BasicBlock *Dest = Headers[j];
325    bool NeedConditional = true;
326
327    // For a complete unroll, make the last iteration end with a branch
328    // to the exit block.
329    if (CompletelyUnroll && j == 0) {
330      Dest = LoopExit;
331      NeedConditional = false;
332    }
333
334    // If we know the trip count or a multiple of it, we can safely use an
335    // unconditional branch for some iterations.
336    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
337      NeedConditional = false;
338    }
339
340    if (NeedConditional) {
341      // Update the conditional branch's successor for the following
342      // iteration.
343      Term->setSuccessor(!ContinueOnTrue, Dest);
344    } else {
345      Term->setUnconditionalDest(Dest);
346      // Merge adjacent basic blocks, if possible.
347      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
348        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
349        std::replace(Headers.begin(), Headers.end(), Dest, Fold);
350      }
351    }
352  }
353
354  // At this point, the code is well formed.  We now do a quick sweep over the
355  // inserted code, doing constant propagation and dead code elimination as we
356  // go.
357  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
358  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
359       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
360    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
361      Instruction *Inst = I++;
362
363      if (isInstructionTriviallyDead(Inst))
364        (*BB)->getInstList().erase(Inst);
365      else if (Constant *C = ConstantFoldInstruction(Inst)) {
366        Inst->replaceAllUsesWith(C);
367        (*BB)->getInstList().erase(Inst);
368      }
369    }
370
371  NumCompletelyUnrolled += CompletelyUnroll;
372  ++NumUnrolled;
373  // Remove the loop from the LoopPassManager if it's completely removed.
374  if (CompletelyUnroll && LPM != NULL)
375    LPM->deleteLoopFromQueue(L);
376
377  // If we didn't completely unroll the loop, it should still be in LCSSA form.
378  if (!CompletelyUnroll)
379    assert(L->isLCSSAForm());
380
381  return true;
382}
383