Local.cpp revision 210299
1//===-- Local.cpp - Functions to perform local transformations ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform various local transformations to the
11// program.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/ProfileInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//  Local constant propagation.
39//
40
41// ConstantFoldTerminator - If a terminator instruction is predicated on a
42// constant value, convert it into an unconditional branch to the constant
43// destination.
44//
45bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
46  TerminatorInst *T = BB->getTerminator();
47
48  // Branch - See if we are conditional jumping on constant
49  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
50    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
51    BasicBlock *Dest1 = BI->getSuccessor(0);
52    BasicBlock *Dest2 = BI->getSuccessor(1);
53
54    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
55      // Are we branching on constant?
56      // YES.  Change to unconditional branch...
57      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
58      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
59
60      //cerr << "Function: " << T->getParent()->getParent()
61      //     << "\nRemoving branch from " << T->getParent()
62      //     << "\n\nTo: " << OldDest << endl;
63
64      // Let the basic block know that we are letting go of it.  Based on this,
65      // it will adjust it's PHI nodes.
66      assert(BI->getParent() && "Terminator not inserted in block!");
67      OldDest->removePredecessor(BI->getParent());
68
69      // Set the unconditional destination, and change the insn to be an
70      // unconditional branch.
71      BI->setUnconditionalDest(Destination);
72      return true;
73    }
74
75    if (Dest2 == Dest1) {       // Conditional branch to same location?
76      // This branch matches something like this:
77      //     br bool %cond, label %Dest, label %Dest
78      // and changes it into:  br label %Dest
79
80      // Let the basic block know that we are letting go of one copy of it.
81      assert(BI->getParent() && "Terminator not inserted in block!");
82      Dest1->removePredecessor(BI->getParent());
83
84      // Change a conditional branch to unconditional.
85      BI->setUnconditionalDest(Dest1);
86      return true;
87    }
88    return false;
89  }
90
91  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
92    // If we are switching on a constant, we can convert the switch into a
93    // single branch instruction!
94    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
95    BasicBlock *TheOnlyDest = SI->getSuccessor(0);  // The default dest
96    BasicBlock *DefaultDest = TheOnlyDest;
97    assert(TheOnlyDest == SI->getDefaultDest() &&
98           "Default destination is not successor #0?");
99
100    // Figure out which case it goes to.
101    for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
102      // Found case matching a constant operand?
103      if (SI->getSuccessorValue(i) == CI) {
104        TheOnlyDest = SI->getSuccessor(i);
105        break;
106      }
107
108      // Check to see if this branch is going to the same place as the default
109      // dest.  If so, eliminate it as an explicit compare.
110      if (SI->getSuccessor(i) == DefaultDest) {
111        // Remove this entry.
112        DefaultDest->removePredecessor(SI->getParent());
113        SI->removeCase(i);
114        --i; --e;  // Don't skip an entry...
115        continue;
116      }
117
118      // Otherwise, check to see if the switch only branches to one destination.
119      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
120      // destinations.
121      if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
122    }
123
124    if (CI && !TheOnlyDest) {
125      // Branching on a constant, but not any of the cases, go to the default
126      // successor.
127      TheOnlyDest = SI->getDefaultDest();
128    }
129
130    // If we found a single destination that we can fold the switch into, do so
131    // now.
132    if (TheOnlyDest) {
133      // Insert the new branch.
134      BranchInst::Create(TheOnlyDest, SI);
135      BasicBlock *BB = SI->getParent();
136
137      // Remove entries from PHI nodes which we no longer branch to...
138      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
139        // Found case matching a constant operand?
140        BasicBlock *Succ = SI->getSuccessor(i);
141        if (Succ == TheOnlyDest)
142          TheOnlyDest = 0;  // Don't modify the first branch to TheOnlyDest
143        else
144          Succ->removePredecessor(BB);
145      }
146
147      // Delete the old switch.
148      BB->getInstList().erase(SI);
149      return true;
150    }
151
152    if (SI->getNumSuccessors() == 2) {
153      // Otherwise, we can fold this switch into a conditional branch
154      // instruction if it has only one non-default destination.
155      Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
156                                 SI->getSuccessorValue(1), "cond");
157      // Insert the new branch.
158      BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
159
160      // Delete the old switch.
161      SI->eraseFromParent();
162      return true;
163    }
164    return false;
165  }
166
167  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
168    // indirectbr blockaddress(@F, @BB) -> br label @BB
169    if (BlockAddress *BA =
170          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
171      BasicBlock *TheOnlyDest = BA->getBasicBlock();
172      // Insert the new branch.
173      BranchInst::Create(TheOnlyDest, IBI);
174
175      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
176        if (IBI->getDestination(i) == TheOnlyDest)
177          TheOnlyDest = 0;
178        else
179          IBI->getDestination(i)->removePredecessor(IBI->getParent());
180      }
181      IBI->eraseFromParent();
182
183      // If we didn't find our destination in the IBI successor list, then we
184      // have undefined behavior.  Replace the unconditional branch with an
185      // 'unreachable' instruction.
186      if (TheOnlyDest) {
187        BB->getTerminator()->eraseFromParent();
188        new UnreachableInst(BB->getContext(), BB);
189      }
190
191      return true;
192    }
193  }
194
195  return false;
196}
197
198
199//===----------------------------------------------------------------------===//
200//  Local dead code elimination.
201//
202
203/// isInstructionTriviallyDead - Return true if the result produced by the
204/// instruction is not used, and the instruction has no side effects.
205///
206bool llvm::isInstructionTriviallyDead(Instruction *I) {
207  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
208
209  // We don't want debug info removed by anything this general.
210  if (isa<DbgInfoIntrinsic>(I)) return false;
211
212  // Likewise for memory use markers.
213  if (isa<MemoryUseIntrinsic>(I)) return false;
214
215  if (!I->mayHaveSideEffects()) return true;
216
217  // Special case intrinsics that "may have side effects" but can be deleted
218  // when dead.
219  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
220    // Safe to delete llvm.stacksave if dead.
221    if (II->getIntrinsicID() == Intrinsic::stacksave)
222      return true;
223  return false;
224}
225
226/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
227/// trivially dead instruction, delete it.  If that makes any of its operands
228/// trivially dead, delete them too, recursively.  Return true if any
229/// instructions were deleted.
230bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
231  Instruction *I = dyn_cast<Instruction>(V);
232  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
233    return false;
234
235  SmallVector<Instruction*, 16> DeadInsts;
236  DeadInsts.push_back(I);
237
238  do {
239    I = DeadInsts.pop_back_val();
240
241    // Null out all of the instruction's operands to see if any operand becomes
242    // dead as we go.
243    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
244      Value *OpV = I->getOperand(i);
245      I->setOperand(i, 0);
246
247      if (!OpV->use_empty()) continue;
248
249      // If the operand is an instruction that became dead as we nulled out the
250      // operand, and if it is 'trivially' dead, delete it in a future loop
251      // iteration.
252      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
253        if (isInstructionTriviallyDead(OpI))
254          DeadInsts.push_back(OpI);
255    }
256
257    I->eraseFromParent();
258  } while (!DeadInsts.empty());
259
260  return true;
261}
262
263/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
264/// dead PHI node, due to being a def-use chain of single-use nodes that
265/// either forms a cycle or is terminated by a trivially dead instruction,
266/// delete it.  If that makes any of its operands trivially dead, delete them
267/// too, recursively.  Return true if the PHI node is actually deleted.
268bool
269llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
270  // We can remove a PHI if it is on a cycle in the def-use graph
271  // where each node in the cycle has degree one, i.e. only one use,
272  // and is an instruction with no side effects.
273  if (!PN->hasOneUse())
274    return false;
275
276  bool Changed = false;
277  SmallPtrSet<PHINode *, 4> PHIs;
278  PHIs.insert(PN);
279  for (Instruction *J = cast<Instruction>(*PN->use_begin());
280       J->hasOneUse() && !J->mayHaveSideEffects();
281       J = cast<Instruction>(*J->use_begin()))
282    // If we find a PHI more than once, we're on a cycle that
283    // won't prove fruitful.
284    if (PHINode *JP = dyn_cast<PHINode>(J))
285      if (!PHIs.insert(cast<PHINode>(JP))) {
286        // Break the cycle and delete the PHI and its operands.
287        JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
288        (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
289        Changed = true;
290        break;
291      }
292  return Changed;
293}
294
295/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
296/// simplify any instructions in it and recursively delete dead instructions.
297///
298/// This returns true if it changed the code, note that it can delete
299/// instructions in other blocks as well in this block.
300bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
301  bool MadeChange = false;
302  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
303    Instruction *Inst = BI++;
304
305    if (Value *V = SimplifyInstruction(Inst, TD)) {
306      WeakVH BIHandle(BI);
307      ReplaceAndSimplifyAllUses(Inst, V, TD);
308      MadeChange = true;
309      if (BIHandle != BI)
310        BI = BB->begin();
311      continue;
312    }
313
314    MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
315  }
316  return MadeChange;
317}
318
319//===----------------------------------------------------------------------===//
320//  Control Flow Graph Restructuring.
321//
322
323
324/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
325/// method is called when we're about to delete Pred as a predecessor of BB.  If
326/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
327///
328/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
329/// nodes that collapse into identity values.  For example, if we have:
330///   x = phi(1, 0, 0, 0)
331///   y = and x, z
332///
333/// .. and delete the predecessor corresponding to the '1', this will attempt to
334/// recursively fold the and to 0.
335void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
336                                        TargetData *TD) {
337  // This only adjusts blocks with PHI nodes.
338  if (!isa<PHINode>(BB->begin()))
339    return;
340
341  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
342  // them down.  This will leave us with single entry phi nodes and other phis
343  // that can be removed.
344  BB->removePredecessor(Pred, true);
345
346  WeakVH PhiIt = &BB->front();
347  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
348    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
349
350    Value *PNV = PN->hasConstantValue();
351    if (PNV == 0) continue;
352
353    // If we're able to simplify the phi to a single value, substitute the new
354    // value into all of its uses.
355    assert(PNV != PN && "hasConstantValue broken");
356
357    Value *OldPhiIt = PhiIt;
358    ReplaceAndSimplifyAllUses(PN, PNV, TD);
359
360    // If recursive simplification ended up deleting the next PHI node we would
361    // iterate to, then our iterator is invalid, restart scanning from the top
362    // of the block.
363    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
364  }
365}
366
367
368/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
369/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
370/// between them, moving the instructions in the predecessor into DestBB and
371/// deleting the predecessor block.
372///
373void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
374  // If BB has single-entry PHI nodes, fold them.
375  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
376    Value *NewVal = PN->getIncomingValue(0);
377    // Replace self referencing PHI with undef, it must be dead.
378    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
379    PN->replaceAllUsesWith(NewVal);
380    PN->eraseFromParent();
381  }
382
383  BasicBlock *PredBB = DestBB->getSinglePredecessor();
384  assert(PredBB && "Block doesn't have a single predecessor!");
385
386  // Splice all the instructions from PredBB to DestBB.
387  PredBB->getTerminator()->eraseFromParent();
388  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
389
390  // Zap anything that took the address of DestBB.  Not doing this will give the
391  // address an invalid value.
392  if (DestBB->hasAddressTaken()) {
393    BlockAddress *BA = BlockAddress::get(DestBB);
394    Constant *Replacement =
395      ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
396    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
397                                                     BA->getType()));
398    BA->destroyConstant();
399  }
400
401  // Anything that branched to PredBB now branches to DestBB.
402  PredBB->replaceAllUsesWith(DestBB);
403
404  if (P) {
405    ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
406    if (PI) {
407      PI->replaceAllUses(PredBB, DestBB);
408      PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
409    }
410  }
411  // Nuke BB.
412  PredBB->eraseFromParent();
413}
414
415/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
416/// almost-empty BB ending in an unconditional branch to Succ, into succ.
417///
418/// Assumption: Succ is the single successor for BB.
419///
420static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
421  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
422
423  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
424        << Succ->getName() << "\n");
425  // Shortcut, if there is only a single predecessor it must be BB and merging
426  // is always safe
427  if (Succ->getSinglePredecessor()) return true;
428
429  // Make a list of the predecessors of BB
430  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
431  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
432
433  // Use that list to make another list of common predecessors of BB and Succ
434  BlockSet CommonPreds;
435  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
436       PI != PE; ++PI) {
437    BasicBlock *P = *PI;
438    if (BBPreds.count(P))
439      CommonPreds.insert(P);
440  }
441
442  // Shortcut, if there are no common predecessors, merging is always safe
443  if (CommonPreds.empty())
444    return true;
445
446  // Look at all the phi nodes in Succ, to see if they present a conflict when
447  // merging these blocks
448  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
449    PHINode *PN = cast<PHINode>(I);
450
451    // If the incoming value from BB is again a PHINode in
452    // BB which has the same incoming value for *PI as PN does, we can
453    // merge the phi nodes and then the blocks can still be merged
454    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
455    if (BBPN && BBPN->getParent() == BB) {
456      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
457            PI != PE; PI++) {
458        if (BBPN->getIncomingValueForBlock(*PI)
459              != PN->getIncomingValueForBlock(*PI)) {
460          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
461                << Succ->getName() << " is conflicting with "
462                << BBPN->getName() << " with regard to common predecessor "
463                << (*PI)->getName() << "\n");
464          return false;
465        }
466      }
467    } else {
468      Value* Val = PN->getIncomingValueForBlock(BB);
469      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
470            PI != PE; PI++) {
471        // See if the incoming value for the common predecessor is equal to the
472        // one for BB, in which case this phi node will not prevent the merging
473        // of the block.
474        if (Val != PN->getIncomingValueForBlock(*PI)) {
475          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
476                << Succ->getName() << " is conflicting with regard to common "
477                << "predecessor " << (*PI)->getName() << "\n");
478          return false;
479        }
480      }
481    }
482  }
483
484  return true;
485}
486
487/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
488/// unconditional branch, and contains no instructions other than PHI nodes,
489/// potential debug intrinsics and the branch.  If possible, eliminate BB by
490/// rewriting all the predecessors to branch to the successor block and return
491/// true.  If we can't transform, return false.
492bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
493  // We can't eliminate infinite loops.
494  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
495  if (BB == Succ) return false;
496
497  // Check to see if merging these blocks would cause conflicts for any of the
498  // phi nodes in BB or Succ. If not, we can safely merge.
499  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
500
501  // Check for cases where Succ has multiple predecessors and a PHI node in BB
502  // has uses which will not disappear when the PHI nodes are merged.  It is
503  // possible to handle such cases, but difficult: it requires checking whether
504  // BB dominates Succ, which is non-trivial to calculate in the case where
505  // Succ has multiple predecessors.  Also, it requires checking whether
506  // constructing the necessary self-referential PHI node doesn't intoduce any
507  // conflicts; this isn't too difficult, but the previous code for doing this
508  // was incorrect.
509  //
510  // Note that if this check finds a live use, BB dominates Succ, so BB is
511  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
512  // folding the branch isn't profitable in that case anyway.
513  if (!Succ->getSinglePredecessor()) {
514    BasicBlock::iterator BBI = BB->begin();
515    while (isa<PHINode>(*BBI)) {
516      for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
517           UI != E; ++UI) {
518        if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
519          if (PN->getIncomingBlock(UI) != BB)
520            return false;
521        } else {
522          return false;
523        }
524      }
525      ++BBI;
526    }
527  }
528
529  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
530
531  if (isa<PHINode>(Succ->begin())) {
532    // If there is more than one pred of succ, and there are PHI nodes in
533    // the successor, then we need to add incoming edges for the PHI nodes
534    //
535    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
536
537    // Loop over all of the PHI nodes in the successor of BB.
538    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
539      PHINode *PN = cast<PHINode>(I);
540      Value *OldVal = PN->removeIncomingValue(BB, false);
541      assert(OldVal && "No entry in PHI for Pred BB!");
542
543      // If this incoming value is one of the PHI nodes in BB, the new entries
544      // in the PHI node are the entries from the old PHI.
545      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
546        PHINode *OldValPN = cast<PHINode>(OldVal);
547        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
548          // Note that, since we are merging phi nodes and BB and Succ might
549          // have common predecessors, we could end up with a phi node with
550          // identical incoming branches. This will be cleaned up later (and
551          // will trigger asserts if we try to clean it up now, without also
552          // simplifying the corresponding conditional branch).
553          PN->addIncoming(OldValPN->getIncomingValue(i),
554                          OldValPN->getIncomingBlock(i));
555      } else {
556        // Add an incoming value for each of the new incoming values.
557        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
558          PN->addIncoming(OldVal, BBPreds[i]);
559      }
560    }
561  }
562
563  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
564    if (Succ->getSinglePredecessor()) {
565      // BB is the only predecessor of Succ, so Succ will end up with exactly
566      // the same predecessors BB had.
567      Succ->getInstList().splice(Succ->begin(),
568                                 BB->getInstList(), BB->begin());
569    } else {
570      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
571      assert(PN->use_empty() && "There shouldn't be any uses here!");
572      PN->eraseFromParent();
573    }
574  }
575
576  // Everything that jumped to BB now goes to Succ.
577  BB->replaceAllUsesWith(Succ);
578  if (!Succ->hasName()) Succ->takeName(BB);
579  BB->eraseFromParent();              // Delete the old basic block.
580  return true;
581}
582
583/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
584/// nodes in this block. This doesn't try to be clever about PHI nodes
585/// which differ only in the order of the incoming values, but instcombine
586/// orders them so it usually won't matter.
587///
588bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
589  bool Changed = false;
590
591  // This implementation doesn't currently consider undef operands
592  // specially. Theroetically, two phis which are identical except for
593  // one having an undef where the other doesn't could be collapsed.
594
595  // Map from PHI hash values to PHI nodes. If multiple PHIs have
596  // the same hash value, the element is the first PHI in the
597  // linked list in CollisionMap.
598  DenseMap<uintptr_t, PHINode *> HashMap;
599
600  // Maintain linked lists of PHI nodes with common hash values.
601  DenseMap<PHINode *, PHINode *> CollisionMap;
602
603  // Examine each PHI.
604  for (BasicBlock::iterator I = BB->begin();
605       PHINode *PN = dyn_cast<PHINode>(I++); ) {
606    // Compute a hash value on the operands. Instcombine will likely have sorted
607    // them, which helps expose duplicates, but we have to check all the
608    // operands to be safe in case instcombine hasn't run.
609    uintptr_t Hash = 0;
610    for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
611      // This hash algorithm is quite weak as hash functions go, but it seems
612      // to do a good enough job for this particular purpose, and is very quick.
613      Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
614      Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
615    }
616    // If we've never seen this hash value before, it's a unique PHI.
617    std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
618      HashMap.insert(std::make_pair(Hash, PN));
619    if (Pair.second) continue;
620    // Otherwise it's either a duplicate or a hash collision.
621    for (PHINode *OtherPN = Pair.first->second; ; ) {
622      if (OtherPN->isIdenticalTo(PN)) {
623        // A duplicate. Replace this PHI with its duplicate.
624        PN->replaceAllUsesWith(OtherPN);
625        PN->eraseFromParent();
626        Changed = true;
627        break;
628      }
629      // A non-duplicate hash collision.
630      DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
631      if (I == CollisionMap.end()) {
632        // Set this PHI to be the head of the linked list of colliding PHIs.
633        PHINode *Old = Pair.first->second;
634        Pair.first->second = PN;
635        CollisionMap[PN] = Old;
636        break;
637      }
638      // Procede to the next PHI in the list.
639      OtherPN = I->second;
640    }
641  }
642
643  return Changed;
644}
645